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Abstract 

One of the lifetime distributions is the Iwueze distribution, which is constructed by combining the 
exponential and gamma distributions. In this paper, confidence intervals (CIs) are proposed for the 
parameter of the Iwueze distribution using the likelihood-based, Wald-type, bootstrap-t, and bias-
corrected and accelerated (BCa) bootstrap methods. We evaluated the performance of the proposed 
CI methods through Monte Carlo simulation in terms of their coverage probability (CP) and 
average length (AL) in various scenarios. Furthermore, we had also derived the explicit formula for 
the Wald-type CI, which is straightforward for computation. The simulation results showed that the 
likelihood-based and Wald-type CIs returned satisfactory results according to coverage probabilities, 
even for the setting of small sample sizes. On the other hand, both the bootstrap-t and BCa 
bootstrap CIs yield CPs lower than the nominal confidence level when sample sizes are small. 
However, as the sample sizes increase, the CP of all CIs tend to approach the nominal confidence 
level. The parameter values also have a minor influence on the CP of all CIs when the sample size is 
fixed. Moreover, the AL of all CIs decreases as the sample size increases. The Wald-type and 
likelihood-based CIs have very similar ALs for all parameter values. In general, the bootstrap-t CI 
tends to yield the shortest interval. The effectiveness of all CIs was demonstrated by applying them 
to medical and engineering data, yielding results consistent with those of the simulation study. 

Keywords: lifetime distribution, interval estimation, likelihood, Wald, bootstrap 

I. Introduction

In reliability and lifetime data analysis, lifetime distributions are statistical distributions that can be 
used to describe the behavioral structure of lifetime data. Lifetime distributions are utilized to 
represent the duration before the occurrence of a significant event, such as failure or incidence [1]. 
The field of lifetime data analysis has had substantial growth and progress in terms of technique, 
theory, and application. The distribution theory focuses on the capacity to easily handle and adapt 
to modeling lifespan data. While a tractable probability distribution could be useful for replicating 
random samples, its practical value to businesses lies in its flexibility [2]. This suggests that while 
tractable distributions are desirable, more complex ones must be created to support relevant 
applications.  
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Many lifetime distributions have been proposed in statistics in the past few decades. 
Nevertheless, these distributions frequently do not offer a precise match because of either their 
basic distributional properties or the structure of the lifetime data. Several distribution theory 
experts are trying to suggest a new lifetime distribution consistent with the stochastic nature of 
lifespan data. Before 1958, the exponential distribution was the only lifetime distribution accessible 
for the analysis and modeling of lifetime data. The Lindley distribution was presented by Lindley 
[3] as an alternative lifespan distribution. Based on their comprehensive analysis of the statistical
properties and practical uses, Ghitanty et al. [4] determined that the Lindley distribution offers a
much superior match compared to the exponential distribution. Shanker et al. [5] observed that
when analyzing exponential and Lindley distributions, there is a significant competition between
these two distributions. However, they also identified specific datasets in which neither
distribution provided a sufficient fit. Shanker [6, 7] proposed two new one-parameter lifespan
distributions, named Shanker distribution and Akash distribution. These distributions
demonstrated better fit to data than both exponential and Lindley distributions. Furthermore, the
Lindley, exponential, Shanker, and Akash distributions were thoroughly examined by Shanker
and Fesshaye [8]. They discovered that while these distributions work well for most datasets, there
are some that still do not provide the best fit. In addition, Shanker [9] introduced the Sujatha
distribution, which has a considerably better fit when compared to the exponential, Lindley,
Shanker, and Akash distributions. Shanker [10] proposed the Garima distribution, a single-
parameter lifespan distribution, as a suitable statistical model for data collected from the
behavioral sciences. However, this distribution likewise fails to provide a satisfactory match for
several actual lifespan datasets.

The current paper is to identify a distribution that can accurately depict the diversity within 
the data sets while remaining flexible and tractable. When a distribution does not provide a 
sufficient match, many researchers choose to transform the dataset to meet the assumptions of the 
distribution. Nevertheless, this approach is unsuitable as it leads to the loss of the dataset’s 
inherent characteristics. Some researchers prefer to adjust the distribution by incorporating extra 
shape or scale parameters to better fit with the characteristics of the data set. However, in cases 
where the current distributions are unable to generate a suitable fit, it is more advantageous to 
seek out an alternative distribution that can. This approach involves refraining from transforming 
the original dataset or modifying the distribution to fit the dataset. Recently, Elechi et al. [11] 
proposed the Iwueze distribution, a five-component mixture of exponential and gamma 
distributions with a constant scale parameter, and different shape parameters 2, 3, 4, and 5. This 
distribution has superior efficiency in comparison to other one-parameter distributions. The 
flexibility of the Iwueze distribution is demonstrated through its application to relief times of 
patients receiving an analgesic.  

