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Abstract 

 It has been observed by statistician that to find a suitable model for the survival analysis of cancer 

patients is really challenging. The main reasons for that is the highly positively skewed nature of 

datasets. During recent decades several statistician tried to propose one parameter, two-parameter, 

three-parameter, four-parameter and five-parameter probability models but due to either theoretical 

or applied point of view the goodness of fit provided by these distributions are not very satisfactory. 

In this paper a compound probability model called gamma-Sujatha distribution, which is a 

compound of gamma and Sujatha distribution, has been proposed for the modeling of survival times 

of cancer patients. dolor Many important properties of the suggested distribution including its 

shape, moments (negative), hazard function, reversed hazard function, quantile function have been 

discussed. Method of maximum likelihood has been used to estimate its parameters. A simulation 

study has been conducted to know the consistency of maximum likelihood estimators. Two real 

datasets, one relating to acute bone cancer and the other relating to head and neck cancer, has been 

considered to examine the applicability, suitability and flexibility of the proposed distribution. The 

goodness of fit of the proposed distribution shows quite satisfactory fit over other considered 

distributions. 

Keywords: Survival analysis, compounding, hazard function, reversed hazard 

rate function, stress-strength parameter, maximum likelihood estimation, 

applications. 

I. Introduction

Several statistical distributions have been extensively used for the modeling and analysis of 

survival times (time to event) data, also known as reliability data in biomedical sciences. On 

comparative studies on gamma and Weibull [1] distribution done by Shanker et al [2]  shows that 

on some datasets relating to head and neck cancer these two classical two-parameter lifetime 

distributions does not provide  good fit and on some datasets  they perform diversely. During 

recent decades researchers were trying to modify Weibull distribution which would provide better 

fit to survival times of cancer patients. We know that the Weibull distribution is the most popular 

distribution for modeling survival data that properly explain the mortality and failure. Several 

authors have extended the Weibull distribution by adding one or more additional shape 

parameters to bring more flexibility in the shape of the distribution to accommodate the nature of 
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the data. For example, exponentiated generalized Weibull (EGW) distribution by Cordeiro et al [3], 

Beta-Weibull (BW) distribution by Famoye et al [4], Kumaraswamy Weibull (Kum-W) distribution 

by Cordeiro et al [5], exponentiated Kumaraswamy Weibull (EKumW) distribution by Eissa [6], 

Alpha power Weibull (APW) distribution by Nassar et al [7], are some among others. Although, 

these two, three and four parameters extended Weibull distribution provide good fit to survival 

times of cancer patients, but are not quite satisfactory because, in general, cancer data are highly 

positively skewed. 

During recent decades several researchers have been trying to derive a suitable lifetime 

distribution to model data which are highly positively skewed, especially survival times of cancer 

patients. The search for highly positively skewed continuous distribution (mean is much less than 

the variance) has been studied by several researchers using compounding technique as the 

compounding always provides a highly positively skewed distributions. For instance, gamma 

distribution is a positively skewed distribution and its compounding with other positively skewed 

distribution provides highly positively skewed distribution. A compound gamma distribution 

arises when a random variable say X , follows gamma distribution with a shape parameter  and

scale parameter  and the parameter   itself behaves as a random variable with some 

distribution which is known as mixing distribution. There are four important one parameter 

positively skewed lifetime distributions namely, exponential distribution, Lindley distribution by 

Lindley [8], Shanker distribution by Shanker [9] and Sujatha distribution by Shanker [10] for 

modeling and analysis of survival time of cancer patients and out of these four distributions, 

Sujatha distribution provides much better fit as compared to the other distributions. The gamma-

