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Abstract 

There are many real-life situations, where data require probability distribution function which have 

decreasing or upside-down bathtub (UBT) shaped failure rate function. The inverse power burr hatke 

distribution consists both decreasing and UBT shaped failure rate functions. Here, we address the 

different estimation methods of the parameter and reliability characteristics of the inverse Pareto 

distribution from both classical and Bayesian approaches. We consider classical estimation procedures 

to estimate the unknown parameter of inverse power burr-hatke distribution, such as maximum 

likelihood. Also, we consider Bayesian estimation using squared error loss function based joint priors. 

The Monte Carlo simulations are performed to compare the performances of the obtained estimators 

in mean square error sense. Finally, the flexibility of the proposed distribution is illustrated 

empirically using one real-life datasets. The analyzed data shows that the introduced distribution 

provides a superior fit than some important competing distributions such as the Weibull, inverse 

Pareto and Burr-Hatke distributions.  

Keywords: Burr-Hatke Distribution, Inverse Power Burr- Hatke Distribution, 

Type II censoring, Bayesian estimation, Lindley’s Approximation technique. 

I. Introduction

Statistical distributions can be used to model many real-life scenarios, such as reliability, actuarial 

science, survival analysis and lifetime data. Different lifetime distributions have been introduced in 

the statistical literature to provide greater flexibility in modelling data in these applied sciences. One 

of the important features of generalized distributions is their capability for providing superior fit for 

various life-time data encountered in the applied fields. Hence, the statisticians have been interested 

in constructing new families of distributions to model such data. Recently, several new distributions 

and regression models to provide inferences on these distributions have been developed for 

modeling health and biomedical data, among other fields. Some distributions and classes of 

distributions developed include exponentiated Burr XII Poisson distribution by da Silva et al. [1], 

Weibull Burr XII (WBXII) distribution by Afify et al. [2], odd log logistic Topp–Leone G family of 

distributions by Alizadeh et al. [3], Burr-Hatke exponential (BHE) distribution by Abouelmagd [4] 

and  Yadav et al. [5], odd generalized gamma-G family of distributions by Nasir et al. [6], Chen-G 

family of distributions by Anzagra et al. [7], inverse-power Burr-Hatke distribution by Afify et al. 

[8], harmonic mixture Weibull-G family of distributions  by Zamanah et al.  [9], harmonic mixture G 

family of distributions by Kharazmi et al. [10] and Alshenawy R. [11] studied Progressive Type-II 

Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in 
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Medicine and Engineering. Ahmed et. al. [12] studied Bayesian and Classical Inference under Type-

II Censored Samples of the Extended Inverse Gompertz Distribution with Engineering Applications. 

Hassan [13] studied Statistical Inference of Chen distribution Based on Two Progressive Type-II 

Censoring Schemes. Burr Hatke model provides only a decreasing hazard rate (HR) shape; hence, 

its use will be limited to modelling the data that exhibits only increasing failure rate. IPBH model 

can accommodate right-skewed shape, symmetrical shape, reversed J shape and left-skewed shape 

densities. Its hazard rate (HR) can be an increasing shape, a unimodal shape, or a decreasing shape. 

IPBH distribution provides more accuracy and flexibility in fitting engineering and medicine data. 

The IPBH distribution was constructed using the inverse-power (IP) transformation. The aim of this 

article is to develop the classical and Bayesian estimation procedures for the parameters of the IPBH. 

The rest of the article is organized as follows: IPBH is discussed in Section 2. Also, mathematical 

formulation is given for type II censoring with failure and censoring time distributions in this 

section. Section 3 deals with the maximum likelihood estimation and asymptotic confidence 

intervals of the parameters. Section 4 describes asymptotic confidence interval. Sections 5 describe 

the formulation of Bayes estimation procedure using Markov chain Monte Carlo (MCMC) methods 

under SELF loss function using gamma informative priors. Section 6 deals with a Monte Carlo 

simulation study to explore the properties of various estimates developed in this article.  Real life 

dataset is analyzed for illustration purposes in Section 7. Finally, conclusive remarks are given in 

section 8. Also, it is essential to mention that the statistical software R 3.5.2, [R Core Team (2018)] is 

used for computation purposes throughout the article. 