In the review literature, there is no research study for estimating the confidence intervals (CIs) 
for the parameter of the Iwueze distribution. Therefore, the objective of the paper is to propose the 
CIs for the parameter of the Iwueze distribution in four methods, namely, likelihood-based CI, 
Wald-type CI, bootstrap-t interval, and bias-corrected and accelerated (BCa) bootstrap CI. We 
conduct a simulation study and analyze real data sets to compare the performance of CIs for the 
parameter of the Iwueze distribution. 

The following is the outline of the paper. In Section 2, the Iwueze distribution are explained. 
Section 3 involves the computation of the likelihood-based, Wald-type, bootstrap-t, and BCa 
bootstrap CIs for the parameter of the Iwueze distribution. Section 4 evaluates the effectiveness of 
the proposed CIs by utilizing Monte Carlo simulation in various circumstances. Section 5 contains 
two numerical examples. Ultimately, the final section of the paper contains the discussion and 
conclusions. 
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II. The Iwueze Distribution

The Iwueze distribution is obtained by combining the exponential and gamma distributions using 
appropriate mixing probabilities. The gamma distribution has a fixed scale parameter θ  and four 
different shape parameters:  2, 3, 4, and 5. Let X  be a random variable which follow the Iwueze 
distribution with parameter .θ  The probability density function (pdf) of the Iwueze distribution 
can be obtained by utilizing a mixture model with five component mixing probabilities. The pdf is 
given by 

5
2 2

4 3 2( ; ) (1 ) , 0, 0.
2 6 12 24

xf x x x e xθθθ θ
θ θ θ θ

−= + + > >
+ + + +

Figure 1 shows the plots of the Iwueze distribution pdf with several parameter values .θ  The 
mean (or the first  central  moment) and variance (or the second central moment) of X  are given 
by 
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Figure 1: Plots of the pdf of the Iwueze distribution for θ  = 0.2, 0.5, 1, and 2

The log-likelihood function log ( | ),iL xθ  is maximized to obtain the point estimator of .θ  
Therefore, the maximum likelihood (ML) estimator for θ  of the Iwueze distribution is derived by 
the following processes: 
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The subsequent equation is a nonlinear equation obtained through the process of solving the 
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equation 
set

log ( ; ) 0iL x θ
θ
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Due to the absence of a closed-form solution for the ML estimator of parameter ,θ  numerical 
iteration methods are employed to solve the associated non-linear equation [12]. In this study, the 
maxLik package [13] was utilized to perform ML estimation using the Newton-Raphson technique 
in the RStudio program [14]. 

III. Confidence Intervals for the Parameter of the Iwueze Distribution

I. Likelihood-based Confidence Interval

The likelihood function for the Iwueze distribution, ( | ),L xθ  is a function of the parameter ,θ
given the observed data .x  It encapsulates the probability of observing the given data under 

various hypothetical values of .θ  After solving 
set

(log 0,)L xθ
θ
∂

=
∂

∣  the ML estimator of ,θ  ˆ ,MLθ  will 

be obtained, and this is the most “likely” estimate given the observed data. 
The likelihood-based CI is then constructed around this ML estimator. The process begins by 

defining a likelihood ratio ( )λ θ  as ˆ( ) ( | ) ( | ).L x L xλ θ θ θ=  Under regular conditions, as per the
Wilks’  theorem, 2log ( )λ θ−  follows approximately a chi-square distribution with degrees of 
freedom equal to the number of parameters being estimated. Therefore, the CI for θ  at (1 )100%α−  
confidence level is given by 
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where 2
1 ,1αχ −  is the critical value from the chi-square distribution with 1 degree of freedom [15,16]. 

In the specific case of the Iwueze distribution, the likelihood ratio test becomes more intricate due 
to the composite nature of the distribution. The gamma component, characterized by a scale 
parameter and shape parameters, adds layers of complexity to the likelihood function, 
necessitating advanced computational techniques, like numerical optimization, for effective ML 
estimator calculation and CI construction. 

