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Abstract

This paper investigates a single-server queuing system with heterogeneous service, failure, and mainte-
nance. The proposed model features a server acting as both the main and backup server. System failure
can occur at any stage. When a failure happens, instead of stopping the service entirely, the main server
functions as a backup, providing service at a reduced rate. Once all jobs in the system have been serviced,
the backup server enters the maintenance state. Following the repair process during maintenance, the
server transitions to an idle state, awaiting incoming jobs. Explicit expressions for both transient and
steady-state behaviours of the system are derived. Additionally, key system performance metrics are
discussed in this paper, accompanied by graphical illustrations to visualize system size probabilities and
performance indices.

Keywords: Heterogeneous service; Generating function; Continued fraction; Modified Bessel
function, Time-dependent probabilities, Steady-state probabilities

1. Introduction

Queuing systems, fundamental to understanding the dynamics of service provision in various
domains, have traditionally been modelled under the assumption of homogeneity, where service
rates remain constant across servers. However, the real-world landscape presents a diverse array
of scenarios where servers exhibit heterogeneous characteristics, ranging from differing capacities
to varied processing speeds. This departure from homogeneity introduces complexities that
demand novel modelling approaches to accurately capture system behaviours. In this paper, we
delve into the realm of heterogeneous servers within queuing systems, focusing on the intricate
interplay between server diversity and system resilience. Our investigation aims to address
the challenges posed by system failures, a ubiquitous occurrence in service environments, by
proposing a resilient model where servers seamlessly transition between primary and backup
roles to ensure continuity of service provision. Specifically, we contribute to the literature by
analyzing a single-server queuing system providing two types of service: fast and slow. Instead
of halting service entirely during failure, our proposed model allows the server to transition into
a backup role and continue providing service at a reduced rate, thus minimizing downtime and
enhancing operational resilience.

Several authors have explored queuing systems with heterogeneous servers. For instance,
Kumar and Madheswari [8] utilized a Markovian queue model to investigate a system featuring
two servers with different characteristics and multiple vacation periods. Using the matrix
geometric method, they determined the stationary queue length distribution and average system
size for this setup. Krishnamoorthy and Sreenivasan [9] analyzed an M/M/2 queuing system
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with two servers of different types. One server remains continuously available, while the other
server goes on vacation when no customers are waiting for service. Upon returning from vacation,
the second server operates at a reduced rate if the first server is already busy. The authors
examined the system’s behaviour in a steady state using the matrix geometric method.

Efrosinin and Rykov [5] analyzed a multi-server system with heterogeneous exponential
queues. Their study demonstrates techniques for computing steady-state probabilities and deriv-
ing distributions for waiting and sojourn times. Efrosinin et al. [6] investigated a controllable
multi-server heterogeneous queueing system in which servers operate at different service rates
without preemption. Additionally, the authors have applied the concept of heterogeneity in
service to cloud centres. Wang et al. [13] introduced the concept of heterogeneous servers in cloud
centres to strike an optimal balance between expected response time and power consumption. By
incorporating servers with varying capabilities, they aimed to efficiently handle stochastically
arriving requests in cloud environments. From the literature survey, it is observed that many
authors have focused on utilizing two servers to provide heterogeneous service, with both servers
operating at different speeds. However, in this paper, we depart from this convention by consider-
ing a single server capable of providing two distinct services. For instance, imagine a modern
banking system where a single ATM offers both cash withdrawal and deposit services, catering
to the diverse needs of customers. This type of service is also applied in cloud computing. In a
cloud computing platform, a single virtual machine instance may be tasked with handling both
high-priority real-time data processing and lower-priority batch processing tasks. Additionally,
while traditional heterogeneous server models assume a fixed arrival rate, our proposed model
introduces heterogeneity in the arrival rate as well, reflecting real-world scenarios where incoming
requests vary in frequency and urgency.

In service systems, customers often experience heterogeneous service, which can stem from
various reasons. In this paper, we focus on addressing the challenges posed by system failures
resulting from technical anomalies, a scenario ubiquitous in real-world service environments.
System failures can occur due to several reasons such as negative customers [7], disaster ([3],
[11]) and catastrophes [4]. Ammar [2] investigated the two-processor heterogeneous system
with catastrophes, server failures and repairs. Sudhesh and Savitha studied three heterogeneous
systems with catastrophes. From the literature survey, it is observed that many authors have
considered that when a system encounters a disaster, all customers are removed from the system,
and the system switches to a failure state. After the repair process, the server switches to an idle
state and waits for customers to arrive.

