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Abstract 

A shock model with two types of shocks functioning in the presence of an additional risk is 

proposed. Survival probability and mean residual life times of the proposed models are derived and 

assessed through the data of life testing experiment. Model validation and estimation of survival 

probability and mean residual life times is done through simulation studies. Comparison of survival 

probabilities and mean residual life times of models functioning without and with additional risk is 

made.      
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I. Introduction

Failure of equipment/ death of a living being is usually attributed to a single cause, however 
various risks competing for the life of an equipment/ individual must be considered when 
assessing reliability/ survivability. A tool may fail due to manufacturing defect, (e.g. Geometric 
irregularity), not maintaining operating conditions when in use, overstressing, etc. An individual 
with heart failure is more likely to die from kidney failure than person without heart problem. 
Thus, the focus is on studying complexities of survival in the presence of competing or additional 
risk(s).  

In our day-to-day life, we encounter with many examples wherein failure of a system/ 
equipment/ individual due to two types of shocks namely damage shock (causing damage) and 
catastrophic shock. [13] have discussed the examples of death due to heart attack (damage shock) 
or cardiac arrest (catastrophic shock). Here, one cannot rule out the possibility of death of a heart 
patient due to accident/ stroke/ renal failure.  

Another example could  involve an individual undergoing treatment for diabetes. 
Consider an individual receiving a treatment for diabetes. This marks the damage shock, where 
the initial impact is significant, but with proper management, the person can lead a healthy life. 
For the condition to lead to a more serious outcome, the damage must escalate. If the diabetes is 
poorly controlled, it will lead to complications such as kidney failure or severe cardiovascular 
issues, it happens when the damage exceeds the manageable threshold. A catastrophic shock may 
occur if the blood sugar level collapses suddenly due to hypoglycemia, where the person's body 
doesn't have enough glucose for proper functioning. This can result in loss of consciousness, and if 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

390

mailto:abhijadhav10292@gmail.com
mailto:sbmunoli@yahoo.co.in


Abhijeet Jadhav and S. B. Munoli  
SURVIVAL PROBABILITY AND MRLTS OF SHOCK MODEL 
WITH ADDITIONAL RISK 

not promptly addressed, it may lead to death. And also, additional risks come in the form of 
coexisting health conditions, like the development of nerve damage or an increased risk of 
infections due to compromised immunity. It highlights the importance of not only managing 
diabetes but also addressing associated risks to ensure a comprehensive approach to health and 
well-being.    

The case of an investor who invests in a diversified portfolio of stocks also serves as an 
example for the problem being considered here. Consider an individual investing in a diverse 
portfolio of stocks. A damage shock occurs when a sudden market downturn due to economic 
uncertainties, has the potential to lead to a decline in the overall portfolio value. If this downturn 
escalates into a systemic financial crisis, exceeding the investor's tolerance threshold, it could result 
in a market collapse, causing significant and insurmountable losses. On the other hand, a 
catastrophic shock, such as an unforeseen event like a global pandemic, introduces an 
unpredictable element beyond routine market fluctuations and systemic crises, including the 
influence of geopolitical events. These events can significantly amplify challenges, contributing to 
the complexity of financial decision-making. An additional shock could be fluctuations in prices of 
other related goods. For instance, if major companies’ stocks experience a decline, investors may 
swiftly shift their focus to alternative assets like gold or experience financial losses due to 
unanticipated changes in tax regulations.  

Mean Residual Life (MRL) function is an interesting alternative to the survival function or 
the hazard function of a survival distribution. It is the expected additional lifetime given that a 
component has survived until time ‘𝑡’. Actuaries employ MRL to design insurance portfolio. 
Biomedical researchers use MRL in analyzing survivorship. Increasing MRL distributions are 
useful models in the studies of life lengths (durations) of wars and strikes. These functions occur 
naturally in the studies of optimal disposal of an asset, renewal theory, dynamic programming and 
branching processes. MRL has been widely considered in the literature by researchers of several 
areas. Few of them are listed here.   

