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Abstract

In this research paper, we presents the expected Bayesian (E-Bayesian) estimation of bathtub-shaped lifetime 
(BSL) distribution for scale parameter based on upper record values (URV) using a conjugate
prior distribution. Also, we are considered different prior distributions for the E-Bayesian estimators. Some 
properties of the E-Bayesian estimators are discussed. A simulation study is given to compare
the performance of the E-Bayesian estimators with Bayesian estimator. we notice that the E-Bayesian estimators 
are perform better than the Bayesian estimators. Moreover, the performance of the Bayesian estimators and E-
Bayesian estimators for Prior II are better than Prior I. Also, we observe that if we increase the sample size n then 
the estimators are showing lesser mean square error (MSE).

Keywords: Bathtub-shaped lifetime distribution, Bayes estimation, E-Bayes estimation, Upper
Record values.

1. Introduction

Suppose that X1, X2, ... is a sequence of independent and identically distributed (iid) random
variables with a cumulative distribution function (cdf ) F(x) and a probability density function
(pdf ) f (x). Let Ym = max(min) {X1, X2, ...Xm} for m ≥ 1. We say Xj is an URV or LRV (lower) of
this sequence {Xm, m ≥ 1} if Yj > (<)Yj−1, j ≥ 2. By definition, X1 is URV as well as a LRV. One
can transform the upper records to lower records by replacing the original sequence {Xj; j ≥ 1}
by {−Xj; j ≥ 1} or Pr(Xi > 0) = 1 if for all i by

{
1

Xi
, i ≥ 1

}
, the LRV of this sequence will

correspond to the URV of the original sequence, (Ahsanullah, 2004) [1].
The BSL distribution was introduced by Chen (2000) [2]. The probability density function (pdf ) of
the BSL distribution with parameters α and β (Chen(α, β)) is

f (x; α, β) = αβxβ−1exp[α(1 − exβ
) + xβ], x > 0, α, β > 0 (1)

with corresponding cumulative distribution function (cdf ) as

F(x; α, β) = 1 − exp[α(1 − exβ
)], x > 0, α, β > 0. (2)

The E-Bayesian method was introduced by Han (1997) [3]. In recent years, there has been a
growing interest in the study of E-Bayesian estimation. E-Bayesian estimate and its properties
were considered by Han (2007) [4], Han (2011) [6] and Han (2011) [7] for the case of one and two
hyperparameters. E-Bayesian estimate for the parameters of the geometric distribution based on
URV and their relations were obtained by Okasha and Wang (2016) [14]. Han (2009) [5] discussed
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the properties of E-Bayes estimate with three different prior distributions of hyperparameters.
Jaheen and Okasha (2011) [8] studied the E-Bayesian estimation for the Burr type XII distribution
based on the type-II censoring. Okasha (2012) [11] discussed the E-Bayesian method for computing
estimates for the unknown parameters of the Weibull distribution based on type-II-censored
samples. Okasha (2014) [12] studied that E-Bayesian methods for estimating the parameters of
Lomax distribution under the balanced squared error loss function based on type-II censored
data. Okasha (2019) [13] used the Burr XII model for type-II censored data. He observed that
the E-Bayes estimates performs better than the Bayes estimates. For more details, see, Kizilaslan
(2017) [9], Kizilaslan (2019) [10] and Piriaei et al. (2020) [15].
The main object of this article is to discuss the E-Bayesian estimation of the BSL distribution based
on URV. Bayesian estimators of the BSL distribution are given in Section 2. E-Bayesian estimation
based on three different distributions to the hyperparameters is derived in Section 3. Properties
of the E-Bayesian estimators based on squared error loss (SEL) function are discussed in Section
4. Simulation study is given in Section 5. Finally, the conclusion of this article is discussed in
Section 6.

2. Bayesian Estimation

We consider m URV XU(1) = x1, XU(2) = x2, ..., XU(m) = xm, from Chen(a, b), with pdf (1). In this
case, Ahsanullah (2004) [1] gives the likelihood function as

l(α, β|x) = f (xU(m); α, β)
m−1

∏
i=1

f (xU(i); α, β)

1 − F(xU(i); α, β)
. (3)

Using (1), (2) and (3), we get

l(α, β|x) = αmψ(β, x)e−αL, (4)

where

x = (x1, x2, ....xm), ψ(β, x) = βm
m

∏
i=1

xβ−1
i exβ

i

and
L = exβ

m − 1.

