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Abstract 

Aim of the present paper is to find suitable model for bimodal data. We have modelled mixture of 

two Weibull distributions in the presence of competing risks and also used Epanechnikov kernel 

to estimate hazard and survival functions. We considered prostate cancer data for application of 

the mixture model and kernel. We used maximum likelihood estimation (MLE) to estimate 

parameters of the mixture model, as the equations have no closed form, so we considered 

expectation–maximization (EM) algorithm.  The mixture model and kernel gave good fit to the 

bimodal data. The prostate cancer data consists of three causes, we have estimated hazard function 

for these three causes using mixture model and kernel. The asymptotic confidence interval for the 

parameters of mixture model to all three causes were estimated. Also compared survival curve of 

mixture model with kernel and Kaplan-Meier survival curves for all the three causes. 

Keywords: Weibull mixture model, EM algorithm, kernel, hazard, bimodal. 

I. Introduction

The general Statistical analyses were different from survival analysis because of the presence of 
censoring. Basically, censoring means incomplete data. In survival analysis or medical studies, it is 
quite common that more than one cause of failure may be directed to a subject at the same time. It is 
required for an investigator to estimate a specific risk in the presence of other risk factors. In 
statistical literature, this process is known as the analysis of competing risks model. It is assumed, 
in the analysis of competing risks model, that data consist of a time to failure and an indicator 
denoting the cause of failure. In survival analysis our main objective is to estimate survival and 
hazard functions. Survival analysis can be done using parametric, non-parametric and Bayesian 
methods. For parametric approach we generally consider Weibull distribution because it has 
increasing, decreasing and constant hazard rate, but this distribution can be used when data is 
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unimodal. When we have bimodal data we cannot use the standard parametric lifetime 
distributions, in that case we can use mixture of distributions. For nonparametric approach we can 
consider the kernel method to estimate the hazard and survival functions.  

Many authors work on mixture of distributions and kernel based methods to estimate hazard 
and survival functions. Modelling of mixture of gamma, mixture of Weibull and mixture of log 
normal distributions for analysing the heterogeneous survival data was considered by [1], for that 
they have considered mice data and Lung cancer dataset. The mixture of two and three Weibull 
distributions was modelled and estimated the parameters using MLE and tested for best fit of the 
models by [2], and used five different examples to show the hazard and survival functions. A 
parametric mixture model of three different distributions was used to analyse heterogeneous 
survival data by [3]. They have simulated the data and estimated the parameters using expectation-
maximization (EM) algorithm and also compared individual distribution like exponential, gamma 
and Weibull with the mixture of these three distributions. Similarly, many authors have worked on 
mixture models ([4], [5], [6]). Estimation of the hazard function and its associated factors in gastric 
cancer patients using Wavelet and kernel smoothing methods was carried out by [7]. Repeated time 
to event models to characterize the repeated occurrence of clinical events and visualization of kernel 
based hazard with comparison to Weibull and Gompertz models was considered by [8]. (see also 
[9], [10]). 

In present paper, we are considering estimation of density, hazard and survival functions using 
Epanechnikov kernel and mixture of two Weibull distributions. For estimation we are consider the 
prostate cancer data which is bimodal given in [11]. Generally, for bimodal data it is not appropriate 
to use standard parametric lifetime distributions but mixtures of those distributions are suitable for 
bimodal. Here we are considering two cases, case-I consists of estimation of hazard and survival 
function using mixture of two Weibull distributions and case-II considers kernel method of 
estimation. 

II. Methods

2.1    Case-I: Mixture of two Weibull distribution 

Now we are considering a parametric approach using mixture of two Weibull distributions. The 
study considers fitting of bimodal data to the mixture of Weibull distributions in presence of 
competing risks and calculation of the hazard and survival functions. The functional form of mixture 
distribution is given below. 

Let 𝑇1, 𝑇2, … , 𝑇𝑛 be the failure time of n patients where 𝑇𝑖 ∈ (0, 𝑡] , 𝑖 = 1,2, … , 𝑛 if we consider k 
competing events then 𝑇𝑖𝑗 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑡ℎ𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑗𝑡ℎ𝑐𝑎𝑢𝑠𝑒. Each patient fail due to only
one cause 𝑇𝑖 = min (𝑇𝑖1, 𝑇𝑖2, … , 𝑇𝑖𝑘) . Let us consider C be the censoring time such that  𝑇𝑖𝑗 =

min (𝑇𝑖𝑗 , 𝐶). Let 𝐹(𝑡) be the cumulative distribution function (CDF) and 𝑓(𝑡) be probability 
distribution function and ℎ(𝑡) and 𝑆(𝑡) be hazard and survival function at time t. 

𝐹(𝑡) = 1 − (𝜋1𝑒
−𝛼𝑡𝛾

+ 𝜋2𝑒
−𝛽𝑡𝜆

)                                                           (1)

𝑓(𝑡) = 𝜋1𝛼𝛾𝑡𝛾−1𝑒−𝛼𝑡𝛾
+ 𝜋2𝛽𝜆𝑡𝜆−1𝑒−𝛽𝑡𝜆  (2) 

𝑆(𝑡) = 1 − 𝐹(𝑡) 

𝑆(𝑡) = 𝜋1𝑒
−𝛼𝑡𝛾

+ 𝜋2𝑒
−𝛽𝑡𝜆 (3)
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ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝜋1𝛼𝛾𝑡𝛾−1𝑒−𝛼𝑡𝛾+𝜋2𝛽𝜆𝑡𝜆−1𝑒−𝛽𝑡𝜆

𝜋1𝑒−𝛼𝑡𝛾+𝜋2𝑒−𝛽𝑡𝜆
 (4) 

Here 𝜋1and 𝜋2 be the weights such that 𝜋1 + 𝜋2 = 1 

And 𝛼 and 𝛾 be scale and shape parameters with weight 𝜋1and 𝛽 and 𝜆 be scale and shape 
parameters with weight 𝜋2. 

