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Abstract 

This paper proposed a three parameter Maxwell-Gompertz distribution as an extension of Gompertz 

distribution. Some statistical properties of the distribution such as moments, survival and hazard 

functions, quantile function, Rényi entropy and order statistics were derived. Maximum likelihood 

method was used to estimate the model parameters. A simulation study was carried out in order to 

gain an insight into the performance on small, moderate and large samples. The flexibility of the 

new distribution was empirically demonstrated in comparison to four other extensions of Gompertz 

distributions using two real life datasets.  
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I. Introduction

Gompertz distribution is a popular distribution commonly used in many applied problems, 
particularly in modelling lifetime data [1]. The distribution is often characterized by an increasing 
hazard function and it is commonly used to describe the distribution of adult life spans by 
actuaries and demographers [2]. It is also considered for modelling survival data in some sciences 
such as gerontology [3], computer science [4], biology [5], and marketing science [6]. For more 
details about the Gompertz distribution and its applications, see [7], [8]. The cumulative 
distribution function (cdf) and probability density function (pdf) of the Gompertz random variable 
X are respectively given as  
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where  = (b, c) with b denting the shape parameter and c the scale parameter. 
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The development of new families of distributions has become an important trend in the 
theory and application of distributions. Such new families of distributions are often compounded 
by adding one or more parameters to the well-known standard baseline distributions. This has 
become necessary because the resulting extended new distributions provide greater flexibility in 
modelling observed data. A few of such families of distributions which have been explored in the 
recent times include, among others the Beta-G of [9], a new generalized odd log-logistic family of 
distributions by [10], The generalized odd half-Cauchy family of distributions by [11], a New 
Kumaraswamy generalized family of distributions by [12].  

Several other families of distributions can be mentioned such as Odd F family of distributions 
by [13], Odd Beta Prime family of distributions by [14], Generalized odd Maxwell family of 
distributions by [15], Generalized beta-generated distributions of [16], Garhy-generated family of 
distributions by [17], Gamma-G Type-3 of [18], The Logistic-X family of [19], a new Weibull-X 
family of [20], a-Zubair-G family of [21], and a new Alpha power transformed family distribution 
by [22].  

Gompertz distribution has been extended by some authors in the literature through the 
addition of one or more other parameters. Some of such studies in the recent time include the 
modified beta Gompertz distribution by [23], the generalized Gompertz distribution by [24] which 
was based on an idea of [25], the cubic transmuted Gompertz distribution by [26], the odd 
generalized exponential-Gompertz distribution by [27], the transmuted Gompertz distribution by 
[28] and the odd lindley-Gompertz distribution by [29]. This article seeks to develop a distribution
that has the characterization of the Gompertz and Maxwell distributions in a unified framework.
The Maxwell distribution was introduced by [30], and it has the cdf given as
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where a is the scale parameter. 
Studies involving Maxwell generalized family of distributions have not been widely covered 

in the literature. However, [31] proposed Maxwell–Weibull distribution by applying the odd ratio 
link approach of [32]. Also, [33] developed Maxwell-Dagum distribution while [34] developed 
Maxwell-Lomax distribution. 

II. Methods
2.1.The Maxwell-Gompertz (Mgom) Distribution 

Consider a random variable X which follows the Gompertz distribution with the cumulative and 
probability density functions as defined in (1) and (2) respectively. Following [31] who proposed 
Maxwell family of distributions for continuous generator, we can present the cumulative density 
function of Maxwell-G family as  
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and the corresponding pdf is given as 
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where  = ( , )b c  denotes the vector of parameters of the baseline Gompertz distribution. 
Substituting (1) in (5) gives the proposed cdf of the Maxwell-Gompertz (MGom) distributions 

as 




− −

− −

  
 − 

=    
  

  

2

2

1

1

2 3 1 1
( ; , , ) , ,   ; 0

2 2

( )

( )

bxc
b

bxc
b

e

e

e
F x a b c a,b,c x

a
e

  (7) 

and on substituting (1) and (2) in (6), the pdf can be obtained as  
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2.2 Linear Representation of MGom Density 

Consider the power series expansion of the exponential function 
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Putting (9) in (8) and dropping (a,b,c) in f (a,b,c) for simplicity, we have 
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Considering the generalized binomial expansion in power of positive real number  , 
expressed as 
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By applying (11) to (10) we obtain 
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Thus, the pdf of the MGom distribution expressed as a linear representation is obtained by 
applying (9) to (12) which gives  
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The plots of the pdf and cdf of MGom distribution using different parameter values are 
displayed in Figures 1 and 2 respectively. From Figure 1, it is observed that the pdf of the MGom 
distribution is skewed to the right and therefore will be a good model for different kinds of 
positively skewed data sets. 

