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Abstract

The present paper aims at the study of a two non-identical system model having safe and unsafe failures
and rebooting. The focus centers on the analysis w.r.t important reliability measures and estimation of
parameters in Classical and Bayesian paradigms. At first one of the units is operational whereas other
one is confined to standby mode. Any unit may suffer safe or unsafe failure. A safe failure is immediately
taken up for remedial action by a repairman available with the system all the time, while the case of unsafe
failure cannot be dealt directly but first rebooting is performed to convert the unsafe failure to safe failure
mode so as to start repair normally. A switching device is used to make the repaired and standby units
operational. The lifetime of both the units and switching device are taken to be exponentially distributed
random variables whereas the distribution of repair times are assumed to be general. Regenerative point
technique is employed to derive assosciated measures of effectiveness. To make the study more elaborative
and visually attractive, some of the derived characteristics have been studied graphically too. A simulation
study has also been undertaken to exhibit the behaviour of obtained characteristics in Classical and
Bayesian setup. Valuable inferences about MLE and Bayes estimates have been drawn from the tables and
graphs for varying values of failure and repair parameters.

Keywords: Reliability, Availability, Mean Time to System Failure, Regenerative Point Technique,
Rebooting, Coverage Proabability, Bayesian Estimation, Maximum Likelihood Estimation.

1. Introduction

Reliability is a fundamental concept that underpins the dependability and consistency of systems,
processes, products, or services. It is the assurance that something will perform its purposeful
function or deliver expected outcomes consistently and without failure over a specified period or
under specific conditions. In a world where technological advancements and complex interde-
pendencies are ever-increasing, reliability has become a critical factor in determining the success,
safety, and satisfaction of individuals, businesses, and societies at large. We observe that machine
failure, which results in significant losses, frequently follows unit failure. The incorporation of
standby units is one strategy for enhancing reliability. Also, there are cases where the root cause
of a unit failure is not immediately identified, leading to inadequate coverage that must be fixed
by rebooting. Depending on the complexity, the length of the reboot time varies from system
to system. Recent times have seen extensive and rigorous research on reliability, availability,
standby systems, inadequate coverage, reboot, etc. Sharma & Kumar[1] examined the concept of
two similar units with one switching device and imperfect coverage. In case of unsafe failure,
repair cannot begin immediately but first rebooting is done which transforms the unsafe failure
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to safe failure and then repair is carried out. Trivedi[2] gave the concept of reboot in his work
"Probability & Statistics With Reliability, Queuing and Computer Science Applications" Gupta
et al.[3] carried a study about two dissimilar unit parallel system accompanied by correlated
lifetimes. The system stops functioning when both of the units fail. Wang & Chen [4] provided a
comparative analysis by computing the availability of three systems with General Repair times
and Reboot delay. Pham [5] performed analysis of reliability of a system with high voltage
having dependent failures and insufficient coverage. A high voltage (HV) system that consists
of a power supply and two transmitters is considered. Also a model of the HV system and a
detailed development of the reliability function are presented. Ke et al. [6] examined a resolvable
system with insufficient coverage and reboot. As a unit fails, it can be immediately detected,
and replaced with a coverage probability c. Kumar P & Jain M [7] proposed the machine having
multi-components with service interruption, imperfect coverage, and reboot .Kadyan & Malik
[8] performed a stochastic study on non-identical units with cold standby units operating at the
same time. The idea of Classical and Bayesian estimation in a two non-identical unit parallel
system is given by Saxena et.al[9], where the Bayesian estimates are calculated by taking different
priors. Also, a comparative study is done to determine the performance of Maximum likelihood
estimation and Bayesian estimation methods. Kishan & Jain [10] put forth the idea of study
of system model both in classical and Bayesian perspectives and some important measures of
reliability characteristics of a two nonidentical unit standby system model with repair, inspection
and post repair are obtained using regenerative point technique.
Keeping above ideas in mind, this paper deals with the performance measures and estimation of
parameters of a two non-identical units system with switching device and rebooting having safe
and unsafe failures. Switch is used to turn on the unit from standby to operational mode and
initially is assumed to be in good condition. Unsafe failures occur when the cause of any of the
breakdowns is unknown and can be resolved by rebooting. Reboot delay times and failure times
for both units and switch are assumed to be exponentially distributed, whereas the repair time
distributions are taken to be general in nature. Other measures, such as mean time to system
failure, reliability, availability, and expected number of repairs, have been calculated using the
regenerating point technique. Furthermore, a simulation study is carried out to examine the
given system model in both the Classical and Bayesian setups. Finally, numerous noteworthy
conclusions are drawn from the tables and graphs.

2. System Description and Assumptions

• The system is composed of two non-identical units, A and B, coupled by a switch, S.
• Initially, one of the units is functioning, while the other remains in standby mode. A switch
assists to turn on the repaired and standby components. During the early stage, switch is
supposed to be in operable condition.
• There may be both safe and unsafe failures among the units but only a regular switch failure. If
any of the unit fails safely, it can be identified with coverage probability c, and repaired instantly
if the repairman is present.
• In the event of an unsafe failure, repair can’t begin instantly; instead, a reboot is first performed
to convert the unsafe failure to a safe failure, followed by a usual normal repair. Reboot delay
periods are taken as exponentially distributed random variables with varying parameters.
• The system has a dedicated repair facility and is constantly accessible to repair and reboot
failed items. Switch repair has priority over failed items in the system.
• The failure times of the units and switch follow an exponential distribution, whereas the repair
time distributions are general.
• A repaired item functions as new.
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3. Notations and Symbols

α1: Failure rate of Unit A F1(.): Repair rate of unit A
α2: Failure rate of Unit B F2(.): Repair rate of Unit B
α3: Failure rate of Switch F3(.): Repair rate of Switch
c: Coverage probability
γ1: Rebooting delay rate for unsafe failure of Unit A
γ2: Rebooting delay rate for unsafe failure of Unit B.