A detailed analysis of the mean residual life (MRL) for various lifetime distributions, 
including the Weibull distribution, was studied in [15]. The mixture representations for the 
reliability functions of the conditional residual life and inactivity time of a coherent system with ‘n’ 
independent and identically distributed components have been derived in [11]. The modeling and 
inference of a family of generalized MRL models under case-cohort and nested case-control 
designs have been studied in [7]. The limiting process and nonparametric simultaneous confidence 
bands for the mean residual life function using transformation of limiting process to Brownian 
motion was studied by [6]. The patterns of change in life expectancy and life span equality, 
describing them through trajectories of mortality improvements over age and time have been 
explored in [2]. The developed R package ‘reslife,’ which enables efficient computation of mean 
residual lifetimes is given by [16]. Several conditions for compare the largest order statistics from 
resilience-scale models with reduced scale parameters in the form of mean residual life order are 
discussed in [5].  

Here are some of the references that contribute to the literature on shock models: The 
fundamental work on shock models is by [1]. The reliability of a device subjected to shocks 
modeled by a nonhomogeneous Poisson process, demonstrating that the first-time total damage 
exceeds a critical threshold is an increasing failure rate average random variable was studied by 
[12]. A shock model framework was discussed in [4], examining scenarios where the failure rate 
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increases over time, and the mean residual life decreases. The study in [14] investigated reliability 
in systems exposed to shocks from a renewal point process, offering analytical expressions for time 
to failure in parallel systems. The significance of analyzing product reliability through the 
investigation of the damage process was addressed in [8]. The classification of shock models in 
system reliability is discussed in [10]. The extension of generalizing the results to the generalized 
Polya process (GPP), where initial shocks have dependent increments, was studied in [3]. In the 
present study, we have further worked on the [13] paper, where the authors investigated the 
survival probability of a component subjected to damage and fatal (catastrophic) shocks, under 
fixed and random threshold setups.  

In this paper, a shock model with two kinds of shocks namely damage and catastrophic 
shocks in the presence of an additional risk is considered. The model, its survival probability and 
MRL functions are discussed in Section 2. The Life Testing experiment is explained in Section 3. In 
Section 4, Monte-Carlo simulation is used to validate the model and mean residual life times of the 
models with and without additional risks are also analyzed in the same section. Discussions and 
conclusions are outlined in Section 5. 

II. Survival Probability of the Model

Suppose a component/ system is subjected to a sequence of shocks occurring randomly in time as 
events of Poisson process with intensity 𝜆, 𝜆 > 0. Each shock will be either a damage shock 
(causing damage) or catastrophic shock. If the damage exceeds the threshold of the component, the 
component fails or the component fails at the occurrence of catastrophic shock. The damages are 
non-accumulative, that is the component functions as good as new one as long as the damage does 
not exceed component’s threshold. Let ‘𝑝’ and (1 − 𝑝) be the probabilities that a shock is damage 
shock and catastrophic shock respectively. Let the damages follow exponential distribution with 
parameter ‘𝜃’, ‘𝑢’ be the threshold of the component. The survival probability of the component at 
mission time ‘𝑡’ of the model as derived in [13] is given by 

𝑆1(𝑡) = 𝑒−𝜆𝑡[1−𝑝(1−𝑒−𝑢𝜃)] (1) 
The corresponding MRL at time ‘𝑡’ is given by 

𝜇1(𝑡) =
1

𝜆(1−𝑝(1−𝑒−𝑢𝜃))
   (2) 

If the component is made to function under the additional risk (other than its two modes of failure) 
and assuming this additional risk has ageing impact. Weibull distribution (with shape parameter >
1) would be a better candidate to explain the impact of additional risk on the survival probability
of the component. 
Let, 𝑆1𝐴(𝑡) be the survival probability of the component which is experiencing shocks of two types 
as explained above and functioning under additional risk. Considering all the aforementioned 
features of the model, 𝑆1𝐴(𝑡)  is given by 

𝑆1𝐴(𝑡) = e−𝜆𝑡[1−𝑝(1−𝑒−𝑢𝜃)]. 𝑒−(𝛼𝑡)𝛽                         (3)
The mean residual life (MRL) and other properties of several families of Weibull related 

life distributions are discussed in [9]. One interesting family of Weibull life distribution is with 𝛼 =
1

√2
  and 𝛽 = 2. For this family of Weibull distribution, the survival probability and MRL are given 

by 

𝑆𝐴(𝑡) = 𝑒−
1

2
𝑡2

(4)
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𝜇𝐴(𝑡) =
√2𝜋(1−Φ(𝑡))