In response to such disruptions, our proposed model incorporates a resilient mechanism
wherein the primary server seamlessly transitions into a backup role whenever a failure occurs.
During these periods of contingency, the backup server delivers service at a reduced rate, thereby
mitigating the impact of disruptions on service provision and maintaining a degree of continuity
for system users. Upon serving all customers in the system, the backup server switches to the
maintenance state, initiating necessary repairs to restore the system to full functionality. This
proactive approach to maintenance ensures the integrity and reliability of the system, minimizing
downtime and enhancing overall operational resilience. By integrating these aspects into our
queuing model, we aim to provide a comprehensive framework for analyzing and optimizing the
performance of service-oriented systems under diverse operating conditions. The objective of
this paper is to analyze a single-server queueing system where the server provides two types of
service: fast and slow. Instead of halting service entirely during failure, the server transitions
into a backup role and continues providing service at a reduced rate. Once all customers have
been served, the backup server switches to a maintenance state. Following maintenance, the
server returns to an idle state and waits for customers to arrive. To analyze this system, we derive
both transient and steady-state probabilities using Laplace transform and generating function
techniques.

This article is structured as follows: Section 2 presents the application of the proposed model.
Section 3 provides the model description. The time-dependent probabilities of the system are
discussed in Section 4, while Section 5 focuses on the performance measures of the system in the
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transient state. In Section 6, the steady-state probabilities are presented, followed by a discussion
on the performance indices of the system in the steady state in Section 7. A numerical illustration
of the system is provided in Section 8, and Section 9 offers the conclusion of the proposed work.

2. Application of the proposed system

The proposed system is applied in Disaster Recovery Systems, which are crucial components of
critical IT infrastructure such as data centres or cloud-based services where high availability is
essential. A disaster recovery system ensures business continuity and data integrity in the face of
unexpected events like hardware failures, natural disasters, or cyber-attacks. In this system, the
main server is responsible for handling regular operations and serving client requests. Meanwhile,
the backup server operates in a standby mode, continuously replicating data and configurations
from the active server to ensure that it remains up-to-date with the latest data.

In the event of a system failure on the main server, the backup server automatically takes over
the responsibilities of the main server in a process known as fail-over. This fail-over mechanism
may be triggered either manually or automatically by monitoring systems that detect the failure
of the main server. Once the main server is repaired and ready to operate again, it can resume its
regular duties, and the data changes that occurred during the fail-over period can be synchronized
back to the main server. The main server acting as a backup server in this context provides
redundancy and enhances the overall reliability of the system. It ensures that critical services and
applications remain available even during unexpected disruptions, thereby reducing downtime
and minimizing the impact on end-users or customers.

3. Model Description

Consider a system that consists of a single server acting as the main server and also a backup
server, providing different types of service. Whenever a failure occurs in the main server, the
backup server acts as the main server but with a slower service rate, denoted by µ2. Arrival
occurs to the main server according to a Poisson process with rate λ1, whereas arrivals occur
with rate λ2 when the backup server is active. Customers receive service at the main server
with exponential rate µ1, while the backup server has a reduced service rate µ2, where µ2 ≤ µ1.
Assume that failures of the main server occur at an exponential rate γ. Once the backup server
becomes idle, it promptly enters a state of preventive maintenance (state V), characterized by
an exponentially distributed duration with a mean of 1/ξ. Throughout the maintenance period,
customers are prohibited from entering the system. The moment the server’s maintenance is
finished, it promptly transitions back to the primary processor and becomes prepared to attend
the new customers.

Let {N(t), M(t) : t ≥ 0} be the 2-dimensional continuous time Markov chain. Let {N (t) , t ≥ 0}
denote the number of customers in the system at any time t and {M (t) , t ≥ 0} represents the
state of the system at any time t with state space

S =
{
(0, 0) ∪

{
(n, r) , n ∈ Z+, r = 1, 2

}
∪ V

}
.

