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Abstract

This work applies the polar coordinates system of advanced calculus in the summation of the Gaussian
distribution. In trying to achieve this aim, sub-concepts such as complex variables, gamma function of
half, error function, and the relation between the error function and the standard normal distribution
were defined and explained at various stages of the work. The embedded theorem which seems to be a new
theorem also came up in the body of the work.

Keywords: Normal distribution, Standard Normal Distribution, Gaussian Distribution, gamma
Function of Half, Embedded Theorem, Polar Coordinates.

1. Introduction

When Mathematics is used to study observational phenomena, a mathematical model is con-
structed for the phenomena. This involves an idealization and simplification of the original
phenomena to the extent that a mathematical problem is developed. The mathematical solution
obtained, eventually has to be interpreted in terms of the original problem.There are essentially
two types of mathematical models:the deterministic model and the non-deterministic or proba-
bilistic model [12]. The deterministic model is a model which stipulates that the conditions under
which an experiment is performed determine the outcome of the experiment. Example, a body
is allowed to fall freely from a height above ground level, the distance(s) traveled is completely
determined by the time t (seconds) during which the body has been in motion and the initial
velocity u with acceleration a, is given as S = a2

t + ut. Based on the given expression, it is possible
to determine the value of S for known values of u and t. this shows that for deterministic models,
the results of the experiment depend only on the physical conditions operating [4, 2].

However, non-deterministic or probabilistic models introduce uncertainty into the mathematical
problem [7]. In the context of probabilistic models, the Gaussian distribution, also known as the
normal distribution, plays a vital role in various fields such as statistics, physics, finance, and
engineering [6]. In recent years, there has been a growing interest in developing efficient methods
for the summation of the Gaussian distribution. One such method is the application of polar
coordinates in the summation of the Gaussian distribution[8]. [10] proposed a Bayesian inferential
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method for directional data modelled by projected normal distributions. [18] Projected normal
distributions, also referred to as angular Gaussian distributions, are created by imposing different
constraints on the parameter space associated with a multivariate Gaussian distribution. This
resolves the non-identifiability issue that arises when the support of a random variable changes
from an Euclidean space to a spherical space [9]. In mathematics and statistics, the Gaussian
distribution, also known as the normal distribution, is a crucial concept used to model various
real-world phenomena that exhibit a bell-shaped curve [17] [13].

The Gaussian distribution is characterised by its mean and standard deviation, which determine
the central tendency and spread of the distribution, respectively [11]. In the work by [10],
they proposed a Bayesian inferential method for directional data modeled by projected normal
distributions, which are also referred to as angular Gaussian distributions. These distributions are
created by imposing different constraints on the parameter space associated with a multivariate
Gaussian distribution, allowing for the resolution of the non-identifiability issue when the
support of a random variable changes from a Euclidean space to a spherical space. The general
projected normal distribution, a simple and intuitive model for directional data in any dimension,
is discussed by [10]. They describe a new parameterisation of the general projected normal
distribution that makes inference in any dimension tractable, including the important three-
dimensional case. This new parameterisation allows for closed-form full conditionals of the
unknown parameters and proposes a slice sampler to draw the latent lengths without rejection.
The work by [10] demonstrates the applicability and effectiveness of the projected normal
distribution in modeling directional data, particularly in higher dimensions.

1.1. Statement of the Problem

In an attempt to prove that
∞∫

−∞

1
σ
√

2π
exp

−
(

(x−µ)2

2σ2

)
δk = 1 (1.1)

one will meet the following problems:

1. One must understand the meaning of the gamma function of half which is defined by [15]
as

Γ (1/2) =

∞∫
0

t−1/2 exp−t δt (1.2)

2. The proof of the integral function

∞∫
−∞

1
σ
√

2π
exp−(1/2)t2

δt = 1 (1.3)

must be known.

This work will make these problems easy to see.