𝑒
− 

1
 2 𝑡2

   (5) 

From (5), it is evident that 𝜇𝐴(𝑡) has an explicit form and computationally easy. 
Using this special case of Weibull in (3), the expression for 𝑆1𝐴(𝑡) reduces to  

𝑆1𝐴(𝑡) = 𝑒−𝜆𝑡[1−𝑝(1−𝑒−𝑢𝜃)]− 
𝑡2

2   (6) 
The MRL corresponding to 𝑆1𝐴(𝑡) given in (6) is given by 

 𝜇1𝐴(𝑡) =
𝑒

1
2 [𝜆(1−𝑝(1−𝑒−𝑢𝜃))]

2

.√2𝜋 (1−Φ(𝑡−𝜆(𝑝(1−𝑒−𝑢𝜃)−1)))

𝑒
−𝜆𝑡[1−𝑝(1−𝑒−𝑢𝜃)]

.𝑒
− 

1
2 𝑡2

    (7) 

The computations of 𝑆1(𝑡), 𝑆𝐴(𝑡) and 𝑆1𝐴(𝑡) for two parameter combinations 𝑝 =  0.55, 𝜆 =

 0.40, 𝑢 = 0.80, 𝜃 = 0.65 and 𝑝 =  0.4, 𝜆 =  0.70, 𝑢 = 1.1, 𝜃 = 0.55 at various values of ‘𝑡’ are 
presented in Table 1. Also, it is to be noted that the MRL corresponding to 𝑆1(𝑡) do not depend on 
‘𝑡’ and are computed as 2.1833 and 1.9449 respectively for two parameter combinations considered. 
Table 2 presents MRL times for Weibull given in (5) and MRL times of proposed model given in (7) 
at different values of ‘𝑡’ for the two parameter combinations considered.   

Table 1: Theoretical Computation of Survival Probability 

𝒑 =  𝟎. 𝟓𝟓, 𝝀 =  𝟎. 𝟔𝟓, 𝒖 = 𝟏. 𝟏,

𝜽 = 𝟎. 𝟕𝟎 

𝒑 =  𝟎. 𝟒𝟓, 𝝀 =  𝟎. 𝟕𝟓, 𝒖 = 𝟏. 𝟓,

𝜽 = 𝟎. 𝟖𝟎 

t 𝑆1(𝑡) 𝑆𝐴(𝑡) 𝑆1𝐴(𝑡) 𝑆1(𝑡) 𝑆𝐴(𝑡) 𝑆1𝐴(𝑡) 

0.5 0.795318 0.882497 0.701865 0.773309 0.882497 0.682443 
0.75 0.709269 0.75484 0.535384 0.680032 0.75484 0.513315 

1 0.63253 0.606531 0.383649 0.598007 0.606531 0.36271 
1.25 0.564094 0.457833 0.258261 0.525875 0.457833 0.240763 
1.5 0.503063 0.324653 0.163321 0.462444 0.324653 0.150134 

1.75 0.448634 0.216265 0.097024 0.406664 0.216265 0.087947 
2 0.400095 0.135335 0.054147 0.357612 0.135335 0.048398 

Table 2: Theoretical Computation of Mean Residual Life 

𝒑 =  𝟎. 𝟓𝟓, 𝝀 =  𝟎. 𝟔𝟓, 

𝒖 = 𝟏. 𝟏, 𝜽 = 𝟎. 𝟕𝟎 

𝒑 =  𝟎. 𝟒𝟓, 𝝀 =  𝟎. 𝟕𝟓, 

𝒖 = 𝟏. 𝟓, 𝜽 = 𝟎. 𝟖𝟎 

t 𝑚𝐴(𝑡) 𝑚1𝐴(𝑡) 𝑚𝐴(𝑡) 𝑚1𝐴(𝑡) 

0.5 0.876365 0.670411 0.876365 0.650837 
0.75 0.752571 0.590263 0.752571 0.574534 

1 0.65568 0.525471 0.65568 0.512631 
1.25 0.57843 0.472297 0.57843 0.461667 
1.5 0.515816 0.428065 0.515816 0.419154 

1.75 0.464307 0.390824 0.464307 0.383269 
2 0.421369 0.359125 0.421369 0.352654 
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III. Life Testing Experiment