II. The Model

If a random variable X follows IPBH with parameter (λ, θ) the cdf is given by: 

𝐹(𝑥: 𝜆, 𝜃) =  
exp(−𝜆 𝑥−𝜃)

𝑥−𝜃+1
,    𝜆, 𝜃 > 0  (2.1)        

Therefore, the corresponding probability density function is given by 

𝑓(𝑥: 𝜃, 𝜆) =
𝜃 𝑒𝑥𝑝(−𝜆𝑥−𝜃)[𝜆 + (1 + 𝜆)]𝑥−𝜃

𝑥(𝑥𝜃 + 1)2
 ,   𝜆, 𝜃 > 0  (2.2) 

Where θ and λ are shape parameters, respectively. 

Figure 1. Possible density shapes of the IPBH distribution for several values of λ and θ. 
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The survival function (SF) and HR function of the IPBH distribution take the following forms, 

respectively: 

𝑆(𝑥: 𝜆, 𝜃) = 1 −
𝑥𝜃 exp(−𝜆 𝑥𝜃)

𝑥−𝜃+1
 (2.3) 

ℎ(𝑥: 𝜆, 𝜃) =
𝜃[𝜆 + (𝜆 + 1)𝑥−𝜃]

𝑥(𝑥𝜃 + 1)[(𝑥𝜃 + 1) exp(−𝜆𝑥−𝜃) − 𝑥𝜃]
 (2.4) 

Figure 2. Possible failure rate shape of the IPBH distribution for  values of λ =0.75 and θ = 3 

Figure 3. Possible failure rate shape of the IPBH distribution for  values of λ =0.5 and θ = 0.25 

Figure 4. Possible failure rate shape of the IPBH distribution for  values of λ = 10 and θ = 0.75 
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III. Maximum Likelihood Estimation

In the literature, Several censoring schemes have been discussed. Even though, Type-I and Type- II 

censoring schemes are most popular censoring.Consider a life test where n independent units taken 

from a IPBH distribution are placed under observation and failure time of each unit is 

recorded.Suppose that the test is terminated when rth, (1 ≤ r ≤ n), r is prefixed unit fails.These 

observed failure times, say (𝒙𝟏, 𝒙𝟐, … . . , 𝒙𝒓) is a Type-II censored sample of size r. In this censoring 

scheme n-r units remain unobserved and survive beyond the time of termination.In Type-II 

censoring the time of termination is a random variable nad the likelihood function based on 

(𝒙𝟏, 𝒙𝟐, … . , 𝒙𝒓) is given by Cohen [14]. 

 𝐿(𝜆, 𝜃|𝑥) =
𝑛

(𝑛 − 𝑟)
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑥(𝑟))]

𝑛−𝑟
𝑟

𝑖=0
 (2.5) 

Assume that n independent observed values taken of IPBH distribution as presented in (2) are put 

on a test.Using the Type-II censoring, we obtained the ordered r failures. If the ordered r failures are 

then (𝐱𝟏, 𝐱𝟐, … . . , 𝐱𝐫)  the likelihood function of (λ,θ) under Type-II censored data drawn of an IPBD 

distribution, is obtained as follows: 

𝐿(𝜆, 𝜃|𝑥) =
𝑛

(𝑛 − 𝑟)
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑥(𝑟))]

𝑛−𝑟𝑟

𝑖=0

𝐿(𝜆, 𝜃|𝑥) = 𝑟𝑙𝑜𝑔(𝜃) − 𝜆 ∑ 𝑥𝑖
−𝜃 + ∑ log[𝜆 + (𝜆 + 1)𝑥𝑖

𝜃] − 2 ∑ log(𝑥𝑖
𝜃 + 1) − ∑ log(𝑥𝑖) − 𝜂

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

MLEs of λ and θ is a solution of equation (2.5) accomplished by addressing the first partial 

derivatives of the total log-likelihood to be zero.So,we consider the equation as follows, 

𝑑𝑙𝑜𝑔𝐿

𝑑𝜆
= ∑

𝑥𝑖
𝜃 + 1

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

𝑟

𝑖=1

+ ∑ 𝑥𝑖
𝜃 +

(𝑛 − 𝑟)

(𝑥(𝑟)
𝜃 + 1)𝑒𝜆𝑥(𝑟)

−𝜃

− 𝑥(𝑟)
𝜃

𝑟

𝑖=1

𝑑𝑙𝑜𝑔𝐿

𝑑𝜃
= −𝜆 ∑ 𝑥𝑖

−𝜃 𝑙𝑜𝑔(𝑥𝑖) + ∑
(𝜆 + 1)𝑥𝑖

𝜃log (𝑥𝑖)

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

− 2 ∑
𝑥𝑖

𝜃log (𝑥𝑖)

𝑥𝑖
𝜃 + 1

+ 𝜂1(𝑥)

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

The closed form solutions to the nonlinear Equations are difficult to reach and a numerical method 

must be applied to solve these simultaneous equation for obtaining the MLE of λ and θ. 