1.2. Aim and Objectives of the Study

The aim of this work is to show clearly that equation 1.1 is equal to 1 without making assumptions
of any kind. The main objectives of this work is as follows:

1. The derivation of the Gaussian distribution.

2. To prove the Gaussian distribution using the direct integration method.
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2. Materials and Methods

2.1. Binomial Distribution

Proposition 1. If X is a binomial random variable, then the probability of obtaining x successes
in n trials of a binomial experiment with probability of success P is given by

f (x) =

{
(n

x)px(1 − p)n−x; x = 0, 1, 2, · · · , n; 0 < p < 1
0, otherwise

(2.1)
We show that f (x) is a probability distribution function with parameters n and P. At this stage, n
is a positive integer and 0 < P < 1, it is clear that f (x) ≥ 0

n

∑
i=0

f (x) =
n

∑
i=0

(
n
x

)
px(1 − p)(n−x)

= [(1 − p) + p]n

∴
n

∑
i=0

f (x) = 1

(2.2)

Proposition 1 is called the binomial distribution.

Theorem 2.1. If X has binomial distribution, then the moment-generating function of the random

variable X is MXt =
[
(1 − p) + Pet]n Proof.

MXt = E
(

etX
)

=
n

∑
i=0

etx
(

n
x

)
px(1 − p)n−x

=
n

∑
i=0

ete
(

n
x

) (
pet)x

(1 − p)n−x

MXt =
[
(1 − p) + pet]n

■

Corrolary 1. If X has a binomial distribution, then

E (X) = np (2.3)

Var (X) = np (1 − p) (2.4)

2.2. The Derivation of the Normal Distribution

[1] states the limit of the symmetrical binomial distribution using theorem 2.2 below.

Theorem 2.2. If X has a symmetrical binomial distribution with mean µ and variance σ2,then as
n tends to infinity,

Z = (x−µ)
σ2 (2.5)

Equation 2.5 approaches the standard normal distribution.

Proof.

µ = np = 1
2 n;

σ =
√

np (1 − p) = 1
2
√

n;

Z =
x − µ

σ
=

x − 1
2 n

1
2
√

n
;
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Now the distance ∆Z between successive values of Z is given by

∆Z =
(x + 1)− 1

2 n
1
2
√

n
−

x − 1
2 n

1
2
√

n
=

1
1
2
√

n
(2.6)

lim
n→∞

∆Z = 0

Hence the symmetrical binomial histogram will appears to become more like a curve as n tends
to infinity

.

We take the value of f (x) = Y . Then the distance ∆Y is the value between two successive values
of Y.

We take the values corresponding to x and x + 1 and multiply them by σ .

Y =

(
n
x

)
px (1 − p)n−x σ

=
n!

(n − x)! x!

(
1
2
√

n
) (

1
2 n
)

∆Y =
n!

(n − x + 1)! x + 1!
( 1

2 n
)( 1

2
√

n
)

− n!
(n − x)! x!

( 1
2 n
)( 1

2
√

n
)

=
( 1

2 n
)( 1

2
√

n
)
n!

×
[
(n − x)! x! − (n − x + 1)! (n − x)!
(n − x + 1)! (n − x)! (n − x)! x!

]
=
( 1

2 n
)( 1

2
√

n
)
n!

×
[
(n− x+ 1)! x![(n + x)− (x + 1)]
(n− x+ 1)! (x + 1)! (n − x)! x!

]
=
( 1

2 n
)( 1

2
√

n
)√

n)
[

n!
(x + 1)! (n − x)!

]
× [(n − x)− (x + 1)]

=
( 1

2 n
)( 1

2
√

n
)[ n!

(n − x)! x!

]
× (n − x − x − 1)

(x + 1)

∆Y = Y
[
(n − 2x − 1)

(x + 1)

]
From equation 2.6

∆Z =
1

1
2
√

n

∴
∆Y
∆Z

= Y
[
(n − 2x − 1)

(x + 1)

]
1
2
√

n (2.7)
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From equation 2.5

Z =
(x − µ)

σ2 = Zσ + µ

x = Z 1
2
√

n + 1
2 n (2.8)

Substitute equation 2.8 into equation 2.7, we have

∆Y
∆Z

= Y

(n −
√

nZ − n − 1
)(

1
2
√

nZ + 1
2 n + 1

)
 1

2
√

n

∆Y
∆Z

= Y

 −
(

1
2 n
)

Z −
(

1
2
√

n
)

(
1
2
√

n
)

Z +
(

1
2 n
)
+ 1


limn→∞

∆Y
∆Z

tends to
δY
δZ

= −YZ separating the variables

∫
δY
Y

=
∫

−ZδZ

logeY =
−Z2

2
+ logeK

where K is the constant of Integration

loge
Y
K

=
−Z2

2

∴ Y = Ke−
1
2 Z2

(2.9)

■

2.3. The Proof of the Standard Normal Distribution Using Substitution Method

[16] states the standard normal distribution as in theorem 2.3 below.

