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Abstract

In order to improve upon the efficiency of an estimate in double sampling for estimating population
mean of character under study using an auxiliary variable, a part of survey resources are used to collect
the information on auxiliary variable. Some authors have suggested exponential-type estimators and
some others advocated for log-type estimators. But combination of such is required for specific situation.
This paper presents a class of logarithmic-cum-exponential ratio estimators in double sampling setup.
The expressions for the mean squared error and bias of the proposed class of estimators are derived for
two different cases(sub-sample and independent sample). Sometimes the persons involved in the sample
survey have to undergo for risk on life. For example, data collection in naxalites area, working in intense
forest, interview during spread of epidemic or data collection in politically disturbed region. Such risk
may affect the accuracy, efficiency of estimation. A linear Risk function is used for the proposed class
of estimators. Two cases of double sampling are compared in terms of relative efficiency in view to risk
aspect.It is found that the proposed class of estimators has a lower mean squared error than the simple
mean estimator, usual ratio, usual exponential, usual log estimators in the double sampling setup. In
addition, these theoretical results are supported by a numerical example. Risk function based simulated
study is performed for the support of findings of the content. Optimal sample sizes under risk are derived
and compared under two cases.

Keywords: Exponential estimator, Logarithmic estimator, Mean squared error, Bias, Risk function,
Risk Analysis, Survey sampling, Double sampling, Simple random sampling without replace-
ment(SRSWOR).

1. Introduction

In double sampling, some part of the resources available for the survey are used to collect data for
auxiliary variable. It is because the population mean of auxiliary variable is assumed unknown.
Such are collected through sample at the preliminary level and then used to estimate population
mean (or population total).

In recent study on the estimators in the double sampling Sahoo et al.[9] discussed the approach
of estimating the population mean using regression-type estimator. It boosted the analytical
approach of estimation for dealing with double sampling scheme. Bahal and Tuteja[2] developed
exponential-type ratio and product estimator for the SRSWOR setup which later extended by
the many authors in verity of other sampling schemes. Shashi Bhushan et al.[5] suggested
double sampling ratio type estimator using two auxiliary variables. Authors discussed asymptotic
properties of the estimators with bias and mean squared error. Shabbir and Sat Gupta[14]
suggested exponential ratio-type estimator for estimating the population mean in the setup of
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stratified sampling. Such proposal is found to perform better than the usual mean, usual ratio,
usual exponential ratio, traditional regression estimators.

Zahoor et. al.[17] suggested regression estimator in double sampling using multi-auxiliary
information in the presence of non-response and measurement error in the second phase sample.
Such an extension of Azeem[8] who suggested ratio and ratio-cum-exponential estimators in
double sampling for population mean incorporating the possibility of non-response and mea-
surement error. The Wu and Luan[6] marked that major advantages of double sampling are the
gain in high precision without much substantial increase in cost. Sanaullah et al.[10] suggested
generalized exponential-type estimators for the stratified double sampling setup. Sanaullah
et al.[12] developed the generalized exponential type estimators for estimating the population
variance in double sampling with the help of two auxiliary variables. Zaman and Kadilar[18]
proposed exponential ratio-type estimation procedures in the stratified two phase sampling
setup. Shukla and Alim[1] proposed parameter estimation approach based an double sampling
showing on application in big-data environment. Bhusan and Gupta[3] discussed some log-type
estimators using attribute. In another useful contribution Bhushan and Kumar[4] proposed
log-type estimators for population mean under the setup of ranked set sampling.

1.1. Risk in data collection

While the conduct of sample survey, using the personal interview method, some areas may be
politically disturbed, some may dangerous due to being forest area, some may risky because of
naxalites movement and few may under the risk of intense epidemic spread (like Covid-19). Such
exposure of risk may possible on the life of field workers involved in data collection. Consider an
example where area of a district exposed under risk are identified as A, B, C, D and each having
different zones z1, z2, z3, z4, z5 with percentage of risk varying over zones.

Table 1: Risk distribution as per area and zones

Zones with risk (ri)

Area of District z1 z2 z3 z4 z5 Overhead Risk(r′)

A 25% 10% 20% 30% 7% 8%
B 15% 13% 28% 12% 22% 10%
C 35% 14% 5% 25% 10% 11%
D 16% 11% 18% 19% 23% 13%

Risk per units (ri) belongs to zones and overhead risk r′ belong to the geographical areas of a
district.

