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Abstract 

In today's fast-paced lifestyle, pursuing holistic well-being has increased interest in monitoring and 

managing stress levels. Heart rate variability (HRV), a non-invasive measure of autonomic nervous 

system activity, has emerged as a valuable tool for assessing individual responses to stress. This study 

focuses on utilizing the capabilities of the Apple Watch to collect continuous HRV data in real-world 

contexts. A diverse dataset from individuals working in software companies was gathered, including 

HRV recordings during various stress-inducing scenarios. By employing HRV Time Domain, 

Frequency Domain, and Nonlinear features, the study uses Principal Component Analysis (PCA) to 

extract relevant features, considering the personalized nature of stress reactions. Addressing 

variations in stress responses among individuals, the study introduces an innovative approach using 

Long Short-Term Memory (LSTM) networks. A hybrid model, combining feature selection, 

dimensionality reduction, and ensemble techniques, is developed to predict stress levels based on 

individualized HRV patterns. Rigorous training and validation reached to an 88% accuracy rate. 

These findings demonstrate the effectiveness of the proposed methodology. The LSTM model 

accurately forecasts stress responses, highlighting the potential of Apple Watch-acquired HRV data 

for stress assessment. Beyond prediction, the study enhances understanding of the complex interplay 

between HRV dynamics and unique stress reactions. This novel approach, leveraging Apple Watch 

features and intelligent computing, offers a personalized method to predict stress levels using K-

Means Clustering Algorithm. Through integrating K-means clustering and person-specific HRV 

analysis, the research endeavours to advance our comprehension of the intricate interplay between 

physiological responses and stressors. The study offers a novel perspective on stress response 

variations by delving into the distinct autonomic patterns characterizing each cluster. It sets the stage 

for developing targeted interventions and personalized stress management strategies. 

Keywords:  Stress Detection, Apple Watch Dataset, HRV, LSTM 

I. Introduction

Nowadays, stress detection research has made strides with cutting-edge methods. Wearable tech 

captured heartbeat dynamics for stress prediction in college students [1]. Wearable sensors gathered 

diverse physiological signals, showcasing multi-dimensional stress responses [2]. Deep learning in 

2022, with "Stress Detection Using Deep Convolutional Neural Networks," revealed patterns in 

physiological data [3]. "Stress Recognition Using Wearable Sensors and Mobile Phones" combined 

wearables and mobiles for accessible stress assessment [4]. Collectively, these studies illuminate 

stress's nuances via tech-driven insights. Wearables and deep learning enhance stress detection's 

precision, potentially personalizing interventions. This dynamic interdisciplinary progress ushers in 

more accurate, accessible strategies for stress assessment.  

Many Datasets are publicly available for stress recognition. The novelty resides in the integration of 

HRV analysis. No prior study has generated a continuous 15-day dataset from working 

professionals in software companies using the Apple Watch. This dataset serves as a rich resource 
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for understanding stress over time. Furthermore, the study introduces personalized stress detection 

through clustering, recognizing the diversity of stress manifestations. As individuals navigate the 

challenges of modern work environments, their physiological responses to stress manifest in unique 

ways. The dataset is augmented with discrete emotion labels corresponding to their tasks, 

specifically Neutral, Stress, and Not Stress. This dataset provides a foundation for personalized 

stress assessment, acknowledging that stress responses are distinct for each individual. 

II. Proposed Methodology

The physiological signal calculated by the time interval (R-R Interval) between consecutive 

heartbeats in milliseconds is known as heart rate variability. The supportive branch of the autonomic 

nervous system (ANS) controls the stress or reaction, preparing us to act, respond, and conduct in 

rebuttal to life's diverse needs. The time between heartbeats (R-R interval) varies from beat to beat, 

and this variation in HRV can reveal a lot about the body's physiological state. HRV should naturally 

rise during relaxing activities and fall during stressful situations when the body is able to take 

advantage of increased sympathetic action. Heart rate variability is higher when the heart beats 

slowly; when the heart rate increases, such as during stress or exercise, it decreases during relaxing 

activities. Heart rate and HRV are in the inverse relation. The Heart rate variability level intuitively 

varies daily depending on activity, anxiety, and work-related stress. The duration between 

heartbeats (R-R interval) fluctuates from beat to beat and can give information about the body's 

physiological reaction.  