3.1. SYMBOLS FOR THE STATES OF THE SYSTEM

A0/B0 :Units in operative mode Sg/Sr :Switch under good/repair condition
Ar/Br :Units under repair Awr/Bwr :Units waiting for repair
As/Bs :Units in standby mode Aus f /Bus f :Units having unsafe failure
Using the symbols provided above, the achievable states of the system are:
S0 = [A0, Bs, Sg] S1 = [Ar, B0, Sg] S2 = [Aus f , Bg, Sg]
S3 = [A0, Bs, Sr] S4 = [Aus f , Bg, Swr] S5 = [Awr, B0, Sr]
S6 = [Awr, Bus f , Swr] S7 = [Awr, Bwr, Sr] S8 = [Awr, Bus f , Sg]
S9 = [Ar, Bwr, Sg] S10 = [A0, Br, Sg] S11 = [Aus f , Bwr, Sg]
S12 = [Ag, Bwr, Sr] S13 = [Awr, Bg, Sr]
The transition diagram of the model is shown in Figure 1.

Figure 1: Transition Diagram

RT&A, No 3 (79) 
Volume 19, September 2024

366



Poonam Sharma, Pawan Kumar
ANALYSIS OF TWO NON-IDENTICAL...

4. Transition Probabilities and Sojourn Times

The long-run or of the steady state probabilities are obtained as under,

pij = lim
t→∞

Qij(t) =
∫

qij(t)dt p
(k)
ij = lim

t→∞
Q

(k)
ij (t) and p(k,l)

ij = lim
t→∞

Qk,l
ij (t).

In particular we have

p01(t) =
∫

α1ce−α1cte−α1(1−c)te−α3tdt =
α1c

(α1 + α3)

Similarly,
p02 = α1(1−c)

α1+α3

p15 = α3
α2+α3

[1 −
∼
F1(α2 + α3)]

p10 =
∼
F1(α2 + α3)

p30 =
∼
F3(α1)

p(13)
31 = c(1 −

∼
F3(α1))

p56 = (1 − c)[1 −
∼
F3(α2)]

p10,11 = α1(1−c)
α1+α3

[1 −
∼
F2(α1 + α2)]

p10,12 = α3
α1+α3

[1 −
∼
F2(α1 + α3)]

p03 = α3
α1+α3

p18 = α2(1−c)
α2+α3

[1 −
∼
F1(α2 + α3)]

p(9)1,10 = α2c
α2+α3

[1 −
∼
F1(α2 + α3)]

p34 = (1 − c)(1 −
∼
F3(α1))

p51 =
∼
F3(α2)

p(7)59 = c[1 −
∼
F3 (α2)]

p10,9 = α1c
α1+α3

[1 −
∼
F2(α1 + α3)]

Thus, the following relationships can be established
p01 + p02 + p03 = 1

p15 + p18 + p10 + p
(9)
1,10 = 1

p10,0 + p10,9 + p10,11 + p10,12 = 1

p30 + p34 + p
(13)
31 = 1

p51 + p56 + p
(7)
59 = 1

p67 = p79 = p89 = p13,1 = p4,13 = p11,9 = p21 = p12,10 = p9,10 = 1

4.1. Mean Sojourn times

In reliability, Mean Sojourn time ψi, is the expected length of time a system spends in a certain
state before moving to another. There is never any transition from Si to any other state, as long as
the system is in state Si. We utilize this knowledge to determine ψi for state Si. Given Ti as the
sojourn time in state Si, the mean sojourn time ψi is as follows.

ψi = E[Ti] =
∫

P(Ti > t)dt

Hence, using the above formula following values for mean sojourn time are obtained:

ψ0 = 1
(α1+α3)

ψ3 = 1
α1
[1 −

∼
F3(α1)]

ψ2 = ψ4 = ψ11 = 1
γ1

ψ9 =
∫

F̄1(t)dt

ψ1 = 1
(α2+α3)

[1 −
∼
F1(α2 + α3)]

ψ5 = 1
α2
[1 −

∼
F3(α1)]

ψ6 = ψ8 = 1
γ2

ψ10 = 1
(α1+α3)

[1 −
∼
F2(α1 + α3)]

ψ7 = ψ12 = ψ13 =
∫

F̄3(t)dt

5. Analysis of Reliability and MTSF

Let random variable Ti represents the life time of system when it initiate from state Si ∈ Ei, the
system’s reliability is determined by:

Ri(t) = P[Ti > t]
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To calculate Ri(t), we treat failed states as absorbing states.
The recursive relations between Ri(t) can be established using probabilistic arguments by referring
to the state transition diagram. Using the Laplace transform and determining the set of equations
for R∗

0(s), we get

R∗
0(s) =

N1(s)
D1(s)

(1)

1 where,

N1(s) = Z∗
0 + Z∗

3q ∗
03 + Z∗

5q ∗
01q ∗

15 − Z∗
0q ∗

15q ∗
51 − Z∗

3q ∗
03q ∗

15q ∗
51

D1(s) = 1 − q ∗
01q ∗

10 − q ∗
15q ∗

51 − q ∗
03q ∗

30 + q ∗
03q ∗

15q ∗
30q ∗

51

We obtain the system’s reliability by taking the inverse Laplace transform of (1).
To obtain MTSF, we use the given formula

E(T0) =
∫

R0(t)dt = lim
s→0

R∗
0(s) =

N1(0)
D1(0)