In order to estimate 𝑆1𝐴(𝑡) and 𝜇1𝐴(𝑡), suppose ‘𝑟’ components with life distribution (1 − 𝑆1𝐴(𝑡)) 
are subjected to life test. The life testing is continued until all the ‘𝑟’ components fail. Let 𝑟1, 𝑟2 and 
𝑟3 = (𝑟 − 𝑟1 − 𝑟2) be the numbers of components that fail due to damage shock, catastrophic shock 
and due to additional risk respectively. The 𝑖𝑡ℎ component fails at 𝑛𝑖

𝑡ℎ shock and 𝑡𝑖1, … , 𝑡𝑖𝑛𝑖
 be the

time epoch at which the 𝑖𝑡ℎ component has experienced shocks. (𝑡𝑖𝑗 − 𝑡𝑖𝑗−1) are independent
exponential random variables having exponential distribution with parameter 𝑝𝜆, 𝑗 = 1,2, … , 𝑛𝑖 
and 𝑖 = 1,2, … , 𝑟. It is to be noted that, the component which fails due to additional risk also 
experiences shocks and if any component has to fail due to additional risk, it has sustained all the 
damages due to damage shock and it will not experience catastrophic shock. Further it is assumed 
that, whenever a component fails due to damage shock (damage exceeding threshold), that 
damage is not measurable and the impact of catastrophic shock is also not measurable. Let 𝑋𝑖𝑗 
denote the amount of damage caused by 𝑗𝑡ℎ damage shock of the 𝑖𝑡ℎ component and 𝑋𝑖𝑗′𝑠 are
assumed to be independently distributed exponential random variables with parameter 𝜃, 𝜃 > 0.  
The joint distribution of 𝑛𝑖, 𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛𝑖

, 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖−1 of the ‘𝑟1’ components that have failed due to
damage shock is given by 

∏(𝑝𝜆)𝑛𝑖 𝑒−𝑝𝜆𝑡𝑛𝑖

𝑟1

𝑖=1

 𝜃𝑛𝑖−1 𝑒
−𝜃 ∑ 𝑥𝑖𝑗

𝑛𝑖−1

𝑗=1
 
 𝑒−𝑢𝜃 

= (𝑝𝜆)∑ 𝑛𝑖
𝑟1
𝑖=1  𝑒−𝑝𝜆 ∑ 𝑡𝑛𝑖

𝑟1
𝑖=1  𝜃∑ 𝑛𝑖

𝑟1
𝑖=1 −𝑟1  𝑒

−𝜃 ∑ ∑ 𝑥𝑖𝑗
𝑛𝑖−1

𝑗=1
𝑟1
𝑖=1  𝑒−𝑟1𝑢𝜃               (8)

Similarly, the joint distribution of 𝑛𝑖, 𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛𝑖
, 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖−1 for ‘𝑟2’ components that fail due to

catastrophic shock is given by 

∏ (𝑝𝜆)𝑛𝑖−1 𝑒−𝑝𝜆𝑡𝑛𝑖−1𝑟2
𝑖=1 𝜃𝑛𝑖−1 𝑒

−𝜃 ∑ 𝑥𝑖𝑗
𝑛𝑖−1

𝑗=1
 
(1 − 𝑝)𝜆 𝑒−(1−𝑝)𝜆(𝑡𝑛𝑖

−𝑡𝑛𝑖−1)

= (𝑝𝜆)
∑ 𝑛𝑖

𝑟2
𝑖=1 −𝑟2 𝑒−𝑝𝜆 ∑ 𝑡𝑛𝑖−1

𝑟2
𝑖=1  𝜃∑ 𝑛𝑖

𝑟2
𝑖=1 −𝑟2  𝑒

−𝜃 ∑ ∑ 𝑥𝑖𝑗
𝑛𝑖−1

𝑗=1
𝑟2
𝑖=1  (1 − 𝑝)𝑟2  𝜆𝑟2  𝑒−(1−𝑝)𝜆 ∑ (𝑡𝑛𝑖

−𝑡𝑛𝑖−1)
𝑟2
𝑖=1   (9) 

And, letting 𝑦𝑖  be the time epoch at which 𝑖𝑡ℎ component has failed due to additional risk, 𝑖 =

