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Abstract 

Acceptance sampling is used in Statistical Quality Control (SQC) to conduct lot quality 

evaluations through sample inspections which involve probability theory and fuzzy sets. It aims to 

optimize quality, costs, and productivity, frequently applying linguistic variables when accurate 

parameter values are not good enough which is handled using fuzzy set theory. This research 

analyses single sampling plans (SSP) in the presence of fuzzy number non-conformities, modelling 

them with the Zero-inflated Poisson (ZIP) distribution structure. This study presents a unique 

method to single sampling plans (SSP) inside the Zero-inflated Poisson (ZIP) distribution 

framework that makes use of fuzzy logic approaches. In addition, we show how to apply this method 

using a Python programme, providing practical suggestions for real-world quality control 

complications. 

Keywords: Acceptance sampling plan, Single sampling plan (SSP), ZIP distribution, OC functions, 

Fuzzy Parameter. 

I. Introduction

Acceptance sampling, which is critical in industrial sectors, maintains product quality while 

balancing time and cost restrictions. It categorizes features and variables, including single, 

double, and sequential sample plans, which are critical for raw material and product inspections. 

Designing single sampling plans (SSP) requires balancing producer and consumer interests using 

criteria such as lot size, sample size, and acceptance rates.  

Stephens [16] and Schilling &Neubauer [15] provide details on SSP determination, while 

Duncan [4] and Schilling &Neubauer [15] expound on approaches based on the Poisson 

distribution. Technological developments seek towards zero defects, yet random fluctuations 

require models such as the zero-inflated Poisson (ZIP) distribution, which is a hybrid of the zero-

inflated and Poisson distributions. ZIP finds applications across disciplines, from agriculture to 

manufacturing, detailed in Bohning et.al., [1], Lambert [10], Naya et al. [13], and Ridout et al. [14]. 

Under the assumption of a zero-inflated Poisson distribution, Loganathan and Shalini [11] created 

single sample plans based on characteristics. Xie et al. [18] address the construction of control 

charts using the ZIP distribution. In McLachlan and Peel [12], several theoretical elements of ZIP 

distributions are discussed. The ZIP (ω, λ) distribution's probability mass function (p.m.f.) may be 

found in Lambert [10] and McLachlan and Peel [12]. Kavithanjali and Sheik Abdullah [8] review a 

various sampling plans. 

Lotfi A. Zadeh [9] invented fuzzy set theory. Many authors, including Tamaki, Kanagawa 

and Ohta [17], Grzegorzewski [6], Hrniewicz [7], Chakraborty [3], Buckley [2], EzzatallahBaloui et 

al. [5], have developed fuzzy statistical theory and statistical applications-based challenges in 
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recent years. In the ensuing sections, will take a look at the methods used, show the final results 

of the study, and explain the relevance of our findings for quality control professionals. We are 

optimistic that our research will contribute considerably to the developing spectrum of statistical 

approaches designed to address the problems posed by challenging distributions in industrial 

scenarios. This work investigates finding SSPs based on characteristics within ZIP distribution 

conditions. Section 2 introduces the approach and terminology. Section 3 describes how to design 

SSPs fuzzy OC functions and a Python script. Section 4 displays how to pick sample plans, FOC 

bands, and conclusions, which highlight the study's findings regarding SSP determination. 

II. Methodology

2.1 Basic Definitions: 

2.1.1  Fuzzy Number: If and only if (i) N
~

is normal (ii) N
~

is fuzzy convex (iii) Nμ is upper semi

continuous (iv) Supp ( N
~

) is bounded, the fuzzy subset N
~

 of the real line R with the membership 

function  0,1R:Nμ  is a fuzzy number.

2.1.2 Triangular Fuzzy: A triangular fuzzy number is a fuzzy number N
~

with a membership 

function given by three numbers dca  , with the interval [a, b] as the base and x=c as the 

vertex. 