(2)

where,

N1(0) = ψ0 + ψ1 p01 + ψ5 p01 p15 − ψ0 p15 p51 − ψ3 p03 p15 p51

and

D1(0) = 1 − p01 p10 − p15 p51 − p03 p30 + p03 p15 p30 p51

Since we’ve q∗ij(0) = pij and lim
s→0

Z∗
i (s) =

∫
Zi(t)dt = ψi

6. Availability Analysis

The probability that a system is able to perform its intended task at time ’t’ if it initiates from
Si ∈ Ei is known as Availability. Point wise availability refers to a system’s availability at a
specified time. It is a measure of system performance that reflects whether a system is potentially
operational and able to provide the expected service at a given time. Using stochastic reasoning,
recurrence relations between different point-wise availabilities are established. Using the Laplace
transformations and solving the equations for A∗

0(s), we obtain

A∗
0(s) =

N2(s)
D2(s)

where,

N2(s) = Z∗
0q ∗

15q ∗
51b1 + Z∗

3(q
∗

02 − q ∗
03b1)− (Z∗

0 + Z∗
1Y1 + Z∗

5Y3)(q
∗

10,9q ∗
9,10) + Z ∗

10q
(9)∗
1,10Y1 − (Z∗

0 + Z∗
1Y1)

(q ∗
10,12q ∗

12,10)− Z∗
3q ∗

03 + Z∗
5Y1 + (Z∗

1 + Z∗
5q ∗

15)q
∗

03q(13)∗
31 q ∗

11,9q ∗
10,11q ∗

9,10 + Z ∗
10q ∗

9,10b3(Z∗
1 + Z∗

5q ∗
15)

(Z∗
0 + Z∗

1Y2)q
∗

11,9q ∗
10,11q ∗

9,10 + Z ∗
10q ∗

18q ∗
89q ∗

9,10Y1 + q ∗
03q ∗

34q ∗
131q ∗

4,13b2 + q ∗
15q ∗

9,10Z ∗
10b4 + (Z∗

1 + Z∗
3)

q ∗
03 + Z∗

5q ∗
01q ∗

15

Here,
1Limits of integeration whenever they are 0 to ∞ are not mentioned.
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Y1 = q ∗
01 + q ∗

02q ∗
21+ q ∗

03q(13)∗
31 + q ∗

34q ∗
13,1q ∗

4,13)

Y2 = q ∗
01 + q ∗

02q ∗
21 q ∗

03q ∗
34q ∗

131q ∗
4,13

Y3 = q ∗
02q ∗

15q ∗
21 +q ∗

03q ∗
15q(13)∗

31 q ∗
03q ∗

15q ∗
34 q ∗

13,1q ∗
4,13

b1 = 1 − q ∗
10,9q ∗

9,10− q ∗
10,12 q ∗

12,10− q ∗
11,9q ∗

9,10q ∗
10,11

b2 = Z∗
1q ∗

15Z∗
5 +q ∗

15(q
(7)∗
59 q ∗

9,10 Z ∗
10 + q ∗

56 q67q ∗
9,10Z ∗

10)

b3 = q ∗
18q ∗

89 + q ∗
15 (q

(7)∗
59 + q ∗

56q ∗
67)

b4 = (q
(7)∗
59 (q ∗

01 + q ∗
02 q ∗

21)+ q ∗
01q ∗

56q ∗
67)

and,

D2(s) = q ∗
10,0 − q ∗

10q ∗
10,0 + q ∗

01q ∗
15q ∗

10,0 − (q ∗
56 + q

(7)∗
59 )[−q ∗

15q ∗
10,0(q

∗
01 + q ∗

02 + q ∗
03(q

(13)∗
31 + q ∗

34))− q ∗
02q ∗

10,0]

−q ∗
03q ∗

10,0(q
∗

30 − q ∗
30q ∗

13q ∗
51 + q ∗

10q
(13)∗

31 + q ∗
10q ∗

34)− q ∗
15q ∗

51q ∗
10,0 − q ∗

10,0(q
∗

34 + q
(13)∗

31 )(q ∗
03(q

(9)∗
1,10 + q ∗

18))
(3)

The steady state availability is given as under

A0 = lim
t→∞

A0(t) = lim
s→0

sA∗
0(s) =

N2(0)
D2(0)

Furthermore, its a well known fact that qij(t) is the pdf of the time of transition from state Si to Sj
and qij(t) is the probability of a transition from state Si to state Sj during the interval (t, t + dt) ,
thus

q∗ij(s)|s = 0 = q∗ij(0) = pij

We also know that

lim
s→0

Z∗
i (s) =

∫
Zi(t)dt = ψi

Therefore,

N2(0) = ψ0 p15 p51b1 + ψ3(p02 − p03b1)− (ψ0 + ψ1Y1 + ψ5Y3)(p10,9 p9,10) + ψ10 p(9)1,10Y1 − (ψ0 + ψ1Y1)

(p10,12 p12,10)− ψ3 p03 + ψ5Y1 + (ψ1 + ψ5 p15)p03 p(13)
31 p11,9 p10,11 p9,10 + ψ10 p9,10b3(ψ1 + ψ5 p15)

(ψ0 + ψ1Y2)p11,9 p10,11 p9,10 + ψ10 p18 p89 p9,10Y1 + p03 p34 p13,1 p4,13b2 + p15 p9,10ψ10b4 + (ψ1 + ψ3)

p03 + ψ5 p01 p15

Here,

Y1 = p01 + p02 p21+ p03(
(13)
p31+ p34 p13,1 p4,13)

Y2 = p01 + p02 p21 p03 p34 p13,1 p4,13

Y3 = p02 p15 p21 +p03 p15
(13)
p31 p03 p15 p34 p13,1 p4,13

b1 = 1 − p10,9 p9,10− p10,12 p12,10− p11,9 p9,10 p10,11

b2 = ψ1 p15ψ5 +p15(
(7)
p59 p9,10 ψ10 + p56 p67 p9,10ψ10)
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b3 = p18 p89 + p15 (
(7)
p59 + p56 p67)

b4 = (
(7)
p59(p01 + p02 p21)+ p01 p56 p67)

