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Abstract

In this paper we show that there exists an internal dependence of the simultaneous measurements made
by the two pairs of linear polarizers operated in each leg of the apparatus in Aspect’s version of Einstein-
Podolsky-Rosen Gedankenexperiment. The corresponding Shannon-Kolmogorov’s information flow
linking a polarizer from one leg to a polarizer from the other leg is proportional to the absolute value
of this function of dependence. It turns out that if Bell’s inequality is violated, then this information
flow is strictly positive, that is, the experiment performed at one leg is informationally dependent on the
experiment at the other leg. By throwing out the sign of absolute value, we define the signed information
flow linking a polarizer from one leg to a polarizer from the other leg which, in turn, reproduces the
probabilities of the four outcomes of the simultaneous measurements, predicted by quantum mechanics.
We make an attempt to illustrate the seeming random relation between the total information flow, the total
signed information flow, and the violation of Bell’s inequality in terms of a kind of uncertainty principle.

Keywords: EPR thought experiment, Aspect’s optical version, Informational dependence, Bell’s
inequality.

1. Introduction, Notation

1.1. Introduction

In the context of the bipartite quantum system that describes Aspect’s optical version of Einstein-
Podolsky-Rosen Gedankenexperiment (see [1] and [5]), we consider the pairs of linear polarizers
operated in each leg of the apparatus as pairs of self-adjoined linear operators

Aµi =

(
cos µi sin µi
sin µi − cos µi

)
, Bνj = Aνj ,

where µi, νj ∈ [0, π], i, j = 1, 2, are the angles of the polarizers. Note that each pair has a
time switch which interchanges polarizers, the corresponding time being shorter than the time
necessary for a light signal to travel from one of the pairs of polarizers to the other (Einstein
locality assumption for independence).

Each pair of operators Aµ1 , Aµ2 and Bν1 , Bν2 acts on the state space of the corresponding
quantum subsystem (a unitary plane). By tensoring with the unit operator on the other plane,
we obtain two pairs of self-adjoined linear operators Aµ1 , Aµ2 and Bν1 , Bν2 with spectre {1,−1}
on the state space of the whole quantum system (tensor product of the two unitary planes).
Moreover, for each i, j = 1, 2 the operators Aµi and Bνj commute because the state space of the
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whole quantum system has an orthonormal frame consisting of eigenvectors of both operators. In
this case the corresponding measurements are said to be simultaneous.

In accord with the axiom of quantum mechanics about the observables, after fixing initial
state we can consider the members of this frame as outcomes of a sample space with probability
assignment consisting of probabilities predicted by this axiom. Moreover, with an abuse of the
language, we can also consider the operators as random variables with range {1,−1} on this
sample space. Under the condition that the singlet state is initial, any one of these random
variables has probability distribution ( 1

2 , 1
2 ). Moreover, if µ ∈ {µ1, µ2} and ν ∈ {ν1, ν2}, then

pr((Aµ = 1) ∩ (Bν = 1)) = pr((Aµ = −1) ∩ (Bν = −1)) =
1
2

sin2
(

µ− ν

2

)
,

pr((Aµ = 1) ∩ (Bν = −1)) = pr((Aµ = −1) ∩ (Bν = 1)) =
1
2

cos2
(

µ− ν

2

)
.

Therefore, the product of random variablesAµBν has probability distribution
(

sin2
(

µ−ν
2

)
, cos2

(
µ−ν

2

))
and expected value E(AµBν) = − cos(µ− ν).

On the other hand, the joint experiment (see [7, Part I, Section 6]) of the binary trials
Aµ = (Aµ = 1) ∪ (Aµ = −1) and Bν = (Bν = 1) ∪ (Bν = −1) produces the probability
distribution (

1
2

sin2
(

µ− ν

2

)
,

1
2

cos2
(

µ− ν

2

)
,

1
2

cos2
(

µ− ν

2

)
,

1
2

sin2
(

µ− ν

2

))
with Boltzmann-Shannon entropy E(θµ,ν), where E(θ) = −2θ ln θ − 2( 1

2 − θ) ln( 1
2 − θ) and θµ,ν =

1
2 sin2

(
µ−ν

2

)
. We extend the function E(θ), θ ∈ (0, 1

2 ), (see [6, 4.1,5.1]) as continuous on the closed

interval [0, 1
2 ].