Deriving motivational idea and scientific approach from above contributions, this paper
consider the development of new class of estimators under the risk of life of surveyor during data
collection using double sampling.

1.2. Symbols used for population

Let a population of finite size N, D be the variable of main interest and A is an auxiliary variable
correlated to D. The pair (Di, Ai), i = 1, 2, 3, ..., N represents population values such that

D̄ =
1
N

N

∑
i=1

Di, Ā =
1
N

N

∑
i=1

Ai (1.1)
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S2
d =

1
N − 1

N

∑
i=1

(Di − D̄)2, S2
a =

1
N − 1

N

∑
i=1

(Ai − Ā)2 (1.2)

Sda =
1

N − 1

N

∑
i=1

(Di − D̄)(Ai − Ā), Cda =
SDA

(D̄Ā)
(1.3)

Cd =
Sd
D̄

, Ca =
Sa

Ā
, ρ =

Sda
SdSa

, M = ρ
Cd
Ca

(1.4)

where Cd and Ca denote coefficient of variations, ρ correlation coefficient.

1.3. Notations in SRSWOR Setup:

Assumed that information about variable of main interest D is not available, so a simple random
sampling is used, using sample of size n(n < N), to predict about that. Further, in usual practice
such assumes population mean of auxiliary variable Ā available. All possible samples are (N

n ).

Figure 1: Population and Sample

Let values of random sample by SRSWOR are (di, ai), i = 1, 2, 3, ..., n then one can define sample
statistics as:

d̄ =
1
n

N

∑
i=1

di, ā =
1
n

N

∑
i=1

ai (1.5)

s2
d =

1
n − 1

n

∑
i=1

(di − d̄)2, s2
a =

1
n − 1

n

∑
i=1

(ai − ā)2 (1.6)

sda =
1

n − 1

n

∑
i=1

(di − d̄)(ai − ā), M̂ =
sda
s2

a
(1.7)

1.4. Some usual estimators in SRSWOR

(a) Usual Ratio Estimator: ˆ̄DR =
d̄
ā

Ā

(b) Usual Product Estimator: ˆ̄DP =
d̄ā
Ā

(c) Usual Regression Estimator: ˆ̄DRe = d̄ + M̂(Ā − ā)

(d) Usual Log Estimator: ˆ̄DL = d̄
[

1 + log
(

Ā
ā

)]

(e) Usual Exponential Estimator: ˆ̄DEx = d̄
[

exp
(

Ā − ā
Ā + ā

)]
Some useful symbols are:

Vqs =
E{(d̄ − D̄)q(ā − Ā)s}

D̄q Ās , V′
qs =

E{(d̄ − D̄)q(ā′ − Ā)s}
D̄q Ās ; q, s = 0, 1, 2
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V20 =

(
1
n
− 1

N

)
C2

d , V02 =

(
1
n
− 1

N

)
C2

a , V′
02 =

(
1
n′ −

1
N

)
C2

a

V11 =

(
1
n
− 1

N

)
ρCdCa, V′

11 =

(
1
n′ −

1
N

)
ρCdCa

Symbols have their usual meaning as adopted by the survey practitioners in the concerned
literature. The Bias Bias(·) and Mean Squared Error MSE(·) of above existing estimators under
SRSWOR are expressed as under:

Bias( ˆ̄DR) = D̄ [V02 − V11] , MSE( ˆ̄DR) = D̄2 [V20 − 2V11 + V02] (1.8)

Bias( ˆ̄DP) = D̄ [V02 + V11] , MSE( ˆ̄DP) = D̄2 [V20 + 2V11 + V02] (1.9)

Bias( ˆ̄DRe) = D̄
[
V02 − β̂V11

]
, MSE( ˆ̄DRe) = D̄2

[
V20 − 2β̂V11 + β̂2V02

]
(1.10)

Bias( ˆ̄DL) = D̄ [V02 − V11] , MSE( ˆ̄DL) = D̄2 [V20 − 2V11 + V02] (1.11)

Bias( ˆ̄DEx) = D̄
[

3
8

V02 −
1
2

V11

]
, MSE( ˆ̄DEx) = D̄2

[
V20 +

1
4

V02 − V11

]
(1.12)

2. Double Sampling Approach

When the information about population mean of variable is not available then during sample
survey with the extra risk and efforts, the sample could be obtained using two different strategies.