Likelihood function L is given as 

𝐿 = ∏ 𝑓(𝑥𝑖)

𝑛

𝑖=1

 

𝐿 = ∏(𝜋1𝛼𝛾𝑡𝑖
𝛾−1

𝑒−𝛼𝑡𝑖
𝛾

+ 𝜋2𝛽𝜆𝑡𝑖
𝜆−1𝑒−𝛽𝑡𝑖

𝜆
)

𝑛

𝑖=1

Now the likelihood function in terms of competing risks can be given as 

𝛿𝑖𝑗 = (
1  𝑖𝑡ℎ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑓𝑎𝑖𝑙 𝑑𝑢𝑒 𝑡𝑜 𝑗𝑡ℎ  𝑐𝑎𝑢𝑠𝑒, 𝑗 = 1,2, … … , 𝑘

0  𝑖𝑡ℎ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑓𝑎𝑖𝑙 𝑑𝑢𝑒 𝑡𝑜 𝑗𝑡ℎ𝑐𝑎𝑢𝑠𝑒 (𝐶𝑒𝑛𝑠𝑜𝑟𝑒𝑑)

𝐿 =  ∏ ∏(𝑓𝑗(𝑡𝑖))
𝛿𝑖𝑗

𝑘

𝑗=1

𝑛

𝑖=1

𝑆(𝑡𝑖)
1−𝛿𝑖𝑗

     L=∏ ∏ (ℎ𝑗(𝑡𝑖))
𝛿𝑖𝑗𝑘

𝑗=1
𝑛
𝑖=1 𝑆(𝑡𝑖)     (5) 

Now the log likelihood of equation (5) can be written as, 

𝑙 = 𝑙𝑜𝑔𝐿 = ∑∑ ((𝛿𝑖𝑗 ∗ log (ℎ𝑗(𝑡𝑖))) + log(𝑆(𝑡𝑖)))
𝑘

𝑗=1

𝑛

𝑖=1

 

𝑙 = ∑∑

(

(𝛿𝑖𝑗 ∗ log(
𝜋1𝛼𝑗𝛾𝑗𝑡𝑖

𝛾𝑗−1
𝑒−𝛼𝑗𝑡𝑖

𝛾𝑖
+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖

𝜆𝑗−1
𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

𝜋1𝑒
−𝛼𝑗 𝑡𝑖 

𝛾𝑗
+ 𝜋2𝑒

−𝛽𝑗𝑡𝑖

𝜆𝑗
)) + log (𝜋1𝑒

−𝛼𝑗𝑡𝑖

𝛾𝑗

+ 𝜋2𝑒
−𝛽𝑗𝑡𝑖

𝜆𝑗

)

)

𝑘

𝑗=1

𝑛

𝑖=1

𝑙 = ∑ ∑ ((𝛿𝑖𝑗 (log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

) − log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+𝑘
𝑗=1

𝑛
𝑖=1

𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

))) + log (𝜋1𝑒
−𝛼𝑗𝑡𝑖

𝛾𝑗

+ 𝜋2𝑒
−𝛽𝑗𝑡𝑖

𝜆𝑗

))              (6) 

 For cause 𝑗 we can write log likelihood as 

𝑙𝑗 = ∑ (log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

)) 
𝑛𝑗

𝑖=1

− ∑log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

)

𝑛𝑗

𝑖=1

+ ∑log (𝜋1𝑒
−𝛼𝑗𝑡𝑖

𝛾𝑗

+ 𝜋2𝑒
−𝛽𝑗𝑡𝑖

𝜆𝑗

)

𝑛

𝑖=1

 

          (7) 
Now estimating the parameter values using MLE, and it is obtained by first order partial derivatives 
with respect to each parameter and equating to zero. But these equations do not have closed form, 
so to estimate the parameter values we consider numerical estimation that is Newton-Raphson 
method or we can use expectation–maximization (EM) algorithm. The first order partial derivatives 
are given in Appendix. 
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2.1.1    Expectation–Maximization (EM) Algorithm 

The EM algorithm is a powerful iterative method used for finding maximum likelihood estimates or 
maximum a posteriori estimates in statistical models where the data is incomplete or contains latent 
variables. The EM algorithm consists of an-expectation step (E-step), and a maximization step (M-
step). The advantage of the EM algorithm is that it solves a difficult incomplete-data problem by 
constructing two easy steps. The E-step only needs to compute the conditional expectation of the 
log-likelihood with respect to the incomplete data, given the observed data. The M-step needs to 
find the maximizer of this expected likelihood. An additional advantage of this method compared 
to other optimization techniques is that it is very simple, and it converges reliably [12]. Let 𝑌 be the 
observed data and 𝑋 be the missing data. We also write 𝑙, 𝑙𝑐 and 𝑙𝑚 for the log-likelihoods based on 
the observed, complete and missing data distributions respectively. The EM algorithm consists of 
iterating two steps. First is the expectation, or “E”, step, in which an objective function is constructed 
from the complete data likelihood. Second is the maximization, or “M”, step, in which the previously 
computed objective function is maximized. These two steps are then alternated until some 
convergence criterion is met [13]. Whatever value of 𝜃 the algorithm converges to and is used as our 
parameter estimate. 