Figure 1: Plots of pdf and cdf of EGILx distribution 

2.3 Statistical Properties 

Some structural properties of the Maxwell-Gompertz distribution are discussed in this section. 

2.3.1 Moments 

 Suppose that X denote a continuous random variable, the rth non-central moment of X is given by 
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Taking f(x) as the pdf of the MGom distribution given in (14), the rth moments of X is given as 
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which is the moments of MGom distribution. 
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2.3.2. Quantile function 

Quantile function of MGom can be derived by inverting the cdf given in (7). 
If we let  
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then by solving (20) for x we obtain 
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where u is a uniform random variable defined on interval ( )0,1 .

We can obtain the three quartiles Q1, Q2 and Q3 from (21) by using u = 0.25, 0.50 and 0.75 
respectively. 

2.3.3 Survival function 

The survival function for the MGom random variable  X~MGom ( , , )a b c from the cdf in (7) is 
obtained as   
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The plot of the survival function of MGom for different parameter values is displayed in 
Figure 3.    

Figure 2:  Plots of the survival function of MGom distribution 

As observed from the plots in Figure 2, the value of the survival function equals one at initial 
value of zero, it decreases as x increases and degenerates to zero as x becomes larger, which is a 
major characteristic of survival function. 
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2.3.4 Hazard function 

The hazard function can be obtained using the pdf in (8) and survival function in (22) as 
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The plots for the hazard function of MGom distribution for different parameter values are 
shown in Figure 4.      

Figure 3: Plot of the hazard function of MGom distribution 

From the plots in Figure 3, it is observed that the value of the hazard function increases as X 
increases, meaning that the conditional probability of failure within a given interval of time for a 
random variable following MGom distribution increases as life ages. 

2.3.5 Rényi entropy 

If X is a random variable with density function ( )f x  as defined in (8), then the Rényi entropy of 

the MGom distribution is defined as 
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The term ( )f x in (24) can be simplified as 
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By applying (9) to (25), we have 
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Using binomial expansion defined in (11), equation (26) becomes 
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which on simplification becomes 
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 Substituting (29) in (24), the Rényi entropy of the MGom distribution can be given as  
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2.3.6 Order statistics 

Suppose that 1 2, ,..., nX X X is a random sample of size n from MGom distribution and (1) (2) ( ), ,..., nX X X

denote the corresponding order statistics of the sample, then the pdf of the thi order statistics is 
given as  
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Consequently, using (7) and (8), the pdf of thi order statistics for the MGom distribution can 
be obtained as 
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From (33), The pdf of the smallest and largest order statistics can be obtained by setting i = 1 
and i = n respectively. 
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2.3.7 Parameter estimation 

This section derives the maximum likelihood estimator of MGom distribution. Let 1 2, ,..., nX X X be a 

random sample of size n drawn from X~ MGom( ) with observed values 1 2, nx x x ,where 

 = ( , , )Ta b c is a 1p  vector of parameters to be estimated. The likelihood function is given as 

 = =

− − − −
− −

− − − −

    
   − −   
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2 2

23
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1 1
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i i
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e e
e

e e

c e e
L e e

aa
e e

  (34) 

The log likelihood function ( ) is obtained as  

( ) ( ) ( ) ( ) ( ) ( )
= =

= + − − + + − 
1 1

log 2 log log 2 3 log log 1
2

ib
n n
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c c
e e
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e e

b b
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i ia

e e
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.   (35) 

Taking the partial derivatives of (35) with respect to a, b and c to obtain 

=

 −
= +


 2

3
1

3 1 n

i
i

n
w

a a a
,          (36) 
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and 

( )  

 


− −
= = =
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where  −
=

1ixb

i

e

b
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
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−
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i
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e
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Setting  =


0,
a


=


0

b
and  =


0

c
, and solving the resulting nonlinear system of equations, 

we can obtain the maximum likelihood estimates ˆˆ ˆ, ,a b c . However, these equations cannot be
solved analytically, thus statistical software can be used to solve them numerically using iterative 
methods. 