2.1.3 Fuzzy α  Cut: The α -cut of a fuzzy integer N
~

is defined as 𝑁[𝛼] = {𝑋𝜖𝑅; 𝜇𝑁(𝑥) ≥ 𝛼} in a non-

fuzzy set. Consequently, we have      ]α
U

N,α
L

[NαN 
~

Where 𝑁𝐿[𝛼] = 𝑖𝑛𝑓{𝑋𝜖𝑅; 𝜇𝑁(𝑥) ≥ 𝛼} (Infimum of lower limit α -cut)

𝑁𝑈[𝛼] = 𝑠𝑢𝑝{𝑋𝜖𝑅; 𝜇𝑁(𝑥) ≥ 𝛼} (supremum   of lower limit α -cut)

2.1.4 ZIP Distribution: The ZIP (φ, λ) distribution's probability mass function (p.m.f.) found in 

Lambert [9] and McLachlan and Peel [11]. ,λ)|d)P(X(1f(d)λ),|dP(X    

where 𝑓(𝑑) = {
1  𝑖𝑓  𝑑 = 0
0  𝑖𝑓      𝑑 ≠ 0

and  𝑃(𝑋 = 𝑑/𝜆) = {
𝑒−𝜆𝜆𝑑

𝑑!
 𝑖𝑓  𝑑 = 0,1,2 … , 𝑎𝑛𝑑 𝜆 > 0

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
 

Given the ZIP (φ,λ) distribution, the probability mass function of the distribution can be 

written as 

𝑃̃(𝑋 = 𝑑 / 𝜑, 𝜆) = 𝑃̃(𝑑) = {

𝜑 + (1 − 𝜑)𝑒−𝜆  𝑊ℎ𝑒𝑛𝑑 = 0      

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!
  𝑊ℎ𝑒𝑛 𝑑 = 1,2, … ,0 < 𝜑 < 1, 𝜆 > 0

To obtain the fuzzy ZIP probability mass function, replace λ  with the fuzzy number 

0λ 
~

. Let  dP
~

 be the approximate probability that D equals d. Next, we get this fuzzy

number's α -cut as 

𝑃̃(𝑋 = 𝑑 / 𝜑, 𝜆) = 𝑃̃(𝑑)[𝛼] = {
𝜑 + (1 − 𝜑)𝑒−𝜆   𝑊ℎ𝑒𝑛𝑑 = 0      

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!
 𝑊ℎ𝑒𝑛 𝑑 = 1,2, … ,0 < 𝜑 < 1, 𝜆 > 0

  |𝜆𝜖𝜆(𝛼) 

For every  1,0 So that  αp~ . The fuzzy parameter   dp~ has been supplanted by 

  αba,P
~

. 

𝑃̃[𝑎, 𝑏][𝛼] = {
𝜑 + (1 − 𝜑)𝑒−𝜆  𝑊ℎ𝑒𝑛𝑑 = 0 

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!
 𝑊ℎ𝑒𝑛 𝑑 = 1,2, … ,0 < 𝜑 < 1, 𝜆 > 0

 |𝜆𝜖𝑛 𝑝(𝛼) 

The ZIP (φ, λ) has a mean of (1− φ) and a variance of (1− φ)(1+𝜆 φ). 

III. OC function of SSP in ZIP distribution conditions

A Single Sampling Plan (SSP) with characteristics is defined by three parameters N, n, and c. A 

random sample of size n is taken from a large number of N units, and the number of 
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nonconforming units, X = d, is counted. If d < c, the lot is accepted, otherwise it is rejected. 