When investigated in a deeper context, stress is detrimental in workplace situations. According to 

The American Institute of Stress [5], 80% of workers feel stress on the job, so we have decided to 

detect stress in working employees. Here, we have mentioned different datasets available to see the 

stress conditions of persons using physiological Signals. 

Authors [6] (Park & Kim, 2018)  used an HRV signal to predict a daily mental stress level using a 

photoplethysmography (PPG) sensor in the wristband-type wearable device. They extracted low-

frequency (0.04Hz – 0.15Hz) and high-frequency (0.15Hz – 0.4Hz) features of HRV using the 

autoregressive (AR) model. Eight university students' data was collected using a self-evaluation PSS 

scale for 30 seconds thrice daily for a week. Linear regression provided an accuracy of 

86.35%, although additional machine learning algorithms and well-known PPG analytic tools can 

produce better outcomes. ten users wore the FITBIT device to detect stress and an online 

questionnaire. In addition, it measures different physical activities like sleeping patterns, BMI, and 

Heart rate variability[7]. 

The Heart rate (HR), galvanic skin response (GSR), and electrooculogram (EOG) signals are collected 

from 11 subjects. The participants were also given a mental arithmetic task and a challenging LEGO 

assembly without instructions to predict stress. They applied a k-means clustering algorithm for 

heart rate, EDA, and EOG and got an accuracy of 70.6 percent, 74.6 percent, and 63.7 percent, 

respectively[8].  

To identify different physiological changes during a stressful task. The Trier Stress Test was used to 

prompt stress, with resting and stress phase ECGs, and the inter-second heart rate was recorded 

(using a FitBit). The study enlisted the participation of 30 student doctors and 30 general public. 

More investigation with a large sample of people with stratified anxiety scores based on the 

Depression Anxiety Stress Scale is required to further analyze the association with HRV [9].   

The WESAD (Wearable Stress and Affect Detection) dataset [10] is a publicly available dataset used 

for research in affective computing and physiological signal analysis. It was developed to support 

developing and evaluating algorithms and models for stress and affect detection using wearable 

sensors. The dataset includes physiological sensor data collected from wearable devices, such as 

heart rate sensors and accelerometers, and self-assessment labels related to the participants' stress 
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levels and affective states. The data was collected from 15 participants in a controlled environment 

while they underwent different stress-inducing tasks and activities. 

AMIGOS [11] was designed to collect participants' emotions in two social contexts: individual and 

group. AMIGOS was constructed in 2 experimental settings. First, 40 participants watched 16 short 

emotional videos. Then, they watched four long videos, including a mix of lone and group sessions. 

These emotions were annotated with self-assessment of affective levels and external assessment of 

valence and arousal through GSR and ECG signals. 

The SWELL dataset [12] comprises heart rate variability (HRV) indices derived from the multimodal 

SWELL knowledge work (SWELL-KW) dataset, designed for research on stress and user modelling. 

This dataset was developed by researchers at the Institute for Computing and Information Sciences 

at Radboud University. The SWELL dataset was created through experiments involving 25 subjects 

engaged in typical office work activities, such as writing reports, making presentations, reading 

emails, and searching for information. The dataset captures various data modalities, including 

computer logging, facial expressions, body postures, ECG signals, and skin conductance. Each 

participant in the study underwent three different working conditions: stress,  time pressure, and 

interruption. 

The author was involved in curating a Social Media Status dataset highlighting three key emotions: 

happiness, sadness, and anger. This dataset was drawn from status updates contributed by seven 

distinct individuals and acquired from Kaggle. The dataset's core focus was emotions, with entries 

structured to include the status text and corresponding sentiment. Achieved an accuracy of around 

79% using a CNN classifier [13]. 

