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Abstract 

In this study, a modified 2-parameter skew t distribution called the transmuted skew student t 

distribution (TSStD) was presented. Some statistical and reliability properties of TSStD such as 

the quantile function, the raw moments, and the moment generating function (among others), 

were derived. Through the method of maximum likelihood, the two parameters of the model were 

estimated. The stability of the model was studied via Montecarlo simulations utilizing bias, mean 

square error, and root mean square error as metrics. The results from the stability study revealed 

that the TSStD was well-behaved. Four datasets were modeled with the transmuted skewed 

student t distribution and four other probability density models. On the basis of information 

criteria, the results revealed that the transmuted skew student t distribution provides a better fit 

for all the datasets compared to the other competing models. 

Keywords: Transmuted, Skew, Raw moments, Quantile, Reliability function, 

Hazard function 

I. Introduction

Empirical probability models, or probability distributions, are an essential aspect of parametric 

statistical investigation. Classical distributions are more susceptible to an anomaly when 

characterizing various data and data generating processes, according to a prevalent reality across a 

variety of sectors, including finance, environmental science, biological sciences, engineering, and 

others. This emphasizes the need to hybridize classical probability models in order to meet this 

complex task *1+. Owing to the applicability of distribution theory and the availability of diverse 

data in today’s world, the thirst for improved statistical distributions that might be used to 

describe and model these events have increased spontaneously *2+, *3+, *4+, *5+, and *6+. Many 

scholars have over the years help modified simple statistical methodologies in relation to 

distribution theory and these methods have been found immensely useful in statistical modeling. 

Several methods of modifying probability distributions have been proposed over the years by 

scholars to improve statistical methodology of distribution theory. Among the methods are 

Exponentiated Exponential Distribution *7+, the Sine-G family *8+, the New Sine-G Family *9+, the 

G-families using the transformed-transformer *10+, Transmuted G family by *11+, and amongst

others. Several distributions have been modified using the Transmuted G family of distributions

over the years and some of them include Transmuted Lomax and Transmuted Exponentiated

Lomax distributions *12+, Transmuted Frechet distribution *13+, Transmuted Exponentiated

Gamma distribution *14+, Transmuted additive Weibull distribution *15+, Transmuted generalized

Gompertz distribution *16+, Kumaraswamy Transmuted Exponentiated modified Weibull
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distribution *17+, Transmuted Exponential power distribution *18+, etc. Using the method of 

transmutation by *19+, this paper proposes a new probability distribution called the Transmuted 

Skew Student t Distribution (TSStD). 

II. Methods

I. The Transmuted Family of Distribution

This section presents the TSStD, some of its statistical properties, simulation study as well as 

application to real life data. The cumulative density function (CDF) and probability density

function (PDF) of the Transmuted family of distribution generator is given by;  

         
2

1 -F v G v G v (1) 

          1 - 2f v g v G v (2) 

where, α is the transmuted parameter (shape), F(v) is the CDF and f(v) is the PDF of the baseline 

distribution.  

II. The Skew Student t Distribution

Using the simplified version of the Skew Student t Distribution (SStD) with 2 degrees of freedom 

introduced by Jonson et al., *20+ whose CDF and PDF are expressed as; 
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where,  is the shape parameter. 

III. Transmuted Skew Student t Distribution (TSStD)

On substituting G(v) and g(v) in equation (3) into (1) and (2) the PDF and CDF of TSStD are 

obtained as; 
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and 
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Figure 1: The PDF Plot of TSStD       Figure 2: The CDF Plot of TSStD 

IV. Properties of Transmuted Skew Student t Distribution

The survival *S(x)+, hazard *h(x)+, odd *O(x)+, and quantile *Q(v)+ functions, skewness, and kurtosis 

statistics are presented as well as the S(x) plot as follows 
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Figure 3: The S(v) Plot of TSStD for varied parameter value 

Quantile Function: the inverse of the CDF of TSStD gives the quantile function of TSStD and after 

numerous algebraic simplifications, this is expressed as; 
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Skewness: the Galton measure of skewness *GSK+ which measures the presence and lack of 

symmetry of a probability distribution is presented for TSStD using Q(v) as follows;  
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Kurtosis: the kurtosis measure whether or not the probability distribution is heavy-tailed. For 

TSStD the Moor’s kurtosis measure is derived using Q(v) as follows; 
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IV. Moments, Moment Generating Function, and Characteristic Function

Moments: A random variable v with TSStD has its moment in the form; 
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Proof 

The rth moment of a random variable v with a valid probability distribution is given by; 
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Let v be a random variable following the TSStD. Then the moment is derived as follows; 
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By transformation, let 
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dv rv
. Substituting the transformations into (15) to obtain; 
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Also, letting  


       
 

2
2-

2
2-

2
, , ,

2

rrr
r

r

r

u dk r
k u k u du dk

du r
u
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(17), we obtain the following; 
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where,  
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Therefore, on transforming (18) into the form presented in (19), the following is obtained; 
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which completes the proof. 