The state (0, 0) represents that the server is idle and waiting for customers to arrive. The state
(n, 1) represents the main server is busy and providing service to the nth customer. The state
(n, 2) represents the backup server is busy and providing service to the nth customer. The state
V represents the server is in a maintenance state and the server is inoperative in this state. Let
Pn,r (t) = P {N (t) = n, M (t) = r} be the probability that the server is in state r with n number
of customers in the system at any time t and let PV (t) denote the probability that the server is in
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maintenance state. Then Pn,r (t) and PV (t) satisfies the following forward Kolmogorov equations

P
′
V(t) = −ξPV(t) + µ2P1,2(t), (1)

P
′
0,0(t) = −λ1P0,0(t) + ξPV(t) + µ1P1,1(t), (2)

P
′
1,1(t) = −(λ1 + µ1 + γ)P1,1(t) + λ1P0,0(t) + µ1P2,1(t), (3)

P
′
n,1(t) = −(λ1 + µ1 + γ)Pn,1(t) + λ1Pn−1,1(t) + µ1Pn+1,1(t), n ≥ 2, (4)

P
′
1,2(t) = −(λ2 + µ2)P1,2(t) + µ2P2,2(t) + γP1,1(t), (5)

P
′
n,2(t) = −(λ2 + µ2)Pn,2(t) + λ2Pn−1,2(t) + µ2Pn+1,2(t) + γPn,1(t), n ≥ 2. (6)

with the initial condition P0,0(0) = 1.

4. Time-dependent probabilities

This section presents the time-dependent probabilities of the system being busy when the main
server is active, denoted as Pn,1(t), when the backup server is active, denoted as Pn,2(t), during
maintenance, denoted as PV(t), and in the idle state, denoted as P0,0(t).

4.1. Evaluation of Pn,1(t)

This section presents the time-dependent probability of the system being busy when the main
server is active. Let P̂n,r(s) denote the Laplace transform of Pn,r (t). Taking Laplace Transform on
Equation (4) and rearranging, we get

P̂n,1(s)
P̂n−1,1(s)

=
λ1

(s + λ1 + µ1 + γ)− µ1
P̂n+1,1(s)

P̂n,1(s)

.

On simplification, we obtain

P̂n,1(s) = β1

 p1 −
√

p2
1 − α2

1

α1

 P̂n−1,1(s).

The above equation recursively yields

P̂n,1(s) = β1
(n−1)

 p1 −
√

p2
1 − α2

1

α1

(n−1)

P̂1,1(s), n ≥ 2, (7)

where

p1 = s + λ1 + µ1 + γ, α1 = 2
√

λ1µ1, β1 =

√
λ1

µ1
.

Taking inverse Laplace transform on Equation (7), we get

Pn,1(t) = λ1βn−2
1 e−(λ1+µ1+γ)t [In−2(α1(t − u))− In(α1(t − u))] ∗ P1,1(t), (8)

where In(t) represents modified Bessel function of first kind of order n. Thus the probability
that the main server is busy Pn,1(t) is expressed in terms of P1,1(t). The expression for P1,1(t) is
presented in Equation (22)
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4.2. Evaluation of Pn,2(t)

To obtain the time-dependent probability of Pn,2(t), we define a generating function as follows.
Let

G(z, t) =
∞

∑
n=1

Pn,2(t)zn

Using Equations (5) and (6), we obtain

∂

∂t
G(z, t) =

[
−(2+µ2) + (2z +

µ2

z
)
]

G(z, t) + γ
∞

∑
n=1

Pn,1(t)zn − µ2P1,2(t). (9)

Solving Equation (9) yields,

G(z, t) = γ
∫ t

0

∞

∑
n=1

Pn,1(u)zne−(2+µ2)(t−u)e−(2z+ µ2
z )(t−u)du

− µ2

∫ t

0
P1,2(u)e−(2+µ2)(t−u)e−(2z+ µ2

z )(t−u)du. (10)

Let
α2 = 2

√
2µ2, β2 =

√
2

µ2
.