I. Extraction of Heart Rate from Apple Watch

An optical heart sensor in the Apple Watch SE, as shown in Figure 1, measures your heart rate and 

heart rhythm. Utilize the Breath application to calculate your stress with maximum precision. The 

Apple Watch has numerous capabilities that can be used to track stress levels. For instance, it 

features a heart rate monitor that can detect variations in the wearer's heart rate and heart rate 

variability, which can signal stress levels. A breathing app for the Watch also leads users through 

breathing exercises to lower stress. The gadget also monitors sleep patterns, physical activity levels, 

and other health indicators that may assist in pinpointing stress origins and offer insights into 

general well-being. It's crucial to remember that these features shouldn't be used to diagnose or treat 

any medical conditions and aren't intended to replace expert medical advice. 

Figure 1:  Apple Watch SE 

Gathering data in real-life contexts remains uncommon due to challenges such as limited context 

and reliance on self-reported information. Real-world data collection possesses both advantages and 

challenges. While it maintains ethical constraints and context awareness, it lacks a clear ground truth 

and introduces noisy data. HRV in real-world scenarios and highlighted its small relationship with 

stress compared to controlled lab settings[14]. This underscores the importance and complexity of 

real-world data collection, offering insights that can be challenging to deduce. 
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Figure 2: Extraction Process of Heart Rate Using Apple Watch 

Figure 2 shows the process of extracting heart rate using The Apple Watch and the Health 

application on your paired iPhone. It can accurately measure your heart rate.  

 Ensure your Apple Watch is correctly worn on your wrist.

 Tap the Heart Rate app on your Apple Watch.

 Begin measuring your heart rate within the app.

 Wait a few seconds for your heart rate to display on the Watch.

 The data is automatically synced to the Health app on your paired iPhone.

 Open the Health app on your iPhone to see heart rate data trends.

 Download Export.XML file

 Extract Heart Rate Data from that XML file.

Figure 3: Heart Rate Signals of Subjects 

Figure 3 shows individual plots for the subject's heart rate signal, showcasing the variations in their 

heart rate over time. The exact appearance of the plots and the specific data details depend on the 

content of the CSV file. This t would be useful for visualizing and analyzing heart rate variability 

among different subjects in the dataset.  
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II. File Preprocessing

Figure 4 explains the heart rate variability (HRV) data analysis derived from XML files, particularly 

focusing on data collected through Apple Watch devices. The script's main objective is to calculate 

a diverse array of HRV features encompassing both time domain and frequency domain metrics, 

subsequently organizing and storing these features within a CSV (Comma-Separated Values) file. 

Several critical libraries for XML parsing, HRV analysis, numerical computations, CSV handling, file 

searches, and operating system interactions are imported to initiate this processed. By defining a 

designated time frame using start and end dates, the script specifies the period for data extraction 

and evaluation. 

Figure 4: Process of File Generation 

Utilizing the glob function, the script locates the relevant XML files containing heart rate data. The 

CSV file that will house the calculated HRV features is opened, and its initial row is allocated for 

labels describing the different metrics that will be computed and saved. 

III. Features Calculations & Selection

The core functionality of the script involves iterating through the identified XML files. 'Record' 

elements are examined within each file to determine pertinent heart rate data. Valid heart rate 

measurements are isolated by cross-referencing the data's time stamps with the designated time 

frame. Subsequently, the script calculates RR intervals, the temporal gaps between consecutive 

heartbeats, from the heart rate values. It forms the basis for HRV analysis, then employs the HRV 

analysis library to address missing values, perform frequency domain analysis and compute time 

domain. Here is the summarized description of HRV analysis. The data is obtained from an Apple 

Health export file and is parsed using the xml.etree Element Tree module. We define a specific date 

range to query the data for analysis. 

First, we iterate over the XML file to extract heart rate values recorded within the specified date 

range. We filter out the relevant data based on the sample type, explicitly focusing on heart rate 

measurements ('HKQuantityTypeIdentifierHeartRate'). The extracted heart rate values are stored in 

a list called heart rates. Next, we calculate the RR intervals from the extracted heart rate values, 

representing the time between successive heartbeats. We utilize a formula to estimate the RR 

intervals from the heart rate values, considering the average duration between successive heartbeats. 