By modifying the entropy function E(θ), we obtain the strictly increasing degree of dependence
function e : [0, 1

2 ]→ [−1, 1], which mimics the regression coefficient (see [6, 5.2]).
It turns out that the average quantity of information I(Aµ,Bν) (see [3, §1]) of one of the

experiments Aµ and Bν, relative to the other can be found by the formula I(Aµ,Bν) = |e(θµ,ν)| ln 2.
We can consider I(Aµ,Bν) as a measure of the flow carrying information between these two
binary trials (see [6, 5.3]). Since s is an invertible function, the corresponding signed information
flow I(s)(Aµ,Bν)(θ) = e(θ) ln 2 replicates the probability distribution (2) produced by quantum
mechanics.

In terms of Aspect’s experiment, the sum I(A,B) = ∑2
i,j I(Aµi ,Bνj) (called total information

flow) can be thought about as a measure of the flow carrying information between the two
pairs of polarizers. In his paper [2] John Bell deduced under the assumptions of "locality" and
"realism" that if measurements are performed independently (Einstein locality assumption for
independence) on the two separated particles (photons in Aspect’s experiment) of an entangled
pair, then the assumption that the outcomes depend upon "hidden variables" implies constraint
condition called Bell’s inequality (see Subsection 4.1). It comes out that if Bell’s inequality is
violated, then the total information flow is strictly positive. In other words, in this case there
exists an informational dependence between the two legs of apparatus.

In the end of the paper we discuss the relation between the information flow I(A,B) and the
violation of Bell’s inequality. Using Examples 1 and the Java program from the link that can be
found there, we note that this relation is subject to a kind of uncertainty principle.

1.2. Notation

H: 2-dimensional unitary space with inner product 〈x|y〉 which is linear in the second slot and
anti-linear in the first slot;
I = IH: the identity linear operator on H;
H⊗2 = H⊗H: the unitary tensor square with inner product 〈x1 ⊗ x2|y1 ⊗ y2〉 = 〈x1|y1〉〈x2|y2〉;
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U (2): the unit sphere in H⊗2;
Spec(A): the real spectre of a self-adjoined linear operator A on H with trace zero, having the
form Spec(A) = {λ(A)

1 , λ
(A)
2 }, λ

(A)
1 + λ

(A)
2 = 0;

u(A) = {u(A)
1 , u(A)

2 }: the orthonormal frame for H, formed by the corresponding eigenvectors of
A;
H(A)

i : the eigenspaces Cu(A)
i of A, i = 1, 2.

2. Self-Adjoint Operators on H

2.1. Two Special Commuting Operators

We fix an orthonormal frame h = {h1, h2} for H and identify the self-adjoined operators with
their matrices with respect to h. For any µ ∈ [0, π] we denote by Aµ the self-adjoined operator(

cos µ sin µ
sin µ − cos µ

)
.

We have λ
(Aµ)
1 = 1, λ

(Aµ)
2 = −1, and

u(
Aµ)

1 = (cos
µ

2
)h1 + (sin

µ

2
)h2, u(

Aµ)
2 = (− sin

µ

2
)h1 + (cos

µ

2
)h2.

For any ν ∈ [0, π] we set Bν = Aν.

Note that {h1 ⊗ h1, h1 ⊗ h2, h2 ⊗ h1, h2 ⊗ h2} and u(Aµ) ⊗ u(Bν) = {u(Aµ)
1 ⊗ u(Bν)

1 , u(
Aµ)

1 ⊗

u(Bν)
2 , u(

Aµ)
2 ⊗ u(Bν)

1 , u(
Aµ)

2 ⊗ u(Bν)
2 } are orthonormal frames for H⊗2.