1,2, … , 𝑟3; the joint distribution of 𝑛𝑖 , 𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛𝑖
, 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖

, 𝑦𝑖  for ‘𝑟3’ components that fail due to
additional risk is given by 

∏ (𝑝𝜆)𝑛𝑖 𝑒−𝑝𝜆𝑡𝑛𝑖
𝑟3
𝑖=1  𝜃𝑛𝑖  𝑒

−𝜃 ∑ 𝑥𝑖𝑗
𝑛𝑖
𝑗=1  𝑦𝑖𝑗  𝑒−

1

2
𝑦𝑖𝑗

2

 

= (𝑝𝜆)∑ 𝑛𝑖
𝑟3
𝑖=1  𝑒−𝑝𝜆 ∑ 𝑡𝑛𝑖

𝑟3
𝑖=1  𝜃∑ 𝑛𝑖

𝑟3
𝑖=1  𝑒

−𝜃 ∑ ∑ 𝑥𝑖𝑗
𝑛𝑖−1

𝑗=1
𝑟3
𝑖=1 ∏ 𝑦𝑖𝑗

𝑟3
𝑖=1  𝑒−

1

2
 ∑ 𝑦𝑖𝑗

2𝑟3
𝑖=1   (10) 

Combining the above three cases, the joint distribution 𝐿 of all the random variables involved is 
given by 

𝐿 = 𝑝𝑛.−𝑟2 𝜆𝑛. 𝑒−𝑝𝜆𝑡.. 𝑒−𝜆𝑡.′𝜃𝑛.−𝑟1−𝑟2  𝑒−𝑟1𝑢𝜃 𝑒−𝜃(𝑥1.+𝑥2.+𝑥3.) (1 − 𝑝)𝑟2  𝑦.  𝑒−
1

2
 𝑦.. 2𝑟3  (

1

√2
)

2𝑟3
 (11) 

where 

𝑡. . = ∑ 𝑡𝑛𝑖

𝑟1

𝑖=1

+ 2 ∑ 𝑡𝑛𝑖−1 − ∑ 𝑡𝑛𝑖
+ ∑ 𝑡𝑛𝑖

𝑟3

𝑖=1

𝑟2

𝑖=1

𝑟2

𝑖=1

𝑡.′ = ∑(𝑡𝑛𝑖

𝑟2

𝑖=1

− 𝑡𝑛𝑖−1)

𝑛𝑖 . = ∑ 𝑛𝑖  ; 𝑖 = 1(1)3

𝑟𝑖

𝑖=1

 

𝑛. = 𝑛1. +𝑛2. +𝑛3. 
𝑦. = ∏ 𝑦𝑖𝑗

𝑟3
𝑖=1  , 𝑦. . = ∑ 𝑦𝑖𝑗

2𝑟3
𝑖=1
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𝑥1. = ∑ ∑ 𝑥𝑖𝑗
𝑛𝑖−1
𝑗=1

𝑟1
𝑖=1  ,   𝑥2. = ∑ ∑ 𝑥𝑖𝑗

𝑛𝑖−1
𝑗=1

𝑟2
𝑖=1  ,      𝑥3. = ∑ ∑ 𝑥𝑖𝑗

𝑛𝑖−1
𝑗=1

𝑟3
𝑖=1

Considering 𝐿 as the function of parameters, the maximum likelihood estimators 
�̂�, �̂�, �̂� respectively of 𝜃, 𝜆 and 𝑝 are given by 
�̂� =

𝑛.−𝑟1−𝑟2

(𝑥1.+𝑥2.+𝑥3.)+𝑟1𝑢
 (12) 

�̂� =
𝑟2𝑡..+𝑛.𝑡.′

𝑡.′(𝑡..+𝑡.′)
  (13) 

�̂� =
𝑡.′(𝑛.−𝑟2)

𝑟2𝑡..+𝑛.𝑡.′
 (14) 

Using the invariance property of MLE, the MLEs of 𝑆1𝐴(𝑡), 𝜇1𝐴(𝑡) are obtained as �̂�1𝐴(𝑡) and �̂�1𝐴(𝑡) 
respectively and are given by  

�̂�1𝐴(𝑡) = 𝑒−�̂�𝑡[1−𝑝(1−𝑒−𝑢�̂�)]− 
𝑡2

2  (15) 

