
Krishnan J and Vijayaraghavan R   

PROCESS CAPABILITY ANALYSIS FOR LOGNORMAL DATA 

ENHANCING PROCESS CAPABILITY ANALYSIS  

FOR LOGNORMAL DATA UTILIZING BOX COX 

TRANSFORMATION AND GOODNESS OF FIT TESTS 

J. Krishnan1 and R. Vijayaraghavan2

• 
(1). Department of Mathematics, Sri Krishna Adithya College of Arts and Science 

Coimbatore – 641042, Tamil Nadu, INDIA 

(2). Department of Statistics, Bharathiar University, Coimbatore 641 046,  

Tamil Nadu, INDIA 
1krrishme92@gmail.com, 2vijaystatbu@gmail.com  

Abstract 

Process capability analysis is a valuable tool in quality assurance, but deviations from normal 

distribution necessitate adjustments to basic process capability indices. Process control literature 

offers solutions for non-normality, with data transformation being a common approach. The Box-

Cox transformation (BCT) is often used to normalize non-normal data, relying on maximum 

likelihood estimation (MLE) to determine the transformation parameter, lambda. Alternative 

methods exist for estimating the single transformation parameter lamda, employing goodness-of-fit 

tests instead of the MLE method. This study explores two expressions within the Box-Cox 

transformation (BCT), encompassing both optimal and rounded values of lambda. The primary goal 

is to identify an effective method for transforming non-normal data into a distribution closer to 

normality through goodness-of-fit tests, aiming to obtain accurate estimates for process capability 

analysis in alignment with six sigma standards. Furthermore, this study focuses on the influence of 

utilizing both optimal and rounded values of lambda when transforming non-normal data to 

normal, and how these lambda values impact the estimates of process capability analysis. The 

findings reveal that methods such as Shapiro-Wilk's (SW) and Artificial Covariate (AC) 

outperform the MLE method. Moreover, employing the optimal lambda value during data 

transformation leads to improved estimates of process capability. Data simulation and analysis were 

conducted using Minitab software and the R programming language. 

Keywords: Goodness of fit tests, Box-Cox Transformation, Asymmetric, MLE, 

Lognormal distribution, Six sigma. 

I. Introduction

Process capability indices (PCIs) are essential tools in quality control, commonly utilized across 

manufacturing industries to ensure processes meet required standards. Process capability analysis 

(PCA) evaluates how effectively a manufacturing process adheres to specified targets. However, 

traditional PCIs assume a normal distribution, which may inaccurately assess non-normal 

processes. Kane (1986) suggests that transforming data to preserve a somewhat normal 

distribution improves the accuracy of process capability analysis [5]. Empirical studies have shown 

that transformed data yields superior results compared to original data [4]. Based on many 

literature surveys transformation methods, especially for non-normal distributions like Lognormal 

and Weibull, consistently outperform Non-Transformation (NT) methods. NT methods are 

inadequate for assessing process capability when distributions deviate significantly from normal 

[15]. Hence, transformation methods are preferred, as they provide more reliable assessments, 
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even for distributions distanced from normality. 

In process capability analysis (PCA), the variability of a process is measured using the 

standard deviation. This variability can be divided into short-term and long-term variations. Short-

term variability is determined by the estimated standard deviation obtained from random sample 

observations, which is then used in calculating process capability indices. On the other hand, long-

term variability is assessed for computing process performance indices. Consequently, capability 

indices are computed using short-term variation, while performance indices utilize all data points, 

considering long-term variation. The commonly used capability indices are denoted as Cp and 

Cpk, while the respective performance indices are represented as Pp and Ppk. Various methods for 

handling non-normality in calculating process capability indices are discussed in [13]. Among 

these, the most widely applied indices in the manufacturing industry are the process capability 

index Cp and process capability ratio Cpk, as shown in Table 1 below, along with their respective 

performance indices. Here, 𝑥  denotes the sample mean, USL refers to the upper specification limit, 

and LSL indicates the lower specification limit. 