III. Results
3.1       Simulation study 

A simulation study is carried out here to investigate the performance of the maximum likelihood 
estimates of MGom distribution. The simulation is based on the quantile function defined in (21) 
for four sets of parameter vector  = ( , , )a b c . We generate 1000 replications of random samples of 
sizes 50, 100, 200 and 500. The four sets of the parameter’s values are assigned as follows:  
Set 1:  a = 0.5, b = 0.5, c = 0.5 
Set 2:  a = 1.0, b = 1.0, c = 1. 0 
Set 3:  a = 2.0, b = 2.0, c = 2.0 
Set 4:  a = 0.5, b = 2.0, c = 1.0.  

The maximum likelihood estimates = ˆˆ ˆ ˆ( , , )a b c  are determined based on each generated 
sample, by maximizing the log-likelihood function in (35). The average estimates, average bias, 
denoted Bias and Root mean square error (RMSE) are then determined where 
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=

 =  −
1000

1

1ˆ ˆBias( ) ( )
1000 j

j   and  
=

 
 =  − 

  


1/2
1000

2

1

1ˆ ˆRMSE( ) ( )
1000 j

j
. 

The results of the simulation study are displayed in Tables 1 and 2. 

Table 1: The parameter estimates (Est), Bias and RMSE. 

N 

 a = 0.5,  b = 0. 5, c = 0.5 a = 1.0, b =1. 0, c = 1.0 
Parameter   Est  Bias RMSE   Est   Bias  RMSE 
a 0.5374 0.0374 1.9486 1.2385 0.2385 2.1963 

50 b 0.5187 0.0187 1.5791 1.2189 0.2189 1.7649 
c 0.5265 0.0265 1.8411 1.3019 0.3019 1.9253 
a 0.5210 0.0210 1.2814 1.2273 0.2273 1.8189 

100 b 0.5146 0.0146 1.3166 1.1916 0.1916 1.4729 
c 0.5158 0.0158 1.5778 1.2342 0.2342 1.6071 
a 0.5113 0.0113 1.1519 1.1218 0.1218 1.4658 

200 b 0.5138 0.0138 1.1608 1.1126 0.1126 1.2075 
c 0.5114 0.0114 1.2764 1.1480 0.1480 1.4526 
a 0.5037 0.0037 0.7342 1.0490 0.0490 0.8903 

500 b 0.5069 0.0069 0.6969 1.0307 0.0307 0.5933 
c 0.5023 0.0023 0.7564 1.0657 0.0657 0.7505 

Table 2: The parameter estimates (Est), Bias and RMSE. 
 a = 2.0,  b = 2. 0, c = 2.0 a = 0.5,  b =1.0, c = 2.0 

N Parameter   Est Bias RMSE   Est  Bias RMSE 
a 2.2882 0.2882 2.2462 0.5164 0.0164 1.8385 

50 b 2.1828 0.1828 1.8214 1.2062 0.2062 2.0963 
c 2.3944 0.3944 2.0236 2.1642 0.1642 2.1462 
a 2.1901 0. 1901 2.1038 0.5099 0.0099 1.1713 

100 b 2.1643 0.1643 1.6454 1.1616 0.1616 1.7189 
c 2.2729 0.2729 1.9016 2.1001 0.1001 2.0038 
a 2.1421 0.1421 1.9643 0.5056 0.0056 1.0418 

200 b 2.1226 0.1226 1.4325 1.0823 0.0823 1.3658 
c 2.1933 0.1933 1.7031 2.0992 0.0992 1.8643 
a 2.0442 0.0442 0.8606 0.5021 0.0021 0.6241 

500 b 2.0320 0.0320 0.6542 1.0361 0.0361 0.7903 
c 2.0580 0.0580 0.7730 2.0542 0.0542 0.7606 

3.2       Data Application 

Application of the MGom distribution to two real life data sets are provided to show how it can be 
applied in practice in comparison to other distributions in the family. The proposed distribution is 
compared with four other Gompertz distribution extensions, namely: power Gompertz (powGom), 
exponentiated Gompertz (expGom), Marshall-Olkin Gompertz (M-OGom) and odd-logistic 
Gompertz (Odd-loGom). The goodness-of- fit criteria and tests used in the choice of the most 
appropriate distribution include Akaike's Information Criterion (AIC), Consistent Akaike's 
Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information 
Criterion (HQIC), as well as Anderson-Darling ( )*A  and Cramér-von Mises ( )*W  tests. These can

be computed as follows 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

503



A. Abiodun, A. Ishaq, O. Adeniyi, I. Omekam, J. Popoola, O. Oladuti and E. Job 

MAXWELL-GOMPERTZ DISTRIBUTION: PROPERTIES AND APPLICATIONS

− +AIC = 2 2p , = − +
− −

CAIC
2

2
1

np

n p
, =− +2 log( )BIC p n , and 

=− +HQIC 2 2 log(log( )p n , 
− +

=

   
= + + + − −  
   

*
12

1

9 3 1
1 (2 1)log[ (1 )]