When β is known in the two-parameter BSL distribution , the maximum likelihood estimator
(MLE) of the scale parameter α, can be written as

α̂MLE =
m
L

. (5)

The gamma conjugate prior density of the parameter α can be expressed as

h(α) =
γλ

Γλ
αλ−1e−αγ, α > 0. (6)

Using (4) and (6), we get posterior density of α, i.e.

q(α|x) = A∗αm+β−1e−α(L+γ), α > 0, β > 0 (7)

where

A∗ =
(L + γ)m+λ

Γ(m + λ)
.

The Bayes estimate of α based on the SEL function can be expressed as

α̂BE(λ, γ) =
(m + λ)

(L + γ)
. (8)
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3. E-Bayesian Estimation

According to Han (1997) [3], the prior parameters λ and γ should be selected to guarantee that
the prior h(α|λ, γ) in (6) is a decreasing function of α. The derivative of h(α|λ, γ) with respect to
α is

dh(α)
α

=
γλ

Γλ
αλ−2e−αγ[(λ − 1)− αγ]. (9)

Thus, for 0 < λ < 1, γ > 0 and α > 0, the prior h(α|λ, γ) is a decreasing function of α. Assuming
that the prior parameters λ and γ are independent random variables and their density functions
are π1(λ) and π2(γ) respectively. Then the joint density function of λ and γ is

π(λ, γ) = π1(λ)π2(γ). (10)

The E-Bayesian estimate of α can be written as

α̂EBE = E(α|x) =
∫ ∫

D
α̂BE(λ, γ)π(λ, γ)dλdγ, (11)

where D is the domain of λ and γ for which the prior density is decreasing in α. α̂BE(λ, γ) is the
Bayes estimate of α as given in (8).

3.1. E-Bayesian Estimation of α under SEL function

In order to obtain E-Bayesian estimation of α, the following distributions of the hyperparameters
λ and γ are used

π1(λ, γ) = 1
kB(s,g)λs−1(1 − λ)d−1, 0 < λ < 1, 0 < γ < k,

π2(λ, γ) = 2
k2B(s,g) (k − γ)λs−1(1 − λ)d−1, 0 < λ < 1, 0 < γ < k,

π3(λ, γ) = 2γ
k2B(s,g)λs−1(1 − λ)d−1, 0 < λ < 1, 0 < γ < k.

(12)

The E-Bayesian estimates of the parameter α based on SEL function is obtained by using (8), (11)
and (12) as

α̂EBE1 =
∫ ∫

D
α̂BE(λ, γ)π1(λ, γ)dλdγ =

1
kB(s, g)

∫ 1

0

∫ c

0

(
m + λ

L + γ

)
λs−1(1−λ)d−1dγdλ,

=
1
k

(
m +

s
s + g

)
ln
(

L + k
L

)
, (13)

α̂EBE2 =
2
k

(
m +

s
s + g

) [
L + k

k
ln
(

L + k
L

)
− 1
]

(14)

and

α̂EBE3 =
2
k

(
m +

s
s + g

) [
1 − L

k
ln
(

L + k
L

)]
. (15)

4. Properties of E-Bayesian Estimation based on SEL function

In this section, we presents the relations among α̂EBE1, α̂EBE2 and α̂EBE3 .
Lemma. Let 0 < k < L, s > 0, g > 0 and α̂EBEi(i = 1, 2, 3) be given by (13), (14) and (15). Then
the following inequalities are:
(i) α̂EBE2 < α̂EBE1 < α̂EBE3.
(ii) limL→∞α̂EBE1 = limL→∞α̂EBE2 = limL→∞α̂EBE3.
Proof. (i) From (13), (14) and (15), we have

α̂EBE2 − α̂EBE1 = α̂EBE1 − α̂EBE3 =
1
k

(
m +

s
s + g

) [
k + 2L

k
ln
(

L + k
L

)
− 2
]

. (4.1)
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For −1 < t < 1, we have: ln(1 + t) = t − t2

2 + t3

3 − t4

4 + .... = ∑∞
p=1(−1)p−1 tp

p .

Let t = k
L , when 0 < k < L and 0 < k

L < 1, we get:[
k + 2L

k
ln
(

L + k
L

)
− 2
]

=
k + 2L

k

[(
k
L

)
− 1

2

(
k
L

)2
+

1
3

(
k
L

)3
− 1

4

(
k
L

)4
+

1
5

(
k
L

)5
− ...

]
− 2

=

[(
k
L

)
− 1

2

(
k
L

)2
+

1
3

(
k
L

)3
− 1

4

(
k
L

)4
+

1
5

(
k
L

)5
− ...