Then

e−(2z+ µ2
z )t =

∞

∑
n=−∞

(β2z)n In(α2t). (11)

Using Equation (11) in Equation (10) and equating the coefficient of zn, we arrive

Pn,2(t) = γ
∫ t

0

∞

∑
m=1

Pm,1(u)e−(2+µ2)(t−u)βn−m
2 In−m(α2(t − u))du

− µ2

∫ t

0
P1,2(u)e−(2+µ2)(t−u)βn

2 In(α2(t − u))du. (12)

The above holds for n ≤ −1 with the left-hand side replaced by zero. Using I−n(x) = In(x) for
n ≥ 1

0 = γ
∫ t

0

∞

∑
m=1

Pm,1(u)e−(2+µ2)(t−u)β−n−m
2 In+m(α2(t − u))du

− µ2

∫ t

0
P1,2(u)e−(2+µ2)(t−u)β−n

2 In(α2(t − u))du. (13)

From Equations(12) and (13), we get

Pn,2(t) = γ
∫ t

0

∞

∑
m=1

Pm,1(u)e−(2+µ2)(t−u)βn−m
2 [In−m(α2(t − u))− In+m(α2(t − u))du. (14)

4.3. Evaluation of PV(t) and P0,0(t)

This section presents the time-dependent probabilities of the maintenance state and idle state.
Taking Laplace transform on Equation (1), we obtain

P̂V(s) =
µ2

s + ξ
P̂1,2(s). (15)

On inversion, we get
PV(t) = µ2e−ξt ∗ P1,2(t).
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Taking Laplace transform on (2), we obtain

P̂0,0(s) =
1

s+1

[
1 + ξ P̂V(s) + µ1P̂1,1(s)

]
. (16)

On inversion, we have

P0,0(t) = e−1t ∗
[

δ(t) + ξPV(t) + µ1P1,1(t)
]

. (17)

Setting n = 1 in Equation (14) and taking Laplace transform, we get

P̂1,2(s) = Φ̂(s)P̂1,1(s), (18)

where

Φ̂(s) =
γ

2

∞

∑
m=1

βm−1
1 β2−m

2

 p1 −
√

p2
1 − α2

1

α1

m−1 p2 −
√

p2
2 − α2

2

α2

m

(19)

and
p2 = s + λ2 + µ2.

Inverting Equation (19), we get

Φ(t) = γλ1

∞

∑
m=1

βm−1
1 β1−m

2 e−(λ1+µ1+γ)t [Im−2(α1t)− Im(α1t)] ∗ e−(λ2+µ2)t

× [Im−1(α2t)− Im+1(α2t)] .

Taking Laplace Transform on (3), we get

P̂11(s) =
λ1

s + λ1 + µ1 + γ
P̂0,0(s) +

µ1

s + λ1 + µ1 + γ
P̂2,1(s). (20)

Setting n = 2 in Equation (7) and using Equations (16), (15), (18) in Equation (20), after some
algebra, we have

P̂1,1(s) = λ1

∞

∑
k=0

(µ1β1)
k

k

∑
r=0

(
λ1µ2

µ1β1

)r (k
r

)
1

(s + λ1)r+1

 p1 −
√

p2
1 − α2

1

α1

k−r
r

∑
j=0

ξ j
(

r
j

)(
Φ̂(s)
s + ξ

)j

.

(21)

On inversion

P1,1(t) =
λ2

1
β1

∞

∑
k=0

(µ1β1)
k

k

∑
r=0

(
λ1µ2

µ1β2

)r (k
r

)
e−λ1t tr

r!
∗ e−(λ1+µ1+γ)t [Ik−r−1(α1t)− Ik−r+1(α1t)]

∗
∞

∑
j=0

ξ j
(

r
j

)
e−ξt tj−1

(j − 1)!
∗ (Φ(t))∗j. (22)

5. Performance Measures

In this section, the expected system size and variance of the proposed model are presented.
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5.1. Expected system size

The expected system size, denoted as E(N(t)), is defined as follows.

E(N(t)) =
∞

∑
n=1

n (Pn,1(t) + Pn,2(t))

Using Equations (3) − (6), we get

d
dt

E[N(t)] = λ1P0,0(t) + (λ1 − µ1)
∞

∑
n=1

Pn,1(t) + (λ2 − µ2)
∞

∑
n=1

Pn,2(t).

Integrating,

E(N(t)) = λ1

∫ t

0
P0,0(u)du +

∞

∑
n=1

[∫ t

0
(λ1 − µ1)Pn,1(u)du +

∫ t

0
(λ2 − µ2)Pn,2(u)du

]
.