44

n

i n j
j

A n j z z
n nn

, 

=

 −    
= + − +    
     


2

*

1

1 2 1 1
1 )

2 2 2

n

i
j

j
W z

n n n
, where = ( )i iz F x  and 'ix s are the ordered observations,

is the maximized log likelihood of the parameter vector  = ( , , )a b c , n is the number of 
observations, and p is the number of estimated parameters. 
The model with the smallest value of these measures is preferred to other models.  

Dataset 1: This dataset is taken from [35]. The data represent the time between failures of 30 
repairable items. 
1.43,0.11,0.71,0.77,2.63,1.49,3.46,2.46,0.59,0.74,1.23,0.94,4.36,0.40,1.74,4.73,2.23,0.45,0.70,1.06,1.46,0.30
,1.82,2.37,0.63,1.23,1.24,1.97,1.86,1.17. 
Dataset 2:  The dataset consists of 100 observations of breaking stress of carbon fibers (in Gba) 
given by [36] as given below: 
0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.61, 
1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 
2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 
2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 
3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 
4.70, 4.90, 4.91, 5.08, 5.56. 

Dataset 1 

Figure 4:   Density and boxplots for dataset 1 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

504



A. Abiodun, A. Ishaq, O. Adeniyi, I. Omekam, J. Popoola, O. Oladuti and E. Job 

MAXWELL-GOMPERTZ DISTRIBUTION: PROPERTIES AND APPLICATIONS

Dataset 2 

Figure 5:   Density and boxplots for dataset 2 

Figure 6:  TTT Plots for datasets 1 and 2 

Table 3:   MLEs and goodness-of-fit-statistics for dataset 1.  

Model a B C AIC CAIC BIC HQIC A* W* 

MGom 0.5463 0.1282 1.2171 85.3735 85.6965 89.5771 86.7183 0.1290 0.0173 
PowGom 0.4806 0.0131 1.3732 86.9282 86.9513 91.6231 89.3729 0.3642 0.0532 
ExpGom 1.8355 0.2814 1.3073 86.2447 86.8677 91.1483 88.0894 0.3466 0.0471 
M-OGom 0.3422 0.3516 0.2785 88.6075 89.1306 92.3111 89.9522 0.4120 0.0868 
Odd-lGom 0.5555 0.0223 1.5030 86.0282 86.2965 90.2318 87.2183 0.2114 0.0279 

Table 4:   MLEs and goodness-of-fit-statistics for dataset 2 

Model a B C AIC CAIC BIC HQIC A* W* 

MGom 0.2628 0.1015 1.8936 278.528 278.779 286.344 281.691 0.3542 0.0563 
PowGom 0.1010 0.0561 1.8671 298.771 299.022 306.587 301.934 0.5600 0.0791 
ExpGom 0.3620 0.5327 0.7557 293.555 293.805 301.371 296.718 0.5109 0.0711 
M-OGom 0.0835 0.7208 0.2346 307.515 307.765 315.331 310.678 0.8052 0.1309 
Odd-lGom 0.1329 0.5124 1.6392 291.109 291.359 298.924 294.272 0.4564 0.0674 
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IV. Discussion

As observed from Tables 1 and 2, for all the different parameter settings, the average of the 
estimates for a, b, and c get closer to the true parameter values as the sample size increases. Also, 
the average Bias and the RMSE decrease as the sample size increases. These results validate the 
asymptotic properties of maximum likelihood estimators. 

As observed from the density plot as well as box plot depicted in Figures 4 and 5, it is clear 
that dataset 1 is heavily skewed to the right and, dataset 2 is moderately skewed to the right, hence 
the two datasets are could be good for a flexible model like MGom distribution. The total time on 
test (TTT) curve of the datasets are also plotted in Figure 6 to obtain the empirical behaviour of the 
hazard function. As observed, the shapes of the hazard function of both datasets are concave 
showing increasing hazards, and this could also be a good candidate for Gompertz distribution 
and any of its compound distributions. 