Theorem 2.3. The random variable Z is said to have a standard normal distribution if its pdf is

φ (Z) = f (Z; 0, 1) =
1√
2π

e−
1
2 Z2

We show below that φ(z) is a valid pdf Proof.

1√
2π

∞∫
−∞

e−
1
2 Z2

δZ =
2√
2π

∞∫
0

e−
1
2 Z2

δZ (2.10)

let x = 1
2 Z2, so that

δZ =

√
2

2
√

xδx
(2.11)
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Substitute equation 2.11 into equation 2.10

2√
2π

∞∫
0

e−
1
2 Z2

δZ =
1√
π

∞∫
0

x−
1
2 e−xδx

= 1
2
√

πΓ
(

1
2

)
=

√
π√
π

1√
2π

∞∫
−∞

e−
1
2 Z2

δZ = 1

(2.12)

■

[16] is silent about the origin of the standard normal distribution. Also there is no attempt to
show Let us call equation 2.13

Γ
( 1

2
)
=

√
π (2.13)

In the proof, we shall called equation 2.13 assumption 1. [16] also stated theorem 2.4 below.

Theorem 2.4. Let Z have a standard normal distribution. Define x to be x = σZ + µ. Then it can
be shown that x is a random normal variable with pdf given as

f
(

x; µ, σ2
)
=

1
σ
√

2π
e
− 1

2

(
x − µ

σ

)2

Proof.

x = σz + µ

Z =
x − µ

σ
δz
δx

=
1
σ

The density function for x is

f
(

x; µ, σ2
)
=

1
σ
√

2π
e
− 1

2

(
x − µ

σ

)2

{
−∞ < µ < ∞

σ > 0
(2.14)

Now we now show that f
(
x; µ, σ2) = 1

f
(

x; µ, σ2
)
=

1
σ
√

2π
e
− 1

2

( x − µ

σ

)2

δx (15)
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Let y =
x − µ

σ
, x = yσ + µ

δx = σδy (16)

Substituting equation 16 into equation 15 we have

∞∫
−∞

f (y; 0, 1) =
∞∫

−∞

1
σ
√

2π
e−

1
2 y2

δy

From Theorem 2.3

∞∫
−∞

f (y; 0, 1) =
∞∫

−∞

1
σ
√

2π
e−

1
2 y2

δy = 1

(2.17)

■

His entire work rest on the assumption 1 of Theorem 2.3. Assumption 1 is the gamma function
of half. Theorem 2.5 below is the proof of the gamma function of half as resented by [5].

Theorem 2.5. Γ
(

1
2

)
=

√
π

Proof.

Γ(n) =
∞∫

0

xn−1e−xδx

Let n = 1
2

Γ( 1
2 ) =

∞∫
0

x−
1
2 e−xδx (18)

Put x
1
2 = 1√

2
t, x = 1

2 t2, δx
δt

= t

δx = tδt (19)
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Substituting equation 19 into equation 18 we have

Γ(1/2) =

∞∫
0

(
1
2 t2
)−1/2

e−
1
2 t2

tδt

=

∞∫
0

e−
1
2 t2
(

1
2 t2
)−1/2

tδt

=
√

2
∞∫

0

e−
1
2 t2

tδt

= 1
2

√
2

∞∫
0

e−
1
2 t2

tδt

=
1
2

√
2
√

2π

∞∫
−∞

1√
2π

e−
1
2 t2

δt (20)

=
1
2

√
2
√

2π × 1

=
1
2

√
2
√

2
√

π

Γ(1/2) =
√

π

■

At equation 20 she made the assumption that
∞∫

−∞

1√
2π

e−
1
2 t2

δt = 1. Let called this assumption

2. The success of the proof of Theorem 2.5 depends on assumption 2. Now for [16] to prove
assumption 2 (2.3), he made assumption 1 [(2.5). Also for [5] to prove assumption 1 (2.5) she
made assumption 2 (2.3). Let us see how [5] presents the proof of the normal distribution. She
used theorem 2.6 below.