Assume n′ be the size of first sample with values (a′1, a′2, ..., a′n′) and ā′ =
1
n′ ∑i=1 a′i

• Case I: When the second-phase sample of size n is a sub-sample of the first-phase sample
of size n′

Figure 2: Sampling strategy under case I

• Case II: When the second-phase sample of size n is drawn independently of the first-phase
sample of size n′.

Figure 3: Sampling strategy under case II
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2.1. Some existing estimators in double sampling

In Double sampling setup, the existing estimators with their respective bias Bias(·)I ,Bias(·)I I and
mean squared error MSE(·)I & MSE(·)I I under case I and case II are as below.

(a) Simple Random sample mean estimator:

ˆ̄D =
1
n

n

∑
i=1

di (2.1)

V( ˆ̄D) = D̄2V20 (2.2)

where V(·) denotes variance of estimators.

(b) Usual Ratio Estimator:

ˆ̄DRd = d̄
(

ā′

ā

)
(2.3)

Bias( ˆ̄DRd)I = D̄[(V02 − V′
02)− (V11 − V′

11)] (2.4)

Bias( ˆ̄DRd)I I = D̄[(V02 + V′
02)− V11] (2.5)

MSE( ˆ̄DRd)I = D̄2[V20 + (V02 − V′
02)− 2(V11 − V′

11)] (2.6)

MSE( ˆ̄DRd)I I = D̄2[V20 + (V02 + V′
02)− 2V11] (2.7)

(c) Usual Exponential Ratio Estimator:

ˆ̄DExd = d̄ exp
(

ā′ − ā
ā′ + ā

)
(2.8)

Bias( ˆ̄DExd)I = D̄[
3
8
(V02 − V′

02)−
1
2
(V11 − V′

11)] (2.9)

Bias( ˆ̄DExd)I I = D̄[
1
8
(3V02 − V′

02)−
1
2

V11] (2.10)

MSE( ˆ̄DExd)I = D̄2[V20 +
1
4
(V02 − V′

02)− (V11 − V′
11)] (2.11)

MSE( ˆ̄DExd)I I = D̄2[V20 +
1
4
(V02 + V′

02)− V11] (2.12)

(d) Usual Log Ratio Estimator:

ˆ̄DLod = d̄
[

1 + log
(

ā′

ā

)]
(2.13)

Bias( ˆ̄DLod)I = D̄[2(V02 − V′
02)− (V11 − V′

11)] (2.14)

Bias( ˆ̄DLod)I I = D̄[2V02 + V′
02 − V11] (2.15)

MSE( ˆ̄DLod)I = D̄2[V20 + (V02 − V′
02)− 2(V11 − V′

11)] (2.16)

MSE( ˆ̄DLod)I I = D̄2[V20 + (V02 + V′
02)− 2V11] (2.17)

(e) Usual Regression Estimators:

ˆ̄DRed = d̄ + M̂(ā′ − ā) (2.18)

Bias( ˆ̄DRed)I = D̄[(V02 − V′
02)− (V11 − V′

11)] (2.19)

Bias( ˆ̄DRed)I I = D̄[V02 + V′
02 − V11] (2.20)

MSE( ˆ̄DRed)I = Ȳ2[V20 + M̂2(V02 − V′
02)− 2M̂(V11 − V′

11)] (2.21)

MSE( ˆ̄DRed)I I = Ȳ2[V20 + M̂2(V02 + V′
02)− 2M̂V11] (2.22)

where M̂ is the regression coefficient.
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2.2. Motivation

Estimators suggested in simple random sampling, double sampling, stratified sampling may
usual type or exponential type or log-type. Sometime the data may follow the pattern different
that of exponential or log-type. It may be a mixture of log and exponential type (Fig4c). This
motivates to look for a new combined class of log-cum-exponential type estimators. This paper
considers the same in the setup of double sampling. Several authors have suggested estimators

(a) D = log(A) Log type graph (b) D = eA Exponential type graph
(c) D = log(A)eA log-exponential type

graph

Figure 4: Graphical pattern of relationship

for relationship between D and A variables as shown in Fig(4a) and Fig (4b). But for relationship
of type as in Fig (4c) yet needs to be explored. This paper is focused on proposing estimation
methodologies with respect to mutual relation shown in fig 4c under the double sampling setup.