Lindley distribution (G-LD) proposed by Abdi et al [11] which is a compound of gamma 

distribution with Lindley distribution of Lindley [8] is highly positively skewed distribution. The 

gamma – Shanker distribution (G-SD) introduced by Ray and Shanker [12], which is a compound 

of gamma distribution with Shanker distribution of Shanker [9] is also highly positively skewed 

distribution. Further exponential-Shanker distribution (E-SD) suggested by Ray and Shanker [13] 

which is the compound of exponential distribution with Shanker distribution is also positively 

skewed distribution. The G-LD and the G-SD for 0, 0, 0x      are defined by its probability 

density function (pdf) and cumulative density function (cdf) as follows  
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Sujatha distribution is defined by its pdf and cdf 
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The motivations for considering the gamma-Sujatha distribution (G-SUD), the compound of 

gamma and Sujatha distribution are as follows:   
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(i). Suppose X is the lifetime of component following gamma distribution with shape parameter   

and scale parameter  . If the sample is drawn from the population having variability in the scale 

parameter , then the variability can be well explained by assuming the distribution of   to be 

Sujatha distribution. 

(ii). In real life situation, the sustainability of the components of population differs from each other 

in terms of heterogeneity. The analysis of data from such populations, heterogeneity can easily be 

taken into consideration using compound distributions. G-LD and G-SD are the two compound 

distributions proposed for the analysis of such variation in the components of populations. As 

Sujatha distribution provides better fit over Lindley and Shanker distributions, it is the expectation 

that the G-SUD would provide better fit over existing compound distributions. 

 (iii). In general, compound distribution is the most suited distributions for the datasets having 

long right tail, which have been observed in some real lifetime datasets relating to cancer datasets. 

(iv). As Sujatha distribution performs well  compared to exponential and Lindley distribution so it 

is hoped that G-SUD would performs  better over the classical gamma and Weibull distributions as 

well as other two-parameters distributions.  

The whole paper is divided into eleven sections. The section one is introductory in nature. The 

gamma-Sujatha probability model and some of its results are given in section two. The hazard 

function and the reversed hazard function of the proposed probability model are given in section 

3. Section four contains the quantile and the moments of the distribution. The extreme order

statistics and the stochastic ordering of the distribution are given in sections 5 and 6 respectively. 

The maximum likelihood estimation of parameters and the estimation of stress-strength parameter 

of the distribution are discussed in sections seven and eighth. The simulation study to know the 

consistency of maximum likelihood estimators and applications of the distribution are provided in 

sections nine and ten respectively. The conclusion of the whole paper is given in section eleven.  

II. Gamma-Sujatha Distribution

The pdf and the cdf of gamma-Sujatha distribution (G-SUD) are obtained as 
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Figure 1 and 2 shows the pdf and cdf of G-SUD for selected values of parameters.  The G-SUD 

shows the tendency to accommodate right tail and for particular values of parameters, the tail 

approach to zero at a faster rate. This means that G-SUD would provide better fit appropriately to 

those datasets where there is an extended right tail or the right tail approaches to zero at a faster 

rate. Such datasets are quite prevalent in the biomedical sciences relating to survival times of 

cancer patients. 

RT&A, No 3 (79) 
Volume 19, September 2024

80



Mousumi Ray and Rama Shanker  
A PROBABILITY MODEL FOR SURVIVAL ANALYSIS … 

 Fig. 1: pdf plots of G-SUD 

  Fig. 2: cdf plots of G-SUD 

Theorem 1: The G-SUD is decreasing for 1   . 

Proof:  We have, 
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where C is a constant. We have 
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III. Hazard function and Reversed hazard function

The hazard function and the reverse hazard function are two important functions of a distribution. 

The reliability (survival) function of G-SUD is given by      
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The corresponding hazard and reversed Hazard function of G-SUD are given by 
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 Fig.3:  Hazard function of G-SUD 
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 Fig.4:  Reverse hazard function of G-SUD 

Theorem 2: For 1  , the hazard function of the G-SUD is decreasing and for 1   it is unimodal. 

Proof: We have 
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It is quite obvious that for 1  ,   0x   and for 1  ,   0x   has a global maximum at mode 

(say 
0x ). 

Theorem 3: The G-SUD has decreasing reverse hazard function.