Theorem 2.6. A random variable X has a normal distribution and is referred to as a normal

random variable if and only if its probability density is given by f
(
x; µ, σ2) = 1

σ
√

2π
e
− 1

2

( x − µ

σ

)2

Proof. Since ex is always positive, it follows that f(x) ≥ 0 as long as σ > 0.
We show that the total area under the curve is equal to 1. That is, to show that

∞∫
−∞

f (x)δx = 1

Let Z = (x−µ)
σ2 and δx = σδz

∞∫
−∞

1
σ
√

2π
e
− 1

2

(
x − µ

σ

)2

δx =

∞∫
−∞

1√
2π

e−
1
2 z2

δz

=

∞∫
0

2√
2π

e−
1
2 z2

δz (21)

But
∞∫
0

e−
1
2 z2

δz =
Γ(1/2)√

2

(22)
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Substituting equation 22 into equation 21 we have

= 2√
2π

× Γ(1/2)√
2

= 2×
√

π√
2π×

√
2

(23)

∴

∞∫
−∞

1
σ
√

2π
e
− 1

2

( x − µ

σ

)2

δx = 1

(2.24)

■

Again we can see the assumption 1 at the point of equation 23. That is Γ(1/2) =
√

π. Just like
the work of [16], [5] also made the same assumption 1 in order to prove the standard normal
distribution, which in this case is known as assumption 2.

2.3.1 The Complex Number System

[14, 3] stated that there is no real number x that satisfies the polynomial equation

x2 + 1 = 0 (2.25)

To permit solution of equation 2.25 and other similar equations, the set of complex number is
introduced. A complex number takes the form.

z = a + bi (2.26)

Where a and b are real numbers and i which is called the imaginary unit has the property that.

i = −1 (2.27)

From equation 2.26, a is called the real part of z and b is called the imaginary part of z. z is called
a complex variable.

2.3.2 The Argand Diagram

The real number can be graphically represented as a point on the real line. By using the cartesian
coordinate system, a pair of real numbers can be graphically represented by a point in the plane.
The Argand diagram is a device which represents complex numbers in the plane of the Cartesian
coordinate system. The pair of real numbers a and b of equation 2.26 are plotted as a point in the
plane and then joined that point to the origin with a straight line. See figure 2.1 below.

x

y

a

b
(a, b)

0

Z

Figure 2.1: Argand Diagram 1
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Figure 2.1 presents a visual representation of a complex number in polar coordinates on an
Argand diagram. The diagram consists of a complex plane with a horizontal real axis (X − axis)
and a vertical imaginary axis (Y − axis). A complex number ’z’ is depicted as a point in this plane.
The distance ’r’ from the origin to the point represents the modulus of the complex number,
which is the magnitude of the vector. The angle ’θ’ (theta) between the positive real axis and
the line segment connecting the origin to the point ’z’ represents the argument of the complex
number, which indicates its direction. The coordinates ’a’ and ’b’ on the real and imaginary axes,
respectively, correspond to the real and imaginary parts of the complex number. The polar form
of the complex number is expressed as ’z = r(cos θ + sin θ)’, which provides an alternative way to
represent complex numbers using the magnitude and angle instead of the traditional rectangular
form ’a + bi’.

According to [3], this straight line is the graphical representation of the complex variable z of
equation refeq2.14. The plane it is plotted against is referred to as the complex plane. The entire
diagram is called an Agrand Diagram.

2.4. Polar Form of a Complex Variable

We can express the complex variable of equation refeq2.14 in a different form on an Argand
diagram. Let Oz be a complex variable. Let r be the length of complex variable and 0 the angle
made with OX. See figure 2.2 below.

x

y

a

b

z

0

r

θ

Figure 2.2: Argand Diagram 2

Figure 2.2 demonstrates the Cartesian coordinate system with the X-axis and Y-axis representing
the real and imaginary parts of complex numbers, respectively. The figure is used to explain
the concept of integrating the function e( − x?) over the entire range of x to obtain the value of
the integral ’I’. The shaded area under the curve of the function e( − x?) in the first quadrant of
the (X?Y) plane represents the geometric interpretation of the integral. The integral ’I’ is a key
component in the derivation of the standard normal distribution and is related to the gamma
function and the area under the normal curve.