3. Proposed class of Logarithmic-Exponential Type Estimators

A family of estimators under the double sampling is proposed, to estimate the unknown popula-
tion mean of the study variable D assuming the presence of auxiliary information A:

ˆ̄DLEd = d̄

[
exp

{(
1 −

(
ā′

ā

)α
)(

1 + log
(

ā′

ā

)β
)}]

(3.1)

assuming expo-log type relationship between D and A(fig4c), where α, β are constants may
positive or negative real numbers.

Theorem 1. The bias of the proposed class of estimator for the sub-sample(Case I) and indepen-
dent sample(Case II) respectively are:

Bias( ˆ̄DLEd)I = αD̄((V11 − V′
11)− β(V02 − V′

02)) (3.2)

Bias( ˆ̄DLEd)I I = αD̄(V11 − β(V02 + V′
02)) (3.3)

where Bias(·)I , Bias(·)I I are for case I and case II strategies respectively.

Proof. For large sample approximation, define some quantities ϵ0, ϵ1, ϵ2 with |ϵ0| < 1, |ϵ1| <
1, |ϵ2| < 1 such that

d̄ = D̄(1 + ϵ0), ā = Ā(1 + ϵ1), ā′ = Ā(1 + ϵ2)

where ā′ =
1
n′ (∑

n′
i=1 a′i) and (a′1, a′2, ..., a′n) is first phase sample of size n′.

E(ϵ0) = E(ϵ1) = E(ϵ2) = 0

Moreover,

E(ϵ2
0) =

(
1
n
− 1

N

)
C2

d , E(ϵ2
1) =

(
1
n
− 1

N

)
C2

a , E(ϵ2
2) =

(
1
n′ −

1
N

)
C2

a
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E(ϵ0ϵ1) =

(
1
n
− 1

N

)
ρCdCa, E(ϵ0ϵ2) =

(
1
n′ −

1
N

)
ρCdCa, E(ϵ1ϵ2) =

(
1
n′ −

1
N

)
C2

a

General expression for bias for D̂LEd is

Bias( ˆ̄DLEd) = [E( ˆ̄DLEd)− D̄]

Under large sampling approximation, upto first order ,

ˆ̄DLEd = D̄(1 + ϵ0)
[
exp

{
(1 − (1 + ϵ2)

α(1 + ϵ1)
−α)(1 + β log(1 + ϵ2)(1 + ϵ1)

−1)
}]

Since |ϵ0| < 1, |ϵ1| < 1 and |ϵ2| < 1, using Taylor series expansion upto the first order approxima-
tion, ignoring terms of higher order (ϵi

0, ϵ
j
1, ϵk

2) for i > 2, j > 2, k > 2, (i + j + k) > 2,

ˆ̄DLEd = D̄
[
1 + ϵ0 + α(ϵ1 − ϵ2) + αϵ0(ϵ1 − ϵ2) + βα(ϵ2

1 + ϵ2
2 − 2ϵ1ϵ2)

]
Using expectation E(ϵ0)=E(ϵ1)=E(ϵ2)=0, which leads to bias of proposed class of estimator,

Bias( ˆ̄DLEd)I = αD̄[(V11 − V′
11)− β(V02 − V′

02)] (3.4)

Bias( ˆ̄DLEd)I I = αD̄[V11 − β(V02 + V′
02)] (3.5)

Since E(ϵ0ϵ2)=V′
11=0 for case II because of sample n′ being independent to n. ■

Theorem 2. The mean squared error of the proposed class of estimator for the sub-sample(Case I)
and independent sample(Case II) respectively are

MSE( ˆ̄DLEd)I = D̄2
[
V20 + 2α(V11 − V′

11) + α2(V02 − V′
02)
]

(3.6)

MSE( ˆ̄DLEd)I I = D̄2
[
V20 + 2αV11 + α2(V02 + V′

02)
]

(3.7)

Proof. The proposed class in double sampling is,

ˆ̄DLEd = d̄

[
exp

{(
1 −

(
ā′

ā

)α
)(

1 + log
(

ā′

ā

)β
)}]

and above in terms of large sample approximation is,

ˆ̄DLEd = d̄
[
exp

{
(1 − (1 + ϵ2)