Let us set Aµ = Aµ ⊗ I, Bν = I⊗ Bν. It is a straightforward check that the last two linear

operators on H⊗2 are also self-adjoined with λ
(Aµ)
1 = λ

(Bν)
1 = 1, λ

(Aµ)
2 = λ

(Bν)
2 = −1, the λ

(Aµ)
i -

eigenspace H(Aµ)
i = H(Aµ)

i ⊗ H has orthonormal frame {u(Aµ)
i ⊗ u(Bν)

1 , u(
Aµ)

i ⊗ u(Bν)
2 }, and

the λ
(Bν)
i -eigenspace H(Bν)

i = H⊗H(Bν)
i has orthonormal frame {u(Aµ)

1 ⊗ u(Bν)
i , u(

Aµ)
2 ⊗ u(Bν)

i },
i = 1, 2.

Since u(Aµ) ⊗ u(Bν) is an orthonornal frame of H⊗2 consisting of eigenvectors of both Aµ and
Bν, then the last two operators commute.

Let ψ ∈ U (2) and let S(ψ;Aµ,Bν) be the sample space with set of outcomes u(Aµ) ⊗

u(Bν) = {u(Aµ)
1 ⊗ u(Bν)

1 , u(
Aµ)

1 ⊗ u(Bν)
2 , u(

Aµ)
2 ⊗ u(Bν)

1 , u(
Aµ)

2 ⊗ u(Bν)
2 } and probability assignment

{p11, p12, p21, p22} with pij = |〈u
(Aµ)
i ⊗ u(Bν)

j |ψ〉|2, i, j = 1, 2. With an abuse of the language, we

consider the observable Aµ as a random variable Aµ : u(Aµ) ⊗ u(Bν) → R, Aµ(u
(Aµ)
1 ⊗ u(Bν)

j ) =

λ
(Aµ)
1 , Aµ(u

(Aµ)
2 ⊗ u(Bν)

j ) = λ
(Aµ)
2 , j = 1, 2, on the sample space S(ψ;Aµ,Bν) with probability

distribution pAµ
(λ

(A)
i ) = |〈u(Aµ)

i ⊗ u(Bν)
1 |ψ〉|2 + |〈u(Aµ)

i ⊗ u(Bν)
2 |ψ〉|2, i = 1, 2, and pAµ

(λ) = 0 for

λ /∈ Spec(Aµ). Identifying the event {u(Aµ)
i ⊗ u(Bν)

1 , u(
Aµ)

i ⊗ u(Bν)
2 } with the "event" Aµ = λ

(Aµ)
i ,

we have pr(Aµ = λ
(Aµ)
i ) = |〈u(Aµ)

i ⊗ u(Bν)
1 |ψ〉|2 + |〈u(Aµ)

i ⊗ u(Bν)
2 |ψ〉|2, i = 1, 2.

We also consider the observable Bν as a random variable Bν : u(Aµ) ⊗ u(Bν) → R, Bν(u
(Aµ)
j ⊗

u(Bν)
1 ) = λ

(Bν)
1 , Bν(u

(Aµ)
j ⊗ u(Bν)

2 ) = λ
(Bν)
2 , j = 1, 2, on the sample space S(ψ;Aµ,Bν) with

probability distribution pBν
(λ

(A)
i ) = |〈u(Aµ)

1 ⊗ u(Bν)
i |ψ〉|2 + |〈u(Aµ)

2 ⊗ u(Bν)
i |ψ〉|2, i = 1, 2, and

pBν
(λ) = 0 for λ /∈ Spec(Bν). Identifying the event {u(Aµ)

1 ⊗ u(Bν)
i , u(

Aµ)
2 ⊗ u(Bν)

i } with the "event"

Bν = λ
(Bν)
i , we have pr(Bν = λ

(Bν)
i ) = |〈u(Aµ)