IV. Asymptotic Confidence Intervals

The maximum likelihood estimators of the unknown parameters are not in closed form, it is not easy 

to drive the exact distributions of the MLEs. Thus, we use the asymptotic distribution of MLEs for 

the constructions of asymptotic confidence intervals of the parameters based on observed Fisher 

information matrix. Let 𝛼̂= ( 𝜆̂, 𝜃̂), be the MLE of 𝛼 = (𝜆, 𝜃).The observed Fisher information matrix 

is given by: 

𝐼(𝛼) = [

∂lnL(θ, λ)

∂λ2

∂lnL(θ, λ)

∂λ ∂θ
∂lnL(θ, λ)

∂θ ∂λ

∂lnL(θ, λ)

∂θ2

] 

∂lnL(θ, λ)

∂λ2
= ∑

(𝑥𝑖
𝜃 + 1)

2

((𝜆 + (𝜆 + 1)𝑥𝑖
𝜃))

2 +
(𝑛 − 𝑟)(𝑥(𝑟)

𝜃 + 1)𝑥(𝑟)
𝜃 𝑒𝜆𝑥(𝑟)

−𝜃

(𝑥(𝑟)
𝜃 − (𝑥(𝑟)

𝜃 + 1)𝑒𝜆𝑥(𝑟)
−𝜃

)
2

𝑟

𝑖=1

∂lnL(θ, λ)

∂θ ∂λ
= ∑ (

𝑥𝑖
−𝜃log (𝑥𝑖)

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

−
(𝜆 + 1)𝑥𝑖

𝜃(𝑥𝑖
𝜃 + 1)log (𝑥𝑖)

(𝜆 + (𝜆 + 1)𝑥𝑖
𝜃)

2 )

𝑟

𝑖=1

− ∑ 𝑥𝑖
−𝜃(− log(𝑥𝑖))

𝑟

𝑖=1

Thus, the observed variance-covariance matrix becomes 𝐼−(𝛼̂).The asymptotic distribution of MLE 

𝛼̂ is a bivariate normal distribution as 𝛼̂N (0, 𝐼−(𝛼̂)). Consequently, two sided equal tailed 100(1−η) 
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asymptotic confidence intervals for the parameters λ and θ are given by [𝜆̂ + 𝑍𝜂

2

√𝑣𝑎𝑟(𝜆̂)] and

[𝜃̂ + 𝑍𝜂

2

√𝑣𝑎𝑟(𝜃̂)] respectively. Here, Var (𝜆̂) and Var (𝜃̂) are diagonal elements of the observed

variance-covariance matrix  𝐼−(𝛼̂) and 𝑍𝜂

2
  is the upper (𝑍𝜂

2
)

𝑡ℎ

percentile of the standard normal 

distribution. 

V. The Bayesian Estimation

In this section, we discuss the Bayes estimators of the unknown parameters of the model in (2) under 

square error loss function (SELF). In order to select the best decision in decision theory, an 

appropriate loss function must be specified. SELF is generally used for this purpose. The use of the 

SELF is well justified when over estimation and under estimation of equal magnitude has the same 

consequences. When the true loss is not symmetric with respect to over estimation and under 

estimation, asymmetric loss functions are used to represent the consequences of different errors. If all 

parameters of the model are unknown, a joint conjugate prior for the parameters does not exist. In 

such conditions there are numerous ways to choose the priors. Hence, we choose to consider the 

piecewise independent priors. The proposed priors for the parameters λ and θ may be taken as: 

𝑔1(𝜆) = 𝜆𝑎1−1𝑒−𝜆𝑏1 ,  𝑎1, 𝑏1 > 0 

𝑔2(𝜃) = 𝜆𝑎1−1𝑒−𝜆𝑏1 ,  𝑎2, 𝑏2 > 0 

Thus, the joint prior distribution of λ and θ can be written as: 