α(1 + ϵ1)
−α)(1 + β log(1 + ϵ2)(1 + ϵ1)

−1)
}]

Using |ϵ0| < 1, |ϵ1| < 1 and |ϵ2| < 1 and Taylor series expansion upto the first order of approxi-
mation, one can get

ˆ̄DLEd = D̄ [1 + ϵ0 + α(ϵ1 − ϵ2)]

by ignoring terms of higher order (ϵi
0, ϵ

j
1, ϵk

2) for i > 1, j > 1, k > 1, (i + j + k) > 1, i,j,k=0,1,2...
Subtracting D̄ and squaring both sides one can get,

( ˆ̄DLEd − D̄)2 = D̄2
[
ϵ2

0 + 2αϵ0(ϵ1 − ϵ2) + α2(ϵ1 − ϵ2)
2
]

By taking expectation both sides,

E( ˆ̄DLEd − D̄)2 = D̄2E
[
ϵ2

0 + 2αϵ0(ϵ1 − ϵ2) + α2(ϵ1 − ϵ2)
2
]

So the mean squared error is for Case I and Case II are:

MSE( ˆ̄DLEd))I = D̄2
[
V20 + 2α(V11 − V′

11) + α2(V02 − V′
02)
]

(3.8)
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and

MSE( ˆ̄DLEd))I I = D̄2
[
V20 + 2αV11 + α2(V02 + V′

02)
]

(3.9)

Since E(ϵ0ϵ2) = V′
11 = 0 for case II. ■

Remark 1: Gain in precision under case I and case II[
MSE( ˆ̄DLEd)I − MSE( ˆ̄DLEd)I I

]
= −2D̄2(α2V′

02 + αV′
11) (3.10)

The gain in precision depends on the sign of V′
11. In general, case I is better, but if (αV′

02 < V11)

then case II of double sampling is better than case I. It provides range when 0< α <
(

V11
V′

02

)
then

case II is more efficient than case I.
Remark 2: Some particular estimators in the proposed class are in table6:

Table 2: Estimators as member of proposed class.

Estimators α β

ˆ̄D1 = d̄
[
exp

{(
1 −

(
ā
ā′

)) (
1 + log

(
ā
ā′

))}]
-1 -1

ˆ̄D2 = d̄
[
exp

{(
1 −

(
ā
ā′

))}]
-1 0

ˆ̄D3 = d̄
[
exp

{(
1 −

(
ā
ā′

)) (
1 + log

(
ā′
ā

))}]
-1 1

ˆ̄D4 = d̄ 0 -1
ˆ̄D5 = d̄ 0 0
ˆ̄D6 = d̄ 0 1
ˆ̄D7 = d̄

[
exp

{(
1 −

(
ā′
ā

)) (
1 + log

(
ā
ā′

))}]
1 -1

ˆ̄D8 = d̄
[
exp

{(
1 −

(
ā′
ā

))}]
1 0

ˆ̄D9 = d̄
[
exp

{(
1 −

(
ā′
ā

)) (
1 + log

(
ā′
ā

))}]
1 1

Table 3: Mean Squared Error of Estimators under case I as members of proposed class

Mean Squared Error α β

MSE( ˆ̄D1)I = D̄2 [V20 − 2(V11 − V′
11) + (V02 − V′

02)
]

-1 -1
MSE( ˆ̄D2)I = D̄2 [V20 − 2(V11 − V′

11) + (V02 − V′
02)
]

-1 0
MSE( ˆ̄D3)I = D̄2 [V20 − 2(V11 − V′

11) + (V02 − V′
02)
]

-1 1
V( ˆ̄D4) = D̄2V20 0 -1
V( ˆ̄D5) = D̄2V20 0 0
V( ˆ̄D6) = D̄2V20 0 1
MSE( ˆ̄D7)I = D̄2 [V20 + 2(V11 − V′

11) + (V02 − V′
02)
]

1 -1
MSE( ˆ̄D8)I = D̄2 [V20 + 2(V11 − V′

11) + (V02 − V′
02)
]

1 0
MSE( ˆ̄D9)I = D̄2 [V20 + 2(V11 − V′

11) + (V02 − V′
02)
]