1 ⊗ u(Bν)
i |ψ〉|2 + |〈u(Aµ)

2 ⊗ u(Bν)
i |ψ〉|2, i = 1, 2.
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In particular, let us set ψ = 1√
2
(h1 ⊗ h2 − h2 ⊗ h1). We have

pr(Aµ = λ
(Aµ)
i ) =

1
2
|〈u(Aµ)

i |h1〉〈u
(Bν)
1 |h2〉 − 〈u

(Aµ)
i |h2〉〈u

(Bν)
1 |h1〉|2+

1
2
|〈u(Aµ)

i |h1〉〈u
(Bν)
2 |h2〉 − 〈u

(Aµ)
i |h2〉〈u

(Bν)
2 |h1〉|2

and
pr(Bν = λ

(Bν)
j ) =

1
2
|〈u(Aµ)

1 |h1〉〈u
(Bν)
j |h2〉 − 〈u

(Aµ)
1 |h2〉〈u

(Bν)
j |h1〉|2+

1
2
|〈u(Aµ)

2 |h1〉〈u
(Bν)
j |h2〉 − 〈u

(Aµ)
2 |h2〉〈u

(Bν)
j |h1〉|2.

Taking into account the form of the eigenvectors of the matrices Aµ and Bν, we obtain

pr(Aµ = λ
(Aµ)
i ) = pr(Bν = λ

(Bν)
j ) =

1
2

, i, j = 1, 2.

We identify the intersection (Aµ = λ
(Aµ)
i ) ∩ (Bν = λ

(Bν)
j ) with the event {u(Aµ)

i ⊗ u(Bν)
j }, i, j =

1, 2, in the sample space S(ψ;Aµ,Bν) and obtain

pr((Aµ = λ
(Aµ)
i ) ∩ (Bν = λ

(Bν)
j )) =

1
2
|〈u(Aµ)

i |h1〉〈u
(Bν)
j |h2〉 − 〈u

(Aµ)
i |h2〉〈u

(Bν)
j |h1〉|2.

In particular, we have

pr((Aµ = λ
(Aµ)
1 ) ∩ (Bν = λ

(Bν)
1 )) =

1
2

sin2
(

µ− ν

2

)
,

pr((Aµ = λ
(Aµ)
1 ) ∩ (Bν = λ

(Bν)
2 )) =

1
2

cos2
(

µ− ν

2

)
,

pr((Aµ = λ
(Aµ)
2 ) ∩ (Bν = λ

(Bν)
1 )) =

1
2

cos2
(

µ− ν

2

)
,

pr((Aµ = λ
(Aµ)
2 ) ∩ (Bν = λ

(Bν)
2 )) =

1
2

sin2
(

µ− ν

2

)
.

The random variable AµBν has probability distribution

pAµBν
(1) = sin2

(
µ− ν

2

)
, pAµBν

(−1) = cos2
(

µ− ν

2

)
,

and pAµBν
(λ) = 0 for λ 6= ±1. The expected value of this random variable is E(AµBν) =

− cos(µ− ν).
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3. Entropy and Degree of Dependence

3.1. Entropy

Now, we combine the terminology and notation of this paper with those of [6]. Let us set

A = (Aµ = λ
(Aµ)
1 ), B = (Bν = λ

(Bν)
1 ), Ac = (Aµ = λ

(Aµ)
2 ), Bc = (Bν = λ

(Bν)
2 ). α = pr(A) = 1

2 ,
β = pr(B) = 1

2 .
The pair (A, B) of events in the sample space S(ψ;A,B) produces an experiment

J = (A ∩ B) ∪ (A ∩ Bc) ∪ (Ac ∩ B) ∪ (Ac ∩ Bc) (1)

(cf. [3, I,§5]) and the probabilities of its results:

ξ1 = pr(A ∩ B) =
1
2

sin2
(

µ− ν

2

)
, ξ2 = pr(A ∩ Bc) =

1
2

cos2
(

µ− ν

2

)
,

ξ3 = pr(Ac ∩ B) =
1
2

cos2
(

µ− ν

2

)
, ξ4 = pr(Ac ∩ Bc) =

1
2

sin2
(

µ− ν

2

)
. (2)

The probability distribution (ξ1, ξ2, ξ3, ξ4) satisfies the linear system [6, 4.1. (3)] whose solutions
form a straight line with parametric representation ξ1 = θ, ξ2 = 1

2 − θ, ξ3 = 1
2 − θ, ξ4 = θ in

the hyperplane ξ1 + ξ2 + ξ3 + ξ4 = 1. Note that the parameter θ = ξ1 runs within the closed
interval [0, 1

2 ]. The entropy of (ξ1, ξ2, ξ3, ξ4) is E(θ) = −∑4
k=1 ξk(θ) ln(ξk(θ)) = −2θ ln θ − 2( 1

2 −
θ) ln( 1

2 − θ) and the function E(θ) can be extended as continuous on the interval [0, 1
2 ]. It strictly

increases on the interval [0, 1
4 ], strictly decreases on the interval [ 1

4 , 1
2 ] and has a global maximum

at θ = 1
4 . In particular, maxθ∈[0, 1

2 ]
E(θ) = E( 1

4 ) = 2 ln 2. Since minθ∈[0, 1
4 ]

E(θ) = E(0) = ln 2 =

E( 1
2 ) = minθ∈[ 1

4 , 1
2 ]

E(θ), we obtain minθ∈[0, 1
2 ]

E(θ) = ln 2.

3.2. Degree of Dependence

It is more useful to modify the entropy function, thus obtaining the strictly increasing degree of
dependence function e : [0, 1

2 ]→ [−1, 1],

e(θ) =


− E( 1

4 )−E(θ)
E( 1

4 )−E(0)
if 0 ≤ θ ≤ 1

4

E( 1
4 )−E(θ)

E( 1
4 )−E( 1

2 )
if 1

4 ≤ θ ≤ 1
2 .

Taking into account the values of extrema of entropy function, we obtain

e(θ) =

{
−2 + E(θ)

ln 2 if 0 ≤ θ ≤ 1
4

2− E(θ)
ln 2 if 1

4 ≤ θ ≤ 1
2 .

The events A and B are independent exactly when the entropy is maximal (equal to 2 ln 2), that
is, when e(θ) = 0 and this, in turn, is equivalent to the equality |µ− ν| = π

2 . We have e(θ) = −1
or e(θ) = 1 if and only if |µ− ν| = 0 or |µ− ν| = π, respectively, and in these two cases the
entropy is minimal and equal to ln 2. Now, let, in addition, assume that A and B are events in a
sample space with equally likely outcomes. If e(θ) = −1, then one of A and B is a subset of the
complement of the other (maximal negative dependence), and if e(θ) = 1 one of them is a subset of
the other (maximal positive dependence).

3.3. The Information Flow

The experiment J from (1) is the joint experiment (see [7, Part I, Section 6]) of two simple binary
trials: Aµ = A ∪ Ac and Bν = B ∪ Bc with pr(A) = pr(B) = 1

2 . The average quantity of information
of one of the experiments Aµ and Bν, relative to the other, (see [3, §1]), is defined in this particular case
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by the formula I(Aµ,Bν)(θ) = ξ1(θ) ln 4ξ1(θ) + ξ2(θ) ln 4ξ2(θ) + ξ3(θ) ln 4ξ3(θ) + ξ4(θ) ln 4ξ4(θ).
The above notation is correct since the interchanges of A and Ac or B and Bc causes permutations
of ξi’s. Thus, we obtain I(Aµ,Bν)(θ) = maxθ∈[0, 1

2 ]
E(θ)− E(θ). Now, the definition of the degree

function e(θ) yields immediately I(Aµ,Bν)(θ) = |e(θ)| ln 2 for θ ∈ [0, 1
2 ].