D2(0) = p10,0 − p01 p10,0 + p01 p15 p10,0 − (p56 +
(7)
p59)[−p15 p10,0(p01 + p02 + p03(

(13)
p31 + p34))− p02 p10,0]

−p03 p10,0(p30 − p30 p13 p51 + p10
(13)
p31 + p10 p34)− p15 p51 p10,0 − p10,0(p34 +

(13)
p31)(p03(

(9)
p1,10 + p18))

For a given system, the steady-state probability of its long-term operation is given by

A0 = lim
t→∞

A0(t) = lim
s→0

sA∗
0(s)

lim
s→0

sN2(s)
D2(s)

= lim
s→0

N2(s)lim
s→0

s
D2(s)

Since as s → 0, D2(s) becomes zero. Therefore, applying L’Hospital’s rule, A0 becomes

A0 =
N2(0)
D′

2(0)
(4)

where,

D
′
2(0) = p10,0(ψ0 + ψ1)− p10,0 p03[(ψ3)(1 − p15 p51) + p30(ψ1 + p15ψ5)− p34 + p34 p15 p51(ψ4 + ψ13)

+ p18 p30ψ8 + ψ9(p10(1 − p30)− p30 p15)− p15 p10,0[(p51ψ0 − ψ5 − ψ6(p56(1 − p03 p30))) + ψ9

(1 − p51) + p02 p51ψ2]− p15 p51[(1 − p03 p30)(ψ10 + ψ11 p10,11)− ψ4] + p10,12ψ12 + ψ9(p10,9+

p10,11 − p03 p30[(1 − p10)(ψ10 + ψ11 p10,11) + ψ12 p10,12(1 − p15 p51) + ψ9(p10,9 + p10,11 − p10(1−
p10,12) + p18 p10,0)]− p10(ψ10 + ψ11 p10,11) + ψ12(p10,12)(1 − p34) + ψ9[(1 − p03)(p10,9 + p10,11)

+ p03(1 − p10,12 + p34)] + p10,0[(p02ψ2 + p18(ψ8 + ψ9))] + p10,11(ψ11 + ψ9) + p10,12ψ12 + ψ10

(5)

Using N2(0) and D
′
2(0) in equation[4], the expression for A0 can be determined. The system’s

expected uptime for (0,t] is provided by

µup(t) =
∫ t

0
A0(u)du

So that,

µ∗
up(s) =

A∗
0(s)
s

7. Busy Period Analysis

Bi(t) is defined as the probability that, at time t=0, the system, which begins in the regenerative
state Si∈ E, is undergoing repair as a result of a unit failure. To estimate these probabilities, we
utilize simple probabilistic logics, on taking Laplace transformation and solving the consequent
set of equations for B∗

0(s), we have

B∗
0(s) =

N3(s)
D2(s)
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N3(s) = q ∗
03q ∗

34[ψ4 − q ∗
15q ∗

51b1 − q ∗
10,9q ∗

9,10b5 − q ∗
10,12q ∗

12,10b6 + q ∗
13,1q ∗

4,13b7 + q
(9)∗
1,10(ψ10

+ q ∗
10,9ψ9 + q ∗

10,11ψ11 + q ∗
11,9q ∗

10,11ψ9) + q ∗
15q ∗

56b8 + q ∗
15q

(7)∗
59 (ψ9 + q ∗

9,10ψ10

+ q ∗
9,10q ∗

10,11ψ11) + ψ1(1 − q ∗
11,9q ∗

9,10q ∗
10,11)] + ψ4(1 − q ∗

11,9q ∗
9,10q ∗

10,11) + q
(9)∗
1,10q ∗

01b9

+ q ∗
02q ∗

21b9 + q ∗
03q

(13)∗
31 b9 + q

(13)∗
31 [q ∗

03q ∗
18(ψ8b1)] + q ∗

15q ∗
56[q

∗
03ψ6b1 + q ∗

03q ∗
67q ∗

9,10(ψ10

+ q ∗
10,11ψ11)] + q ∗

15q
(7)∗
59 (q ∗

03q ∗
9,10(ψ10 + q ∗

10,11ψ11)− q ∗
03q ∗

10,12q ∗
12,10ψ9) + q ∗

03ψ1b1

+ q ∗
18[q

∗
02q ∗

21(ψ8b1) + q ∗
89q ∗

9,10(ψ10 + q ∗
10,11ψ11)] + q ∗

01ψ8b1 + q ∗
15[q

∗
01q ∗

56(ψ6b1

+ q ∗
67)ψ9(1 − q ∗

10,12q ∗
12,10) + q ∗

67q ∗
9,10(ψ10 + q ∗

10,11ψ11)] + q ∗
01q

(7)∗
59 (ψ9(1 − q ∗

10,12q ∗
12,10)

+ q ∗
9,10ψ10) + q ∗

02q ∗
21[ψ6(q

∗
51 − q ∗

56b1)] + q
(7)∗
59 ψ9(1 − q ∗

10,12q ∗
12,10) + q ∗

56q ∗
67b10

+ q ∗
02q ∗

51(−ψ2b1 + q ∗
03q

(7)∗
59 q

(13)∗
31 ψ9) + q ∗

9,10b11 − q ∗
02(q

∗
10,9 + q ∗

11,9q ∗
10,11)(ψ2 + ψ1q ∗

21)