1 1

3.1. Optimal sub-class of estimators

Differentiating MSE(·) with respect to α, one can obtain optimum value of α as
Case I

α̂ =
(V11 − V′

11)

(V02 − V′
02)

=

(
−ρ

Cd
Ca

)
= (−M) (3.11)
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Table 4: Mean Squared Error of Estimators under case II as members of proposed class

Mean Squared Error α β

MSE( ˆ̄D1)I I = D̄2 [V20 − 2V11 + (V02 + V′
02)] -1 -1

MSE( ˆ̄D2)I I = D̄2 [V20 − 2V11 + (V02 + V′
02)] -1 0

MSE( ˆ̄D3)I I = D̄2 [V20 − 2V11 + (V02 + V′
02)] -1 1

V( ˆ̄D4) = D̄2V20 0 -1
V( ˆ̄D5) = D̄2V20 0 0
V( ˆ̄D6) = D̄2V20 0 1
MSE( ˆ̄D7)I I = D̄2 [V20 + 2V11 + (V02 + V′

02)] 1 -1
MSE( ˆ̄D8)I I = D̄2 [V20 + 2V11 + (V02 + V′

02)] 1 0
MSE( ˆ̄D9)I I = D̄2 [V20 + 2V11 + (V02 + V′

02)] 1 1

Table 5: Bias of Estimators under case I as members of proposed class

Bias α β

Bias( ˆ̄D1)I = −D̄
[
(V11 − V′

11) + (V02 − V′
02)
]

-1 -1
Bias( ˆ̄D2)I = −D̄(V11 − V′

11) -1 0
Bias( ˆ̄D3)I = −D̄

[
(V11 − V′

11)− (V02 − V′
02)
]

-1 1
Bias( ˆ̄D4) = 0 0 -1
Bias( ˆ̄D5) = 0 0 0
Bias( ˆ̄D6) = 0 0 1
Bias( ˆ̄D7)I = D̄

[
(V11 − V′

11)− (V02 − V′
02)
]

1 -1
Bias( ˆ̄D8)I = D̄(V11 − V′

11) 1 0
Bias( ˆ̄D9)I = D̄

[
(V11 − V′

11) + (V02 − V′
02)
]

1 1

Table 6: Bias of Estimators under case II as members of proposed class

Bias α β

Bias( ˆ̄D1)I I = −D̄ [V11 + (V02 + V′
02)] -1 -1

Bias( ˆ̄D2)I I = −D̄ [V11] -1 0
Bias( ˆ̄D3)I I = −D̄ [V11 − (V02 + V′

02)] -1 1
Bias( ˆ̄D4) = 0 0 -1
Bias( ˆ̄D5) = 0 0 0
Bias( ˆ̄D6) = 0 0 1
Bias( ˆ̄D7)I I = D̄ [V11 − (V02 + V′

02)] 1 -1
Bias( ˆ̄D8)I I = D̄V11 1 0
Bias( ˆ̄D9)I I = D̄ [V11 − (V02 + V′

02)] 1 1

Case II

α̂ =

[
V11

V02 + V′
02

]
= −

[
1

(1 + δ)

(
ρ

Cd
Ca

)]
= −

[
M

(1 + δ)

]
(3.12)

where, δ =

(
1
n′ − 1

N

)
(

1
n − 1

N

)
The mean squared error under the optimum value of α = α̂ [as per (3.8), (3.9)] are
Case I

[MSE( ˆ̄DLEd)I ]opt = D̄2C2
d

{(
1
n
− 1

N

)
−
(

1
n
− 1

n′

)
ρ2
}

(3.13)
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Case II

[MSE( ˆ̄DLEd)I I ]opt = D̄2C2
d

{(
1
n
− 1

N

)
−
(

1
n
− 1

n′

)(
ρ2

1 + δ

)}
(3.14)

4. Comparison with existing estimators

The existing estimators will be less efficient to the proposed estimators for case I and case II
respectively under the following conditions:

(1) Simple random sample mean estimator (d̄):

Case I: α ≤
−2(V11 − V′

11)

(V02 − V′
02)

, Case II: α ≤ −2V11

(V02 + V′
02)

(2) Usual Ratio Estimator ( ˆ̄DRd)[eq(2.3)]