Translating into the language of information theory, we have e(θ) = −1 or e(θ) = 1 if
and only if I(Aµ,Bν)(θ) = max0≤τ≤ 1

2
I(Aµ,Bν)(τ) = ln 2. Finally, we have e(θ) = 0 if and

only if I(Aµ,Bν)(θ) = 0, and under this condition the experiments Aµ and Bν are said to be
informationally independent.

3.4. The Signed Information Flow

Let us set I(s)(Aµ,Bν)(θ) = e(θ) ln 2 for θ ∈ [0, 1
2 ] and call this quantity average quantity of signed

information of one of the events Aµ = λ
(Aµ)
1 and Bν = λ

(Bν)
1 , relative to the other. Then I(Aµ,Bν) =

|I(s)(Aµ,Bν)| and since the function e is invertible, we obtain θ = e−1( 1
ln 2 I(s)(Aµ,Bν)). In

particular, the value of the signed information flow I(s)(Aµ,Bν) reproduces the probability
distribution (2) predicted by quantum theory.

4. Four Operators and Bell’s Map

For any µ1, µ2, ν1, ν2 ∈ [0, π] we consider the self-adjoined operators Aµi , Bνj , i, j = 1, 2, see
Subsection 2.1. We extend notation introduced in Sections 2 and 3 in a natural way: θij =
1
2 sin2

(
µi−νj

2

)
, θij ∈ [0, 1

2 ], Aµi , Bνj , I(Aµi ,Bνj) = |e(θij)| ln 2, i, j = 1, 2. The sum I(A,B) =

∑2
i,j=1 I(Aµi ,Bνj) is said to be the average quantity of information of one of the pairs of experiments

A = {Aµ1 ,Aµ2} and B = {Bν1 ,Bν2} relative to the other, or, total information flow. The sum
I(s)(A,B) = ∑2

i,j=1 I(s)(Aµ,Bν) is said to be the average quantity of signed information of one of
the pairs of experiments A = {Aµ1 ,Aµ2} and B = {Bν1 ,Bν2} relative to the other, or, total signed
information flow.

Thus, we obtain the functions

I(A,B) : [0, π]4 → R, (µ1, µ2, ν1, ν2) 7→ (ln 2)
2

∑
i,j=1
|e(θij)|,

and

I(s)(A,B) : [0, π]4 → R, (µ1, µ2, ν1, ν2) 7→ (ln 2)
2

∑
i,j=1

e(θij),

which represents the intensity of information flow (respectively, signed information flow) between
the pairs of experiments A and B. We note that 0 ≤ I(A,B)(µ1, µ2, ν1, ν2) ≤ 4 ln 2 and −4 ln 2 ≤
I(s)(A,B)(µ1, µ2, ν1, ν2) ≤ 4 ln 2.

In case µ1 = µ2 = ν1 = ν2 we have θ11 = θ12 = θ21 = θ22 = 0, e(θ11) = e(θ12) = e(θ21) =
e(θ22) = −1, hence I(A,B) = 4 ln 2 and I(s)(A,B) = −4 ln 2. In case µ1 = µ2 = π

2 , ν1 = ν2 = 0
we have θ11 = θ12 = θ21 = θ22 = 1

4 , e(θ11) = e(θ12) = e(θ21) = e(θ22) = 0, and I(A,B) = 0.
Finally, in case µ1 = µ2 = π, ν1 = ν2 = 0 we have θ11 = θ12 = θ21 = θ22 = 1

2 , e(θ11) = e(θ12) =

e(θ21) = e(θ22) = 1, and I(s)(A,B) = 4 ln 2.
Since the image of a compact and connected set via continuous function I(A,B) (respectively,

the continuous function I(s)(A,B)) is a compact and connected subset of R, we obtain that the
range of I(A,B) (respectively, I(s)(A,B)) coincides with the interval [0, 4 ln 2] (respectively, with
the interval [−4 ln 2, 4 ln 2]).
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4.1. Bell’s Inequality