Proof: We have,
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This proves the theorem for all ,  . 

IV. Quantiles and Moments

The pth quantiles 
px of G-SUD is defined by  pF x p ,is the root of the equation 
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1 2 2 2 1

2 1

p p p

p

p

x x x x
x

p
x



          


 



          


 
    

 
      (13)

It should be noted that this
px  may be used to generate G-SUD random variates. Further, the 

median of G-SUD can be obtained from above equation by taking
1

2
p  . 

The moments of G-SUD can be obtained as follows: 

If X G-SUD  ,   then, 

    
1

|E X E E X E E


 
 

   
       

   

Thus, in general,  rE X   for 1r  .This means that all moments of G-SUD are infinite and hence 

G-SUD has no mean. As G-SUD has no mean, if we take a sample  1 2, ,..., nX X X  from G-SUD, 

then mean X  does not tend to a particular value. Since G-SUD has no raw and central moments, 

we have to derive inverse moments. Negative moments are useful in several life applications, such 

as life testing problems and estimation purpose. The negative moments for G-SUD can be obtained 

as follows: 

The thr negative moment (about origin) ( )r 
 ,of the G-SUD is given by,

 

 

    

 

2

( ) 2

! 2 1 2
. ; 1,2,3,...

2
r r

r r r rr
r

 


   


          
  

 (14)

Thus, for r = 1,2,3 and 4, we have 
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 

 
  

2

1 2

2 6
, 1

2 1

 
 

   


 
  

  
 (15)

 

 
   

2

2 2 2

2 3 12
, 2

2 1 2

 
 

    


 
  

   
 (16)

 

 
    

2

3 3 2

6 4 20
, 3

2 1 2 3

 
 

     


 
  

    
 (17)

 

 
     

2

4 4 2

24 5 30
, 4

2 1 2 3 4

 
 

      


 
  

     
 (18)

It is obvious from the above expressions for negative moments that negative moments are not 

defined for 1  . 

V. Extreme Order Statistics

Let, 1: :,...,n n nX X be the order statistics of a random sample of size n from the G-SUD  , 

distribution with distribution function  F x . The cdf of the minimum order statistic 1:nX is given by 

 

  
          

 

  
1:

2

22

2

22

1 2 2 2
2

1
1

2
n

n

X

x x x
x x

x
F x

x

 



        
  

 

  





          
     
      
   
 
  

The cdf of the maximum order statistic 1:nX is given by 

 

          

 

  
:

2

2

22

1 2 2 2

1

2
n n

n

X

x x x
x

x
F x

x





        

 

  


          
  
     

  
   

 
  

VI. Stochastic Orderings

In probability theory and Statistics, a stochastic order quantifies the concept of one random 

variable being “bigger” than other. In many problems, it becomes necessary to compare two 

lifetime distributions with reference to some of their characteristics. Stochastic orders provide the 

necessary tools in such case. 

A random variable X  is said to be smaller than a random variable Y  in the  

i. Stochastic order  stX Y  if    X YF x F y  for all x

ii. Hazard rate order  hrX Y if    X Yh x h y for all x

iii. Mean residual life order   mrlX Y  if    X Ym x m y for all x

iv. Likelihood ratio order  lrX Y if 
 

 
X

Y

f x

f Y
 decrease in x

iv. Likelihood ratio order  lrX Y if 
 

 
X

Y

f x

f Y
 decrease in x

The following results due to Shaked and Shantikumar [14] are well known for establishing 
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stochastic ordering of distributions: 

lr hr mrl

st

X Y X Y X Y

X Y

 



Theorem 4: Let  1 1 1G-SUD ,X   and  2 2 2G-SUD ,X   .If
1 2    and

1 2  if

1 2 1     with 
1 2  , then 

1 2 1 2 1 2lr hr stX X X X X X  .