Evaluating the performance of a sample plan entails examining its Operating Characteristic (OC) 

function, which indicates its ability to discern acceptable from non-acceptable lots based on certain 

criteria.    cXpaP 
~

Using the Zero-Inflated Poisson model, the probability mass function of the number of 

defects in the lot is given by 

𝑃̃(𝑋 = 𝑑 / 𝜑, 𝜆) = 𝑃̃(𝑑) = {

𝜑 + (1 − 𝜑)𝑒−𝜆  𝑊ℎ𝑒𝑛𝑑 = 0      

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!
  𝑊ℎ𝑒𝑛 𝑑 = 1,2, … ,0 < 𝜑 < 1, 𝜆 > 0

Given a sample size of n, the probability of finding no deficiencies will be 

𝑃̃(𝑋 = 0) = 𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝 (1)

This is the single sample plan's OC function when c=1. Then equation becomes    

𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝 (1 + 𝑛 𝑝) (2)

Which is the single sampling plan's OC function for c=1 

3.1 Python Programming 

Python programming was used in this study on statistical quality control to create the Fuzzy OC 

Band table's upper and lower bounds. The Fuzzy Operating Characteristic (OC) and Fuzzy 

Probability of Acceptance curves were also drawn using Python. Python's extensive numerical 

calculation capabilities and flexible modules made it easy to use these statistical approaches inside 

the study framework. 

Illustration 1: According to the company’s experience, 0.5 percent of packages are empty. A 

department store has 60 items of this product on hand, and many customers select and browse 

asking if they can buy that item If our search shows that this sample has only one mismatch, the 

customer gets away buy every item in the store, otherwise, The fuzzy number where the customer 

can choose not to buy that product can be taken as P
~

= (0,0.005,0.01). Consequently, the probability 

of purchase is similar to that to be described. 

n=60, c=1, P
~

=(0,0.005,0.01), npλ 
~

 , 0.0001  

λ
~

=[0,0.3,0.6],    0.3α0.6,0.3ααλ 
~

𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝 + (1 − 𝜑)𝑒−𝑛 𝑝 (𝑛 𝑝)    |𝑛 𝑝 𝜖𝜆̃(𝛼)

Therefore, the  𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝 (1 + 𝑛 𝑝)decreasing, then 

𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−(0.6−0.3𝛼) (1 + (0.6 − 0.3𝛼)), 𝜑 + (1 − 𝜑)𝑒−(0.3𝛼) (1 + 0.3𝛼)

Under 0.01,0.0050,α   discover        0.99990.8790,,0.99990.87860, ,0.8781,1paP 
~

In 

Figure1 it shows is expected that 88 to 100 lots out of every 100 lots in this process will be accepted.

Figure 1: Fuzzy Probability of acceptance with P
~

=(0,0.005,0.01) 
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IV. FOC band

The SSP operational characteristic curve is built using fuzzy parameters. The operational 

characteristic curve represents both the proportion of defective p and the probability of acceptance 

(Pa(p)). The sampling plan's operational characteristic curve can be utilized to identify excellent 

and challenging lots. When a consumer rejects a product that meets the established conditions (i.e., 

the product quality is good), this risk is referred to as producer’s risk; when a consumer accepts a 

product that does not meet the conditions (i.e., the product quality is bad), this risk is referred to as 

consumer’s risk. An upper and lower band fuzzy parameter may be used to calculate the 

proportion defective, if the values of the upper and lower band are equal, this is referred to as 

superior state. 

In firm related to example we had n=60 0001.0 , P
~

=(0,0.005,0.01)

00.01,
3

a0.005,
2

a1,c       0.99k,00.01nnknk,0λ 
~

From equation (2) 𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−(𝜆2𝛼)  (1 + (𝜆̃2𝛼)) , 𝜑 + (1 − 𝜑)𝑒−(𝜆1𝛼)  (1 + (𝜆̃1𝛼))

= 𝜑 + (1 − 𝜑)𝑒−(𝑛𝑘+0.01𝑛) (1 + 𝑛𝑘 + 0.01𝑛), 𝜑 + (1 − 𝜑)𝑒−(𝑛𝑘) (1 + 𝑛𝑘) 

Table 1: Fuzzy Probability of Acceptance 0.0001 , c=1, n=60 

Example 1. Table 1 and Figure 2 illustrate the OC curve. This graphic shows how process quality 

will drop from extremely good to moderate, while the OC curve will expand. 