Case I: α ≤
[

1 − 2
(

ρ
Cd
Ca

)]
, Case II: α ≤

[
1 − 2

(1 + δ)

(
ρ

Cd
Ca

)]

(3) Usual Exponential Ratio estimator ( ˆ̄DEd)[eq(2.8)]

Case I: α ≤ 1
2

[
1 − 4ρ

Cd
Ca

]
, Case II: α ≤ 1

2

[
1 − 4

(1 + δ)

(
ρ

Cd
Ca

)]

(4) Usual Log Ratio Estimator ( ˆ̄DLd)[eq(2.13)]

Case I: α ≤
[

1 − 2
(

ρ
Cd
Ca

)]
, Case II: α ≤

[
1 − 2

(1 + δ)

(
ρ

Cd
Ca

)]

(5) Usual Regression Estimator ( ˆ̄DRed)[eq(2.18)]

Case I: α ≤ −2
(

ρ
Cd
Ca

)
, Case II: α ≤

(
1 − 2

(1 + δ)

)(
ρ

Cd
Ca

)

5. Risk function and the Proposed estimator

The risk in data collection for dangerous area while implementing a sampling procedure is
defined as

(a) Total Risk

(b) Per unit respondent contact risk (infection, injury, life risk)

(c) General risk (area dependent risk)

Risk is associated to various ground conditions like risk in hilly area during data collection, risk
of reaching to the household, risk of non-response, risk of dangerous situations, risk of attack on
the life of surveyor, risk of epidemic etc.
Let us use symbols for risk as:
r′: Overhead risk
r0 : Total risk
r1 : Risk per unit for information collection on variable D and A using second sample n.
r2 : Risk per unit for first sample for collecting information on auxiliary variable A.

Linear risk function for collecting information is:
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r0 = r′ + r1n + r2n′

It is matter of interest to determine the n and n′ for a given risk r0 at the situation when MSE of
ˆ̄DLEd is minimum. To minimize risk function under risk constraint ϕ and optimum MSE, one can

get,

Case I

ϕ = [MSE( ˆ̄DLEd)I ]opt + λ(r′ + r1n + r2n′ − r0)

where λ is a Lagrange’s multiplier. Differentiating with respect to n and n′, equating it to
zero, the optimum values of n and n′ are

nopt =
(r0 − r′)

√
r1R

r1M1
, n′

opt =
(r0 − r′)

√
−r2(R − C2

d)

r2M1
(5.1)

where

M1 = [
√

r1R +
√
−r2(R − C2

d)], R = [C2
d + 2αCda + α2C2

a ]

Case II

ϕ = [MSE( ˆ̄DLEd)I I ]opt + λ(r′ + r1n + r2n′ − r0)

where λ is a Lagrange’s multiplier. Now differentiating with respect to n and n′, equating it
to zero, the optimum values of n and n′ under case II are

nopt =
(r0 − r′)

√
r1R

r1M2
, n′

opt =
(r0 − r′)αCa

√
r2

r2M2
(5.2)

where

M2 = [
√

r1R +
√

r2(α2C2
a)], R = [C2

d + 2αCda + α2C2
a ]

The ratio of optimal selection of n and n′ under fixed risk c0 is
Case I (

nopt

n′
opt

)
=

r2(
√

r1R)

r1(
√
−r2(R − C2

d)

Case II (
nopt

n′
opt

)
=

r2(
√

r1R)
r1αCa

√
r2

6. Empirical risk based Study

Consider a positively correlated population with two variables D and A(Data source -6th Minor
Irrigation Census - Village Schedule - Assam)[19] with N=100.
The values of variable D and A are shown in Table 7, where A represents geographical area and
D represents the net shown area in hectares.
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Table 7: Population Undertaken.

Di 152 98 75 68 60 295 72 125 16 260
Ai 165 111 80 79 78 319 86 189 26 380
Di 62 95 210 95 175 180 100 37 87 96
Ai 74 123 220 123 185 197 120 48 105 109
Di 80 148 85 98 38 95 200 84 18 38
Ai 110 158 121 108 40 110 350 95 28 46
Di 53 69 30 55 29 75 78 48 81 75
Ai 71 81 45 63 45 89 110 59 95 92
Di 103 97 82 25 76 70 57 182 55 85
Ai 113 105 96 35 94 81 70 192 65 122
Di 70 24 190 53 190 158 80 93 176 81
Ai 75 34 200 67 232 169 100 103 186 89

Moreover, population parameters are in the Table 8.