Proof: We have 

 

 

       

       

2

1 1 2

1

2

2 33 2

1 1 1 1 1 1 2 2 2

2 33 2

2 2 2 2 2 2 1 1 1

1 2 2

1 2 2

X

X

x x xf x
x

f x x x x



 



        

        







         
 


         
 

    (19)

Case I: For 
1 2    , we get

  
      

      

23 2 3
1 1 1 2 2

2

1 23 2
12 2 2 1 1

1 1 2

1 1 2

x x x
G x

xx x

       

      

           
  

          
 

     

    

   

    
1 2 1

2 2

2 12 2 1 1

log 2 1 2 13 3

1 2 1 2

d G x x x

dx x xx x x x

    

        

         
      
                  

   2 1Q Q  
 (20)

Where 

 
   

    
2

2 13

1 2

x
Q

x x x

 


    

   
  
        

 
 

 

     

     
2 2

2

3 2 1 1 2
0

1 2

x xd
Q

d x x x

     


     

        
  

      

 (21)

The 1X is stochastically smaller than 2X with respect to the likelihood ratio for 1 2   

provided 1 2  .

Case II: For 1 2 1     , we get

 
    

    

1 2

2

1 1 1

2 2

2 2 2

1 2

1 2

x x x
G x

xx x

     

    

      
  

  
        

 
 (22)

 

   

    

   

    

2

1 21 1 2 2

2 2

1 1 2 2

log

2 1 2 1

1 2 1 2

d G x

dx

x x

x x x xx x x x

      

        

        
        
                  

   1 2S S  
 (23)

Where 

  
   

    
2

2 1

1 2

x
S

x xx x

   


   

   
   
       

 
    

     
2

2

4 6 4 2 6 2 1 1
0

1 2

x xd
S

d x xx x

     


    

       
   

     

 for 1   
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Thus, for 1 2  , 
 2log

0
d G x

dx
 . The 1X is stochastically smaller than 2X with respect to the 

likelihood ratio for 1 2 1     provided 1 2  . 

VII. Estimation of parameters

Let  1 2, ,..., nx x x be the observed values of a random sample  1 2, ,..., nX X X from the G-SUD. Then 

the log-likelihood function is given by 

 
       

 

1

2

3
1 1

2
3

1

1 1 2

,
2

n n

n i i i

i i

n

i

i

x x x

L

x





    


 
 





 





              
  

   

 



The log-likelihood function of G-SUD is thus obtained as 

           

       

22

1

1 1

ln , ln 3 ln ln 2 ln 1 1 2

1 ln 3 ln

n

i i

i

n n

i i

i i

L n n n x x

x x

          

  



 

             
 

    



 

The maximum likelihood estimators of  and , say ̂ and ̂ are the simultaneous solutions of the 

following log likelihood  

     

    
   

2
1 1 1

ln , 2 3
ln ln 0

1

n n n
i

i i

i i ii i

L xn
x x

x x

   


      

   
     

    
  

   

 
 

        
 

 2 2
1 1

ln , 2 1 2( ) 13 1
3 0

2 1 1 2

n n
i

i i ii i

L n xn

xx x

    


         

    
     

         
 

It is very difficult to solve these two log-likelihood equations directly, so we will use Fisher’s 

scoring method.  We have  

            

     

2
2

2 2 2
2

1

2 1 2 3ln ,

1

n i i i i

i
i i

x x x xL n

x x

      

    

              
 

    


 

    

       

     
 

2

2 2

2
2

1 1

1

2 3 2 1ln , ln ,1

1

i i

n n
i i

i i i
i i

x x

x xL L

xx x

  

      

       

    
 

             
  

       
 

     

 

       

   

        

2

2 22
2

2 2 2 2
2 2

1

2 1 1 2

2 2 2 1 2 1ln , 3

2 1 1 2

i i

n
i

i
i i

x x

n n xL n

x x

     

     

        

       
 

              
  

         


The following equation can be solved for MLE’s of ̂ and ̂  of G-SUD 

   

   

 