The E-step of the EM algorithm consists of computing the conditional expectation of the 
complete data likelihood, given the observed data. That is, the objective function at iteration 𝑘 is 
given by 

𝑄(𝜃|𝜃𝑘−1) = 𝐸𝜃𝑘−1
(𝑙𝑐(𝜃; 𝑦, 𝑋)|𝑌 = 𝑦)  (8) 

Where 𝜃𝑘−1 is the parameter estimate obtained from the previous iteration. 

The M-step of the EM algorithm consists of maximizing the objective function constructed in the 
previous E-step. That is, we define 𝜃𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄(𝜃|𝜃𝑘−1). Typically, this optimization must be 
performed numerically via, e.g., gradient ascent or the Newton-Raphson algorithm. In fact, it is 
possible to divide the set of parameters into groups (possibly with each group containing a single 
parameter) and optimize over each group individually with the others held fixed. This is called the 
Expectation-Conditional Maximization, or ECM, algorithm. Notationally, we can combine the E and 
M-steps of the EM algorithm into a single “update function”. We write 𝑀(𝜃𝑘−1) =

𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄(𝜃|𝜃𝑘−1). The EM algorithm can thus be viewed as the iterative application of this update
function, 𝑀.

2.1.2    Asymptotic Confidence Bounds 

The MLE’s do not have closed form to know the distribution to calculate confidence intervals, in 
such a case we go with asymptotic distribution of the MLE of the parameters [14]. It is known that 
the asymptotic distribution of the MLE �̂� is given by  

(�̂� − 𝜃) → 𝑁4(0, 𝐼−1(𝜃))

Where 𝐼−1(𝜃) → Fisher information matrix of the unknown parameters 

𝜃 = (𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛽3, 𝛾1, 𝛾2, 𝛾3, 𝜆1, 𝜆2, 𝜆3) . 

The elements of the 4 𝑋 4 matrix of 𝐼−1(. ),  are approximated by 𝐼𝑖𝑗(�̂�),
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where 

𝐼𝑖𝑗(�̂�) = −
𝜕2𝑙(𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗

|
𝜃=�̂�

 Where, �̂� = (𝛼1̂, 𝛼2̂, 𝛼3̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛾1̂, 𝛾2̂, 𝛾3̂, 𝜆1̂, 𝜆2̂, 𝜆3̂)  estimated parameters.

Now information matrix can be written as, 

𝜕2𝑙(𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
=

[

𝜕2𝑙

𝜕 𝛼𝑗
2

𝜕2𝑙

𝜕𝛼𝑗𝜕𝛽𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝛾𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝛽𝑗

𝜕2𝑙

𝜕 𝛽𝑗
2

𝜕2𝑙

𝜕𝛽𝑗𝜕𝛾𝑗

𝜕2𝑙

𝜕𝛽𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝛾𝑗

𝜕2𝑙

𝜕𝛽𝑗𝜕𝛾𝑗

𝜕2𝑙

𝜕 𝛾𝑗
2

𝜕2𝑙

𝜕𝛾𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛽𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛾𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕 𝜆𝑗
2 ]

 (9) 

The elements of the fisher information matrix are given in Appendix. 

Therefore, the approximate 100(1 − 𝛾)% two-sided, confidence interval for 𝜃 is given by 

   �̂� ± 𝑍𝛾/2 √ 𝐼−1(�̂�)            (10) 

Here 𝑍𝛾/2is the upper 𝛾/2 th percentile of a standard normal distribution. 

2.2    Case-II: Kernel density Estimation 

A kernel is a weight function of observation on 𝑥 and scaling parameter ℎ which is called as the 
Bandwidth. The scaled distances obtained at a point 𝑥 is used to compute kernel density at that 
point. The kernel density function is regarded as probability density [8]. The estimator to estimate 
density is given by,  

𝑓(𝑢) =
1

𝑛
∑ 𝐾(𝑢)

𝑛

𝑖=1

 

Where, 𝐾(. )  → Kernel Function 
The kernel function has the following properties viz,. 

𝐾(𝑢) ≥ 0, for all u 

∫𝐾(𝑢)𝑑𝑢 = 1 (normalization) 

𝐾(−𝑢) = 𝐾(𝑢) (symmetry) 

∫𝑢 𝐾(𝑢) 𝑑𝑢 = 0 

And  ∫𝑢2 𝐾(𝑢) ≠ 0 

Using the kernels we can estimate the survival and hazard functions. In general, to obtaining 
pattern for rate of failure the hazard curve is more obvious than survival curve. Hazard rate 
functions can be used for several statistical analysis in medicine, engineering and economics. For 
instance, hazard function commonly used when presenting results in clinical trials involving 
survival data. Several methods for hazard function estimation have been considered in the literature 
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([7], [9],[10]). Hazard function estimation by nonparametric methods has an advantage in flexibility 
because no formal assumptions are made about the mechanism that generates the sample order or 
the randomness [15]. There are many kernels in the literature say, Uniform, Triangle, Epanechnikov, 
Quartic, Triweight, Gaussian, Cosine etc. Now for our study we consider the Epanechnikov kernel 
[16].  

𝐾(𝑢) =
3

4
(1 − 𝑢2)I(|u| ≤ 1) 

By considering 𝑢 =
𝑡−𝑋𝑖

𝑏

Then kernel becomes 

𝐾𝑏(𝑡) =
3

4𝑏
(1 − (

𝑡−𝑋𝑖

𝑏
)

2

)  I(|
t−Xi

b
| ≤ 1)          (11) 

Where, 𝑏 is the bandwidth , 𝑛 is the number of observation, 𝑋𝑖  is the given observation and  𝑡  is the 
point where kernels are calculated. 

From this kernel many bumps are formed and summing the bumps gives us the density function. 