The mean of TSStD, that is, E*v+ based on equation (20) by substituting r to be 1 is given as; 
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Moment Generating Function (MGF): The MGF of the random variable v with TSStD is given by: 
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The MGF is given by: 
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Characteristic Function *CF+: for a random variable v with TSStD, the CF is given as; 
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Proof 

The CF of a valid probability distribution is expressed as; 

   




    
-

itv itv

v
f t E e e f v dv  (27) 

By Taylor’s series expansion of 
 




0 !

c

itv

i

itv
e

c
, therefore, 

 
 

 




      
     

    


2 2

0

- 2 2
, - ,

! 2 2 2 2 2

c

v

c

itv r r r r r
f t G H

c
(28) 

V. Order Statistics for TSStD

Sample values such as the smallest, largest, or middle observation from a random sample provide 

important information. Order Statistics could be used to determine the distribution of the smallest 

(minimum) order statistic and the largest (maximum) order statistic of a given distribution. Let V1, 

V2, <, Vn denote n-independent random sample from a distribution function F(v) and probability 

density function, f(v), then 1 2
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For simplicity, [1 ( )]n iF v in (29) can be expressed using the sum of a binomial series as 
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-1 ! - !

-
-1

m im

i n

m

n i

m

n
f v f v F v

i n i
 (30) 

Now, making the substitution of f(v) and F(v) into (30) will yield the following; 
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 
     

   

2

: 3 2
2 2

-1
2

2 2

2 2
0

!
1-

-1 ! - ! 22

1 -
-

-
2 2

1

n

m

m

i

m i

n v v
f v

i n

i

i v

n

v

v v v

m

v

v v



 






                        

            



 
   
           







 



 (31) 

Applying binomial expansion to the term   



             
           

-1
2

2 2

2 2
1 -

2 2

m i

v v v v

v v

 to get 

  





          
   




   
   
      

       


-1-
2

-1 2 2

2
0

2

-1
1 -

2 2

m i q

m i
q

q

m i v v v

vq

v

v
 and when substituted into (31), the  :i n

f v becomes; 

 
     

   



 





 


     
    

 
       
               


              

       


       
   

 

2

: 3 2
2 2

-1-
2

-1 2

0 0

2

2 2

!
1-

-1 ! - ! 22

-
-

1
1 -

-

2 2
1

q

m

m

i n

m i q

m i

q

n v v
f

i

n i

v
n i vv

m i v

m

v v v

v vq

 (32) 

Expanding the term  
   


 
   

 
 




2

2
1

2

q

v v

v

binomially yields 


   
 
 

  
 

    


 


2
-

2
0 2

q

r

q

q

r

q v

vr

v and on 

substitution into (32),  :i n
f v becomes,

 
     

   






  

 


 



 
     

  

 




      
               


     

  
  

       
 

  
0

2

: 3 2
2 2

-1-
2

-1 2
-1- -

2
0 0

!
1-

-1 ! - ! 22

-
-- 1

2
1 -

i n

m i q q

q
q

m

m q r

m i
m i q r

n v v
f

vn i

m

v
i n i vv

m i q v

vq r

 (33) 

 
     

  





 
           
                   



 
 
 
 

-1
2

2 2
-1-

: :3 2 2
2 2

!
1- -

-1 ! - ! 2 22

m i

m i r

i n i n

n v v v v
f v H

i n i v vv
 (34) 

where,  


 





     
     
     


  

1

0 0
:

0

--
-1

-1m i q
m

m q r
i n

n i

m q r

m i q
H . 