 
00

0

2 2

2

0

2 2
0

2
ˆˆ
ˆˆ

ln , ln , ln ,

ˆ

ˆln , ln , ln ,

L L L

L L L

  
  

     

   

      

    


    
   

                       

where 0 and 0 are initial value of  and   respectively. The initial values of the parameters

taken in this paper for estimating parameters are 0 0.5  and 0 0.5  . 
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VIII. Estimation of the Stress-Strength parameter  R P X Y 

In reliability, the stress-strength model describes the life of a component which has a random 

strength X subjected to a random stress Y .The component fails at the instant that the stress 

applied to it exceeds the strength, and the component will function satisfactory Whenever X Y . 

In this section our objective is to estimate  R P X Y   when 

 1 1G-SUD ,X   and  2 2G-SUD ,Y   , X and Y are independently distributed. The, the 

Stress- Strength Parameter is given by 

     
0

| YR P X Y P X Y Y y f y dy

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Let,  1 2, ,..., nx x x be the observed value of a random sample of size n from G-SUD  1 1,  and 

 1 2, ,..., my y y be the observed value of a random sample of size m  from G-SUD  2 2,  . 

The log-likelihood function of 1 2 1, ,   and 2 is given by
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Solving these non-linear equations using any iterative methods available in R  packages we can 

obtain the MLEs of the parameters as  1 2 1 2
ˆ ˆ ˆ ˆ, , ,    and hence the MLE of R can thus be obtained 

as 
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Ŝ  G  1 2 1 2
ˆ ˆ ˆ ˆ, , ,   

IX. A Simulation Study

This section contains a simulation study to examine the consistency of maximum likelihood 

estimators of the G-SUD. The mean, bias (B), MSE and variance of the MLE’s are computed using 

the formulae 

1

1 ˆ
n

i

i

Mean H
n 

  ,  
1

1 ˆ
n

i

i

B H H
n 

  ,  
2

1

1 ˆ
n

i

i

MSE H H
n 

  , 2Variance MSE B 

Where,   ,H   and  ˆ ˆ ˆ,i iH   . 

The simulation results for different parameter values of G-SUD have been presented in tables 1 

and 2 respectively using acceptance-rejection method: 

a. Acceptance -rejection method for generating random samples from the G-SUD consists of

following steps.

i. Generate a random variable Y from exponential     and  U from Uniform  0,1

ii. If
( )

( )

f y
U

M g y
 , then set X Y (“accept the sample”); otherwise (“reject the sample”)

and if reject then repeat the whole process until we get the required samples, where 

M is a constant.

b. The sample sizes 25,50,100,150,200n  are taken

c. The parameter values are considered as 5.5   , 0.6    and  6   , 10 

d. Each sample size is replicated 10000 times

Tables 1 and 2 reveal that for increasing sample size, the value of the biases, MSE and variances of

the MLE of the parameters of G-SUD becoming smaller and certify the first-order asymptotic

theory of maximum likelihood estimators.

Table 1: The mean, Biases, MSE and Variances of G-SUD for 5.0   , 0.6   

Parameters Sample Size Mean Bias MSE Variance 

       ̂  25 5.105803 0.1058031 0.01352763 0.002333342 

50 5.097851 0.0978509 0.01195673 0.00238192 

100 5.093918 0.0939184 0.0109286 0.00210792 

150 5.092278 0.0922778 0.01075683 0.00224162 

200 5.089048 0.0890482 0.00983284 0.00190325 

       ̂  25 0.595456 -0.0045436 0.00004471 0.00002407 

50 0.595628 -0.0043716 0.00004846 0.00002935 

100 0.596119 -0.0038801 0.00004259 0.00002753 

150 0.596454 -0.0035456 0.00003761 0.00002504 

200 0.596588 -0.0034117 0.00003651 0.00002487 

Table 2: The mean, Biases, MSE and Variances of G-SUD for 6.0   , 10   

Parameters Sample Size Mean Bias MSE Variance 

       ̂  25 5.945172 -0.05482844 0.0042597 0.00125354 

50 5.961664 -0.03833594 0.0027186 0.00271866 

100 5.980525 -0.01947528 0.0025010 0.00212172 

150 5.985068 -0.01893228 0.0023664 0.00200800 

200 5.987536 -0.01246439 0.0022490 0.00209365 

       ̂  25 10.08853  0.08852744 0.0120358 0.00419872 

50 10.06313  0.06317850 0.0088113 0.00481984 
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100 10.03813  0.03813436 0.0064691 0.00501485 