Table 1: Process Capability and Process Performance Indices 

Process capability indices Process performance indices 

Cp =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎𝑊

Cpk = min (CPU, CPL) 

𝐶𝑃𝑈 =
𝑈𝑆𝐿− 𝑥 

3𝜎𝑊
,    𝐶𝑃𝐿 =

 𝑥 − 𝐿𝑆𝐿

3𝜎𝑊

Pp =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙

Ppk = min (CPU, CPL) 

𝑃𝑃𝑈 =
𝑈𝑆𝐿− 𝑥 

3𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙
,  𝑃𝑃𝐿 =  

 𝑥 − 𝐿𝑆𝐿

3𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙

In [2], researchers employed the method of maximum likelihood estimation (MLE) to 

determine the optimal parameter λ in the Box-Cox transformation. Other approaches to the MLE 

methods, which rely on goodness of fit tests (specifically normality tests), were developed in [1], 

[3], [9], [10] and [14]. Through an examination of the impact of transforming non-normal data into 

normal data using different goodness of fit tests, [3] illustrated that the MLE method for estimating 

the λ parameter in BCT could be biased and inefficient. Furthermore, as indicated in [18] 

employing various goodness of fit tests instead of the MLE method for estimating the BCT 

parameter λ leads to improved estimates of process capability and process performance for non-

normal data. The effectiveness of different goodness of fit tests was also assessed in [3] using 

various error measures, estimates of process capability and process performance indices, and 

defective parts per million (PPM) products. The results of different goodness of fits tests are 

recorded and presented to help the practitioner to choose the method which will produce the 

improvised results in various asymmetric situations, viz., low, moderate and high. Thus, the 

objectives of this paper is to examine the effectiveness of the different goodness of fit tests 

involving transformation of non-normal data into normal data using BCT and to recommend a 

superior test that will produce higher values of process capability with minimum of error and PPM 

values particularly, for lognormal distribution. Additionally this paper focuses on the impact of 

optimal and rounded value of transforming parameter λ in BCT. It also verifies whether the 

proposed method produce the results within the standard of six sigma level.  

II. Methodology

Converting non-normal data into a normal distribution is a common practice when observed data 

fail to meet normality assumptions. Several methods are employed for this purpose in practical 

applications, including Johnson’s system of transformation (JST), Box-Cox transformation (BCT), 

and Rosenblatt transformation (RT). While both JST and BCT approaches are effective, BCT is 

generally preferred over JST, particularly in situations where computer-assisted analysis is 
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available, as it tends to outperform other methods [12]. Additionally, BCT is noted for its superior 

accuracy and precision compared to the JST method. BCT offers a range of power transformations 

designed to optimally normalize specific variables. According to [2], the BCT method transforms 

non-normal data into normal data for positive response variable x, as expressed below: 

𝑥𝜆 =  
𝑥𝜆− 1

𝜆
, 𝑓𝑜𝑟 𝜆 ≠ 0

log 𝑥, 𝑓𝑜𝑟 𝜆 = 0

    (1) 

It may be noted that since an analysis of variance is unchanged by a linear transformation, the 

expressions given (1) is equivalent to 

𝑥𝜆 =  
𝑥𝜆 , 𝑓𝑜𝑟 𝜆 ≠ 0

log 𝑥, 𝑓𝑜𝑟 𝜆 = 0
    (2) 

The form (1) is slightly preferable for theoretical analysis because it is continuous at λ = 0, 

refer [2]. The major effort in Box-Cox transformation is connected to the transformation X to Xλ, 

with the parameter λ possibly a vector describing a specific transformation. A single transforming 

parameter λ is the main source of dependence for this family of transformations, and its value is 

determined using maximum likelihood estimation [2].  

The results of the earlier studies presented in the literature, particularly in [1], [6], [9], [10], 

[13], [14], [15] and [17] would be useful to understand the significance of tests of goodness of fit 

while transforming non-normal data into normal data. The estimation of λ is done through various 

goodness of tests for normality, that are available in the literature, which includes tests, such as 

Shapiro - Wilk (SW), Anderson Darling (AD), Cramer Von Mises (CVM), Pearson Chi-square (PC), 

Shapiro - Francia (SF), Lillefors (Kolmogorov - Simirnov) (LT / KS), Jarque - Bera (JB), and artificial 

covariate method (AC). Additionally, Minitab Transformation (M_T) is included in the evaluation, 

which employs a rounded value of λ compared to the optimal value of λ used in goodness-of-fit 

tests. Since, the choice of the value for lambda (λ) in a Box-Cox transformation might have a 

significant impact on the result of process capability or process performance analysis. [9] Shows 

that the test based on SW statistic is a powerful test of normality for a variety of non-normal 

distributions, the SW statistic is reliable for small samples and in regression applications, the 

statistic would yield higher R2. It is asserted in [6] that the test based on SW statistic is the most 

powerful test for non-normal distributions. According to [18], the current MLE technique could be 

effectively substituted by using goodness of fits tests in Box-Cox transformation to get data close to 

normal as possible and achieving desired results in estimating process capability analysis. 