+ q ∗
01ψ1 + q ∗

02(ψ2 + q ∗
21ψ1)(1 − q ∗

10,12q ∗
12,10)

here,

b1 = 1 − q ∗
10,9q ∗

9,10 − q ∗
10,12q ∗

12,10 − q ∗
11,9q ∗

9,10q ∗
10,11

b5 = ψ4 − q ∗
13,1q ∗

4,13(ψ1 + q ∗
18ψ8 + q ∗

15q ∗
56ψ6)

b6 = ψ4 − q ∗
13,1q ∗

4,13(ψ1q ∗
18ψ8 + q ∗

18q ∗
89ψ9 + q ∗

15q
(7)∗
59 ψ9 + q ∗

15q ∗
56q ∗

67ψ9)

b7 = q ∗
18(ψ8 + q ∗

89ψ9 + q ∗
89q ∗

9,10ψ10 + q ∗
89q ∗

9,10q ∗
10,11ψ11 − q ∗

11,9q ∗
9,10q ∗

10,11ψ8)

b8 = ψ6 + q ∗
67ψ9 + q ∗

67q ∗
9,10ψ10 − q ∗

10,12q ∗
12,10ψ6 − q ∗

11,9q ∗
9,10q ∗

10,11ψ6 + q ∗
67q ∗

9,10q ∗
10,11ψ11

b9 = ψ10 + ψ9q ∗
10,9 + q ∗

10,11(ψ11 + q ∗
11,9ψ9)

b10 = ψ9 + q ∗
9,10ψ10 + q ∗

9,10q ∗
10,11ψ11 − q ∗

10,12q ∗
12,10ψ9

b11 = q ∗
01(ψ1(q

∗
10,9 + q ∗

11,9q ∗
10,11)) + q ∗

15q
(7)∗
59 q ∗

10,11ψ11

and, D2(s) is same as given in equation [3].
The probability that the repairman will be busy in the long run is as follows:

B0 = lim
t→∞

B0(t) = lim
s→0

sB∗
0(s) =

N3(0)

D
′
2(0)

where,

N3(0) = p03 p34[ψ4 − p15 p51b1 − p10,9 p9,10b5 − p10,12 p12,10b6 + p13,1 p4,13b7 + p
(9)
1,10(ψ10

+ p10,9ψ9 + p10,11ψ11 + p11,9 p10,11ψ9) + p15 p56b8 + p15 p
(7)
59 (ψ9 + p9,10ψ10

+ p9,10 p10,11ψ11) + ψ1(1 − p11,9 p9,10 p10,11)] + ψ4(1 − p11,9 p9,10 p10,11) + p
(9)
1,10 p01b9

+ p02 p21b9 + p03 p
(13)
31 b9 + q

(13)
31 [p03 p18(ψ8b1)] + p15 p56[p03ψ6b1 + p03 p67 p9,10(ψ10

+ p10,11ψ11)] + p15 p
(7)
59 (p03 p9,10(ψ10 + p10,11ψ11)− p03 p10,12 p12,10ψ9) + p03ψ1b1

+ p18[p02 p21(ψ8b1) + p89 p9,10(ψ10 + p10,11ψ11)] + p01ψ8b1 + p15[p01 p56(ψ6b1

+ p67)ψ9(1 − p10,12 p12,10) + p67 p9,10(ψ10 + p10,11ψ11)] + p01 p
(7)
59 (ψ9(1 − p10,12 p12,10)

+ p9,10ψ10) + p02 p21[ψ6(p51 − p56b1)] + p
(7)
59 ψ9(1 − p10,12 p12,10) + p56 p67b10

+ p02 p51(−ψ2b1 + p03 p
(7)
59 p

(13)
31 ψ9) + p9,10b11 − p02(p10,9 + p11,9 p10,11)(ψ2 + ψ1 p21)

+ p01ψ1 + p02(ψ2 + p21ψ1)(1 − p10,12 p12,10)

here,
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b1 = 1 − p10,9 p9,10 − p10,12 p12,10 − p11,9 p9,10 p10,11

b5 = ψ4 − p13,1 p4,13(ψ1 + p18ψ8 + p15 p56ψ6)

b6 = ψ4 − p13,1 p4,13(ψ1 p18ψ8 + p18 p89ψ9 + p15 p
(7)
59 ψ9 + p15 p56 p67ψ9)

b7 = p18(ψ8 + p89ψ9 + p89 p9,10ψ10 + p89 p9,10 p10,11ψ11 − p11,9 p9,10 p10,11ψ8)

b8 = ψ6 + p67ψ9 + p67 p9,10ψ10 − p10,12 p12,10ψ6 − p11,9 p9,10 p10,11ψ6 + p67 p9,10 p10,11ψ11

b9 = ψ10 + ψ9 p10,9 + p10,11(ψ11 + p11,9ψ9)

b10 = ψ9 + p9,10ψ10 + p9,10 p10,11ψ11 − p10,12 p12,10ψ9

b11 = p01(ψ1(p10,9 + p11,9 p10,11)) + p15 p
(7)
59 p10,11ψ11

and D
′
2(0) is same as obtained in [5].

During (0,t], the repairman’s expected busy time is given by

µb(t) =
∫ t

0
B0(u)du

So that,

µ∗
b(s) =

B∗
0 (s)
s

8. Expected Number of Repairs

When the system begins from regenerative state Si, Vi(t) is described as the expected number of
repairs over the time range (0,t] of the failed units. Furthermore, given the definition of Vi(t), the
recurrence relations can be framed easily and, taking their Laplace- Stieltjes transformations and

solving the consequent set of equations for
∼
V0(s), we get

∼
V0(s) = N4(s)/D3(s)
where,

N4(s) =
∼
Q02

∼
Q21[−

∼
Q10b2 −

∼
Q

(9)
1,10b2

∼
Q18

∼
Q89

∼
Q9,10b2 −

∼
Q15

∼
Q

(7)
59

∼
Q9,10b2 −

∼
Q15

∼
Q56

∼
Q67

∼
Q9,10b2]