150 10.02125  0.02124674 0.0064981 0.00604670 

200 10.00821  0.00820760 0.0055774 0.00550691 

X. Applications

This section deals with the goodness of fit of G-SUD over G-LD, G-SD, Weibull and gamma 

distributions to illustrate its applications and using two real datasets relating to survival time of 

acute bone cancer and head and neck cancer patients. The summary of the two datasets are 

presented in tables 3 and 4 respectively. The total time to test (TTT) plots of the two datasets are 

given in figures 5 and 6 respectively. The goodness of fit of the considered distributions for two 

datasets is provided in tables 5 and 6 respectively.  The fitted plots of the considered distributions 

for the two datasets are given in figure 7. The p-p plots of the considered distributions for the two 

datasets are finally presented in figures 8 and 9 respectively. The datasets are as follows: 

Dataset 1: Acute bone cancer 

This dataset represents the survival times (in days) of 73 patients who diagnosed with acute bone 

cancer available in Mansour et al [15] and are as follows: 

0.09, 0.76, 1.81, 1.10, 3.72, 0.72, 2.49, 1.00, 0.53,0.66, 31.61, 0.60, 0.20, 1.61, 1.88, 0.70, 1.36, 0.43, 3.16, 

1.57, 4.93, 11.07, 1.63, 1.39, 4.54, 3.12,86.01, 1.92, 0.92, 4.04, 1.16, 2.26, 0.20, 0.94, 1.82, 3.99, 1 .46, 2.75, 

1.38, 2.76, 1.86, 2.68, 1.76,0.67, 1.29, 1.56, 2.83, 0.71, 1.48, 2.41, 0.66, 0.65, 2.36, 1.29, 13.75, 0.67, 3.70, 

0.76, 3.63, 0.68,2.65, 0.95, 2.30, 2.57, 0.61, 3.93, 1.56, 1.29, 9.94, 1.67, 1.42, 4.18, 1.37. 

Table 3: The summary of acute bone cancer dataset 

Min. 1st Qu. Median Mean Variance 3rd Qu. Max. 

0.090 0.920 1.570 3.755 112.33 2.750 86.010 

 Fig.5:  TTT-plot of the acute bone cancer dataset and simulated data of G-SUD respectively. 

Dataset 2: Head and Neck cancer 

This dataset is the survival time of 44 patients diagnosed by Head and Neck cancer disease are 

available in Efron [16] and are given by  

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 

94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194,195, 209, 249, 281, 319, 339, 432, 469, 

519, 633, 725, 817, 1776 

Table 4: The summary of head and neck cancer dataset 

Min. 1st Qu. Median Mean Variance 3rd Qu. Max. 

 12.20   67.21 128.50  223.48 93286.41   219.00 1776.00 
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Fig.6:  TTT-plot of the head and neck cancer dataset and simulated data of G-SUD respectively. 