Tables 3 and 4 present the maximum likelihood estimates and the values of goodness-of-fit 
statistics for datasets 1 and 2 respectively. It was found that MGom distribution had the smallest 
values of all these measures ( *AIC,  CAIC,  BIC,  HQIC, A  and *W ) and therefore can be best used in
comparison to other Gompertz extensions for modelling real life situations of positively skewed 
data with increasing hazard rates. 

References 
[1] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995).  Continuous Univariate Distributions.

2nd ednion John Wiley and Sons, New York. 

[2] Willemse, W. and Koppelaar H. (2000). Knowledge elicitation of Gompertz’ law of
mortality. Scandinavian Actuarial Journal, 2:168-179. 

[3] Brown, K. and Forbes, W. (1974). A mathematical model of aging processes. Journal

Gerontology, 29(1): 46-51. 
[4] Ohishi, K., Okamura, H. and Dohi, T. (2009). Gompertz software reliability model:

Estimation Algorithm and empirical validation. Journal of Systems and Software, 82(3): 535-543. 
[5] Economos, A. C. (1982). Rate of aging, rate of dying and the mechanism of mortality.

Archieves of Gerontology and Geriatrics, 1(1): 46-51. 
[6] Bemmaor, A. C. and Glady, N. (2012). Modeling purchasing behavior with sudden

“death”: A flexible customer lifetime model. Management Science, 58(5): 1012-1021. 
[7] Pollard, J. H. and Valkovics, E. J. (1992). The Gompertz distribution and its applications.

Genus, 48(3): 15-28. 
[8] Missov, T. I. and Lenart, A. (2011). Linking period and cohort life-expectancy linear

increases in Gompertz proportional hazards models. Demographic Research, 24: 455-468. 
[9] Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and it applications.

Communication in Statistics - Theory and Methods, 31(4): 497-512. 
[10] Haghbin, H., Ozel, G., Alizadeh, M. and Hamedani, G. G. (2017). A new generalized odd

log-logistic family of distributions. Communication in Statistics - Theory and Methods, 46(20): 9897-
9920. 

[11] Cordeiro, G. M., Alizadeh, M., Ramires, T. G. and Ortega, E. M. M. (2018). The
generalized odd half-Cauchy family of distributions: Properties and applications. Communication in 

Statistics - Theory and Methods, 46: 5685-5705. 
[12] Tahir, M. H., Hussain, M. A., Gauss, M, C., El-Morshedy, M. and Eliwa, M. S. (2020). A

New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and 
Bivariate Extension. Mathematics, 8(11). DOI:10.3390/math8111989. 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

506



A. Abiodun, A. Ishaq, O. Adeniyi, I. Omekam, J. Popoola, O. Oladuti and E. Job 

MAXWELL-GOMPERTZ DISTRIBUTION: PROPERTIES AND APPLICATIONS

[13] Ishaq, A. I., Usman, A., Tasi’u, M., Suleiman, A. A. and Ahmad, A. G. (2022). A New Odd
F-Weibull Distribution: Properties and Application of the Monthly Nigerian Naira to British Pound
Exchange Rate Data. 2022 International Conference on Data Analytics for Business and Industry

(ICDABI), 326-332.
[14] Suleiman, A. A., Daud, H., Singh, N. S. S., Othman, M., Ishaq, A. I. and Sokkalingam, R.

(2023). A Novel Odd Beta Prime-Logistic Distribution: Desirable Mathematical Properties and 
Applications to Engineering and Environmental Data. Sustainability, 15 (1). 
DOI:10.3390/su151310239. 

[15] Ishaq, A. I., Panitanarak, U., Abiodun, A. A., Suleiman, A, A. and Daud, H. (2024). The
Generalized Odd Maxwell-Kumaraswamy Distribution: Its Properties and Applications. 
Contemporary Mathematics, 5: 711-742. 

[16] Alexander, C., Cordeiro, G. M., Ortega, E. M. M. and Sarabia, J. M. (2012). Generalized
beta-generated distributions. Computational Statistics and Data Analysis, 56(6): 1880-1897. 

[17] Elgarhy, M., Hassan, A. S. and Rashed, M. (2016). Garhy-Generated Family of
Distributions with Application. Mathematical Theory and Modeling, 6: 1-15. 