Brent’s method, a root-finding algorithm often used in optimization, is used for finding the 
maximum MLE in the Iwueze distribution. It is an advanced technique that combines the bisection 
method, the secant method, and inverse quadratic interpolation [17]. Given that 
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Brent’s method seeks θ  such that ( ) 0.f θ =  The method combines bracketing methods and open 
methods.  Initially, if ( ) ( ) 0f a f b <  it starts with the bisection method to ensure reliability.  Then, 
depending on the function’s behavior, it switches between the secant method (linear interpolation): 
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and inverse quadratic interpolation (quadratic polynomial interpolation): 
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The method iteratively refines the estimate of the root, switching methods based on which 
provides a more accurate or stable estimate [18,19]. Figure 2 shows the plot 2log ( )λ θ−  versus θ  

(solid blue line), 2
0.95,1χ   (dashed red line), and 95% likelihood-based CI (solid green line) when a 

random sample of size 20 sampled from the Iwueze distribution with 1.=θ  

Figure 2: The plot of 2log ( )λ θ−  versus θ  

Because the cut-point for constructing a likelihood-based CI often involves the use of an 
asymptotic distribution like the chi-square distribution, this reliance is grounded in Wilks theorem, 
the effectiveness of the likelihood-based CI in approximating the true parameter values does rely 
on the assumption that the sample size is sufficiently large for the asymptotic approximation to be 
valid.  However, likelihood-based CI does not always rely on large sample sizes.  It can provide 
accurate interval estimates even in cases with smaller sample sizes, assuming the likelihood 
function behaves well.  

II. Wald-type Confidence Interval

The Wald-type CI is a fundamental statistical tool used for estimating the uncertainty associated 
with a parameter estimate in a probability distribution. Central to this method is the ML estimate 
of the parameter, denoted as θ̂  for the Iwueze distribution. The foundation of the Wald-type CI 
lies in the quadratic approximation of the log-likelihood function, ( | ),L xθ  which can be expanded 

using a Taylor series around ˆ.θ  The Wald statistic approximates the log-likelihood ratio when 
expanded to the second-order term around the ML estimate, with the first-order term equal to zero 
at the ML estimate as follows: 
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where I θ( )ˆ is the estimated observed Fisher information. The Wald statistic can thus serve as an  
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approximation to the LRT statistic, particularly when the sample size is large enough for the 
asymptotic properties to hold, leading to a quadratic approximation of the log-likelihood ratio [20-
22]. 

For the Iwueze distribution, the observed Fisher information is as follows: 
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Thus, the estimated Fisher information is as follows: 
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and the Wald-type CI for θ  at (1 )100%α−  confidence level is given by 

2

1

1
ˆ ,ˆ( )Iz αθ θ−

−
±

where 1 ( /2)z α−  denotes the ( )th1 ( / 2)α−  quantile of the standard normal distribution. 

III. Bootstrap-t Confidence Interval

The bootstrap-t CI emerges as an advanced technique designed to calibrate the CI for an estimated 
parameter by incorporating the inherent variability of the estimate’s standard error. This method 
extends the bootstrap percentile method by factoring in the fluctuation of the standard error, 
thereby enhancing the accuracy and reliability of the interval, particularly in small sample contexts 
or when dealing with estimators that deviate from normality [23-25]. The algorithmic foundation 
of the bootstrap-t CI can be delineated in the following steps: 

1) Initialization: Commence with a sample 1, , nX X  from which the parameter estimate θ̂  

and its standard error ˆ. .( ).S E θ  
2) Bootstrap Resampling: Generate B = 1000 bootstrap samples, * *

1 , , ,nX X  by random 
sampling with replacement from the original dataset. 

3) Statistical Computation: For each bootstrap sample, calculate the bootstrap replicate of the
estimator, denoted as *ˆ ,θ  and its associated standard error *ˆ. .( ).S E θ  

4) Studentization: Construct the bootstrap-t statistic for each replicate as
*

* *

1 *

ˆ ˆˆ ˆ( , , ) .
ˆ( )

t X
I

θ θθ θ
θ−

−
=  

This studentized statistic adjusts for the variability in the standard error of the bootstrap estimate. 
5) Repeating this process B = 1000 times yields an empirical distribution of the estimator;

from which we can estimate the distribution of the pivotal quantity. 
6) Empirical Distribution:  Formulate the empirical distribution of the bootstrap-t statistics

from the ensemble of B  replicates. 
7)  Quantile Extraction: Ascertain the critical values,  ( )

*
/2t α  and ( )