�̂�1𝐴(𝑡) =
𝑒

1
2

[�̂�(1−�̂�(1−𝑒−𝑢�̂�))]

2

√2𝜋 (1−Φ(𝑡−�̂�(𝑝(1−𝑒−𝑢�̂�)−1)))

𝑒
−�̂�𝑡[1−�̂�(1−𝑒−𝑢�̂�)]

𝑒
− 

1
2 𝑡2

 (16) 

IV. Simulation Study and Analysis
Monte-Carlo simulation is used to generate the random variables of the model. For considered 
values of 𝑢 = 𝑢0, 𝑝 = 𝑝0, 𝜃 = 𝜃0, 𝜆 = 𝜆0 using the following algorithm, all the random variables 
involved are generated.  

Step 1: Generate a random number 𝑤𝑖  from 𝑈(0,1). If 0 < 𝑤𝑖 < (1 − 𝑒− 
𝑡2

2 ), then it is considered 

that the failure of component is due to additional risk. In this case;  
i. Initialize 𝑛𝑖 , 𝑡𝑖. and 𝑥𝑖 .  with zero.

ii. Generate 𝑦𝑖 Weibull random variable with 𝜎 =
1

√2
 , 𝛽 = 2. 

iii. Generate 𝑡𝑖1 with exp (𝑝0𝜆0).
iv. Generate 𝑥𝑖1, an exp(𝜃0) random variable.
v. Compare 𝑡𝑖1 with 𝑦𝑖  and 𝑥𝑖1 with 𝑢0 .
vi. If (𝑡𝑖1 < 𝑦𝑖) and (𝑥𝑖1 < 𝑢0), then 𝑛𝑖 is incremented by 1 and 𝑡𝑖1 is added to 𝑡𝑖. , 𝑥𝑖 is added to

𝑥𝑖. .

Steps (ii) to (vi) are repeated until either 𝑥𝑖1 > 𝑢 or 𝑡𝑖1 > 𝑦𝑖. 

Step 2: If 𝑤𝑖 ≥ 𝑒− 
1

2
𝑡2

, the failure of the component is attributed to either damage shock or 
catastrophic shock. 
i. A uniform random variable 𝑈(0,1) ‘𝑉𝑖’ is generated. If 0 < 𝑉𝑖 < 𝑝 = 𝑝0, then the failure of

the component is due to damage shock.
ii. An exp (𝜃0) random variable 𝑋𝑖1 is generated, 𝑛𝑖 is raised by 1. If 𝑋𝑖1 < 𝑢0, this step is

repeated. The process is stopped when it is found that 𝑋𝑖1 > 𝑢0.
iii. 𝑛𝑖 number of exp (𝑝0𝜆0) (inter-arrival times) are generated and are added to get 𝑡𝑖𝑛𝑖

 .

In this way the random variables 𝑛𝑖 , 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖−1, 𝑡𝑖𝑛𝑖
 are generated.

On the other hand, if 𝑉𝑖 ≥ (𝑝 = 𝑝0), the failure of component is due to catastrophic shock. The 
random variables 𝑛𝑖 , 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖−1 are generated as in Step 2(ii). (𝑛𝑖 − 1) exponential random
variables with parameter 𝑝0𝜆0 are generated, which will be inter-arrival times. Adding these inter-
arrival times 𝑡𝑖𝑛𝑖−1 is obtained. Another exponential random variable with parameter (1 − 𝑝0)𝜆0 is
generated which will be (𝑡𝑖𝑛𝑖

− 𝑡𝑖𝑛𝑖−1).
Steps 1 and 2 are repeated for 𝑟 = 25,30,40,50,100 and the statistics 𝑛. , 𝑡. . , 𝑡.′ , 𝑦. , 𝑦. . , 𝑥1. , 𝑥2. and 𝑥3.
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are computed using which the MLEs of parameters are obtained. By using these MLEs of 
parameters in the expressions for 𝑆1𝐴(𝑡), 𝜇1𝐴(𝑡), �̂�1𝐴(𝑡), �̂�1𝐴(𝑡) are obtained for 𝑡 =

0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 . 
The whole process is repeated for 𝑀 = 10000 times. The means of the estimated 𝑆1𝐴(𝑡) and 𝜇1𝐴(𝑡) 
along with their mean absolute biases (bold figures) for the parameter combination 𝑝 =  0.55, 𝜆 =

 0.65, 𝑢 = 1.1, 𝜃 = 0.70 with 10,000 repetitions are presented in Tables 3 and 4 respectively. Tables 
5 and 6 provide the same results for 𝑝 =  0.45, 𝜆 =  0.75, 𝑢 = 1.5, 𝜃 = 0.80 . 