III. Lognormal Distribution

The log-normal distribution is a probability distribution of a random variable whose logarithm is 

normally distributed. When the logarithm of a log-normal distributed variable is taken, it results in 

a normal distribution. However, when looking at the original data itself, it doesn't follow a normal 

distribution. It typically exhibits skewness and can have a long tail on one side. It's often used to 

model phenomena where the logarithm of the variable is normally distributed, such as stock 

prices, incomes, and certain biological measurements. 

f  x  μ, σ) =  
1

xσ 2x
e− (In x − μ)2  /(2σ)2

   (3) 

Where, 

x>0 is the value of the random variable.

µ is the mean of the natural logarithm of the variable.

σ is the standard deviation of the natural logarithm of the variable.
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The mean and variance of the log-normal distribution is given by 

E(x) =  eµ+ 
σ2

2    (4) 

V(x) =  eσ2
−  1 . e2μ+ σ2

 (5) 

The lognormal distribution was examined at various asymmetric levels, characterized by 

different mean and standard deviation pairs: (0, 0.25), (0, 0.50), and (0, 1). These parameter sets 

were grouped to evaluate the impact of low, moderate and high asymmetry in transforming non-

normal data to normal data and conducting process capability analysis. Figure 1 illustrates the 

shape of the density function for each parameter set. 

Figure 1: The asymmetric behavior of lognormal distribution used for simulation study 

IV. Numerical Illustrations

The log normal distribution is applicable to a wide range of non-normal processes because it is 

capable of generating a variety of distinct curves based on its parameters. A log-normally 

distributed random variable only accepts positive real values. It is an easy-to-use model that can be 

applied to measurements in the exact sciences, engineering, medicine, economics, and other fields 

(such as energies, concentrations, lengths, prices of financial instruments, and other metrics). For 

simulation set-up, the data set of the size is taken as 100 and generated using different asymmetric 

levels of lognormal distribution. The lower and upper specification limits were taken as 0.01 and 

10. The defined specification limit in this study of process capability analysis might be appropriate

in certain situations where the process parameter being analyzed is bounded by very low values

and 0.01 represents a meaningful lower limit for the process output. Here are some scenarios

where these specification limits could be reasonable such as chemical concentrations, precision

engineering, analytical instruments, environmental monitoring, biomedical applications and so on.

The study evaluates the effectiveness of the method using a combination of box plots, 

descriptive statistics, measures of errors (Bias, Percentage Bias, Median Absolute Error (MdAE), 

Root Mean Square Error (RMSE)), and radar charts. Due to space limitations, only error measures 

and radar plots are included. Bias, MdAE, and RMSE serve as error metrics for transforming non-

normal data into normal data using various goodness-of-fit tests in Box Cox transformation. After 

transformation, the data are utilized to estimate process capability and performance index, aiding 

in the selection of the most effective approach among different goodness-of-fit tests.  

A process is considered to be under six sigma controls if both process capability and 

performance indices such as Cp and Cpk and Pp and Ppk are greater than or equal to 2 and 1.5, 

respectively. In the automotive industry, a Cpk value of 1.33 is used as a benchmark for assessing 

process capability.  According to Pearn W.L. and Chen K.S. (2002), a process is considered 
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inadequate if its process capability index (PCI) is less than 1.00, capable if PCI is between 1.00 and 

1.33, satisfactory if PCI is between 1.33 and 1.50, excellent if PCI is between 1.50 and 2.00, and 

super if PCI is equal to or greater than 2.00 [7]. As outlined by Sibalija TV and Majstorovic VD 

(2010), the primary objective for quality and industry practitioners is to achieve 6σ limits, with a 

corresponding defect rate of 3.4 PPM associated with the process [11]. One may refer to [8] and [16] 

for the details on the concepts of six-sigma tools and process capability analysis for non-normal 

data, respectively. Table 2 displays the process fallout in defective parts per million products 

alongside the proportion of good items and PPM values for different sigma levels. 