The equality |Aµ1Bν1 +Aµ1Bν2 +Aµ2Bν1 −Aµ2Bν2 | = 2 yields (with an abuse of the probability
theory) Bell’s inequality

|E(Aµ1Bν1) + E(Aµ1Bν2) + E(Aµ2Bν1)− E(Aµ2Bν2 | ≤ 2,

that is, |b(µ1, µ2, ν1, ν2)| ≤ 2, where b(µ1, µ2, ν1, ν2) = cos(µ1 − ν1) + cos(µ1 − ν2) + cos(µ2 −
ν1)− cos(µ2 − ν2).

J. S. Bell in [2] proves that if there exist "...additional variables which restore to the (quantum)
theory causality and locality", then the above inequality is satisfied. Since I(A,B) = 0 is equivalent
to the equalities |µi − νj| = π

2 , i, j = 1, 2, this yields b = 0. Thus, we obtain that if Bell’s inequality
is violated, then the total information flow I(A,B) is strictly positive, that is, the experiments A

and B are informationally dependent.

Examples 1. Note that the results of all calculations below are rounded up to the 7-th digit.
1) (Aspect’s experiment) µ1 = π

8 , µ2 = 3π
8 , ν1 = π

4 , ν2 = 0. Then we obtain cos(π
8 ) = 0.9238795,

cos( 3π
8 ) = 0.3826834, and therefore b(π

8 , 3π
8 , π

4 , 0) = 2.3889551. On the other hand, θ11 = θ12 =

θ21 = 1
2 sin2( π

16 ) = 0.0190301, e(θ11) = e(θ12) = e(θ21) = −0.0415353, θ22 = 1
2 sin2( 3π

16 ) =

0.154329, e(θ22) = −0.1084492. Hence we have I(A,B) = 0.1615415 and I(s)(A,B) = −0.2330551.
2) µ1 = π, µ2 = 2π

3 , ν1 = 0, ν2 = π
3 . Then we have b(π, 2π

3 , 0, π
3 ) = −2.5. On the other hand,

θ11 = 1
2 sin2(π

2 ) = 0.5, e(θ11) = 1, θ12 = θ21 = 1
2 sin2(π

3 ) =
3
8 = 0.375, e(θ12) = e(θ21) = 0.1887219,

θ22 = 1
2 sin2(π

6 ) =
1
8 = 0.125, e(θ22) = −0.1887219. Hence we obtain I(A,B) = 1.0855833 and

I(s)(A,B) = 1.1887219
3) µ1 = π

2 , µ2 = 0, ν1 = π
4 , ν2 = 3π

4 . Then b(π
2 , 0, π

4 , 3π
4 ) = 2

√
2. On the other hand, θ11 =

θ12 = θ21 = 1
2 sin2(π

8 ) = 0.0732233, e(θ11) = e(θ12) = e(θ21) = −0.3994425, θ22 = 1
2 sin2( 3π

16 ) =

0.154329, e(θ22) = −0.10844492. Hence we have I(A,B) = 0.9053727 and I(s)(A,B) = −0.22827767.
4) µ1 = π, µ2 = 0, ν1 = 0, ν2 = π. Then we have b(π, 0, 0,−π) = 2. On the other hand,

θ11 = θ22 = 1
2 sin2(π

2 ) = 0.5, e(θ11) = e(θ22) = 1, θ12 = θ21 = 1
2 sin2(0) = 0, e(θ12) = e(θ21) = −1.

Therefore we obtain I(A,B) = 4 ln 2 = 2.7725887 = max I(A,B) and I(s)(A,B) = 0.
5) µ1 = 5π

6 , µ2 = 2π
3 , ν1 = π

3 , ν2 = π
2 . In this case we have b( 5π

6 , 2π
3 , π

3 , π
2 ) = 1 −

√
3

2 .
On the other hand, θ11 = 1

2 sin2(π
4 ) = 1

4 , e(θ11) = 0, θ12 = θ21 = 1
2 sin2(π

6 ) = 1
8 , e(θ12) =

e(θ21) = −0.1887219, θ22 = 1
2 sin2( π

12 ) = 0.0334936, e(θ22) = −0.6453728. Hence we have
I(A,B) = 0.7089624 and I(s)(A,B) = −0.267929.