Table 3: Estimated 𝑆1𝐴(𝑡) and its Mean Absolute Bias for 𝑝 =  0.55, 𝜆 =  0.65, 𝑢 = 1.1, 𝜃 = 0.70 

𝑺𝟏𝑨(𝒕) Estimated 

t 𝑆1𝐴(𝑡) r = 25 r = 30 r = 40 r = 50 r = 100 

0.5 0.701865 
0.63938 

0.062486 
0.656183 
0.045683 

0.660343 
0.041523 

0.679049 
0.022817 

0.68783 
0.014035 

0.75 0.535384 
0.470406 
0.064979 

0.483974 
0.05141 

0.488583 
0.046801 

0.509491 
0.025894 

0.519406 
0.015979 

1 0.383649 
0.318379 
0.06527 

0.335333 
0.048316 

0.339598 
0.044051 

0.359111 
0.024538 

0.368459 
0.015191 

1.25 0.258261 
0.204561 
0.053701 

0.218266 
0.039995 

0.221742 
0.036519 

0.237781 
0.02048 

0.245543 
0.012718 

1.5 0.163321 
0.123468 
0.039852 

0.133461 
0.02986 

0.136015 
0.027305 

0.147905 
0.015416 

0.153717 
0.009603 

1.75 0.097024 
0.070008 
0.027016 

0.076662 
0.020362 

0.078376 
0.018648 

0.086426 
0.010598 

0.090401 
0.006623 

2 0.054147 
0.03729 

0.016857 
0.041367 
0.01278 

0.042426 
0.011721 

0.047442 
0.006705 

0.049944 
0.004203 

Table 4: Estimated 𝜇1𝐴(𝑡) and its Mean Absolute Bias for 𝑝 =  0.55, 𝜆 =  0.65, 𝑢 = 1.1, 𝜃 = 0.70 

𝝁𝟏𝑨(𝒕) Estimated 

t 𝜇1𝐴(𝑡) r = 25 r = 30 r = 40 r = 50 r = 100 

0.5 0.670411 
0.574976 
0.095435 

0.619012 
0.051398 

0.621026 
0.049384 

0.63513 
0.035281 

0.651381 
0.019029 

0.75 0.590263 
0.512992 
0.077271 

0.548831 
0.041432 

0.550462 
0.039801 

0.561868 
0.028395 

0.574971 
0.015292 

1 0.525471 
0.461967 
0.063504 

0.491556 
0.033915 

0.492897 
0.032574 

0.50226 
0.023211 

0.512989 
0.012482 

1.25 0.472297 
0.419406 
0.052891 

0.444151 
0.028146 

0.445268 
0.027029 

0.453059 
0.019238 

0.461964 
0.010333 

1.5 0.428065 
0.383482 
0.044583 

0.404417 
0.023649 

0.405359 
0.022707 

0.41192 
0.016146 

0.419403 
0.008662 

1.75 0.390824 
0.352837 
0.037987 

0.370733 
0.020091 

0.371536 
0.019288 

0.377121 
0.013703 

0.38348 
0.007344 

2 0.359125 
0.326443 
0.032683 

0.341885 
0.01724 

0.342576 
0.016549 

0.347378 
0.011747 

0.352835 
0.00629 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

396



Abhijeet Jadhav and S. B. Munoli  
SURVIVAL PROBABILITY AND MRLTS OF SHOCK MODEL 
WITH ADDITIONAL RISK 

Table 5: Estimated 𝑆1𝐴(𝑡) and its Mean Absolute Bias for 𝑝 =  0.45, 𝜆 =  0.75, 𝑢 = 1.5, 𝜃 = 0.80 