*
1 ( /2) ,t α−  which correspond to 

the / 2α  and 1 ( / 2)α−  quantiles of the empirical bootstrap-t distribution, 
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8) Interval Construction: The bootstrap-t CI is then articulated as:
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* 1 * 1
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IV. Bias-Corrected and Accelerated (BCa) Bootstrap Confidence Interval

The BCa bootstrap CI is a technique used for constructing CIs. This method refines the basic 
bootstrap procedure by introducing adjustments for both bias and skewness in the distribution of 
bootstrap estimates. Bias is calculated based on the proportion of bootstrap estimates that are less 
than the observed estimate, and this information is then used to adjust the percentiles of the CI. An 
acceleration parameter is incorporated to account for the skewness or asymmetry of the bootstrap 
distribution [26-28]. The algorithm is as follows: 

1) Bootstrap Resampling: Draw B =  1000 bootstrap samples from the empirical distribution of
the original sample and calculate the bootstrap estimates *ˆ ,bθ  for 1,2, ...,1000.b =

2) Bias Correction 0( ) :z  Determine the proportion of bootstrap estimates that are less than the 

original estimate ˆ,θ  denoted .p  The bias correction factor 0z  is the quantile of the standard 
normal distribution corresponding to .p  

3) Acceleration ( ) :a  Calculate the acceleration value a  which accounts for the asymmetry of
the estimator’s distribution. This is often estimated by the jackknife or other methods that quantify 
the skewness of the sampling distribution. 

4) Adjusted Percentiles: Transform the bias-corrected normal deviates to adjust the percentiles
for constructing the CI. The adjusted percentiles are given by 

( )
* 0 /2

0
0 /21L

z z
p z

a z z
α

α

 +
= Φ +  − + 

and 

( )
0 1 ( /2)*

0
0 1 ( /2)

,
1U

z z
p z

a z z
α

α

−

−

 +
 = Φ +
 − + 

where Φ  is the standard normal cumulative distribution function, and 2zα  and 1 2z α−  are the 

( / 2)α -th and  ( )1 ( / 2)α− -th quantiles of the standard normal distribution, respectively. 
5) CI Construction: The BCa bootstrap CI is constructed using the percentiles *

Lp  and *
Up  to

extract the corresponding quantiles from the bootstrap distribution of *ˆ .MLθ  The formula is as 
follows 

( ) ( )* *
* *ˆ ˆ, ,

L UP P
θ θ 
  

where *
*
( )
ˆ

LP
θ  and ( )*

*ˆ
UP

θ  are * th( )Lp  and * th( )Up  quantiles of the bootstrap estimates *
b̂θ . 

IV. Simulation Study and Results

This simulation study evaluates the effectiveness of 95% confidence interval (CI) 
construction methods in different scenarios. Our focus includes sample sizes, parameter values, 
coverage probability (CP), and the average length (AL) of the intervals. We vary sample sizes ( )n  
at 10, 20, 30, 40, 100, 200, and 500, while also altering the distribution’s parameter values ( )θ  to 0.2, 
0.5, 0.75, 1, 1.5, 2, and 3. The CPs and ALs of the CIs are estimated using Monte Carlo simulations 
with 2,000 replications. 
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Table 1. Coverage probability and average length of the 95% CIs for the parameter of the Iwueze distribution 

n  θ  
Coverage probability Average length 

Likelihood Wald Bootstrap-t BCa Likelihood Wald Bootstrap-t BCa 

10 0.2 0.953 0.950 0.902 0.905 0.1135 0.1132 0.1014 0.1065 
0.3 0.956 0.952 0.899 0.902 0.1691 0.1688 0.1512 0.1582 
0.5 0.950 0.950 0.896 0.893 0.2811 0.2806 0.2536 0.2661 

0.75 0.949 0.951 0.898 0.903 0.4177 0.4170 0.3770 0.3940 
1 0.952 0.951 0.905 0.903 0.5525 0.5515 0.5007 0.5237 

1.5 0.951 0.957 0.906 0.905 0.8285 0.8252 0.7483 0.7934 
2 0.953 0.959 0.897 0.897 1.1382 1.1303 1.0045 1.0872 

2.5 0.958 0.961 0.908 0.908 1.4943 1.4856 1.3334 1.4720 
20 0.2 0.946 0.950 0.923 0.926 0.0792 0.0791 0.0749 0.0763 

0.3 0.961 0.960 0.931 0.927 0.1185 0.1184 0.1120 0.1142 
0.5 0.949 0.945 0.920 0.921 0.1972 0.1971 0.1881 0.1922 