Table 2: Process fallout in defective parts per million with respect to different sigma levels 

Sigma Level Percentage PPM Values 

6 99.9997% 3.4 

5 99.98% 233 

4 99.4% 6,210 

3 93.3% 66,807 

2 69.1% 308,537 

1 30.9% 691,462 

I. Low Asymmetric Distribution

The simulation study focuses on utilizing a low asymmetric lognormal distribution with a 

skewness of 0.36 and 0.63, where the mean and standard deviation are 0 and 0.25, respectively. To 

assess the effectiveness of various methods in transforming non-normal data into a normal 

distribution, two sets of data are analyzed. One with a Skewness (Sk) of 0.36 and another with a 

skewness of 0.63. For the dataset with ln(0, 0.25)(1), methods like M_T, PT, LT, and JB transforms 

data more like a normal distribution with fewer errors. Likewise, for the dataset with ln(0, 0.25)(2), 

methods such as SF, JB, SW, AC, and MLE are transforms data getting closer to a normal with 

fewer errors. For further details, refer to Table 3 and Figure 2. Subsequently, the transformed data 

from different goodness-of-fit tests are used to estimate process capability/performance. This 

analysis helps identify the most effective method for handling non-normal, low asymmetric 

distributions.  

Table 3: Various measures of error values for low asymmetric data after the data transformation 

All the methods of data transformation used in this study results within the standard of six 

sigma but the only few methods produces better estimates of Pp/Cp and Ppk/Cpk, such methods 

are CVM, AC, MLE, SF, SW and AD for data set ln(0, 0.25)(1) and SF, JB, SW, AC and MLE for data 

set ln(0, 0.25)(2). Though only the tests SF, SW, AC, and MLE were considered appropriate 

Goodness 

of fit tests 

Low Asymmetry (Sk=0.36) 

Lognormal distribution (µ=0,  σ =0.25) 

Low Asymmetry (Sk=0.63) 

Lognormal distribution (µ=0, σ=0.25) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.0156 1.0068 1.0158 1.0231 1.0104 1.0236 

AD 1.0156 1.0068 1.0158 1.0373 1.0168 1.0388 

CVM 1.0180 1.0078 1.0182 1.0423 1.0191 1.0442 

PT 0.9916 0.9962 0.9916 1.0484 1.0218 1.0510 

SF 1.0159 1.0069 1.0161 1.0223 1.0100 1.0228 

LT 1.0147 1.0065 1.0149 1.0355 1.0160 1.0368 

JB 1.0152 1.0067 1.0153 1.0228 1.0102 1.0233 

AC 1.0161 1.0071 1.0163 1.0245 1.0110 1.0251 

MLE 1.0161 1.0070 1.0163 1.0246 1.0111 1.0252 

M_T -0.0008 0.0735 0.1049 1.0262 1.0118 1.0269 
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procedures to deal non-normal low asymmetric distributions in order to obtain desirable results 

with less errors, better estimates, and PPM values within the six sigma limits. For more 

information see the table 2, 4 and 5. 

Radar chart for ln(0, 0.25)(1) Radar chart for ln(0, 0.25)(2) 

Figure 2: Radar chart for various measures of errors after the normalization of low asymmetric distribution 

Table 4: Estimates of process capability and process performance indices for ln(0, 0.25)(1) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI   (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 0.25)(1) - 0.01 10 7.62 1.49 3.87 7.893 1.544 1.81 

SW 0.31 -2.45 3.36 4.38 3.65 0.00 4.54 3.79 0.00 

AD 0.31 -2.45 3.36 4.38 3.65 0.00 4.54 3.79 0.00 

CVM 0.21 -2.95 2.96 4.44 4.39 0.00 4.6 4.55 0.00 

PT 1.38 -0.72 16.66 13.2 1.09 5.64 13.7 1.12 373 

SF 0.3 -2.50 3.32 4.39 3.73 0.00 4.55 3.86 0.00 

LT 0.35 -2.29 3.54 4.40 3.42 0.00 4.57 3.54 0.00 

JB 0.33 -2.37 3.45 4.39 3.54 0.00 4.55 3.67 0.00 

AC 0.29 -2.54 3.27 4.38 3.79 0.00 4.54 3.92 0.00 

MLE 0.29 -2.54 3.28 4.39 3.79 0.00 4.55 3.92 0.00 

M_T 0.5 0.100 3.16 4.65 2.69 0.00 4.82 2.79 0.00 

Table 5: Estimates of process capability and process performance indices for ln(0, 0.25)(2) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI   (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 0.25)(2) - 0.01 10 7.041 1.436 8.25 7.020 1.432 8.73 