Table 8: Population Parameters

D̄ = 135 S2
d = 82327 C2

d = 4.534 Sad = 96274.91
Ā = 161 S2

a = 113076.5 C2
a = 4.356 Cad = 4.43

Table 9: PREs of different estimators with respect to proposed estimator in double sampling

PRE

Estimators Case I Case II

Simple Random sampling ( ˆ̄D) 22.13% 56.083%
Ratio Estimator ( ˆ̄DRd) 0.009% 41.493%
Exponential ratio estimator ( ˆ̄DExd) 6.856% 2.011%
Log ratio Estimator ( ˆ̄DLod) 0.009% 41.493%

where PRE is Percentage Relative Efficiency defined as:

(PRE)I,I I =
MSE(T)I,I I − (MSE( ˆ̄DLEd)I,I I)opt

MSE(T)
× 100 (6.1)

and T represents estiamtors like usual ratio, usual expo-ratio, usual log- ratio estimators.
It is observed that in case I, at the αopt, the proposed is 22.13% efficient over sample mean
estimator, 6.85% better over exponential ratio estimator and same to the usual ratio usual log
ratio estimator. Moreover, in case II, at value αopt, the proposed is 56% efficient to sample mean
estimator, 41.4% efficient over ratio estimator, 2% efficient over to exponential estimator and 41.4%
over log-ratio estimator.

In Figure 5, while general variation of α values, the case I bears lower MSE then case II. But
while reaching to αopt, both cases achieve the same MSE level equivalent to that of Regression
estimator in double sampling.
Figure 6, reveals the variation of total risk r0 over the optimum sample sizes (nopt & n′

opt). It is
observed that increasing fixed risk r0 leads to larger n′

opt (first sample) in comparison to second
sample optimum nopt. Low level risk indicates for equal(but small) n and n′ to be used by the
survey practitioners.

RT&A, No 3 (79) 
Volume 19, September 2024

259



Diwakar Shukla, Astha Jain
LOG-EXPO ESTIMATOR IN DOUBLE SAMPLING WITH RISK ANALYSIS...

Figure 5: Comparison between MSE’s of the proposed class under case I and case II over variation of α

Figure 6: nopt and n′
opt for case I over change to total risk r0

Figure 7, depicts similar pattern among n′
opt and nopt while considering variation of total risk r0.

But interesting is that with the increment in total risk r0, the case II needs smaller optimum first
phase (preliminary) sample than case I.

The Figure 8, reveals some interesting features of two cases I and II as when ratio
(

nopt
n′

opt

)
than

case I. This feature confirms that if r2 increases over fixed r1 then nopt increases over fixed n′
opt.

But such increment is high in case II rather than case I.
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Figure 7: Variation of nopt and n′
opt for case II over change to total risk r0

Figure 8:
(

nopt
n′

opt

)
with respect to ratio of

(
r2
r1

)

7. Conclusion

On recapitulation, this paper presents a new class of estimators for estimating the unknown
population mean in double sampling in the presence of auxiliary information. Some authors in
literature have proposed exponential-type and some others proposed log-type estimators. The
suggested estimation procedure is a combo-type class of estimators incorporating both expo and
log-type structure. Its properties are discussed and compared in the set up of double sampling,
under case I and case II sampling strategies. The proposed is found conditional efficient over
usual expo-type and usual log-type estimators (Table 9). Moreover, a linear risk function is used
in the paper with three risks parameters r0, r1, r2 and expressions for optimal sample sizes nopt
and n′

opt are derived. Risk based simulation study reveals that increasing the fixed risk r0 leads to
larger nopt (first sample) in comparison to equal (but small) n and n′ to be used by the survey
practitioner over incrementing r0. Case II needs smaller preliminary sample size in comparison
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to case I. While considering variation of optimum ratio of sample sizes (nopt/n′
opt) with respect

to the risk ratio (r2/r1) variation, the case I graph of such ratio constantly reveals lower than the
case II, graph indicating lesser need of comparative optimum sample ratio in double sampling
using the suggested expo-log estimator at α = αopt choice.
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