The kernel density function is given by, 

𝑓�̂�(𝑡) =
1

𝑛𝑏
∑ 𝐾 (

𝑡 − 𝑋𝑖

𝑏
)

𝑛

𝑖=1

 

𝑓�̂�(𝑡) =
1

𝑛𝑏
∑

3

4

𝑛

𝑖=1

(1 − (
𝑡 − 𝑋𝑖

𝑏
)

2

)  I (|
t − Xi

b
| ≤ 1) 

The estimation of the CDF, 𝐹�̂� is constructed by integrating 𝑓�̂� . That is

𝐹�̂�(𝑡) = ∫ 𝑓�̂�(𝑥)
𝑡

−∞

𝑑𝑥 =
1

𝑛
∑ 𝐾(

𝑡 − 𝑋𝑖

𝑏
)

𝑛

𝑖=1

 

Where, 𝐾(𝑡) = ∫ 𝐾(𝑥)𝑑𝑥
𝑡

−∞
 

Estimation of hazard function using kernel [17], 

ℎ̂(𝑡) =
1

𝑏
∑ 𝐾 (

𝑡−𝑋𝑖

𝑏
)𝑛

𝑖=1 ∆Λ̂(𝑡𝑖)     (12) 

 Where, 𝑛 is the number of failure times, 𝑏 is the bandwidth, Λ̂(𝑡) is the Nelson-Aalen estimator of 
the cumulative hazard function. 

2.2.1    Nelson-Aalen estimator of cumulative hazard function 

Let the hazard function be, 

ℎ(t) = lim
𝑙→0

1

𝑙
𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝑙/𝑇 ≥ 𝑡) =

𝑓(𝑡)

𝑆(𝑡)

where 𝑓(𝑡) be density function and 𝑆(𝑡) be survival function, and the survival function in terms of 
hazard function can be expressed as, 

𝑆(𝑡) = 𝑒−∫ ℎ(𝑢)
𝑡
0 𝑑𝑢
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Now the cause specific hazard function be given by, 

ℎ𝑗(t)= lim
𝑙→0

1

𝑙
𝑝(𝑡 ≤ 𝑇 < 𝑡 + 𝑙, 𝐽 = 𝑗 /𝑇 ≥ 𝑡) 

ℎ(𝑡) = ∑ℎ𝑗(𝑡)

𝐽

𝑗=1

 

And the cumulative cause specific hazard function be given by 

Λ(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0

 

And cause specific Nelson-Aalen estimator of the cumulative hazard [18] is given by, 

Λj(𝑡) = ∑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑜 𝑓𝑎𝑖𝑙 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑎𝑢𝑠𝑒 𝑗 𝑎𝑡 𝑡𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑗𝑢𝑠𝑡 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑡𝑘

𝐾

𝑘=1

2.2.2    Selection of the Bandwidth 

Important thing in the kernel density estimation is selection of the bandwidth. We calculate 
bandwidth using Silverman’s Rule [19]. That is 

�̂� =
1.06∗�̂�

𝑛
1
5

  (13) 

Where,  �̂� is the sample standard deviation. 

2.2.3   Kaplan-Meier (K-M) Estimator 

The Kaplan-Meier estimator known as the product limit estimator is a non-parametric statistic used 
to estimate the survival function from lifetime data [20]. An important benefit of the Kaplan–Meier 
curve is that, the method can take into account some types of censored data, particularly right-
censoring, which occurs if a patient withdraws from a study, or is lost due to follow-up, or is alive 
without event incidence at last follow-up. The Kaplan-Meier estimate is an easiest way of computing 
survival over time. The Kaplan Meier estimator of survival function is defined as 

�̂�(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖

)

𝑖:𝑡𝑖<𝑡

 

Where 𝑡𝑖is the failure time, 𝑑𝑖is the number of events that occurs at time 𝑡𝑖and 𝑛𝑖  is the number 
individuals at risk of experiencing the event immediately prior to 𝑡𝑖. 

III. Results

The prostate cancer data consists of 489 patients, 25.5% of them are failed due to cancer, 19% failed 
due to CVD and 25.74% failed due to other causes and rest of the data were censored. Median failure 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

460



A. M. Rangoli, A. S. Talawar
ESTIMATION OF HAZARD AND SURVIVAL FUNCTION
FOR COMPETING RISKS
time for cancer patients is 23 months and for CVD patients 20.5 months and for other causes 24 
months. 

From figure 1 we can see that our data is bimodal, to fit this data, we used mixture of two 
Weibull distributions (black line) and the kernel density estimation (red line). Figure 2 explains the 
hazard curves for three different causes cancer, CVD and other causes. Here we can see that for 
cause cancer and CVD the hazard initially increases till 30 months then decreases. For other causes 
the hazard increases-decreases-increases, so we can say that, the hazard function is non-monotonic. 
Figure 3 explains the survival curve of three causes using kernel, mixture model and Kaplan-Meier 
survival functions. Here we can observe that kernel and mixture model survival curves are close to 
each other. For all three causes Kaplan-Meier survival curve has less probability of surviving as 
compared to the kernel and mixture model. Table 1 shows the estimated parameter values using 
MLE by considering EM algorithm. Table 2 gives the estimated parameter values with their 
corresponding standard error and confidence limits.  

Figure 1: Histogram of the data with fitted Mixture of Weibull distribution and Epanechmikov kernel. 