From Figure 2.2

r =
√

a2 + b2 (2.28)

θ = tan−1
(

b
a

)
(2.29)

a = r cos θ (2.30)

b = r sin θ (2.31)

Substituting equation 2.30 and equation 2.30 into equation 2.26 we have

z = r (cos θ + sin θ) (2.32)
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Equation 2.32 is the polar form of equation 2.26, r is called the modulus of the complex variable z
and is often abbreviated to ’Mod z’ or indicated by |z| . 0 is called the argument of the complex
variable and can be abbreviated to ’arg z’.

2.5. Integral Functions

The gamma function Γ(x) is defined by the integral

Γ(x) =
∞∫

0

tx−1e−tδt for x > 0 (33)

Integrating equation 33 by part we have

Γ(x + 1) = xΓ(x) (34)

When x = n, a positive integer greater than 1, equation 34 becomes

Γ(n + 1) = n!Γ(1) (35)

From equation 33 we have that

Γ(1) = 1 (36)

Substitute equation 36 into equation 35 we have

Γ(n + 1) = n! (37)

When x = 1/2

equation 33 becomes

Γ(1/2) =

∞∫
0

t(
1
2 )e−tδt (38)

3. Analysis and Result

3.1. The Direct Intergration Method

3.1.1 The Gamma Function of Half Γ(1/2)

Theorem 3.1. The gamma function of half defined as follows:

Γ(1/2) =

∞∫
0

t(1/2)e−tδt

= Γ(π)
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Proof.

Γ(1/2) =

∞∫
0

t(1/2)e−tδt

Let t = u2; δt = 2uδu, Γ(1/2) =
∞∫
0

u−1e−u2
2uδu

Γ(1/2) = 2
∞∫

0

e−u2
δu (1)

Unfortunately,
∞∫
0

e−u2
δu cannot easily be determined by normal means. It is however, important,

so we have to find a way of getting round the difficulty. We now convert equation 1 into the polar
coordinates form. See figure 3.1 below.

Let I =
∞∫
0

e−x2
δx Then also I =

∞∫
0

e−y2
δy

I2 =

 ∞∫
0

e−x2
δx

 ∞∫
0

e−y2
δy


=

 ∞∫
0

e−x2
δx

 ∞∫
0

e−y2
δy


=

∞∫
0

∞∫
0

e(x2+y2)δxδy (2)

δa = δxδy represent an element of area in the (X − Y) plane and the integration with the stated
limit covers the whole of the first quadrant. See figure 3.2 below

Now converting to polar coordinates, the element of area becomes δa = rδθδr

r2 = x2 + y2 (3)

e−(x2+y2) = e−r2

Form figure 3.2 below the limit of r are 0 ≤ r ≤ ∞. The limit of θ are O ≤ θ ≤ π/2. Equation 2
becomes

I2 =

(π
2 )∫

0

∞∫
0

e−r2
rδrδθ (4)
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Let k = r2, δk = 2rδr

=

(π
2 )∫

0

∞∫
0

e
−k2

2 δkδθ

=

(π
2 )∫

0

[
− 1

2 e−k
]∞

0
δθ

=

(π
2 )∫

0

(
1
2

)
δθ

=
[

θ
2

](π
2 )

0

= π
4

∴ I =
√

π
2 (5)

Before the diversion into the polar coordinates, we had established equation 1 that Γ (1/2) =

2
∞∫
0

e−u2
δu

Then substitute equation 5 into equation 1, Γ (1/2) = 2 × 1
2
√

π

Γ (1/2) =
√

π (6)

x

y

a

b

0

Z
δx

δy

Figure 3.1: The (X − Y) Plane
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x

y

a

y

0

r
θ

δθ

rδθ

δr

Figure 3.2: The Complex Plane

Figure 3.2 provides a graphical representation of the complex plane with polar coordinates (r, θ)
used to represent a complex number. The figure demonstrates the conversion of an element
of area from Cartesian coordinates (δx, δy) to polar coordinates (δa = rδθδr). This conversion is
essential in the proof of the gamma function of half (?(1/2)) using polar coordinates. The figure
shows how the radial distance ’r’ and the angle θ are used to define the position of a point in the
complex plane. The element of area in polar coordinates, represented by the shaded sector, is
used to integrate the function e( − r2/2) over the complex plane, which is a crucial step in the
derivation of the standard normal distribution.