VI. Parameter Estimation Using Maximum Likelihood Estimation Technique

Let  l   be a parameter vector for the transmuted family of distributions. Consider a random 

variable  ~ ,v TSStD , then by definition, the likelihood function of v with PDF f(v) is given as;

    
 

 
 






   
       
  

     


2

3
-

2 2

2
1

-
; 2

n

i

v v
l l f v v

v
(35)
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 
 








 
 
    
 

  
 






3
-

- 21 2

2 1

1

2 1-

n

n

n n i

n

i

i

v

v

v

 (36) 

The log of  l  is as follows; 

  
 

 
 



  





  
                   

  

 




2

3
21 1 2

2 1

1

-

log log - log 2

n n

n

n

n ni i

n

i

i

v v

l v

v

 (37) 

Differentiating equation (37) with respect to the parameters Λ and α will yield the estimates of the 

parameters. The differentiation w.r.t. Λ is obtained as 

      

 
   

 
   

 



                 
         

     
  

   
 



-13
-

2 2 2
-1

3 5
1 1 -1 2 21 1 2 2

2 1 1

1

1 -log
- 3 2 0

n n n n
n n

n n
i i ni i

n
i i

i

n v v v vd l
v v

d n
v

. 

The result obtained shows that the parameter Λ does not exist in a closed form. A numerical 

estimate for the parameter will be obtained using R-software. Differentiation w.r.t. α gives  

  

 

 

 




  

 

 
     

    
 

    
 

  

 

-1

-1 2

1 1 1

2 2

1 1
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- 0

n n n

n n

i i i

n n

i i

n v v vd l

d
v v

 
 



 






1
2 2

1

1

ˆ

n

i
n n

i

v

v

 (38) 

VII. Measures of Goodness-of-Fit Adopted

This section presents the measures used in model selection. They include the Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), Corrected AIC (CAIC), and Hannan-Quinn 

Information Criterion (HQIC). 

  2 - 2AIC k ll  (39) 

    
10

log - 2BIC k n ll  (40) 

   
 

 


- -1 2 1

- -1

AIC n k k k
CAIC

n k
 (41) 

    
10

2 log ln - 2HQIC k n ll

 

 (42) 

where, lL is the log-likelihood value, n is the in-sample size, and k is the parameter. 

III. Results

I. Stability Study via Monte Carlo Simulations

In this section, we examined the stability of the probability model with an increase in sample size 

using simulation. The parameters were fixed at (0.6, 0.5) and (0.3, 0.7). Utilizing the quantile 

function presented in Equation (8), a random sample of sizes—30, 75, 300, 500, and 1000—was 

generated. The measures used for assessing the models were the Average Absolute Bias (AAB), 
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Mean Square Error (MSE), and Root Mean Square Error (RMSE), respectively. These measures 

were calculated using the expressions given below: 




1

-Q

q

q

u u
AAB

q
 (43) 

 



2

1

-Q
q

q

u u
MSE

q
 (44) 

RMSE MSE (45) 

In accordance with the central limit theorem, an increase in sample sizes is expected to result in the 

reduction of estimation errors, approaching zero. Analyzing the results of the simulation as 

presented in Table 1, it becomes evident that this holds true for the new model. An increase in 

sample sizes corresponds to a decrease in bias and mean square error, as demonstrated. 

Table 1: The AAB, MSE and RMSE 

Size (n) Parameter Parameter Value MLE AAB MSE RMSE 

30  0.21 -2.929E-06 0.21000293 0.04410123 0.21000293

30  0.72 -0.3688692 1.08886921 1.18563616 1.08886921

100  0.21 0.00062679 0.20937321 0.04383714 0.20937321 

100  0.72 -0.378557 1.09855699 1.20682746 1.09855699

300  0.21 0.08369549 0.12630451 0.01595283 0.12630451 

300  0.72 0.74825993 0.02825993 0.00079862 0.02825993 

500  0.21 0.2257876 0.0157876 0.00024925 0.0157876 

500  0.72 0.57707861 0.14292139 0.02042652 0.14292139 

Figure 4: The AAB and MSE 

As illustrated in the plot of the AAB and MSE presented in Figure 4, it can be observed that the 

probability model is well-behaved. This was due to the decay in the value of the AAB and MSE. 

The larger the sizes of the sample, the better the estimates are, the smaller the error and the more 

consistent the parameters are.  

II. Application to Real-Life Data

This section provides an application of the model to real data. Other competing models were fitted 

to the data, and the goodness of fit of these models was assessed using various statistical 

information criteria. This illustration involves four data sets. The first and second datasets were 

sourced from *21+. The first dataset pertains to the duration of symptom decrease or disappearance 
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in patients with bladder cancer, measured in months for one hundred and twenty-eight patients. 

The second dataset focuses on the response time of patients to treatments, measured in minutes 

from the moment the treatment was administered. 