Figure 2: Hazard curves using mixture model and kernel for three causes

Figure 3: Survival curves using mixture model, kernel and Kaplan-Meier for three causes
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Table 1: Estimated parameter values for three causes 

Parameter Cancer CVD Other Causes 

𝜋1 0.8155268 0.810495 0.9224448 
𝜋2 0.1844732 0.1895035 0.07755524 
𝛼 0.001494359 0.001097538 0.000103001 
𝛽 0.000370462 0.000076065 0.000848062 
𝛾 1.241094000 1.058928000 1.954219000 
𝜆 2.180196000 2.600613000 2.469943000 

Table 2: Estimated parameter values, standard error (SE), lower control limit (LCL) and upper control limit (UCL)

Causes Parameters SE LCL UCL 

Cancer 

𝛼 =0.001494359 0.000059337 0.001378061 0.001610657 

𝛽 =0.000370462 0.000006754 0.000357225 0.000383700 

𝛾 =1.241094000 0.004894528 1.231500902 1.250687098 

𝜆 =2.180196000 0.000420388 2.179372055 2.181019945 

CVD 

𝛼 =0.001097538 0.000139156 0.000824797 0.001370279 

𝛽 =0.000076065 0.000001373 0.000073374 0.000078756 

𝛾=1.058928000 0.000000469 1.058927081 1.058928919 

𝜆 =2.600613000 0.000187876 2.600244771 2.600981229 

Other 
causes 

𝛼 =0.000103001 0.000003077 0.000096969 0.000109032 

𝛽 =0.000848062 0.000022916 0.000803148 0.000892976 

𝛾 =1.954219000 0.000666012 1.952913641 1.955524359 

𝜆 =2.469943000 0.011053927 2.448277701 2.491608299 

IV. Discussions

From the study we conclude that, in real life situations with competing risks data, if data is bimodal 
we can use mixture of distributions or kernel methods to estimate hazard and survival functions. In 
this paper we have considered both approach to estimate hazard and survival function in presence 
of the competing risks. To estimate the parameters of the mixture models we have used MLE as it 
does not have closed form so we considered EM algorithm to estimate parameters of all three causes. 
We have also calculated the standard error and asymptotic confidence interval for all the parameters. 
All the estimated parameters are statistically significant at 5% level of significance. Here we can see 
that hazard function initially increases, then decreases and increases. For survival curve we have 
compared kernel, mixture model and Kaplan-Meier methods. So, when we have bimodal density, 
and having competing risks approach, the mixture model (as a parametric approach) is more 
appropriate or kernel method (as a nonparametric approach) is more appropriate to estimate hazard 
and survival functions. 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

462



A. M. Rangoli, A. S. Talawar
ESTIMATION OF HAZARD AND SURVIVAL FUNCTION
FOR COMPETING RISKS

Acknowledgment: The first author is thankful to Department of Science and Technology, 
innovation in science pursuit for inspired research (DST-INSPIRE) for financial support 
(Fellowship/2021/210203). 

  References 
[1] Erişoğlu, Ü., Erişoğlu, M., and Erol, H. (2011). A mixture model of two different

distributions approach to the analysis of heterogeneous survival data. International Journal of 

Computational and Mathematical Sciences, 5(2), 75-79. 
[2] Razali, A. M., and Al-Wakeel, A. A. (2013). Mixture Weibull distributions for fitting failure

times data. Applied Mathematics and Computation, 219(24), 11358-11364. 
[3] Mohammed, Y. A., Yatim, B., and Ismail, S. (2013). A simulation study of a parametric

mixture model of three different distributions to analyze heterogeneous survival data. Modern 

Applied Science, 7(7), 1-9. 
[4] Elmahdy, E. E. (2015). A new approach for Weibull modeling for reliability life data

analysis. Applied Mathematics and computation, 250, 708-720. 
[5] Larson, M. G., and Dinse, G. E. (1985). A mixture model for the regression analysis of

competing risks data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 34(3), 201-211. 
[6] Enogwe, S. U., Okereke, E. W., and Ibeh, G. C (2023). A Bimodal Extension of Suja

Distribution with Applications. Statistics and Applications  21(2), pp 155-173. 
[7] Ahmadi, A., Roudbari, M., Gohari, M. R., and Hosseini, B. (2012). Estimation of hazard

function and its associated factors in gastric cancer patients using wavelet and kernel smoothing 
methods. Asian Pacific journal of cancer prevention, 13(11), 5643-5646. 

[8] Goulooze, S. C., Välitalo, P. A., Knibbe, C. A., and Krekels, E. H. (2018). Kernel-based visual
hazard comparison (kbVHC): a simulation-free diagnostic for parametric repeated time-to-event 
models. The AAPS journal, 20, 1-11. 

[9] Hess, K. R., Serachitopol, D. M., and Brown, B. W. (1999). Hazard function estimators: a
simulation study. Statistics in medicine, 18(22), 3075-3088. 

[10] Klein, J. P., and Bajorunaite, R. (2003). Inference for competing risks. Handbook of

statistics, 23, 291-311. 
[11] Andrews, D. F., and Herzberg, A. M. (2012). Data: a collection of problems from many fields for

the student and research worker. Springer Science and Business Media. 
[12] Park, C. (2005). Parameter estimation of incomplete data in competing risks using the EM

algorithm. IEEE Transactions on Reliability, 54(2), 282-290. 
[13] Ruth, W. (2024). A review of Monte Carlo-based versions of the EM algorithm. arXiv

preprint arXiv:2401.00945. 
[14] Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. John Wiley and Sons,