Figure 2:  OC Curve for SSP with Fuzzy Parameter of c=1, n=60 

Illustration 2: Had 0.0001 , c=0  and a2=0.005, a3=0.01, 0.99k0.2],0[20k[0]λ 
~

, 

k  paP
~

0 0.878111,  1.000000 

0.01 0.662661,  0.878111 

0.02 0.462891,  0.662661 

0.03 0.308510,  0.462891 

0.04 0.199228,  0.308510 

0.05 0.125777,  0.199228 

0.06 0.078069,  0.125777 

0.07 0.047828,  0.078069 

0.08 0.029003,  0.047828 

0.09 0.017450,  0.029003 

0.1 0.010438,  0.017450 
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leading to OC curve in terms of fuzzy ZIP distribution. From equation (1), 

𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝  |𝜆𝜖𝜆(0) = 𝜑 + (1 − 𝜑)𝑒−(0.01𝑛+𝑛𝑘), 𝜑 + (1 − 𝜑)𝑒−(𝑛𝑘)

= 𝜑 + (1 − 𝜑)𝑒−(0.2+20𝑘), 𝜑 + (1 − 𝜑)𝑒−(20𝑘) 

Figure 3: OC Curve for a SSP with fuzzy parameter of c=0 

Table 2: Fuzzy Probability of Acceptance 0.0001 , c=0 with different sample size(n) 

n=10 n=20 n=30 n=40 

K Pa(p) k Pa(p) k Pa(p) k Pa(p) 

0 0.9048, 1.0000 0 0.8187,  1.0000 0 0.7408,1.0000 0 0.6704,1.0000 

0.01 0.8187,0.9048 0.01 0.6704,0.8187 0.01 0.5489,0.7408 0.01 0.4494,0.6704 

0.02 0.7408,0.8187 0.02 0.5489, 0.6704 0.02 0.4066,0.5489 0.02 0.3013,0.4494 

0.03 0.6704,0.7408 0.03 0.4494,0.5489 0.03 0.3013,0.4066 0.03 0.2020,0.3013 

0.04 0.6066,0.6704 0.04 .3679, 0.4494 0.04 0.2232,0.3013 0.04 0.1354,0.2020 

0.05 0.5489,0.6066 0.05 0.3013,0.3679 0.05 0.1654,0.2232 0.05 0.0908,0.1354 

0.06 0.4966,0.5489 0.06 0.2467,0.3013 0.06 0.1225,0.1654 0.06 0.0609,0.0908 

0.07 0.4494,0.4966 0.07 0.2020,0.2467 0.07 0.0908,0.1225 0.07 0.0409,0.0609 

0.08 0.4066,0.4494 0.08 0.1654,0.2020 0.08 0.0673,0.0908 0.08 0.0274,0.0409 

0.09 0.3679,0.4066 0.09 0.1354,0.1654 0.09 0.0499,0.0673 0.09 0.0184,0.0274 

0.1 0.3329,0.3679 0.1 0.1109,0.1354 0.1 0.0370,0.0499 0.1 0.0124,0.0184 

n=60 n=80 n=100 n=120 

K Pa(p) k Pa(p) k Pa(p) k Pa(p) 