First data set: 0.08, 2.09, 2.73, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.22, 3.52, 4.98, 6.99, 9.02, 13.29, 

0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 

3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 

10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 

15.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 

2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 

1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.93, 8.65, 12.63, 

22.69 

Second data set: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0  

The third and fourth dataset were both sourced from *22+. The third dataset consisted of three 

hundred and forty-six measures of nicotine taken as obtained from different cigarette product 

category. The fourth data was on the windshield of an aircraft. The data comprises of one hundred 

and fifty-three measurements, of which eighty-eight were categorized as failed windshields and 

the remaining sixty-five were service times of windshields that were in good condition at the time 

of the observation. 1000h is the measuring unit. 

Third data set: 1.3, 1.0, 1.2, 0.9, 1.1, 0.8, 0.5, 1.0, 0.7, 0.5, 1.7, 1.1, 0.8, 0.5, 1.2, 0.8, 1.1, 0.9, 1.2, 0.9, 0.8, 

0.6, 0.3, 0.8, 0.6, 0.4, 1.1, 1.1, 0.2, 0.8, 0.5, 1.1, 0.1, 0.8, 1.7, 1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 0.4, 1.0, 0.2, 0.8, 

1.4, 0.8, 0.5, 1.1, 0.9, 1.3, 0.9, 0.4, 1.4, 0.9, 0.5, 1.7, 0.9, 0.8, 0.8, 1.2, 0.9, 0.8, 0.5, 1.0, 0.6, 0.1, 0.2, 0.5, 0.1, 

0.1, 0.9, 0.6, 0.9, 0.6, 1.2, 1.5, 1.1, 1.4, 1.2, 1.7, 1.4, 1.0, 0.7, 0.4, 0.9, 0.7, 0.8, 0.7, 0.4, 0.9, 0.6, 0.4, 1.2, 2.0, 

0.7, 0.5, 0.9, 0.5, 0.9, 0.7, 0.9, 0.7, 0.4, 1.0, 0.7, 0.9, 0.7, 0.5, 1.3, 0.9, 0.8, 1.0, 0.7, 0.7, 0.6, 0.8, 1.1, 0.9, 0.9, 

0.8, 0.8, 0.7, 0.7, 0.4, 0.5, 0.4, 0.9, 0.9, 0.7, 1.0, 1.0, 0.7, 1.3, 1.0, 1.1, 1.1, 0.9, 1.1, 0.8, 1.0, 0.7, 1.6, 0.8, 0.6, 

0.8, 0.6, 1.2, 0.9, 0.6, 0.8, 1.0, 0.5, 0.8, 1.0, 1.1, 0.8, 0.8, 0.5, 1.1, 0.8, 0.9, 1.1, 0.8, 1.2, 1.1, 1.2, 1.1, 1.2, 0.2, 

0.5, 0.7, 0.2, 0.5, 0.6, 0.1, 0.4, 0.6, 0.2, 0.5, 1.1, 0.8, 0.6, 1.1, 0.9, 0.6, 0.3, 0.9, 0.8, 0.8, 0.6, 0.4, 1.2, 1.3, 1.0, 

0.6, 1.2, 0.9, 1.2, 0.9, 0.5, 0.8, 1.0, 0.7, 0.9, 1.0, 0.1, 0.2, 0.1, 0.1, 1.1, 1.0, 1.1, 0.7, 1.1, 0.7, 1.8, 1.2, 0.9, 1.7, 

1.2, 1.3, 1.2, 0.9, 0.7, 0.7, 1.2, 1.0, 0.9, 1.6, 0.8, 0.8, 1.1, 1.1, 0.8, 0.6, 1.0, 0.8, 1.1, 0.8, 0.5, 1.5, 1.1, 0.8, 0.6, 

1.1, 0.8, 1.1, 0.8, 1.5, 1.1, 0.8, 0.4, 1.0, 0.8, 1.4, 0.9, 0.9, 1.0, 0.9, 1.3, 0.8, 1.0, 0.5, 1.0, 0.7, 0.5, 1.4, 1.2, 0.9, 

1.1, 0.9, 1.1, 1.0, 0.9, 1.2, 0.9, 1.2, 0.9, 0.5, 0.9, 0.7, 0.3, 1.0, 0.6, 1.0, 0.9, 1.0, 1.1, 0.8, 0.5, 1.1, 0.8, 1.2, 0.8, 

0.5, 1.5, 1.5, 1.0, 0.8, 1.0, 0.5, 1.7, 0.3, 0.6, 0.6, 0.4, 0.5, 0.5, 0.7, 0.4, 0.5, 0.8, 0.5, 1.3, 0.9, 1.3, 0.9, 0.5, 1.2, 

0.9, 1.1, 0.9, 0.5, 0.7, 0.5, 1.1, 1.1, 0.5, 0.8, 0.6, 1.2, 0.8, 0.4, 1.3, 0.8, 0.5, 1.2, 0.7, 0.5, 0.9, 1.3, 0.8, 1.2, 0.9 

Fourth data set: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 

1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 

2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 

1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 

1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 

1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663. 