New York. 
[15] Klein, J. P., and Moeschberger, M. L. (2003). Survival analysis: techniques for censored and

truncated data (Vol. 1230). New York: Springer. 
[16] Guedes, D. G. P., Cunha, E. E., & Lima, G. F. C. (2017). Genetic evaluation of age at first

calving from Brown Swiss cows through survival analysis. Archivos de zootecnia, 66(254), 247-255. 
[17] Heisey, D. M., and Patterson, B. R. (2006). A review of methods to estimate cause‐specific

mortality in presence of competing risks. The Journal of Wildlife Management, 70(6), 1544-1555. 
[18] Beyersmann, J., Allignol, A., and Schumacher, M. (2011). Competing risks and multistate

models with R. Springer Science and Business Media. 
[19] Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge.
[20] Kaplan, E. L. and Meier, P. (1958). Non-parametric estimation from incomplete

observation. Journal of American Statistical Association, 53, 457-481. 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

463



A. M. Rangoli, A. S. Talawar
ESTIMATION OF HAZARD AND SURVIVAL FUNCTION
FOR COMPETING RISKS

Appendix: 

The log likelihood function (7) for the mixture of two Weibull distribution in presence of 
competing risks is given as 

𝑙𝑗 = ∑ (log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

)) 
𝑛𝑗

𝑖=1
 − 

∑ log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

)
𝑛𝑗

𝑖=1
+ ∑ log (𝜋1𝑒

−𝛼𝑗𝑡𝑖

𝛾𝑗

+ 𝜋2𝑒
−𝛽𝑗𝑡𝑖

𝜆𝑗

)𝑛
𝑖=1  

Here we are considering first with cause 1, that is 𝐺1 stands for failure times for cause 1, so here 
𝑗 = 1. Similarly, we can consider cause 2 and 3 as G2 and G3 respectively. 
𝑒𝑎 = 𝑒−(𝛼∗(𝐺1𝛾)) ; 𝑒𝑏 = 𝑒−(𝛽∗(𝐺1𝜆)); 𝑒𝑎𝑎 = 𝑒−(𝛼∗(𝑥𝛾)); 𝑒𝑏𝑏 = 𝑒−(𝛽∗(𝑥𝜆)); 

𝑙𝑜𝑔𝑥2 = 𝑙𝑜𝑔(𝐺12) ; 𝑥2𝑔 = 𝐺12∗𝛾 ; 𝑥2𝑙 = 𝐺12∗𝜆; 𝑥𝑔1 = 𝐺1𝛾−1;  𝑥𝑙1 = 𝐺1𝜆−1 

𝑑𝑒𝑛𝑜1 = (𝑝1 ∗ 𝛼 ∗ 𝛾 ∗ 𝑥𝑔1 ∗ 𝑒𝑎) + (𝑝2 ∗ 𝛽 ∗ 𝜆 ∗ 𝑥𝑙1 ∗ 𝑒𝑏) 

𝑑𝑒𝑛𝑜2 = 𝑝1 ∗ 𝑒𝑎 + 𝑝2 ∗ 𝑒𝑏 

𝑑𝑒𝑛𝑜3 = 𝑝1 ∗ 𝑒𝑎𝑎 + 𝑝2 ∗ 𝑒𝑏𝑏 

𝑛𝑢𝑚𝑒1 = 𝑝1 ∗ 𝛾 ∗ 𝑥𝑔1 ∗ 𝑒𝑎 ∗ (1 − 𝛼 ∗ (𝐺1𝛾)) 

𝑛𝑢𝑚𝑒2 = 𝑝1 ∗ (𝐺1𝛾) ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒3 = 𝑝1 ∗ (𝑥𝛾) ∗ 𝑒𝑎𝑎 

𝑛𝑢𝑚𝑒𝑏1 = 𝑝2 ∗ 𝜆 ∗ 𝑥𝑙1 ∗ 𝑒𝑏 ∗ (1 − 𝛽 ∗ (𝐺1𝜆)) 

𝑛𝑢𝑚𝑒𝑏2 = 𝑝2 ∗ (𝐺1𝜆) ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑏3 = 𝑝2 ∗ (𝑥𝜆) ∗ 𝑒𝑏𝑏 

𝑛𝑢𝑚𝑒𝑔1 = 𝑝1 ∗ 𝛼 ∗ 𝑥𝑔1 ∗ 𝑒𝑎 ∗ (𝛾 ∗ 𝑙𝑜𝑔(𝐺1) + 1 − 𝛼 ∗ 𝑔 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1)) 

𝑛𝑢𝑚𝑒𝑔2 = 𝑝1 ∗ 𝛼 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1) ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒𝑔3 = 𝑝1 ∗ 𝛼 ∗ (𝑥𝛾) ∗ 𝑙𝑜𝑔(𝑥) ∗ 𝑒𝑎𝑎 

𝑛𝑢𝑚𝑒𝑙1 = 𝑝2 ∗ 𝑏 ∗ 𝑥𝑙1 ∗ 𝑒𝑏 ∗ (𝜆 ∗ 𝑙𝑜𝑔(𝐺1) + 1 − 𝛽 ∗ 𝜆 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1)) 

𝑛𝑢𝑚𝑒𝑙2 = 𝑝2 ∗ 𝛽 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1) ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑙3 = 𝑝2 ∗ 𝛽 ∗ (𝑥𝜆) ∗ 𝑙𝑜𝑔(𝑥) ∗ 𝑒𝑏𝑏 

𝑛𝑢𝑚𝑒𝑎1 = 𝑝1 ∗ 𝛾 ∗ 𝑥2𝑔 ∗ 𝛼 ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒𝑎2 = 𝑝1 ∗ 𝛾 ∗ 𝑥𝑔1 ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒𝑎3 = 𝑝1 ∗ (𝐺1𝛾) ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒𝑎4 = 𝑝1 ∗ (𝑥𝛾) ∗ 𝑒𝑎𝑎 