Table5: ML estimates, 2log L ,AIC , BIC and K-S statistics with their P-values of the distributions for acute bone 

cancer data set  

Distributions ML estimates 

 ˆ ˆ.S Eof 

 ˆ ˆ.S Eof 

2log L AIC BIC K-S p- value

G-SUD 4.4567 (1.1253) 

0.7646 (0.1776) 

281.7757 285.7757 300.0857 0.09 0.86 

G-SD  4.8969(1.3904) 

0.4967(0.1360) 

282.8051 286.8051 301.1151 0.10 0.39 

G-LD 5.1600(1.8468) 

0.4375(0.1602) 

284.315 288.315 302.625 0.11 0.33 

Gamma   0.1985(0.0389) 

0.7456(0.1057) 

334.5311 338.5311 352.8411 0.56 0.00 

Weibull 0.4395(0.0687) 

0.7655(0.0567) 

322.8033 326.8033 341.1133 0.25 0.00 

Table 6: ML estimates, 2log L , AIC,BIC and K-S statistics with their P-values of the distributions for head and neck 

cancer dataset. 

Distributions ML estimates 

 ˆ ˆ.S Eof 

 ˆ ˆ.S Eof 

2log L AIC BIC K-S p- value

G-SUD 8.6223 (11.3202) 

11.1699(14.5932) 

558.4763 562.4763 576.7863 0.08 0.90 

G-SD 8.6787(11.7435) 

10.0923(14.8515) 

558.4641 562.4641 576.7741 0.09 0.81 

G-LD 8.4483(10.4902) 

11.1557(14.3688) 

558.4555 562.4555 576.7655 0.09 0.70 

Gamma 0.0047(0.0010) 

1.0522(0.1886) 

564.0254 568.0254 582.3354 1.00 0.00 

Weibull 0.0070(0.0034) 

0.9234(0.0809) 

563.7155 567.7155 582.0255 0.5 0.04 
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Fig. 7:  Fitted plots of distributions for acute bone cancer and head and neck cancer datasets 

Fig. 8:  P-P plots for considerd distributions of acute bone cancer dataset 

Fig. 9:  P-P plots for considerd distributions of head and neck cancer dataset 
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From the summary of the two datasets in  tables 3 and 4, it is quite obvious that the considered 

datasets are highly positively skewed and highly over-dispersed. Based on the values of -2logL , 

AIC (Akaike information criterion), Kolmogorov – Smirnov (K-S) statistic and the fitted plots of 

two parameter lifetime distributions, it is crystal clear from the goodness of fit that two parameters 

G-SUD is the best for modelling survival times of patients suffering from acute bone cancer and

head and neck cancer. It can be recalled that recently Klakattawi [17] proposed a new extended 

Weibull distribution with five parameters and used it for analysing survival time of cancer patients 

and found that it gave much better fit than several two-parameter, three parameter ,four parameter 

and five parameter lifetime distribution including Weibull distribution, alpha power Weibull 

(APW) distribution by Nassar et al [7], Beta-Weibull (BW) distribution by Famoye et al 

[4],Kumararaswamy-Weibull (Kum-W) distribution by Cordeiro et al [5], exponentiated 

generalized Weibull (EGW) distribution by Cordeiro et al [3], a new Kumaraswamy family of 

generalized Weibull distribution by Ahmed et al [18] and exponentiated Kumaraswamy Weibull 

distribution by Eissa [6], some among others. Here we would like to emphasize that the proposed 

gamma-Sujatha distribution (G-SUD) provides much closure fit than all these two-parameter, 

three-parameter, four-parameter and five-parameter lifetime distributions as it can be seen from 

the test of goodness of fit given by Klakattawi [17]. The most interesting feature of G-SUD is that 

being two-parameter distribution is much easier to characterize and handle the distribution as 

compared to three-parameter, four-parameter and five parameter distributions and hence it can be 

considered an important probability model for modeling survival time of cancer patients. 

XI. Concluding Remarks

In this paper, we propose a gamma-Sujatha probability model, a compound of gamma and Sujatha 

distribution to model data of long tails. Some important statistical and reliability properties have 

been discussed. Maximum likelihood estimation has been discussed for estimating parameters and 

simulation studies to know the consistency of ML estimators are presented. The goodness of fit of 

the G-SUD has been compared with several well-known two-parameter distributions and 

observed that it provides much better fit and hence it can be considered as an important 

probability models for survival time of patients suffering from acute bone cancer and head and 

neck cancer in  biomedical science. As the proposed distribution is the new probability model, a lot 

of works can be done in the future and definitely it will draw the attention of research workers in 

biomedical sciences and biomedical engineering.  