+
∼
Q03

∼
Q34[

∼
Q13,1

∼
Q4,13b1 −

∼
Q10b1 −

∼
Q

(9)
1,10b2 +

∼
Q15

∼
Q51b1 −

∼
Q18

∼
Q89

∼
Q9,10b2 −

∼
Q15

∼
Q56

∼
Q67

∼
Q9,10b2 −

∼
Q15

∼
Q

(7)
59

∼
Q9,10b2] +

∼
Q18

∼
Q89[−

∼
Q01

∼
Q9,10b2 −

∼
Q03

∼
Q9,10

∼
Q

(13)
31 b2]

∼
Q15

[−
∼
Q01

∼
Q

(7)
59

∼
Q9,10b2 −

∼
Q01

∼
Q56

∼
Q67

∼
Q9,10b2]−

∼
Q01

∼
Q10b1

here,

b1 = 1 −
∼
Q10,9

∼
Q9,10−

∼
Q10,12

∼
Q12,10−

∼
Q11,9

∼
Q9,10

∼
Q10,11

b2 = 1 −
∼
Q10,0 −

∼
Q10,12

∼
Q12,10

and D3(s) is written by replacing
∗

qij and q
(k)∗

ij by
∼
Qij and

∼
Q

(k)
ij respectively in equation[3].

The expected number of repairs per unit over time in the steady state is represented as
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V0 = lim
t→∞

V0(t) = lim
s→0

s
∼
V0(s) =

N4(0)

D
′
2(0)

where,

N4(0) = p02 p21[p10b2 −
(9)

p1,10b2 − p18 p89 p9,10b2 − p15
(7)
p59 p9,10b2 − p15 p56 p67 p9,10b2] + p03 p34

[p13,1 p4,13b1 − p10b1 −
(9)

p1,10b2 + p15 p51b1 − p18 p89 p9,10b2 − p15 p56 p67 p9,10b2 − p15
(7)
p59

p9,10b2] + p18 p89[p01 p9,10b2 − p03 p9,10
(13)
p31b2]p15[−p01

(7)
p59 p9,10b2 − p01 p56 p67 p9,10b2]− p01 p10b1)

here,

b1 = 1 − p10,9 p9,10 − p10,12 p12,10 − p11,9 p9,10 p10,11

b2 = 1 − p10,0 − p10,12 p12,10

9. Profit Function Analysis

Having determined the reliability charateristics, the profit function P(t) can be calculated. Profit
is defined as excess of revenue over the cost, hence the expected total profit made during(0,t] is
expressed as :
P(t) = Expected total revenue in(0,t] - Expected total expenditure in(0,t]

= K0µup(t)− K1µb(t)− K2V0(t)

where,
K0 = revenue per unit up time of the system.
K1 = The cost per unit during which the repairman is engaged to fix the failed unit.
K2 = Cost of repair of each unit.
The expected total gain per unit of time in steady state is provided by:

P = lim
t→∞

P(t)
t

= lim
s→0

s2
∗

P(s)

Therefore, we have

P = K0 A0 − K1B0 − K2V0 (6)

10. Estimation of the Parameters, MTSF, And Profit Function

10.1. Classical Estimation

10.1.1 ML Estimation

Let us take
X1
∼

= (x11, x12, ..., x1n1), X2
∼

= (x21, x22, ...x2n2), X3
∼

= (x31, x32, ..., x3n3),

X4
∼

= (x41 , x42, ..., x4n4), X5
∼

= (x51, x52, ..., x5n5), X6
∼

= (x61, x62, ..., x6n6),

X7
∼

= (x71, x72, ..., x7n7) and X8
∼

= (x81, x82, ..., x8n8)

Therefore, Likelihood function of combined sample is :

L =(X1, X2, X3, X4, X5, X6, X7, X8|α1, α2, α3, λ1, λ2, λ3, γ1, γ2)

The pdf of exponential distribution is f (x, λ) = λ exp(−λx), x > 0 , λ>0

L =α1
n1 α2

n2 α3
n3 λ1

n4 λ2
n5 λ3

n6 γ1
n7 γ2

n8 exp−(α1W1 + α2W2 + α3W3 + λ1W4 + λ2W5

+ λ3W6 + γ1W7 + γ2W8)
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Here, Wi = ∑ni
n=1 xij ; i = 1,2,3,4,5,6,7,8

On solving, we get

logL = n1logα1 + n2logα2 + n3logα3 + n4logλ1 + n5logλ2 + n6logλ3 + n7logγ1 + n8logγ2 (7)

−(α1W1 + α2W2 + α3W3 + λ1W4 + λ2W5 + λ3W5 + γ1W6 + γ2W8)

The, MLE (α̂1, α̂2, α̂3 , λ̂1, λ̂2, λ̂3, γ̂1 , γ̂2) of the parameters
(α1, α2, α3, λ1, λ2, λ3, γ1, γ2) are as under

α̂1 = n1
W1

, α̂2 = n2
W2

α̂3 = n3
W3

, λ̂1 = n4
W4

λ̂2 = n5
W5

, λ̂3 = n6
W6

γ̂1 = n7
W7

, γ̂2 = n8
W8

The asymptotic distribution of(α̂1 − α1, α̂2 − α2, α̂3 − α3, λ̂1 −λ1, λ̂2 − λ2, λ̂3 − λ3, γ̂1 − γ1, γ̂2 −
γ2) ∼ N8(0, I−1), where I is the Fisher Information matrix with diagonal elements as