Five models were fitted to the above four datasets using the Adequacy Model package in R *23+, 

these models include; Exponentiated Ailamujia distribution (EAD), Exponentiated Exponential 

distribution (EED), Exponentiated Weibull (EWD), the Logistic distribution (LD) and the 

transmuted skew student t distribution (TSStD) respectively. The resulting fitted models selected 

on the basis of Akaike Information Criterion, (AIC), Bayesian Information Criterion (BIC), 

Consistent Akaikes Information Criterion (AIC) and Hannan-Quinn information criterion, (HQIC). 
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Table 2: The AIC, CAIC, BIC, HQIC and MLE of the First data 

Models AIC BIC CAIC HQIC MLE Rank 

TSStD -642.6124 -636.9719 -634.9719 -627.3313
0.0006 1 

1.1348 

EED 799.7295 805.3700 799.8286 802.0208 
1.2682 3 

0.1041 

EWD 275.1219 282.4499 275.4182 278.0694 

0.4493 

1.6494 2 

1.7404 

EAD 7285.8160 7291.4570 7285.9150 7288.1080 
1.4819 5 

1.8290 

LD 1080.3360 1085.9770 1080.4350 1082.6270 
1.9978 4 

1.8904 

Table 2 to Table 5 presents the model estimates for each of the datasets.  The results revealed that 

the model with the smallest measure of the entire information criterion was the TSStD. The ranks 

for the performance of the models were based on the information criterions of each of the models. 

From the results obtained, for the five models estimated, the TSStD was the models with the best 

fit.  
Table 3: The AIC, CAIC, BIC, and HQIC of the second data 

Models AIC BIC CAIC HQIC MLE Rank 

TSStD -642.6124 -640.621 -638.621 -634.6295
9.3568e-03 1 

-7.6898e-16

EED 36.3450 38.3365 37.0509 36.7338 
54.366966 2 

2.172273

EWD 46.9561 49.9433 48.4561 47.5392 

0.6234 

1.7261 3 

1.7733 

EAD 48.3887 50.3802 49.0946 48.7775 
1.8667 4 

0.7558 

LD 1204.3680 1210.0080 1204.4670 1206.6590 
1.7387 5 

1.7264 

Table 4: The AIC, CAIC, BIC, and HQIC of the Third data 

Models AIC BIC CAIC HQIC MLE Ranks 

TSStD -642.6124 -634.9196 -632.9196 -623.2267
-0.1381 1 

1.4114

EED 325.3694 333.0623 325.4044 328.4327 
6.0022 4 

2.3477

EWD 261.0285 272.5679 261.0987 265.6235 

1.3488

1.7973 2 

1.5733

EAD 300.5637 308.2566 300.5987 303.6271 
1.9331 3 

1.5668

LD 293.6612 301.3540 293.6961 296.7245 
0.9789 5 

0.2148
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Table 5: The AIC, CAIC, BIC, and HQIC of the fourth data 

Models AIC BIC CAIC HQIC MLE Ranks 

TSStD -347.3415 -342.4562 -340.4562 -333.5709
-0.1613

1 1.1483

EED 292.3541 297.2394 292.5004 294.3191 
3.6582

4 
0.6240

EWD 275.2268 282.5548 275.5231 278.1743 

0.4305

2 1.7537

1.3413

EAD 283.6236 288.5089 283.7699 285.5886 
1.7293

3 
0.5065

LD 412.6227 417.5080 412.7690 414.5877 
0.8074

5 
1.3006

IV. Conclusion

This research paper presented a novel two-parameter distribution known as the Transmuted Skew 

Student t distribution. Some of the statistical and reliability properties for the TSStD were derived 

and they included the survival function, the rth moment, the hazard function, the mean, the 

quantile function, the moment generating function, the characteristic function and the order 

statistics. Before application to real dataset, a Monte-Carlo simulation study was conducted to 

assess the stability of the model with more sample sizes. The results revealed that the model was 

consistent with increase in the number of samples. The new PDF was applied to four different real 

datasets. Using information criterions, it was found that TSStD performs better than other 

competing models.  
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