0.75 0.942 0.944 0.919 0.917 0.2931 0.2929 0.2780 0.2833 
1 0.943 0.946 0.925 0.921 0.3872 0.3868 0.3674 0.3740 

1.5 0.945 0.944 0.927 0.926 0.5768 0.5757 0.5458 0.5603 
2 0.947 0.945 0.921 0.923 0.7888 0.7862 0.7495 0.7749 

2.5 0.955 0.964 0.930 0.933 1.0421 1.0372 0.9785 1.0177 
30 0.2 0.946 0.948 0.936 0.934 0.0644 0.0643 0.0622 0.0631 

0.3 0.959 0.957 0.940 0.939 0.0967 0.0966 0.0933 0.0947 
0.5 0.945 0.949 0.932 0.935 0.1601 0.1600 0.1542 0.1564 

0.75 0.951 0.952 0.936 0.937 0.2385 0.2383 0.2309 0.2335 
1 0.957 0.957 0.939 0.939 0.3153 0.3151 0.3036 0.3074 

1.5 0.955 0.955 0.938 0.940 0.4712 0.4706 0.4568 0.4648 
2 0.959 0.958 0.940 0.942 0.6419 0.6405 0.6153 0.6281 

2.5 0.948 0.952 0.934 0.939 0.8384 0.8358 0.8043 0.8264 
50 0.2 0.957 0.958 0.946 0.946 0.0498 0.0497 0.0485 0.0490 

0.3 0.952 0.952 0.942 0.940 0.0746 0.0746 0.0728 0.0735 
0.5 0.961 0.958 0.945 0.950 0.1234 0.1234 0.1204 0.1216 

0.75 0.951 0.953 0.935 0.936 0.1839 0.1838 0.1800 0.1819 
1 0.953 0.952 0.940 0.938 0.2434 0.2433 0.2370 0.2393 

1.5 0.947 0.949 0.939 0.941 0.3640 0.3637 0.3557 0.3596 
2 0.955 0.958 0.950 0.950 0.4930 0.4923 0.4830 0.4906 

2.5 0.950 0.952 0.939 0.940 0.6448 0.6436 0.6271 0.6392 
100 0.2 0.949 0.947 0.943 0.943 0.0351 0.0350 0.0346 0.0349 

0.3 0.948 0.950 0.938 0.945 0.0526 0.0526 0.0520 0.0525 
0.5 0.946 0.948 0.941 0.944 0.0874 0.0874 0.0860 0.0868 

0.75 0.945 0.946 0.939 0.939 0.1299 0.1298 0.1281 0.1291 
1 0.950 0.951 0.949 0.949 0.1715 0.1715 0.1687 0.1701 

1.5 0.944 0.945 0.938 0.939 0.2562 0.2561 0.2523 0.2549 
2 0.946 0.946 0.943 0.944 0.3481 0.3479 0.3443 0.3476 

2.5 0.948 0.948 0.941 0.947 0.4560 0.4556 0.4492 0.4551 
200 0.2 0.951 0.949 0.948 0.948 0.0248 0.0248 0.0246 0.0248 

0.3 0.954 0.952 0.945 0.946 0.0370 0.0370 0.0366 0.0369 
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n  θ  
Coverage probability Average length 

Likelihood Wald Bootstrap-t BCa Likelihood Wald Bootstrap-t BCa 

0.5 0.951 0.949 0.947 0.947 0.0616 0.0616 0.0612 0.0617 
0.75 0.949 0.949 0.948 0.950 0.0917 0.0917 0.0912 0.0920 

1 0.944 0.948 0.940 0.943 0.1215 0.1215 0.1203 0.1212 
1.5 0.951 0.951 0.944 0.948 0.1809 0.1808 0.1793 0.1809 

2 0.956 0.957 0.951 0.951 0.2461 0.2460 0.2438 0.2460 
2.5 0.942 0.944 0.936 0.935 0.3209 0.3207 0.3184 0.3213 

500 0.2 0.945 0.944 0.940 0.943 0.0156 0.0156 0.0156 0.0157 
0.3 0.948 0.949 0.944 0.947 0.0235 0.0235 0.0233 0.0235 
0.5 0.946 0.946 0.946 0.947 0.0390 0.0390 0.0389 0.0392 

0.75 0.951 0.951 0.949 0.952 0.0580 0.0580 0.0576 0.0582 
1 0.948 0.947 0.945 0.947 0.0767 0.0767 0.0763 0.0769 