𝑺𝟏𝑨(𝒕) Estimated 

t 𝑆1𝐴(𝑡) r = 25 r = 30 r = 40 r = 50 r = 100 

0.5 0.682443 
0.611759 
0.070683 

0.614114 
0.068329 

0.626848 
0.05559481 

0.633057 
0.049385 

0.639267 
0.043175 

0.75 0.513315 
0.435668 
0.077647 

0.438186 
0.075129 

0.451885 
0.061430 

0.458616 
0.054699 

0.465381 
0.047934 

1 0.36271 
0.291466 
0.071243 

0.293714 
0.068995 

0.306021 
0.056688 

0.312114 
0.050596 

0.318267 
0.044442 

1.25 0.240763 
0.183179 
0.057584 

0.184947 
0.055816 

0.194684 
0.046079 

0.199541 
0.041222 

0.204471 
0.036292 

1.5 0.150134 
0.108149 
0.041985 

0.109402 
0.040731 

0.11635 
0.033783 

0.119842 
0.030291 

0.123403 
0.026730 

1.75 0.087947 
0.059982 
0.027965 

0.060794 
0.027153 

0.065322 
0.022625 

0.067615 
0.020332 

0.069965 
0.017982 

2 0.048398 
0.031252 
0.017145 

0.031736 
0.016661 

0.034451 
0.013946 

0.035837 
0.012560 

0.037264 
0.011133 

Table 6: Estimated 𝜇1𝐴(𝑡) and its Mean Absolute Bias for 𝑝 =  0.45, 𝜆 =  0.75, 𝑢 = 1.5, 𝜃 = 0.80 

𝝁𝟏𝑨(𝒕) Estimated 

t 𝜇1𝐴(𝑡) r = 25 r = 30 r = 40 r = 50 r = 100 

0.5 0.650837 
0.606371 
0.044466 

0.608328 
0.04251 

0.618495 
0.032342 

0.619872 
0.030965 

0.623134 
0.027704 

0.75 0.574534 
0.538577 
0.035957 

0.540165 
0.034369 

0.548412 
0.026122 

0.549528 
0.025006 

0.552169 
0.022365 

1 0.512631 
0.483114 
0.029517 

0.484423 
0.028208 

0.491211 
0.02142 

0.492129 
0.020502 

0.494299 
0.018332 

1.25 0.461667 
0.43711 

0.024558 
0.438202 
0.023465 

0.443864 
0.017804 

0.444628 
0.017039 

0.446436 
0.015232 

1.5 0.419154 
0.398474 
0.020681 

0.399397 
0.019758 

0.404175 
0.01498 

0.404819 
0.014335 

0.406343 
0.012811 

1.75 0.383269 
0.365663 
0.017605 

0.366451 
0.016817 

0.370526 
0.012742 

0.371076 
0.012193 

0.372374 
0.010894 

2 0.352654 
0.337519 
0.015135 

0.338198 
0.014456 

0.341708 
0.010946 

0.34218 
0.010473 

0.343298 
0.009356 
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V. Results and Conclusion

From Tables 1 and 2, it is found that, for both parameter combinations, the theoretical values of 
𝑆1(𝑡), 𝑆𝐴(𝑡) and 𝑆1𝐴(𝑡) and 𝜇1(𝑡), 𝜇𝐴(𝑡) and 𝜇1𝐴(𝑡) are non-increasing in ‘𝑡’. 𝜇1(𝑡) is independent of 
time ‘𝑡’, so its values for any considered parameter combinations will be constant for all values of 
‘𝑡’. The model functioning in the presence of additional risk has smaller survival probability and 
mean residual life times. From tables 3 and 5, it is clear that the Maximum Likelihood Estimators 
(MLEs) underestimate the true survival probability. The estimated survival probability for all time 
points (t) tend to improve as the sample size increases at all time points. Also, mean absolute bias 
(bold figures) decreases as the sample size increases, implying that larger samples lead to more 
accurate estimators, which is a desirable statistical property. Tables 4 and 6 collectively 
substantiate the inference drawn regarding the mean residual life times, akin to the analysis 
conducted for survival probability.  

To improve the performance of Maximum Likelihood Estimators (MLEs), one can think of 
greater sample size. Increase in sample size may not be a better choice, especially when one is 
dealing with real life cases and/ or high-cost units. Alternatively, one can explore other methods of 
estimation. 
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