5.2. Variance

The variance of the number of customers at time t is defined as

V(N(t)) = E[N2(t)]− E(N(t))2

where

E[N2(t)] =
∞

∑
n=1

n2 [Pn,1(t) + Pn,2(t)]

Using Equations (3) − (6), we obtain

d
dt

E[N2(t)] = λ1P0,0(t) +
∞

∑
n=1

[
λ1(2n + 1)Pn,1(t) + µ1(1 − 2n)Pn,1(t) + λ2(2n + 1)Pn,2(t)

+ µ2(1 − 2n)Pn,2(t)

]
.

Integrating,

E[N2(t)] = λ1

∫ t

0
P0,0(u)du +

∞

∑
n=1

[
λ1(2n + 1)

∫ t

0
Pn,1(u)du + µ1(1 − 2n)

∫ t

0
Pn,1(u)du

+ λ2(2n + 1)
∫ t

0
Pn,2(u)du + µ2(1 − 2n)

∫ t

0
Pn,2(u)du

]
.

where Pn,1(t), Pn,2(t) and P0,0(t) are given in Equations (18), (14) and (17) respectively.

6. Stationary Analysis

This section presents the steady-state analysis of the proposed model. The steady-state equations
of the proposed model are as follows.

0 = −ξπM + µ2π1,2, , (23)

0 = −λ1π0,0 + ξπM + µ1π1,1, , (24)

0 = − (λ1 + µ1 + γ)π1,1 + λ1π0,0 + µ1π2,1, , (25)

0 = − (λ1 + µ1 + γ)πn,1 + λ1πn−1,1 + µ1πn+1,1, n = 2, 3, 4, ..., (26)

, 0 = − (λ2 + µ2)π1,2 + µ2π2,2 + γπ1,1, , (27)

0 = − (λ2 + µ2)πn,2 + λ2πn−1,2 + µ2πn+1,2 + γπn,1, n = 2, 3, 4, ...., (28)
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We define a generating function

Gi (z) =
∞

∑
n=1

πn,izn, i = 1, 2.

Using Equations (25) and (26) and summing for n = 1, 2, 3, ..., we get

G1 (z) =
z

(z − z1) (z − z̄1)
{µ1π1,1 − λ1π0,0z} (29)

where

z1 =
(λ1 + µ1 + γ) +

√
(λ1 + µ1 + γ)2 − 4λ1µ1

2λ1
,

z̄1 =
(λ1 + µ1 + γ)−

√
(λ1 + µ1 + γ)2 − 4λ1µ1

2λ1
.

It is noted that for λ1 > 0, µ1 > 0, γ > 0, the roots z1 > 1, 0 < z̄1 < 1. Setting z = z̄1 in Equation
(29), we obtain

G1 (z) =
∞

∑
n=1

(
z
z1

)n
λ1π0,0

Comparing the coefficient of zn in the above expression, we obtain

πn,1 = λ1

(
1
z1

)n
π0,0 (30)

Similarly, using Equations (27) and (28) and summing for n = 1, 2, 3, ..., we get

G2 (z) =
zλ2

(zλ2 − µ2) (z − 1)
{µ2π1,2 − γG1 (z)} (31)

Setting z = 1 in (31), after some algebraic manipulation, we get

G2 (z) =
γλ1λ2z

µ2

(
1 − λ2

µ2

)
(1 − z)

[
∞

∑
n=1

(
1
z1

)n
−

∞

∑
n=1

(
z
z1

)n
]

π0,0

Using Equation (30) in the above expression and equating the coefficients of zn on both sides, we
get

πn,2 = γλ1

{
∞

∑
i=1

(
1
z1

)i n

∑
m=1

(
λ2

µ2

)m
−

n−1

∑
i=1

n−i

∑
j=1

(
λ2

µ2

)i( 1
z1

)j
}

π0,0 (32)

Setting n = 1 in the above result and using it in (23), we obtain

πM =
γλ1λ2

ξ

∞

∑
i=1

(
1
z1

)i
π0,0. (33)

An explicit expression for π0,0 can be obtained using the normalisation condition as follows.