1.5 0.947 0.949 0.941 0.947 0.1144 0.1144 0.1136 0.1145 
2 0.954 0.953 0.952 0.948 0.1552 0.1552 0.1538 0.1552 

2.5 0.949 0.948 0.948 0.947 0.2019 0.2019 0.2003 0.2021 

I. Coverage Probability

Table 1 displays the simulation results for the CP, whereas Figure 3 visually represents the results. 
The parameter value θ  has a minor impact on the CP of all CIs. This indicates that the value of CP 
of all CIs is relatively constant, regardless of the value of the parameter .θ  The sample size 
significantly affects the CP across all CPs. For small sample sizes ( n = 10, 20, and 30), the CPs for 
the likelihood-based and Wald-type CIs are close to the nominal level of 0.95, whereas the 
bootstrap-t and BCa bootstrap CIs provide CPs that are noticeably less than 0.95. However, their 
performance improves with larger sample sizes, with the CPs approaching the nominal level more 
closely. This implies that although these approaches are sample size-dependent, they provide 
sufficient coverage for larger samples. Furthermore, the likelihood-based and Wald-type CIs 
exhibit a more rapid convergence rate in comparison to the bootstrap-t and BCa bootstrap CIs. 

The likelihood-based and Wald-type CIs show greater stability in CP when both sample size 
and parameter value are considered, as they maintain values that are more closely approximate to 
the nominal level in a range of parameter values and sample sizes. On the other hand, the 
bootstrap-t and BCa bootstrap CIs demonstrate greater variability in CP, particularly for small 
sample sizes, in which case they tend to underperform. 

II. Average Length

The AL usually decreases as the sample size increases, as expected in the evaluation of CIs. For 
example, when the sample size is n  = 10 and θ  = 2, the AL for the Wald-type CI is high, roughly 
1.1303. Nevertheless, when the sample size is increased to n  = 500, the AL for the Wald-type CI 
reduces significantly to approximately 0.1552. 

The AL also varies with different parameter values of .θ  As the value of the parameter θ  
increases, the AL tends to increase for all CIs. At θ  = 0.2  and n  = 10, the AL for the Wald-type CI 
is approximately 0.1132. However, at θ  = 2.5, the AL increases to approximately 1.4856. 

The Wald-type and likelihood-based CIs have very similar ALs for all parameter values 
when compared to the two other methods. This means that both Wald-type and likelihood-based 
CIs have a very similar interval width and coverage probability. The bootstrap-t and BCa bootstrap 
CIs tend to yield shorter intervals for lower values of ,θ  while demonstrating an increase in the 
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AL as the parameter value θ  increases. The bootstrap-t CI generally provides the shortest interval. 
For example, for θ = 1  and n  = 50, the ALs are 0.2434 for likelihood-based CI, 0.2433 for Wald-type 
CI, 0.2370 for bootstrap-t CI, and 0.2393 for BCa bootstrap CI. These findings indicate that the 
bootstrap-t method yields the narrowest interval on average, but the likelihood-based method 
yields slightly wider intervals. 

Figure 3: Plots of the CPs of the CIs for θ  of the Iwueze distribution 

Figure 3: (Continued) 
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Figure 4: Plots of the ALs of the CIs for θ  of the Iwueze distribution 

Figure 4: (Continued) 

IV. Numerical Examples

We applied four CIs for the parameter of the Iwueze distribution defined in the previous section to 
two real-world situations. The adequacy of the Iwueze distribution’s performance is being 
compared to that of the following alternative distributions: 

 The Komal distribution [29]. Its pdf is
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 The Lindley distribution [3]. Its pdf is
2

( ; ) (1 ) , 0 .,
1

0xf x x e xθθθ
θ

θ−= > >+
+

 

 The exponential distribution. Its pdf is
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I. Lifetime Data about the Duration of Relief in the Analgesic Patients

The first data set consists of the lifetime data about the duration of relief (measured in minutes) 
experienced by 20 patients who were administered an analgesic. This data was reported by Gross 
and Clark [41]. The data are as follows: 1.1, 1.5, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.2, 1.4, 
3.0, 1.7, 2.3, 1.6, 2.0. Some descriptive statistics of the data set are reported in Table 2. 