SW 0.12 -3.54 2.65 4.55 3.89 0.00 4.51 3.86 0.00 

AD -0.43 -14.5 1.46 11.68 2.15 0.00 11.55 2.12 0.00 

CVM -0.62 -26.4 1.23 20.03 1.80 0.00 19.78 1.78 0.00 

PT -0.85 -57.7 1.01 41.93 1.47 5.27 41.37 1.45 6.90 

SF 0.15 -3.33 2.75 4.47 4.03 0.00 4.43 4 0.00 

LT -0.36 -11.8 1.57 9.80 2.31 0.00 9.69 2.28 0.00 

JB 0.13 -3.47 2.68 4.52 3.92 0.00 4.48 3.9 0.00 

AC 0.065 -3.98 2.48 4.75 3.64 0.00 4.71 3.61 0.00 

MLE 0.06 -4.02 2.47 4.78 3.63 6.10 4.73 3.6 0.00 

M_T 0.0 -4.61 2.31 5.086 3.387 0.00 5.039 3.356 0.00 
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II. Moderate Asymmetric Distribution

The lognormal distribution, characterized by parameters µ = 0 and σ = 0.50, offers a means to 

generate moderately asymmetric data with respective skewness values of 0.96 and 1.32. Through a 

simulation study, it is confirmed that for data set ln(0, 0.5)(1) the LT, AD, SW, SF, CVM and JB and 

for data set ln(0, 0.5)(2), the M_T, LT, AC, MLE, SF and SW methods of goodness of fit tests 

effectively transform the non-normal data into normal distributions with minimal errors. 

Consequently, the transformed datasets are subjected to further examination to evaluate their 

efficiency in estimating process capability/performance for moderately asymmetric distributions. 

See the table 6 and figure 3. 

Table 6: Various measures of error values for moderate asymmetric data after the data transformation 

Radar chart for ln(0, 0.5)(1) Radar chart for ln(0, 0.5)(2) 

Figure 3: Radar chart for various measures of errors after the normalization of moderate asymmetric distribution 

In the simulation study, transformed data yields improved estimates of Pp/Cp and Ppk/Cpk 

using methods such as AC, PT, MLE, JB, CVM, SW, and SF for dataset ln(0, 0.5)(1), and AC, MLE, 

SF, and SW for dataset ln(0, 0.5)(2). Furthermore, the PPM values indicate that for dataset ln(0, 

0.5)(1), the results fall within the standard six sigma limits, while for dataset ln(0, 0.5)(2), PPM 

values range between 5σ and 6σ limits (with recorded values ranging from 17 to 128, against 

benchmark values of 233 for 5σ and 3.4 for 6σ, as detailed in Table 2). This close alignment with the 

six sigma standard is promising. Upon considering various measures of errors, process 

capability/performance indices, and associated PPM values, it becomes evident that the AC, MLE, 

SW, and SF approaches outshine other methods, as depicted in Tables 2, 7, and 8. 

Goodness 

of fit tests 

Moderate Asymmetry (Sk=0.96) 

Lognormal distribution (µ=0,  σ=0.5) 

Moderate Asymmetry (Sk=1.32) 

Lognormal distribution  (µ=0,  σ=0.5) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.1050 1.0392 1.1141 1.1634 1.0599 1.1856 

AD 1.1036 1.0386 1.1124 1.1703 1.0627 1.1938 

CVM 1.1065 1.0397 1.1158 1.1648 1.0605 1.1873 

PT 1.1079 1.0403 1.1174 1.1648 1.0605 1.1873 

SF 1.1050 1.0392 1.1141 1.1621 1.0594 1.1840 

LT 1.1007 1.0375 1.1091 1.1538 1.0561 1.1741 

JB 1.1065 1.0397 1.1158 1.1675 1.0616 1.1905 

AC 1.1086 1.0406 1.1182 1.1608 1.0589 1.1825 

MLE 1.1079 1.0403 1.1174 1.1607 1.0588 1.1823 

M_T 0.1071 0.1667 0.3422 1.1483 1.0539 1.1675 
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Table 7: Estimates of process capability and process performance indices for ln(0, 0.5)(1) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 0.5)(1) - 0.01 10 2.85 0.64 22623 2.81 0.64 28271 