       𝑔(𝜆, 𝜃) = 𝜆𝑎1−1𝜃𝑎1−1 𝑒−(𝜆𝑏1+𝜃𝑏1)                                                                  (4.1) 

Now we derive the Bayes estimators for the unknown parameters λ and θ under squared error loss 

function. If μ is the parameter to be estimated by an estimator 𝜇̂ then the squared error loss function 

is defined as 𝐿𝑠(μ, 𝜇̂ ) =(μ − 𝜇̂)2. The joint posterior distribution of λ and θ after simplification is:

Π(𝜆, 𝜃|𝑥) =

𝑛
(𝑛 − 𝑟)

𝜆𝑎1−1𝜃𝑎2−1𝑒(𝜆𝑏1 + 𝜃𝑏2) ∏ 𝑓(𝑥𝑖)(1 − 𝐹(𝑥))𝑛−𝑟𝑟
𝑖=0

∫ ∫
𝑛

(𝑛 − 𝑟)
𝜆𝑎1−1𝜃𝑎2−1𝑒(𝜆𝑏1 + 𝜃𝑏2) ∏ 𝑓(𝑥𝑖)(1 − 𝐹(𝑥))𝑛−𝑟𝑟

𝑖=0 𝜕𝜆𝜕𝜃
∞

0

∞

0

 (4.2) 

Therefore, the Bayes estimator of any function of  𝜆 and 𝜃, say 𝛼(𝜆̂,𝜃̂ ) under squared error loss 

function is. 

I. Subsection One
Lindley’s Approximation 

It is difficult to compute Eq. (4.2) analytically. Lindley’s [15] approximation is used to compute the 

ratio of integrals of the form Eq. (4.3). Based on Lindley’s approximation, the approximate Bayes 

estimator of λ under the squared error loss function is: 

 λ̂lindley = λ̂ +
1

2
[μ1(2ρ1σ11 + 2ρ2σ21 + σ11

2 L111 + 2σ12σ21L111 + σ11σ22L211 + σ12σ22L222)]      (4.4)         

θ̂lindley = θ̂ +
1

2
[μ2(2ρ2σ22 + 2ρ1σ21 + σ22

2 L222 + 2σ12σ11L111 + 3σ12σ22L122)]  (4.5) 

Here L(𝜆, 𝜃) is the log-likelihood and 𝜌(𝜆, 𝜃) is the log of prior distribution 𝜋(𝜆, 𝜃), 𝜆̂ and 𝜃̂ are the 

MLEs of λ and θ respectively. 

VI. Simulation Study

This section deals with a Monte Carlo simulation study. Here, we compare various estimators 

developed in the previous sections with the help of Monte Carlo simulation study. Six different 

sample sizes n = 50, 60, 70, 80 and 90 are considered in the simulation study. Following combination 

of the true values of the parameters (λ, θ) = (0.5, 1) and (λ, θ) = (1.5, 1) are taken. In each case the ML 
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and Bayes estimates of the unknown parameters are computed. The whole process is simulated 1000 

times. Tables 1–2 report the simulation results including Average Estimate (AE), MSE of the IPBH 

parameters. 