Table 2. The descriptive statistics of the lifetime data about the duration of relief in the analgesic patients 
Min Mean Median SD Q1 Q3 Max 
1.100 1.900 1.700 0.704 1.475 2.050 4.100 

The ML technique is used to estimate all distribution parameters. For model comparison, we 
evaluated the log-likelihood (log L), Akaike’s information criterion (AIC), and Bayesian 
information criterion (BIC). For this data set, estimates of the parameters, their standard errors 
(SE), and goodness of fit measures are given in Table 3. 

Table 3. The ML estimates, SE, AIC and BIC for the lifetime data about the duration of relief in the analgesic patients 
Distributions Estimates (SE) Log L AIC BIC 

Iwueze 1.8013 (0.0312) -25.9446 53.8892 54.8849
Komal 0.7404 (0.0146) -31.1797 64.3593 65.3550

Adya 1.0602 (0.0146) -28.4095 58.8189 59.8147
Pranav 1.4014 (0.0156) -31.1933 64.3865 65.3823

Prakaamy 2.2735 (0.0261) -30.7198 63.4396 64.4353
Akshaya 1.4417 (0.0282) -26.5071 55.0141 56.0098

Rani 1.7195 (0.0163) -32.6543 67.3085 68.3043
Rama 1.5213 (0.0232) -29.8533 61.7066 62.7023

Suja 1.8954 (0.0248) -30.2010 62.4020 63.3978
Ishita 1.0948 (0.0148) -30.0824 62.1647 63.1604

Sujatha 1.1367 (0.0224) -28.7488 59.4975 60.4933
Garima 0.7396 (0.0197) -31.6058 65.2116 66.2073

Aradhana 1.1232 (0.0233) -28.1850 58.3700 59.3658
Devya 1.8419 (0.0286) -27.2522 56.5044 57.5001

Amarendra 1.4808 (0.0258) -27.8193 57.6387 58.6344
Shanker 0.8039 (0.0142) -29.8917 61.7833 62.7791

Akash 1.1569 (0.0212) -29.7613 61.5226 62.5183
Lindley 0.8039 (0.0142) -30.2536 62.5073 63.5030

Exponential 0.5263 (0.0139) -32.8371 67.6742 68.6699

The AIC and BIC values in Table 3 illustrate that the Iwueze distribution provides an 
adequate fit to as compared with other distributions. The ML estimator for this data is 1.8013. 
Table 4 presents the 95% CIs for the parameter of the Iwueze distribution. The likelihood-based 
method yields a CI ranging from 1.4783 to 2.1720, with an interval length of 0.6937. Similarly, the 
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Wald-type method provides a CI of 1.4553 to 2.1472, also with a length of 0.6919, which is almost 
identical to the likelihood-based method in terms of range and uncertainty. In contrast, the 
bootstrap-t method and the BCa bootstrap method both produce notably narrower CIs. 

Table 4. The 95% CIs and lengths for the lifetime data about the duration of relief in the analgesic patients 

Methods Confidence intervals Lengths 
Likelihood-based (1.4783, 2.1720) 0.6937 
Wald-type (1.4553, 2.1472) 0.6919 
Bootstrap-t (1.6363, 2.0162) 0.3799 
BCa Bootstrap (1.5776, 1.9507) 0.3731 

II. The Strengths of Glass Fibers

The second data set is from Smith and Naylor [42] on the strengths of 1.5 centimeter glass fibers 
measured at the National Physical Laboratory in England. This data set is given as follows: 0.55, 
0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 
1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 
0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 
1.63, 1.67, 1.70, 1.78, 1.89. Some descriptive statistics of the data set are reported in Table 5. 

Table 5. The descriptive statistics of the strengths of glass fibers 
Min Mean Median SD Q1 Q3 Max 
0.550 1.507 1.590 0.3241 1.375 1.685 2.240 

The ML method was utilized for estimating the parameters of the distributions. We assessed 
the log-likelihood (log L), Akaike’s information criterion (AIC), and Bayesian information criterion 
(BIC) for model comparison. Table 6 provides estimates of the parameters, their standard errors 
(SE), and goodness of fit measures for this data set. 