𝑛𝑢𝑚𝑒𝑏11 = 𝑝2 ∗ 𝜆 ∗ 𝑥2𝑙 ∗ 𝛽 ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑏22 = 𝑝2 ∗ 𝜆 ∗ 𝑥𝑙1 ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑏33 = 𝑝2 ∗ (𝐺1𝜆) ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑏44 = 𝑝2 ∗ (𝑥𝜆) ∗ 𝑒𝑏𝑏 

𝜕𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗

= ∑(
𝑛𝑢𝑚𝑒1

𝑑𝑒𝑛𝑜1
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒2

𝑑𝑒𝑛𝑜2
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒3

𝑑𝑒𝑛𝑜3
)

𝑛

𝑖=1
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𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗
2 = ∑(

(𝑑𝑒𝑛𝑜1 ∗ 𝑝1 ∗ 𝛾 ∗ 𝑥2𝑔 ∗ 𝑒𝑎 ∗ (−𝛼 − 2)) − (𝑛𝑢𝑚𝑒1 ∗ 𝑛𝑢𝑚𝑒1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑑𝑒𝑛𝑜2 ∗ 𝑝1 ∗ 𝑒𝑎 ∗ (−(𝐺12∗𝛾))) − (𝑛𝑢𝑚𝑒2 ∗ 𝑛𝑢𝑚𝑒2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑑𝑒𝑛𝑜3 ∗ 𝑝1 ∗ 𝑒𝑎𝑎 ∗ (−(𝑥2∗𝛾))) − (𝑛𝑢𝑚𝑒3 ∗ 𝑛𝑢𝑚𝑒3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑏1

𝑑𝑒𝑛𝑜1
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒𝑏2

𝑑𝑒𝑛𝑜2
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒𝑏3

𝑑𝑒𝑛𝑜3
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗
2 = 𝑠𝑢𝑚 ∑(

(𝑑𝑒𝑛𝑜1 ∗ 𝑝2 ∗ 𝜆 ∗ 𝑥2𝑙 ∗ 𝑒𝑏 ∗ (−𝛽 − 2)) − (𝑛𝑢𝑚𝑒𝑏1 ∗ 𝑛𝑢𝑚𝑒𝑏1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑑𝑒𝑛𝑜2 ∗ 𝑝2 ∗ 𝑒𝑏 ∗ (−(𝐺12∗𝜆))) − (𝑛𝑢𝑚𝑒𝑏2 ∗ 𝑛𝑢𝑚𝑒𝑏2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑑𝑒𝑛𝑜3 ∗ 𝑝2 ∗ 𝑒𝑏𝑏 ∗ (−(𝑥2∗𝜆))) − (𝑛𝑢𝑚𝑒𝑏3 ∗ 𝑛𝑢𝑚𝑒𝑏3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑔1

𝑑𝑒𝑛𝑜1
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒𝑔2

𝑑𝑒𝑛𝑜2
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒𝑔3

𝑑𝑒𝑛𝑜3
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗
2 = ∑ (

((𝑝1∗𝑑𝑒𝑛𝑜1∗𝛼∗𝑒𝑎∗𝑙𝑜𝑔(𝐺1)∗𝑥𝑔1∗(𝛾∗𝑙𝑜𝑔(𝐺1)+2−𝛾∗𝑙𝑜𝑔(𝐺1)∗𝛼∗(𝐺1𝛾)−𝛼∗(𝐺1𝛾)−𝛼∗𝛾∗(𝐺1𝛾)∗𝑙𝑜𝑔𝑥2−𝛼∗(𝐺1𝛾)−𝛼∗𝛾∗𝑥2𝑔))−(𝑛𝑢𝑚𝑒𝑔1 ∗𝑛𝑢𝑚𝑒𝑔1))

𝑑𝑒𝑛𝑜12 )
𝑛𝑗

𝑖=1
  +  

∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜2 ∗ 𝛼 ∗ ((𝑙𝑜𝑔(𝐺1))

2
) ∗ (𝐺1𝛾) ∗ 𝑒𝑎 ∗ (1 − 𝛼 ∗ 𝛾 ∗ (𝐺12∗𝛾))) − (𝑛𝑢𝑚𝑒𝑔2 ∗ 𝑛𝑢𝑚𝑒𝑔2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜3 ∗ 𝛼 ∗ ((𝑙𝑜𝑔(𝑥))

2
) ∗ (𝑥𝛾) ∗ 𝑒𝑎𝑎 ∗ (1 − 𝛼 ∗ 𝛾 ∗ (𝑥2∗𝛾))) − (𝑛𝑢𝑚𝑒𝑔3 ∗ 𝑛𝑢𝑚𝑒𝑔3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑙1

𝑑𝑒𝑛𝑜1
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒𝑙2

𝑑𝑒𝑛𝑜2
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒𝑙3

𝑑𝑒𝑛𝑜3
)

𝑛

𝑖=1

  

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗
2 = ∑ (

(𝑝2∗𝑑𝑒𝑛𝑜1∗𝛽∗𝑒𝑏∗𝑙𝑜𝑔(𝐺1)∗𝑥𝑙1∗(𝜆∗𝑙𝑜𝑔(𝐺1)+2−𝜆∗𝑙𝑜𝑔(𝐺1)∗𝛽∗(𝐺1𝜆)−𝛽∗(𝐺1𝜆)−𝛽∗𝜆∗(𝐺1𝜆)∗𝑙𝑜𝑔𝑥2−𝛽∗(𝐺1𝜆)−𝛽∗𝜆∗𝑥2𝑙))−(𝑛𝑢𝑚𝑒𝑙1∗𝑛𝑢𝑚𝑒𝑙1)