Table 1: Bayes estimate of the parameter λ and θ when θ = 1 and λ = 0.5 

n r Prior1 Prior2 Prior1 Prior2 

𝛌̂ 𝛉̂

AE MSE AE MSE AE MSE AE MSE 

50 46 0.5332 0.018 0.5714 0.0152 1.0862 0.0082 1.0778 0.2459 

50 48 0.5321 0.0137 0.5318 0.0142 1.0571 0.0715 1.0754 0.0821 

60 56 0.5263 0.0124 0.5268 0.0122 1.0655 0.00615 1.0553 0.00567 

60 58 0.5195 0.0102 0.5257 0.0099 1.0525 0.0516 1.0529 0.0588 

70 66 0.5173 0.0089 0.5224 0.0091 1.0491 0.0506 1.0551 0.0511 

70 68 0.5171 0.0084 0.5223 0.0092 1.0468 0.0485 1.0492 0.0492 

80 76 0.5168 0.0071 0.5152 0.007 1.0423 0.0447 1.0468 0.0429 

80 78 0.5156 0.0061 0.5187 0.0074 1.0387 0.0394 1.0271 0.0366 

90 86 0.5078 0.0054 0.5162 0.0063 1.0311 0.0343 1.0327 0.0364 

90 88 0.5115 0.0049 0.511 0.0053 1.0296 0.0316 1.0329 0.0349 

Table 2: Bayes estimate of the parameter λ and θ when θ = 1 and λ = 1.5 

n r  Prior1 Prior2 Prior1 Prior2 

𝛌̂ 𝛉̂

AE MSE AE MSE AE MSE AE MSE 

50 46 1.7311 0.464 1.7088 0.394 1.0504 0.0528 1.0498 0.0492 

50 48 1.6536 0.2447 1.6543 0.2456 1.0369 0.0407 1.0439 0.0423 

60 56 1.6038 0.1654 1.6382 0.1643 1.0295 0.0313 1.0453 0.0338 

60 58 1.5855 0.1197 1.5290 0.1250 1.0244 0.0286 1.0306 0.0298 

70 66 1.5841 0.1195 1.5771 0.1181 1.0258 0.0248 1.0221 0.0258 

70 68 1.5723 0.0956 0.1181 0.0922 1.0243 0.0244 1.0202 0.0231 

80 76 1.5636 0.0958 1.5771 0.1127 1.0143 0.0199 1.0285 0.0237 

80 78 1.573 0.0856 1.5639 0.0827 1.0228 0.0198 1.0191 0.002 

90 86 1.5614 0.0821 1.5587 0.0792 1.0186 0.0182 1.0162 0.0198 

90 88 1.5534 0.0712 1.5489 0.0710 1.0199 0.0171 1.0276 0.0175 

VII. Real-Life Applications

In this section, we illustrate estimation procedures discussed in the previous sections with the help 

of one real datasets. Here, we consider a real dataset namely the strengths of glass fibres The Data I, 

respectively are given below: 

Data set: 

This dataset consists of 63 observations which are generated to simulate the strengths of glass fibres 

[18].The 63 observations of the dataset are as follows: “1.014, 1.081, 1.082, 1.185, 1.223, 1.248, 1.267, 

1.271, 1.272, 1.275, 1.276, 1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355, 1.361, 1.364, 1.379, 1.409, 1.426, 

1.459, 1.460, 1.476, 1.481, 1.484, 1.501, 1.506, 1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593, 

1.602, 1.666, 1.670, 1.684, 1.691, 1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876, 1.878, 
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1.910, 1.916, 1.972, 2.012, 2.456, 2.592, 3.197, and 4.121”. 

We calculate MLEs of the unknown parameters together with some useful measure of goodness-of 

fit tests for one dataset, namely, the negative log likelihood function −lnL, the Akaike information 

criterion denoted by AIC = 2k–2lnL, proposed by Akaike [16] and Bayesian information criterion 

denoted by BIC = kln(n)–2lnL, proposed by Schwarz [17], where k is the number of parameters in 

the model, n is the number of observations in the given datasets, L is the maximized value of the 

likelihood function for the estimated model and Kolmogorov-Smirnov (K-S) statistic with its p-

value. The best distribution corresponds to the lowest –lnL, AIC, BIC and K-S statistic and the 

highest p values. The K-S statistic with its p-value is obtained using ks test function in statistical 

software R. The results of the MLEs and measures of goodness-of-fit tests are reported in Tables 3 

and 4, respectively. These results show that IPBH distribution is the best choice for the considered 

datasets. However, for Data I, according to K-S test IPBH is better than the BH. 

Table 3: Data Summary for the Data Set 

Table 4: Goodness of Fit criterions on the data set 

VIII. Conclusion

This article deals with the classical and Bayesian estimation procedures for parameters of inverse 

power Burr-Hatke distribution using second type censoring. The maximum likelihood estimators 

and corresponding asymptotic confidence intervals based on observed Fisher information matrix of 

the unknown parameters were derived. The Bayes estimates of the parameters under square error 

loss function were approximated using Lindley’s approximation. The performance of these 

estimators was examined by extensive Monte Carlo simulation study, which indicated that the MLEs 

can be obtained easily and quickly with satisfactory estimates. For more efficient estimators, Bayes 

estimation method with available prior information or convenient non-informative priors in the 

absence of prior information is recommended. 
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