This is the proof of the gamma function of half using the polar coordinates system of advanced
calculus. This result opens the way for the proof of the standard normal distribution. ■

3.2. The Standard Normal Distribution

Theorem 3.2.
∞∫

−∞

1√
2π

e−
1
2 z2

δz = 1 Proof.

∞∫
−∞

1√
2π

e−
1
2 z2

δz = 2 1√
2π

0∫
−∞

e−
1
2 z2

δz (7)

Fortunately, we can now apply polar coordinates in the summation of the integral in equation 7.

Dividing equation 3 by 2, we have r2

2 = x2+y2

2

e
−
(

x2+y2

2

)
= e−

r2

2

With the same limits as of figure 3.1 we can easily see that

I2 =

(π
2 )∫

0

∞∫
0

e−
1
2 r2

rδrδθ
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Let k = 1
2 r2, δr =

δk
r

=

(π
2 )∫

0

∞∫
0

e−kδkδθ

=

(π
2 )∫

0

[
−e−k

]∞

0
δθ

=

(π
2 )∫

0

δθ

= [θ]
(π

2 )
0

= π
4

I =
√

π
2

∴ I =
√

2π
2 (8)

Substituting equation 8 into equation 7, we have,

2√
2π

∞∫
0

e−
1
2 z2

δz =
2√
2π

×
√

2π
2

∴

∞∫
−∞

1√
2π

e−
1
2 z2

δz = 1 (9)

■

3.3. Derivation of the Normal Curve

Now, back to [1], the derivation of the normal curve from the asymmetric binomial distribution

was given in theorem 2.3. From equation 2.9 we had that, Y = Ke−
1
2 Z2

From proposition (2.0) it is
obvious that:

y = k
∞∫

−∞

e−
1
2 z2

δz = 1 (3.10)

From theorem 3.2, we had that
∞∫

−∞

e−
1
2 z2

δz =
√

2π (3.11)

Substituting equation 3.11 into equation 3.10 we have that k = 1√
2π

y = 1√
2π

e−
1
2 z2

(3.12)

Equation 3.12 is called the ”normal curve”.
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3.4. The Normal Equation

The equation of the normal distribution was given by equation 1.1 as

If f (x) =
1

σ
√

2π
exp

− 1
2

( x − µ

σ

)2

∞∫
−∞

f (x)δx =

∞∫
−∞

1
σ
√

2π
exp

− 1
2

( x − µ

σ

)2

δx

=
1

σ
√

2π

∞∫
−∞

exp
− 1

2

(
x − µ

σ

)2

δx

Let z = x−µ
σ and x = zσ + µ and δx = σδz

=
1

œ
√

2π

∞∫
−∞

exp− 1
2 z2

œδz

=
1√
2π

∞∫
−∞

exp− 1
2 z2

δz

From theorem 3.2, we had that
∞∫

−∞
exp−

1
2 z2

δz =
√

2π

=

√
2π√
2π

∴

∞∫
−∞

f (x)δx = 1

4. Discussion of Results

Ordinarily, all integral functions are difficult to integrate. They are not well behaved in regard to
integration. Hence the integral functions

Γ( 1
2 ) =

∞∫
0

tx−1e−tδt

f (x) =
∞∫

0

t(1/2)e−tδt

cannot easily be determined by normal means. This may be the root cause why [16] did
not make any attempt to prove that Γ( 1

2 ) =
√

π. [5] used the substitution method to prove
the gamma function of half and the standard normal distribution. She knew that the direct
integration method will leads to complex analysis. First, the so called ”Assumption 1” which is
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the gamma function of half has being proved to be equal to
√

π on theorem 4.0 with the aid of
the polar coordinates system. To the student of statistics this should no longer be an assumption.
Secondly the ”Assumption 2” which is known as the standard normal distribution was proved on
theorem 4.1. Also this is made possible by the aid of the polar coordinates system. The derivation
of the normal distribution is also an area where many Authorities shy away from. [3] made an
attempt to derive it, but he leaves the integral part of the function untouched.

5. Conclusion

I have not seen the direct integration method in the literature of the normal distribution but
substitution method, before now. This work have used the integration method through the help
of polar coordinate to derive the summation of the Gaussian Distribution.
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