𝑑𝑒𝑛𝑜12 )
𝑛𝑗

𝑖=1
 +  

 ∑ (
(𝑝2∗𝑑𝑒𝑛𝑜2∗𝛽∗((𝑙𝑜𝑔(𝐺1))

2
)∗(𝐺1𝜆)∗𝑒𝑏∗(1−𝛽∗𝑙∗(𝐺12∗𝜆)))−(𝑛𝑢𝑚𝑒𝑙2∗𝑛𝑢𝑚𝑒𝑙2)

𝑑𝑒𝑛𝑜22 )
𝑛𝑗

𝑖=1
− 

∑(
(𝑝2 ∗ 𝑑𝑒𝑛𝑜3 ∗ 𝛽 ∗ ((𝑙𝑜𝑔(𝑥))

2
) ∗ (𝑥𝜆) ∗ 𝑒𝑏𝑏 ∗ (1 − 𝛽 ∗ 𝜆 ∗ (𝑥2∗𝑙))) − (𝑛𝑢𝑚𝑒𝑙3 ∗ 𝑛𝑢𝑚𝑒𝑙3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗𝛾𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗𝛼𝑗

= −∑(
(𝑑𝑒𝑛𝑜1 ∗ 𝑝1 ∗ 𝛼 ∗ 𝑥2𝑔 ∗ 𝑒𝑎 ∗ (𝛾 ∗ 𝑙𝑜𝑔(𝐺12) + 1 − 𝛼 ∗ 𝛾 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1))) − (𝑛𝑢𝑚𝑒𝑎1 ∗ 𝑛𝑢𝑚𝑒𝑔1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜1 ∗ 𝑥𝑔1 ∗ 𝑒𝑎 ∗ (𝛾 ∗ 𝑙𝑜𝑔(𝐺1) + 1 − 𝛼 ∗ 𝛾 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1))) − (𝑛𝑢𝑚𝑒𝑎2 ∗ 𝑛𝑢𝑚𝑒𝑔1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ 
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∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜2 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1) ∗ 𝑒𝑎 ∗ (1 − 𝛼 ∗ (𝐺1𝛾))) − (𝑛𝑢𝑚𝑒𝑎3 ∗ 𝑛𝑢𝑚𝑒𝑔2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜3 ∗ (𝑥𝛾) ∗ 𝑙𝑜𝑔(𝑥) ∗ 𝑒𝑎𝑎 ∗ (1 − 𝛼 ∗ (𝑥𝛾))) − (𝑛𝑢𝑚𝑒𝑎4 ∗ 𝑛𝑢𝑚𝑒𝑔3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗𝛽𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗𝜆𝑗

= −∑(
(𝑑𝑒𝑛𝑜1 ∗ 𝑝2 ∗ 𝛽 ∗ 𝑥2𝑙 ∗ 𝑒𝑏 ∗ (𝜆 ∗ 𝑙𝑜𝑔(𝐺12) + 1 − 𝛽 ∗ 𝜆 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1))) − (𝑛𝑢𝑚𝑒𝑏11 ∗ 𝑛𝑢𝑚𝑒𝑙1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑝2 ∗ 𝑑𝑒𝑛𝑜1 ∗ 𝑥𝑙1 ∗ 𝑒𝑏 ∗ (𝜆 ∗ 𝑙𝑜𝑔(𝐺1) + 1 − 𝛽 ∗ 𝜆 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1))) − (𝑛𝑢𝑚𝑒𝑏22 ∗ 𝑛𝑢𝑚𝑒𝑙1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑝2 ∗ 𝑑𝑒𝑛𝑜2 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1) ∗ 𝑒𝑏 ∗ (1 − 𝛽 ∗ (𝐺1𝜆))) − (𝑛𝑢𝑚𝑒𝑏33 ∗ 𝑛𝑢𝑚𝑒𝑙2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑝2 ∗ 𝑑𝑒𝑛𝑜3 ∗ (𝑥𝜆) ∗ 𝑙𝑜𝑔(𝑥) ∗ 𝑒𝑏𝑏 ∗ (1 − 𝛽 ∗ (𝑥𝜆))) − (𝑛𝑢𝑚𝑒𝑏44 ∗ 𝑛𝑢𝑚𝑒𝑙3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗𝛽𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗𝛼𝑗

= ∑(
𝑛𝑢𝑚𝑒1 ∗ 𝑛𝑢𝑚𝑒𝑏1

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒2 ∗ 𝑛𝑢𝑚𝑒𝑏2

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
𝑛𝑢𝑚𝑒3 ∗ 𝑛𝑢𝑚𝑒𝑏2

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗𝜆𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗𝛼𝑗

= ∑(
𝑛𝑢𝑚𝑒1 ∗ 𝑛𝑢𝑚𝑒𝑙1

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒2 ∗ 𝑛𝑢𝑚𝑒𝑙2

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
𝑛𝑢𝑚𝑒3 ∗ 𝑛𝑢𝑚𝑒𝑙3

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗𝛾𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗𝛽𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑏1 ∗ 𝑛𝑢𝑚𝑒𝑔1

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒𝑏2 ∗ 𝑛𝑢𝑚𝑒𝑔2

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
𝑛𝑢𝑚𝑒𝑏3 ∗ 𝑛𝑢𝑚𝑒𝑔3

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗𝜆𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗𝛾𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑔1 ∗ 𝑛𝑢𝑚𝑒𝑙1

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒𝑔2 ∗ 𝑛𝑢𝑚𝑒𝑙2

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

− 

∑(
𝑛𝑢𝑚𝑒𝑔3 ∗ 𝑛𝑢𝑚𝑒𝑙3

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1
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