Conflict of Interest 

The Authors declare that there is no conflict of Interest. 

References 

[1]  Weibull, W. (1951). A Statistical distribution function of wide applicability. Journal of

applied mechanics, 18:293-297 

[2] Shanker, R., Shukla, K.K., Shanker, R. and Tekie, A.L. (2016). On modelling of Lifetime

data using two-parameter gamma and Weibull distributions .  Biometrics & Biostatistics International 

journal, 4: 201 – 206. 

RT&A, No 3 (79) 
Volume 19, September 2024

93



Mousumi Ray and Rama Shanker  
A PROBABILITY MODEL FOR SURVIVAL ANALYSIS … 

[3]Cordeiro,G.M.,Ortega,E.M.M and Da-Cunha, D.C.C. (2013). The exponentiated Generalized

Class of Distributions. Journal of Data Science, 11:1-27. 

[4] Famoye,F., Lee,C. and Olumolade,O.(2005). The Beta-Weibull Distribution. Journal of

Statistical Theory and Applications, 4:121-136. 

[5] Cordeiro,G.M.,Ortega,E.M.M and Nadarajah,S. (2010). The Kumaraswamy Weibull

Distribution with Application to failure data. Journal of Franklin Institute ,347:1399-1429. 

[6] Eissa.F.H.(2017). The Exponentiated Kumaraswamy-Weibull Distribution with Application

to Real Data. International Journal of Statistics and Probability, 6:167-182. 

[7] Nassar,M. Alzaatreh,A., Mead M. and Abo-Kasem,O. (2017). Alpha Power Weibull

Distribution: Properties and Applications. Communications in Statistics-theory and Methods, 46:10236-

10252. 

[8] Lindley, D.V. (1958). Fiducial Distribution and Bayes’ Theorem. Journal of The Royal

Statistical Society, 20: 102-107. 

[9] Shanker, R.(2015). Shanker Distribution and its Applications. International Journal of

Statistics and Applications, 5:338-348. 

[10] Shanker ,R. (2016). Sujatha distribution and its Applications. Statistics in Transition New

Series, 17:391-410. 

[11] Abdi, M., Asgharzadeh, A., Bakouch, H.S. and Alipour, Z. (2019). A new compound

Gamma and Lindley distribution with Application to failure data. Austrian Journal of Statistics, 

48:54-75. 

[12] Ray, M. and Shanker, R. (2023a). A Compound of Gamma and Shanker Distribution.

Reliability Theory & Applications, 18: 87-99. 

[13] Ray, M. & Shanker, R. (2023b).A Compound of Exponential and Shanker Distribution

With an Application. Journal of Scientific Research of the Banaras Hindu University, 67:39-46. 

[14] Shaked, M. and Shanthikumar, J.G. (1994). Stochastic Orders and Their Applications.

Academic Press New Work. 

[15] Mansour M., Yousof H.M., Shehata W.A. and Ibrahim M.( 2020).  A new two parameter

Burr XII distribution: properties, copula, different estimation methods and modeling acute bone 

cancer data. Journal of Nonlinear Science and Applications, 13:223–238.  

[16] Efron B.( 1988). Logistic regression, survival analysis, and the Kaplan-Meier curve. Journal

of the American statistical Association ,83:414–425. 

[17] Klakattawi.H.S. (2022). Survival Analysis of Cancer Patients using a New Extended Weibull

Distribution. PLOS ONE, 17:1-20. 

[18] Ahmed, M.A., Mahmoud M.R.and Elsherbini E.A. (2015). The New Kumaraswamy Family

of Generalized Distributions with Application. Pakistan Journal of Statistics and Operation Research, 

11:159-180. 

RT&A, No 3 (79) 
Volume 19, September 2024

94