SW 0.29 -2.54 3.28 1.80 1.59 0.88 1.80 1.59 0.95 

AD 0.3 -2.50 3.32 1.80 1.57 1.24 1.80 1.56 1.34 

CVM 0.28 -2.59 3.23 1.80 1.62 0.56 1.80 1.62 0.60 

PT 0.27 -2.64 3.19 1.80 1.65 0.36 1.80 1.65 0.38 

SF 0.29 -2.54 3.28 1.80 1.59 0.88 1.80 1.59 0.95 

LT 0.32 -2.41 3.40 1.80 1.52 2.71 1.79 1.51 2.93 

JB 0.28 -2.59 3.23 1.80 1.62 0.56 1.80 1.62 0.60 

AC 0.27 -2.66 3.17 1.80 1.66 0.300 1.80 1.66 0.32 

MLE 0.27 -2.64 3.19 1.80 1.65 0.36 1.80 1.65 0.38 

M_T 0.5 0.10 3.16 1.88 1.15 285 1.87 1.14 310 

Table 8: Estimates of process capability and process performance indices for ln(0, 0.5)(2) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 0.5)(2) - 0.01 10 2.59 0.59 38718 2.60 0.59 37847 

SW -0.11 -6.00 2.03 2.51 1.28 62.67 2.54 1.30 49.46 

AD -0.16 -6.81 1.93 2.72 1.22 127.9 2.77 1.24 102.4 

CVM -0.12 -6.15 2.01 2.55 1.27 72.39 2.59 1.29 57.30 

PT -0.12 -6.15 2.01 2.55 1.27 72.39 2.59 1.29 57.30 

SF -0.1 -5.85 2.06 2.47 1.30 50.39 2.51 1.32 39.42 

LT -0.04 -5.06 2.20 2.27 1.38 17.58 2.30 1.40 13.52 

JB -0.14 -6.47 1.97 2.63 1.24 93.68 2.67 1.26 76.73 

AC -0.091 -5.72 2.08 2.44 1.31 43.33 2.47 1.33 33.92 

MLE -0.09 -5.71 2.08 2.43 1.31 43.33 2.47 1.33 33.96 

M_T 0.0 -4.61 2.30 2.16 1.44 8.00 2.19 1.46 6.00 

III. High Asymmetric Distribution

The lognormal distribution, with parameters µ = 0 and σ = 1, can lead to highly skewed 

distributions. Through numerical examples, it's clear that methods like SF, AC, SW, MLE, and JB 

effectively transform non-normal data into normal distributions with minimal errors for dataset 

ln(0, 1)(1), and methods M_T, SF, AC, MLE, and SW do the same for dataset ln(0, 1)(2). Refer to 

Table 9 and Figure 4 for more details. In terms of producing accurate estimates of Pp/Cp and 

Ppk/Cpk, methods like SF, AC, JB, SW, and MLE perform well for dataset ln(0, 1)(1), and SW, SF, 

AC, and MLE perform well for dataset ln(0, 1)(2). Considering various error measures, estimates of 

process capability/performance indices, and corresponding PPM values, it's evident that methods 

like AC, MLE, SW, and SF perform better than others. The estimates and their PPM values in this 

study fall within the standard 4σ and 5σ limits. For dataset ln(0, 1)(1), values range from a 

minimum of 424 to a maximum of 495, while for dataset ln(0, 1)(2), values range from a minimum 

of 5664 to a maximum of 6230. The standard PPM value for 4σ limits is 6210, and for 5σ limits is 
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233. These values closely approach the standard of 5σ limits for highly asymmetric distributions.

Refer to Tables 2, 10, and 11 for further details.

Table 9: Various measures of error values for high symmetric data after the data transformation 

Radar chart for ln(0, 1)(1) Radar chart for ln(0, 1)(2) 

Figure 4: Radar chart for various measures of errors after the normalization of high asymmetric distribution 

Table 10: Estimates of process capability and process performance indices for ln(0, 1)(1) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 1)(1) - 0.01 10 1.143 0.324 165823 1.17 0.33 161042 

SW 0.13 -3.47 2.68 1.25 1.10 492.37 1.28 1.13 355.35 

AD 0.05 -4.11 2.44 1.31 1.00 1325.51 1.35 1.03 1016.34 

CVM 0 - - - - - - - - 

PT -0.07 -5.43 2.13 1.47 0.86 4947.72 1.50 0.88 4127.10 

SF 0.14 -3.39 2.72 1.24 1.12 424.31 1.27 1.15 302.77 

LT 0.04 -4.21 2.41 1.33 0.99 1548.60 1.36 1.01 1206.37 

JB 0.13 -3.47 2.68 1.25 1.10 488.93 1.28 1.13 352.46 

AC 0.13 -3.46 2.69 1.25 1.10 475.10 1.28 1.13 342.26 

MLE 0.13 -3.47 2.68 1.25 1.10 494.90 1.28 1.13 357.47 

Minitab 0.0 -4.61 2.30 1.096 0.766 10808 1.12 0.780 9660 

Goodness 

of fit tests 

High Asymmetry (Sk=1.81) 