I11 = n1
α2

1
, I22 = n2

α2
2
, I33 = n3

α2
3
, I44 = n4

λ2
1
, I55 = n5

λ2
2
, I66 = n6

λ2
3
, I77 = n7

γ2
1
, I88 = n8

γ2
2

and all non-diagonal elements are zero. Using MLE’s invariance property, we can extract The MLE
M̂ & P̂ of MTSF and Profit function. Also, asymptotic distribution of (M̂ − M)isN(0, A′ I−1 A) &
that of (P̂ − P)isN(0, B′ I−1B), where

A′ = ( δM
δα1

, δM
δα2

, δM
δα3

, δM
δα2

, δM
δλ2

, δM
δλ3

, δM
δγ1

, δM
δγ2

)

B′ = ( δP
δα1

, δP
δα2

, δP
δα3

, δP
δλ1

, δP
δλ2

, δP
δλ3

, δP
δγ1

, δP
δγ2

)

10.2. Bayesian Estimation

Bayesian estimation is a statistical approach which is utilized to determine the impact of prior
knowledge as well as the sample information on prior distributions of the parameters under study.
The parameters involved in the model are taken to be random variables having independent
Gamma prior distribution. Here, we estimate the unknown parameters taking into account the
gamma prior distribution and the corresponding PDFs as

α1 ∼ Gamma(a1, b1) (α1, a1, b1) > 0, (8)

α2 ∼ Gamma(a2, b2) (α2, a2, b2) > 0, (9)

α3 ∼ Gamma(a3, b3) (α3, a3, b3) > 0, (10)

λ1 ∼ Gamma(a4, b4) (λ1, a4, b4) > 0, (11)

λ2 ∼ Gamma(a5, b5) (λ2, a5, b5) > 0, (12)

λ3 ∼ Gamma(a6, b6) (λ3, a6, b6) > 0, (13)

γ1 ∼ Gamma(a7, b7) (γ1, a7, b7) > 0, (14)

γ2 ∼ Gamma(a8, b8) (γ2, a8, b8) > 0, (15)

Here,ai and bi (i = 1,2,3,4,5,6,7,8) denotes the shape and scale parameters
Now using likelihood function and taking prior distributions, the posterior distributions of these
parameters are calculated as given below:

α1|X1
∼

∼ Gamma(n1 + a1, b1 + W1) (16)

α2|X2
∼

∼ Gamma(n2 + a2, b2 + W2) (17)
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α3|X3
∼

∼ Gamma(n3 + a3, b3 + W3) (18)

λ1|X4
∼

∼ Gamma(n4 + a4, b4 + W4) (19)

λ2|X5
∼

∼ Gamma(n5 + a5, b5 + W5) (20)

λ3|X6
∼

∼ Gamma(n6 + a6, b6 + W6) (21)

γ1|X7
∼

∼ Gamma(n7 + a7, b7 + W7) (22)

γ2|X8
∼

∼ Gamma(n8 + a8, b8 + W8) (23)

To derive width of HPD intervals and Bayes estimates for parameters, we generate observations
from the posterior distributions listed above. To obtain Bayesian estimation of MTSF and profit
function, the above draws are put directly into the equations [2] & [6]. Using a squared error loss
function, Bayesian estimates of parameters and reliability characteristics are derived from the
sample means of the relevant drawings.

11. Simulation Study

To explore the behaviour of parameters, estimates and reliability aspects, a simulation study is
carried out. The values of the Standard Error (SE)/Posterior Standard Error (PSE) and the width
of confidence/HPD intervals are shown in table 1-6. Samples of sizes n1 = n2 = n3 = n4 = n5 =
n6 = n7 = n8 = 100 were taken from the six investigated distributions while presuming various
parameter values as shown in Tables 1-6. The number of iterations used is 10000. R software is
used for the computations purpose.

Table 1: MTSF values for fixed λ1 = 0.05 and varying α1

α1 True MTSF MLE.MTSF SE C.I Bayes MTSF PSE HPD Interval
0.1 13.438 10.101 0.0107 0.0078 10.024 0.00070 0.00051
0.2 5.188 5.075 0.0099 0.0074 5.021 0.00063 0.00046
0.3 3.689 3.420 0.0100 0.0073 3.353 0.00062 0.00046
0.4 2.986 2.565 0.0099 0.0074 2.520 0.00061 0.00044
0.5 2.565 2.091 0.0102 0.0074 2.020 0.00061 0.00044
0.6 2.281 1.756 0.0104 0.0078 1.686 0.00061 0.00045
0.7 2.075 1.518 0.0106 0.0078 1.448 0.00059 0.00044
0.8 1.918 1.343 0.0109 0.0079 1.269 0.00061 0.00045
0.9 1.795 1.204 0.0111 0.0082 1.131 0.00062 0.00045
1 1.696 1.123 0.0111 0.0083 1.020 0.00046 0.00044
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Table 2: MTSF values for fixed λ1=0.45 and varying α1

α1 True MTSF MLE.MTSF SE C.I Bayes MTSF PSE HPD Interval
0.1 16.785 10.257 0.0023 0.017 10.063 0.0016 0.0012
0.2 5.934 5.178 0.0016 0.011 5.043 0.0011 0.00082
0.3 4.163 3.477 0.0013 0.010 3.368 0.0094 0.00069
0.4 3.341 2.626 0.0012 0.0093 2.531 0.00085 0.00062
0.5 2.846 2.111 0.0012 0.0089 2.028 0.00078 0.00058
0.6 2.511 1.76 0.0011 0.0086 1.693 0.00076 0.00056
0.7 2.268 1.528 0.0011 0.0086 1.454 0.00074 0.00053
0.8 1.082 1.354 0.0011 0.0086 1.275 0.00072 0.00053
0.9 1.936 1.230 0.0011 0.0081 1.135 0.00070 0.00052
1 1.817 1.114 0.0011 0.0086 1.024 0.00071 0.00051