]
− 2

+

(
2 −

(
k
L

)
+

2
3

(
k
L

)2
− 2

4

(
k
L

)3
+

2
5

(
k
L

)4
− ...

)

=

(
k2

6L2 − k3

6L3

)
+

(
3k4

20L4 − 2k5

15L5

)
+ ...

=
k2

6L2

(
1 − k

L

)
+

k4

60L4

(
9 − 8k

L

)
+ ... > 0. (4.2)

According to (4.1) and (4.2), we have

α̂EBE2 − α̂EBE1 = α̂EBE1 − α̂EBE3 > 0,

that is
α̂EBE2 < α̂EBE1 < α̂EBE3.

(ii) From (4.1) and (4.2), we get

limL→∞

(
α̂EBE2 − α̂EBE1

)
= limL→∞

(
α̂EBE1 − α̂EBE3

)
=

1
c

(
m +

s
s + g

)
limL→∞{ c2

6L2

(
1 − c

L

)
+

c4

60L4

(
9 − 8c

L

)
+ ...}

= 0.
That is, limL→∞α̂EBE1 = limL→∞α̂EBE2 = limL→∞α̂EBE3.
Thus, the proof is complete.

5. Simulation Study

This section presents, a simulation study for a comparison of Bayes and E-Bayes methods of
estimation .
The steps of the simulation are:
1. Sample sizes n = 20, 30, 40, 50, no. of records m = 8 and for the each case the parameters
(α, β) = (1, 2).
2. (s, g) = (0.5, 0.5) and k = 12.
3. Estimates are calculated by two types of priors:

• for prior I, hyperparameter values, (λ, γ) = (0.2, 2.5).

• for prior II, hyperparameter values, (λ, γ) = (0.5, 3).

4. The URV are generated from Chen(α, β), by using X = [log{1 − log(1−U)
α }]

1
β , where U is

uniform (0, 1).
5. The estimates α̂BE and α̂EBEi, i = 1, 2, 3 under the SEL function are computed from (8) and
(14)-(16).
6. Repeat the above steps for 10, 000 times. The average of all 10, 000 estimated values are,
respectively, calculated and summarized.
7. The computational results are displayed in Table 1. All computations were performed using R
Software.
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Table 1: Bayesian and E-Bayesian estimates of α (first row), average bias (second row) and mean square error (third
row)

Prior I Prior II
n Par BE EBE1 EBE2 EBE3 BE EBE1 EBE2 EBE3
20 α 1.3940 1.0751 1.3433 0.8068 1.3331 1.0789 1.3491 0.8087

AB 0.3940 0.0751 0.3433 −0.1932 0.3331 0.0789 0.3491 −0.1913
MSE 0.2229 0.0389 0.1901 0.0467 0.1646 0.0404 0.1961 0.0461

30 α 1.3086 1.0151 1.2545 0.7757 1.2530 1.0148 1.2543 0.7753
AB 0.3086 0.0151 0.2545 −0.2243 0.2530 0.0148 0.2543 −0.2247
MSE 0.1478 0.0255 0.1178 0.0581 0.1075 0.0268 0.1204 0.0586

40 α 1.2505 0.9748 1.1958 0.7537 1.1995 0.9726 1.1927 0.7526
AB 0.2505 −0.0252 0.1958 −0.2463 0.19951 −0.0274 0.1927 −0.2474
MSE 0.1079 0.0222 0.0826 0.0677 0.0755 0.0219 0.0806 0.0682

50 α 1.2088 0.9459 1.1542 0.7376 1.1631 0.9445 1.1521 0.7367
AB 0.2088 −0.0541 0.1542 −0.2625 0.1631 −0.0556 0.1521 −0.2632
MSE 0.0839 0.0222 0.0626 0.0754 0.0591 0.0222 0.0617 0.0758

6. Conclusion

In this paper, Bayes and E-Bayes methods are considered for estimating the unknown scale
parameter of the BSL distribution based on URV. Under SEL function and three distributions
of the hyperparameters, the E-Bayesian estimators are introduced. Properties of E-Bayesian
Estimation based on SEL function are derived. A comparison of Bayes and E-Bayes estimates
of scale parameter is performed through a simulation study. From Table [1], we observed that
the performance of the E-Bayesian estimators are better than the Bayesian estimators. Moreover,
Bayesian estimators and E-Bayesian estimators for Prior II are better than Prior I. Also, from Table
[1], we observe that estimators are showing lesser MSEs, as increase the sample size n.
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