Lognormal distribution  (µ=0,  σ=1) 

High Asymmetry (Sk=2.45) 

Lognormal distribution (µ=0,  σ=1) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.4662 1.1958 1.6223 1.6526 1.3108 1.9611 

AD 1.5072 1.2156 1.6798 1.6903 1.3319 2.0109 

CVM 1.5335 1.2301 1.7174 1.7012 1.3379 2.0253 

PT 1.5715 1.2509 1.7729 1.7514 1.3655 2.0912 

SF 1.4612 1.1935 1.6153 1.6472 1.3072 1.9540 

LT 1.5124 1.2185 1.6872 1.6848 1.3288 2.0038 

JB 1.4662 1.1958 1.6223 1.6686 1.3198 1.9824 

AC 1.4657 1.1956 1.6216 1.6506 1.3096 1.9585 

MLE 1.4662 1.1958 1.6223 1.6526 1.3108 1.9611 

M_T 1.5335 1.2301 1.7174 1.6102 1.2810 1.9043 
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Table 11: Estimates of process capability and process performance indices for ln(0, 1)(2) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 1)(2) - 0.01 10 0.970 0.284 196712 0.953 0.83 200849 

SW -0.08 -5.57 2.10 1.47 0.83 6211.92 1.44 0.82 6896.12 

AD -0.15 -6.64 1.95 1.62 0.78 9864.76 1.60 0.77 10845.7 

CVM -0.17 -6.99 1.91 1.66 0.76 11394.4 1.64 0.75 12448.9 

PT -0.26 -8.89 1.73 1.94 0.68 19977.2 1.90 0.67 21670.8 

SF -0.07 -5.43 2.13 1.45 0.84 5663.84 1.43 0.83 6298.88 

LT -0.14 -6.47 1.97 1.59 0.78 9466.45 1.57 0.77 10412.8 

JB -0.11 -6.00 2.03 1.53 0.81 7697.25 1.51 0.79 8552.19 

AC -0.08 -5.52 2.11 1.46 0.84 6036.33 1.44 0.82 6704.05 

MLE -0.08 -5.57 2.10 1.47 0.83 6230.13 1.44 0.82 6918.05 

Minitab 0.0 -4.61 2.30 1.189 0.839 5916 1.13 0.80 8528 

V. Result and Discussion

This study investigates two main areas, focusing on data transformation and the estimation of 

process capability analysis. The effectiveness of different goodness-of-fit tests is evaluated based 

on various error measures, estimates of process capability/performance, and PPM values that 

closely adhere to the six sigma standard. It also explores the impact of optimal and rounded values 

of lambda when transforming non-normal data into normal data for estimating process capability 

analysis. To achieve desired outcomes, it is essential that the transformed data closely resemble a 

normal distribution with minimal errors. Additionally, consistency in producing standard 

estimates and lower PPM values from the extended transformed data serves as evidence that the 

methodology employed in this study yields the desired results.  

In each of the three distinct asymmetric scenarios examined a range of goodness-of-fit tests, 

notably SW, SF, AC, and MLE, exhibit proficiency in converting non-normal datasets into normal 

distributions with minimal error values, the estimated values of Pp/Cp and Ppk/Cpk meet or 

exceed benchmark standards. The corresponding PPM values fall within or near the 6σ limits, only 

when low and moderate asymmetric distributions. For highly asymmetric distributions, the 

transformed dataset demonstrates reduced errors, yet the estimates of Pp/Cp and Ppk/Cpk deviate 

from standard results, and the corresponding PPM values do not align with the 6σ benchmark. It is 

noteworthy that across all asymmetric scenarios, error values are minimized for the JB, M_T, LT, 

and PT methods of goodness-of-fit tests. However, the associated estimates and PPM values do not 

correspond with the desired outcomes. 

The primary objective of this paper is to obtain improved estimates of process capability or 

process performance indices using Box-Cox Transformation (BCT) through goodness-of-fit tests. 

When applying BCT to convert non-normal data into a normal distribution, selecting the 

transformation parameter λ becomes crucial. BCT provides an optimal and rounded value of 

lambda for data transformation. In this study, goodness-of-fit tests utilize the optimal value of λ, 

whereas M_T employs the rounded value of λ. Based on the numerical illustrations, it is observed 

that the PPM values estimated in this study using the optimal value of λ are higher than those 

estimated using other methods. Notably, for moderately asymmetric distributions, employing the 

M_T method results in higher PPM values compared to methods utilizing the optimal value of 

lambda for ln(0, 0.5)(1). However, for ln(0, 0.5)(2), PPM values of minimum compared to goodness 

of fit tests but results in lesser values of Pp/Cp and Ppk/Cpk compared to benchmark standards. 