Table 3: MTSF values for fixed λ1=0.85 and varying α1

α1 True MTSF MLE.MTSF SE C.I Bayes MTSF PSE HPD Interval
0.1 19.686 10.359 0.032 0.024 10.111 0.0026 0.0019
0.2 6.500 5.219 0.020 0.015 5.064 0.0016 0.0011
0.3 4.524 3.479 0.016 0.012 3.382 0.0012 0.00091
0.4 3.612 2.661 0.014 0.010 2.541 0.0010 0.00078
0.5 3.063 2.135 0.013 0.0098 2.037 0.00095 0.00071
0.6 2.691 1.804 0.012 0.0093 1.700 0.00091 0.00066
0.7 2.419 1.548 0.012 0.0091 1.460 0.00085 0.00062
0.8 2.211 1.377 0.011 0.0088 1.280 0.00081 0.00060
0.9 2.047 1.219 0.011 0.0088 1.140 0.00080 0.00059
1 1.913 1.104 0.011 0.0087 1.028 0.00077 0.00057

Table 4: Profit values for fixed λ1=0.05 and varying α1

α1 True profit MLE.Profit SE C.I Bayes Profit PSE HPD Interval
0.1 824.23 119.48 1.43 2.09 43.20 1.34 0.99
0.2 593.60 114.18 1.37 1.99 42.37 1.31 0.80
0.3 496.60 104.81 1.30 1.99 41.14 1.17 0.74
0.4 429.96 100.09 1.26 1.82 39.83 1.13 0.73
0.5 377.55 95.95 1.17 1.76 38.73 1.07 0.80
0.6 334.00 87.59 1.12 1.66 37.80 0.88 0.72
0.7 296.75 83.67 1.07 1.59 36.66 1.06 0.98
0.8 264.30 80.17 1.05 1.51 35.84 0.93 0.87
0.9 235.69 85.81 0.99 1.46 34.96 0.96 0.85
1 210.22 83.14 0.96 1.40 33.76 0.93 0.86
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Table 5: Profit values for fixed λ1=0.45 and varying α1

α1 True profit MLE.Profit SE C.I Bayes Profit PSE HPD Interval
0.1 852.97 121.30 1.47 2.12 43.42 1.41 1.02
0.2 638.57 115.93 1.40 2.04 42.23 1.34 1.09
0.3 539.29 110.87 1.33 1.98 41.41 1.09 0.96
0.4 469.04 106.09 1.29 1.84 39.97 1.19 0.95
0.5 413.21 101.62 1.21 1.76 39.12 1.03 0.82
0.6 366.64 97.00 1.16 1.69 37.91 0.93 0.98
0.7 326.78 92.87 1.11 1.62 36.84 0.99 0.70
0.8 292.10 89.00 1.06 1.54 35.87 1.01 0.96
0.9 261.57 84.73 1.01 1.50 34.84 0.77 0.85
1 210.22 81.18 0.97 1.44 33.90 0.79 0.83

Table 6: Profit values for fixed λ1 = 0.85 and varying α1

α1 True profit MLE.Profit SE C.I Bayes Profit PSE HPD Interval
0.1 871.88 123.18 1.49 2.20 43.45 1.32 0.99
0.2 671.99 117.34 1.45 2.10 42.33 1.26 0.75
0.3 572.73 112.39 1.35 2.02 41.31 1.05 0.90
0.4 500.62 107.48 1.29 1.93 40.07 1.18 0.90
0.5 442.57 103.13 1.24 1.82 39.12 1.009 0.82
0.6 393.82 98.24 1.19 1.74 38.12 1.008 0.77
0.7 351.93 94.19 1.13 1.66 36.93 1.06 0.87
0.8 215.41 89.78 1.07 1.60 35.84 1.05 0.74
0.9 283.24 85.91 1.03 1.53 35.26 0.87 0.70
1 254.65 82.00 0.96 1.45 34.02 0.85 0.84

12. Graphical Study

A graphical analysis of the system model provides a more insightful and vivid representation of
system behaviour. So for more concrete study, we plot MTSF and Profit function wrt α1 failure
rate of unit A for different values of λ1 repair rate of unit A as 0.05, 0.45 and 0.85. Here all other
parameters are fixed α2= 0.9, α3= 0.15, λ2=0.35, λ3=0.45, c=0.7, γ1=0.6 and γ2=0.8.

Figure 2: (a)Behaviour of MTSF wrt to α1 for different values of λ1 and (b)Behaviour of P1&P2 wrt to α1 for different
values of λ1
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Figure 3: (a)Behaviour of True MTSF, MLE MTSF & Bayes MTSF wrt to α1 for λ1= 0.05 and (b) Behaviour of True
MTSF, MLE MTSF & Bayes MTSF wrt to α1 for λ1= 0.45

Figure 4: (a) Behaviour of True MTSF, MLE MTSF & Bayes MTSF wrt to α1 for λ1= 0.85 and (b) Behaviour of True
Profit, MLE Profit & Bayes Profit wrt to α1 for λ1= 0.05

Figure 5: (a)Behaviour of True Profit, MLE Profit & Bayes Profit wrt to α1 for λ1= 0.45 and (b) Behaviour of True
Profit, MLE Profit & Bayes Profit wrt to α1 for λ1= 0.85

13. Discussion and Conclusion

1. Tables and figures exhibits that MTSF decreases as the failure rate α1 increases, but increases as
the repair rate λ1 increases. The same trend is followed for the profit function.
2. Tables 1-6 indicate that for fixed and variable parameters, Bayes estimates of the MTSF and
profit function perform better than MLEs in terms of SE as well as in terms of the width of the
confidence intervals as they have lower PSE and the width of HPD intervals.
3. Based on the above discussions, we conclude that for estimating the MTSF and Profit function
of the analyzed model, Bayes approach outperforms the Classical approach.
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