[18] Torabi, H., Montezari, N. H. (2012). The gamma-uniform distribution and its application.
Kybernetika, 48:16-30. 

[19] Tahir, M. H., Cordeiro, G. M., Alizadeh, M., Mansoor, M. and Zubair, M. (2016). The
Logistic-X family of distributions and its applications. Communication in Statistics - Theory and 

Methods, 45: 7326-7349. 
[20] Ahmad, Z., Elgarhy, M. and Hamedani, G. G. (2018). A new Weibull-X family of

distributions: properties, characterizations and applications. Journal of Statistical Distributions and 

Applications, 5: 1-18. 
[21] Kyurkchiev, N., Iliev, A. and Rahnev, A. (2019). Comments on a Zubair-G Family of

Cumulative Lifetime Distributions. Some Extensions. Communications in Applied Analysis, 23(1): 1-

20. 

[22] Elbatal, Z., Ahmad, M., Elgarhy, A. M. and Almarashi, J. (2019). A new alpha power
transformed family of distributions: properties and applications to the Weibull model. The journal 

of Nonlinear Sciences and Applications, 12: 1-20. 
[23] Elbatal, I., Jamal, F., Chesneau, C., Elgarhy, M. and Alrajhi, S. (2018). The Modified Beta

Gompertz Distribution: Theory and Applications. Mathematics, 7 (3). DOI:10.3390/math7010003. 

[24] El-Gohary, A. and Al-Otaibi, A. N. (2013). The generalized Gompertz distribution. Applied

Mathematical Modelling, 37(1-2):13-24. 
[25] Gupta, R. D. and Kundu, D. (1999). Generalized exponential distribution. Austrian and

New- Zealand Journal of Statistics, 41: 173-188. 
[26] Ogunde, A. A., Olayode, F. and Audu, A. A. (2020).  Cubic Transmuted Gompertz

Distribution: As a Life Time Distribution. Journal of Advances in Mathematics and Computer Science, 
35(1): 105-116. 

[27] El-Damcese, M. A., Mustafa, A., El-Desouky, B. S. and Mustafa, M. E. (2015). The Odd
generalized exponential Gompertz distribution. Applied Mathematics, 6: 2340-2353. 

[28] Abdul-Moniem, I. B. and Seham, M. (2015). Transmuted Gompertz distribution.
Computational and Applied Mathematics, 1(3): 88-96. 

[29] Kuje, S., Lasisi, K. E., Nwaosu, S. C. and Alkafawi, A. M. A. (2019). On the properties and
applications of the odd Lindley- Gompertz distribution. Asian Journal of Science and Technology, 

10(10): 10364-10370. 
[30] Maxwell, J. C. (1860). Illustrations of the dynamical theory of gases. Part I. On the motions

and collisions of perfectly elastic spheres. The London Edinburgh and Dublin Philosophical Magazine 

and Journal of Science, 19:19-32. 
[31] Ishaq, A. I. and Abiodun, A. A. (2020). The Maxwell-Weibull Distribution in Modeling

RT&A, No 2 (78) 
 Volume 19, June, 2024 

507



A. Abiodun, A. Ishaq, O. Adeniyi, I. Omekam, J. Popoola, O. Oladuti and E. Job 

MAXWELL-GOMPERTZ DISTRIBUTION: PROPERTIES AND APPLICATIONS

Lifetime Datasets. Annals of Data Science., 7: 639-662. 
[32] Alzaatreh, A., Lee, C. and Famoye, F.  (2013). A new method for generating families of

continuous distributions," Metron, 71(1): 63-79. 
[33] Ishaq, A. I. and Abiodun, A. A. (2021). On the developments of Maxwell-Dagum

distribution. Journal of Statistical Modelling: Theory and Applications, 2(2): 1-23. 
[34] Abiodun, A. A. and Ishaq, A. I.  (2022). On Maxwell-Lomax distribution: properties and

Applications. Arab Journal of Basic and Applied Sciences, 29(1): 221-232. 
[35] Murthy, D. N. P., Xie, M. and Jiang, R. (2004). Weibull models. Hoboken, New Jersey: Wiley-

Interscience. 
[36] Hassan, A. S., Sabry, M. A. H and Elsehetry, A. M. (2020). A New Family of Upper-

Truncated Distributions:  Properties and Estimation. Thailand Statisticians, 18(2): 196-214. 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

508