Table 6. The ML estimates, SE, AIC and BIC for the strengths of glass fibers 
Distributions Estimates (SE) Log L AIC BIC 
Iwueze 2.0894 (0.0137) -68.6897 139.3794 141.5225
Komal 0.8905 (0.0070) -84.5918 171.1836 173.3268
Adya 1.2237 (0.0064) -77.1008 156.2016 158.3447
Pranav 1.5607 (0.0063) -90.4814 182.9627 185.1059
Prakaamy 2.4974 (0.0100) -93.0292 188.0583 190.2015
Akshaya 1.7091 (0.0130) -69.5206 141.0413 143.1844
Rani 1.8802 (0.0063) -98.1100 198.2199 200.3630
Rama 1.7313 (0.0098) -84.8598 171.7197 173.8628
Suja 2.1133 (0.0099) -88.7335 179.4670 181.6101
Ishita 1.2520 (0.0064) -84.1406 170.2812 172.4243
Sujatha 1.3501 (0.0104) -77.4048 156.8096 158.9527
Garima 0.9157 (0.0096) -85.0308 172.0617 174.2048
Aradhana 1.3464 (0.0110) -74.9384 151.8768 154.0199
Devya 2.1013 (0.0121) -74.9042 151.8085 153.9516
Amarendra 1.7201 (0.0114) -75.5186 153.0372 155.1804
Shanker 0.9563 (0.0066) -81.1391 164.2781 166.4213
Akash 1.3554 (0.0096) -81.8636 165.7272 167.8704
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Lindley 0.9563 (0.0066) -81.3693 164.7387 166.8818 
Exponential 0.6636 (0.0070) -88.8303 179.6606 181.8038 

The AIC and BIC values, estimates of the parameters, their SEs, and measures of goodness of 
fit for this dataset are provided in Table 6. It shows that the Iwueze distribution fits better than 
other distributions. For this set of data, the ML estimator is 2.0894. Table 7 reports comparisons of 
95% CIs and their lengths for parameter estimation using several methods. The likelihood-based 
method estimates the CI to be between 1.8691 and 2.3292, with an interval length of 0.4601. The 
Wald-type method yields a marginally narrower CI, ranging from 1.8597 to 2.3192, and has an 
interval length of 0.4595, closely aligning with the results of the likelihood-based method. In 
contrast, the bootstrap-t method offers a narrower CI, spanning from 2.0240 to 2.1552, with the 
shortest interval length of 0.1312. Similarly, the BCa bootstrap method provides an even tighter CI, 
ranging from 2.0288 to 2.1627, with the interval length at 0.1339. 

Table 7. The 95% CIs and lengths for the strengths of glass fibers 
Methods Confidence intervals Lengths 
Likelihood-based (1.8691, 2.3292) 0.4601 
Wald-type (1.8597, 2.3192) 0.4595 
Bootstrap-t (2.0240, 2.1552) 0.1312 
BCa Bootstrap (2.0288, 2.1627) 0.1339 

Conclusion and Discussion 

This paper proposes and evaluates four approaches for using likelihood-based, Wald-type, 
bootstrap-t, bias-corrected and accelerated (BCa) bootstrap methods to construct confidence 
intervals (CIs) for the parameter of the Iwueze distribution. This study also derived and provided 
the explicit formula for the Wald-type CI. The evaluation of CIs in simulation studies involves the 
consideration of both the coverage probability (CP) and the average length (AL) of the intervals. 
As the sample sizes increase, the results indicate a notable pattern where the CPs of all methods 
converge toward the nominal confidence level.  The likelihood-based and Wald-type CIs yielded 
satisfactory outcomes in terms of coverage probabilities, even for the setting of small sample sizes. 
However, the bootstrap-t and BCa bootstrap CIs provide the CP less than the nominal confidence 
level, especially in small sample sizes. The practical application of all CIs was shown by applying 
them to medical and engineering data, producing results consistent with the simulation study's 
results. 

The bootstrap techniques examined in this study rely on the assumption that resampled data 
accurately represent the underlying population. For datasets with very small sample sizes and 
significant skewness, the validity of the assumption that resampled data accurately represent the 
underlying population may be compromised. Consequently, this could impact the reliability of the 
CIs derived from these methods. Moreover, the computational requirements of bootstrap 
techniques, particularly the BCa bootstrap CI, might present challenges in situations where 
computational resources are limited. To facilitate the computation of bootstrap confidence 
intervals in the R programming language, numerous packages are accessible, with the 'boot' 
package [43] and the 'bootstrap' package [44] being notable examples. 

Future research could explore other mixed distributions, such as the Chris-Jerry distribution 
[45], Hamza distribution [46], among others. The construction of CIs for the coefficient of variation 
and the population mean is an interesting topic that requires additional research. Additionally, 
there appears to be a gap in the literature regarding hypothesis testing for the parameters of the 
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Iwueze distribution. These topics represent valuable opportunities for future studies. 
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