RT&A, No 3 (79) 
Volume 19, September 2024

352



Krishnan J and Vijayaraghavan R   

PROCESS CAPABILITY ANALYSIS FOR LOGNORMAL DATA 

Similarly, for highly asymmetric distributions, the M_T method produces higher PPM values 

compared to methods utilizing the optimal value of λ for ln(0, 1)(1). Nonetheless, for ln(0, 1)(2) 

PPM values are minimum compared to goodness of fit tests but results in lesser values of Pp/Cp 

and Ppk/Cpk compared to benchmark standards.  

Table 12: Efficiency comparison over different goodness of fit tests in data transformation and estimation of process 

capability and process performance indices for lognormal distribution 

Goodness 

of fit tests 

Efficiency in data transformation Efficiency in estimation of PCI 

Low 

Asymmetric 

Moderate 

Asymmetric 

High 

Asymmetric 

Low 

Asymmetric 

Moderate 

Asymmetric 

High 

Asymmetric 

Skewness 0.36 0.63 0.96 1.32 1.81 2.45 0.36 0.63 0.96 1.32 1.81 2.45 

SW       * * * * * *

AD   

CVM  $ 

PT  $ 

SF       * * * * *

LT    

JB        * *

AC     $ * $ * * *

MLE     $ * $ * * *

M_T      $

DME 

DME – Direct Minitab Estimation | - Less Error and/or Better Estimate | * - Better Estimate with less error and lesser 

PPM values | $ - Better Estimates with less PPM and higher error values. 

This is clearly indicates that using rounded values of λ is somewhat less efficient in 

transforming non-normal data into normal data, resulting in corresponding estimates of process 

capability/performance that do not meet the benchmark standards compared to the results 

obtained from methods utilizing the optimal value of λ. This discrepancy arises because the use of 

rounded value of λ does not accurately reflect the transforming pattern needed to achieve a close 

approximation to a normal distribution, as opposed to the optimal value of λ. Therefore, it is 

evident that opting for the optimal value of λ to attain improved estimates in process capability 

analysis would be the superior choice. One may refer table 4, 5, 7, 8, 10 and 11. A table of data is 

formed for the better understanding of the efficiency of different normality tests under various 

asymmetric behaviors of lognormal distribution based on the numerical example, result and 

discussion. See table 12 for more information. 

V. Conclusion

The core objective of this research work is to analyze the impact of the transformation parameter 

lambda on enhancing the process capability assessment for lognormal distribution. A test that 

satisfies all the requirements including data closely adhering to a normal distribution with less 

error, enhanced estimates of process capability/performance and reduced PPM values, to achieve 

the desired result is looked at utilizing low, moderate, and high asymmetric log normal 

distribution. Accordingly, based on the findings, result and discussion, SW, SF, AC, and MLE 

methodologies of goodness of fit tests have more intense power to estimate process 

capability/performance indices with smaller PPM values and also have higher accuracy in data 
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transformation. The SW test performs better than the other approaches in every way to produce 

enhanced estimates of process capability analysis. However, other test methods, like the SF, AC, 

and MLE methods, position themselves subsequent places for dealing with non-normal quality 

characteristics, particularly lognormal distribution and delivering remarkably good results.  

M_T (Minitab Transformation) utilizes the rounded value of λ instead of the optimal value to 

ascertain the transforming parameter. Optimal λ is typically required for superior results as it 

accurately reflects the transforming pattern, unlike a rounded value. This approach ensures that all 

values are brought as close to normal as possible. Based on the numerical illustrations, this study 

produces large amount of error values while using rounded value of λ, except in low asymmetry 

situations, resulting in the transformed data not close enough to normal distribution and less 

efficient estimates when compared to methods that are utilizing an ideal value of λ during data 

transformation and estimation. Furthermore, it is concluded and recommended that when dealing 

with non-normal data specifically lognormal distribution, utilizing an optimum value of λ is 

typically required for better results and Shapiro Wilk’s (SW) test is one such method among the 

different goodness of fit tests to transform non normal data into normal and estimating process 

capability/ performance in order to get enhanced results. 
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