πM + π0,0+

∞

∑
n=1

πn,1 +
∞

∑
n=1

πn,2 = 1. (34)

Using the results (30), (32) and (33) in the above condition, we get

π0,0 =

[
1 +

γλ1λ2

ξ

∞

∑
i=1

(
1
z1

)i
+ γλ1

∞

∑
n=1

{
∞

∑
i=1

(
1
z1

)i n

∑
m=1

(
λ2

µ2

)m
−

n−1

∑
i=1

n−i

∑
j=1

(
λ2

µ2

)i( 1
z1

)j
}

+
∞

∑
n=1

λ1

(
1
z1

)n
]−1

.
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7. Performance indices

This section presents the expected system size of the proposed model

7.1. Expected system size

Let E(Ns), E(N1) and E(N2) denote the expected number of customers in the system, main server
and the backup server respectively.

E (NS) = E (N1) + E (N2) .

Using the result (30) and (31), we get

E (N1) =
λ1z1

(1 − z1)
2 π0,0,

E (N2) = γλ1

∞

∑
n=1

n

{
∞

∑
i=1

(
1
z1

)i n

∑
m=1

(
λ2

µ2

)m
−

n−1

∑
i=1

n−i

∑
j=1

(
λ2

µ2

)i( 1
z1

)j
}

π0,0.

Applying Little’s formula, the expected number of customers waiting in the system and the queue
is given by

E (Ws) =
1

λ1
E (N1) +

1
λ2

E (N2)

, E
(
Wq
)
=

∞

∑
n=1

(n − 1)πn,1 +
∞

∑
n=1

(n − 1)πn,2.

8. Numerical illustration

In this section, we provide a numerical illustration of our proposed model. The parameter values
are chosen based on the stability conditions λ1

µ1
< 1 and λ2

µ2
< 1. The parameter values are as

follows: λ1 = 0.6, λ2 = 0.5, µ1 = 1.1, µ2 = 1, γ = 0.3, and ξ = 0.1. Figures 1 and 2 depict the
behaviour of the main server P1,n(t) and the backup server P2,n(t), respectively. We assumed
that the initial condition P0,0(0) = 1. As a result, the probability curve of P1,n(t) starts at 1 and
gradually decreases until it reaches the steady state. Conversely, all other probability curves for
P1,n(t) begin at zero, increase initially, and converge to the steady state. Figures 3 and 4 showcase
the expected system size and variance of the system for varying values of the arrival rate λ1. We
observe that as the arrival rate increases, the mean and variance graphs also increase. Figures
5 and 6 show the expected system size and variance for different values of the arrival rate λ2.
Figures 7-10 display the stationary probabilities of the system. Figures 7 and 8 provide insights
into the probabilities associated with the main and backup servers, respectively. From the graphs,
it is observed that as n increases, the probability curves of πn,1 and πn,2 decrease and attain the
steady state. Finally, Figures 9 and 10 demonstrate the expected system size in the main and
backup servers. We notice that as the arrival rate increases, the expected system size E(Ni), where
i = 1, 2, for both the main and backup servers also increases. This provides important insights
into the system’s performance under different workload scenarios.
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Figure 1: Probabilities of the main server P1,n(t).
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Figure 2: Probabilities of the backup server P2,n(t).
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Figure 3: Mean system size for different arrival rate λ1.

0 5 10 15

Time (t)

0

2

4

6

8

10

V
a
r
ia

n
c
e

1
=0.2

1
=0.3

1
=0.4

1
=0.5

1
=0.6

Figure 4: Variance of the system for different λ1.
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Figure 5: Mean system size for different λ2.
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Figure 6: Variance of the system for different λ2.
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Figure 7: Steady state probability πn,1 for
different arrival rate λ1.
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Figure 8: Steady state probability πn,2 for
different arrival rate λ2.
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Figure 9: Mean system size E(N1) against λ1
for various γ rates
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Figure 10: Mean system size E(N2) against λ2
for various γ rates.

9. Conclusion

This paper investigates an M/M/1 queueing system with heterogeneous service rates and periodic
server maintenance. By deriving explicit expressions for both the transient and steady-state
probabilities, the study provided a comprehensive understanding of the system’s performance
under various operating conditions. The establishment of the mathematical framework and the
utilization of analytical techniques were instrumental in achieving the desired analysis. The
current study focused on a single server setup. One can extend this work by investigating
multi-server configurations
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