6) The link
http://www.math.bas.bg/algebra/valentiniliev/

contains a Java experimental implementation "dependencemeasurements2" depending on five
parameters: an non-negative integer n and four real numbers µ1, µ2, ν1, ν2 from the closed interval
[0, π]. One can also find the description of this program at the above link.

Examples 1 and, especially, example 6), yield that the relations between I(A,B) and b, and
I(s)(A,B) and b seem to be random. Below we present an attempt to explain the uncertainty of
this relation by refereing to [6, 5.4, 5.5]. We define the events

U = {(µ1, µ2, ν1, ν2) ∈ [0, π]4||b(µ1, µ2, ν1, ν2)| ≤ 2},

V = {(µ1, µ2, ν1, ν2) ∈ [0, π]4|I(A,B)(µ1, µ2, ν1, ν2) ∈ [0, 2 ln 2]},

VS = {(µ1, µ2, ν1, ν2) ∈ [0, π]4|I(s)(A,B)(µ1, µ2, ν1, ν2) ∈ [0, 4 ln 2]},

with complements Uc, Vc, and VSc in [0, π]4. We suppose that the probabilities α = pr(U),
β = pr(V), and β(s) = pr(VS) in the sample space [0, π]4 furnished with normalized Borel
measure are known. The probabilities τ = pr(U ∩ V) and τ(s) = pr(U ∩ VS) run through
the closed intervals I(α, β) = [max(0, α + β− 1), min(α, β)] and I(α, β(s)), respectively. In case
τ = min(α, β)] (respectively, τ(s) = min(α, β(s))]) there exists a relation of inclusion (up to
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a set of probability 0) between U and V (respectively, between U and VS). Otherwise, both
conditional probabilities pr(Vc|U) and pr(V|Uc) (respectively, pr(VSc|U) and pr(VS|Uc)) can
not be simultaneously as small as one wants (a kind of uncertainty principle).

Remark 1. The probabilities α = pr(U), β = pr(V), τ = pr(U ∩V), and τ(s) = pr(U ∩VS) can
be approximated by using Examples 1, 6). We draw a random sample X of size n from the
sample space [0, π]4 and consider X as a sample space with n equally likely outcomes. Then

the probabilities α̂(n), β̂(n), τ̂(n), and τ̂(s)(n) of the traces of U,V, U ∩V, and U ∩VS on X (the
sample proportions) are unbiased estimators for α, β, τ, and τ(s) when n is large.

Note that as an output of n iterations of the random process from example 6) we can
also find: a) the approximation [L(n), J(n)] of the range of I(A,B) and the approximation
[LS(n), JS(n)] of the range of I(s)(A,B) under the condition |b| ≤ 2, b) the above sample

proportions, and c) the approximations pr(Vc|U)(n) = α̂(n)−τ̂(n)
α̂(n) , pr(V|Uc)(n) = β̂(n)−τ̂(n)

1−α̂(n) , and

pr(VSc|U)(n) = α̂(n)−τ̂(s)(n)
α̂(n) , pr(VS|Uc)(n) = β̂(s)(n)−τ̂(s)(n)

1−α̂(n) .
Below are the results obtained by drawing a random sample of size n = 1000:

α̂(1000) = 0.838, β̂(1000) = 0.704, τ̂(1000) = 0.614, τ̂(s)(1000) = 0.087, pr(Vc|U)(1000) =
0.2673031, pr(V|Uc)(1000) = 0.5555555, pr(VSc|U)(1000) = 0.8961814, pr(VS|Uc)(1000) =
0.0185185.
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