0 0.5489,1.0000 0 0.4494,1.0000 0 0.3679,1.0000 0 0.3013,1.0000 

0.01 0.3013,0.5489 0.01 0.2020,0.4494 0.01 0.1354,0.3679 0.01 0.0908,0.3013 

0.02 0.1654,0.3013 0.02 0.0908,0.2020 0.02 0.0499,0.1354 0.02 0.0274,0.0908 

0.03 0.0908,0.1654 0.03 0.0409,0.0908 0.03 0.0184,0.0499 0.03 0.0083,0.0274 

0.04 0.0499,0.0908 0.04 0.0184,0.0409 0.04 0.0068,0.0184 0.04 0.0026,0.0083 

0.05 0.0274,0.0499 0.05 0.0083,0.0184 0.05 0.0026,0.0068 0.05 0.0008,0.0026 

0.06 0.0151,0.0274 0.06 0.0038,0.0083 0.06 0.0010,0.0026 0.06 0.0003,0.0008 

0.07 0.0083,0.0151 0.07 0.0018,0.0038 0.07 0.0004,0.0010 0.07 0.0002,0.0003 

0.08 0.0046,0.0083 0.08 0.0008,0.0018 0.08 0.0002,0.0004 0.08 0.0001,0.0002 

0.09 0.0026,0.0046 0.09 0.0004,0.0008 0.09 0.0001,0.0002 0.09 0.0001,0.0001 

0.1 0.0015,0.0026 0.1 0.0003,0.0004 0.1 0.0001,0.0001 0.1 0.0001,0.0001 

n=140 n=160 n=180 n=200 

K Pa(p) k Pa(p) k Pa(p) k Pa(p) 
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0 0.2467,1.0000 0 0.2020,1.0000 0 0.1654,1.0000 0 0.1354,1.0000 

0.01 0.0609,0.2467 0.01 0.0409,0.2020 0.01 0.0274,0.1654 0.01 0.0184,0.1354 

0.02 0.0151,0.0609 0.02 0.0083,0.0409 0.02 0.0046,0.0274 0.02 0.0026,0.0184 

0.03 0.0038,0.0151 0.03 0.0018,0.0083 0.03 0.0008,0.0046 0.03 0.0004,0.0026 

0.04 0.0010,0.0038 0.04 0.0004,0.0018 0.04 0.0002,0.0008 0.04 0.0001,0.0004 

0.05 0.0003,0.0010 0.05 0.0002,0.0004 0.05 0.0001,0.0002 0.05 0.0001,0.0001 

0.06 0.0002,0.0003 0.06 0.0001,0.0002 0.06 0.0001,0.0001 0.06 0.0001,0.0001 

0.07 0.0001,0.0002 0.07 0.0001,0.0001 0.07 0.0001,0.0001 0.07 0.0001,0.0001 

0.08 0.0001,0.0001 0.08 0.0001,0.0001 0.08 0.0001,0.0001 0.08 0.0001,0.0001 

0.09 0.0001,0.0001 0.09 0.0001,0.0001 0.09 0.0001,0.0001 0.09 0.0001,0.0001 

0.1 0.0001,0.0001 0.1 0.0001,0.0001 0.1 0.0001,0.0001 0.1 0.0001,0.0001 

Table 2 and Figure 3 show that separate curves in the plot indicate sample sizes ranging from 

10 to 200.Each curve represents a unique sample size and indicates how the probability of 

accepting the null assumption varies with effect size (k) for different sample sizes. 

 The probability of rejecting the null hypothesis rises with an increase in effect size, k.

 smaller sample sizes (lower (n )) typically have lesser (k ) discriminative powers to identify

differences, which raises the likelihood of adopting the null hypothesis.

 With larger sample sizes, the ability to detect differences improves and the null theory is

less likely to be accepted.

 The OC curve, in essence, represents the relationship between sample size, effect

magnitude, and the chance of not rejecting the hypothesis. As a result of this, statisticians 

can evaluate their assumptions and make choices with greater certainty. 

 Finally, the fuzzy ZIP distribution can be used to approximate the OC curve. In

this regard, a plan of this such can be created using the OC fuzzy ZIP distribution. The OC 

curve shows that zero convergences with the acceptance number (c), which causes a rapid 

fall in the fuzzy probability of accepting the proportion of faulty goods with small fuzzy 

numbers. This is why there is the increase in n. 

V. Conclusions

In this research introduces a new way to design SSP by combining fuzzy logic with the ZIP 

distribution. This improves how we control quality. In this method manages risks for both 

producers and consumers well. Importantly, In this plans work smoothly alongside traditional 

ones when damage is rare, making them adaptable. The suggested OC curves have clear 

restrictions, no acceptance values, and are simple to interpret, making them extremely helpful. 

This new approach improves the way we choose samples in quality control, particularly when 

dealing with complex distribution patterns. We seek to improve our goods and make users better 

through using fuzzy logic and ZIP distribution, particularly in competitive marketplaces. 
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