Additionally, we apply the Malik rule, which was implemented through the 

hrvanalysis.remove_ectopic_beats function to identify and remove ectopic beats from the RR 
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interval data. 

Time domain features quantify RR interval variability, revealing insights into heart rate fluctuations 

over specific time spans. The Mean NN Interval (Mean NNI) portrays the average duration between 

successive normal heartbeats [15]. The Standard Deviation of NN Intervals (SDNN) characterizes 

overall RR interval variability, indicative of autonomic modulation. The Root Mean Square of 

Successive Differences (RMSSD) reflects short-term variability with parasympathetic sensitivity [16]. 

The Percentage of NN50 Intervals (pNN50) gauges parasympathetic influence by identifying RR 

intervals differing by over 50 ms [17]. 

Frequency domain analysis dissects HRV into frequency bands. Low Frequency (LF) power signifies 

both sympathetic and parasympathetic activity, whereas High Frequency (HF) power primarily 

denotes parasympathetic modulation [17]. The LF/HF ratio quantifies sympathetic-parasympathetic 

balance [18]. 

The nonlinear analysis captures intricate patterns. Sample Entropy (SampEn) gauges HRV 

complexity based on pattern repetition. Poincaré plots visually explore RR interval relationships, 

providing insights into autonomic dynamics [19]. 

Additional PhysioBank, PhysioToolkit, and PhysioNet furnish resources for physiological signal 

access and analysis. Advanced HRV analysis methods are exhaustively covered, offering insights 

into diverse techniques [20]. 

To organize and store the accumulated HRV features, the script combines these metrics with the 

corresponding heart rate values and unique subject identifiers. This composite data is structured 

into arrays and consistently added as new rows within the previously opened CSV file. As the script 

concludes the analysis for each subject, it echoes the calculated HRV feature arrays to the console. 

This Python script provides an automated and systematic approach to parsing, analyzing, and 

storing HRV data from Apple Watch-generated XML files. It facilitates an in-depth exploration and 

understanding of physiological monitoring and health analysis within heart rate variability. 

Figure 5: Feature Importance vs. Explained Variance Ratio 
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Figure 5 indicates the most influential features by examining the explained variance ratios associated 

with each principal component. These ratios indicate the proportion of total variance  

Figure 6: K-Fold Stratified Sampling and Accuracy 

in each component's dataset. The indices of the most impactful features are identified by sorting 

these ratios in descending order. The actual feature names are then extracted from the original 

dataset columns. We Have Used the stratified cross-validation method to evaluate the performance 

of a machine learning model in a way that ensures the distribution of target classes within each fold 

of the cross-validation is representative of the overall distribution in the dataset. This is particularly 

important when dealing with imbalanced datasets where certain classes might be underrepresented. 

The goal is to prevent any particular class from being disproportionately overrepresented or 

underrepresented in any fold, which could lead to biased model evaluation. StratifiedKFold is used 

to split the data into training and testing sets while preserving the class distribution as defined in 

Figure 6. The model is trained and evaluated on each cross-validation fold, and the results are stored 

in the fold_results list. In our work, six fold results are achieved. 

III. Experimental Results and Discussion

We Have used the architecture of the LSTM model [21] using the Keras API provided by TensorFlow 

[22]. The model consists of an LSTM layer with 64 units, a fully connected (Dense) layer with three 

output units (matching the number of classes) and a softmax activation function. The model is 

compiled with the Adam optimizer and categorical cross-entropy loss function, which is suitable for 

multiclass classification. We referenced the existing models with the proposed ones. In the base 

paper, the author [23]  observed the root-mean-square error (RMSE) and Mean absolute error (MAE) 

without calibration samples. The accuracy of the classification models on the SWELL Dataset for  

HRV signals was 61.6%. After adding 100 calibration samples, accuracy increased to  93.9%. Machine 

learning algorithms, such as supervised and unsupervised, are used on the SWELL-KW Dataset. 

From that, decision tree induction has the highest accuracy, with 75 % accuracy [24]. In our 

experimental setup, we get an overall 88% accuracy by applying the LSTM model and considering 

the time series property. However, neither author used the time-series property to obtain the result. 

The epoch-wise accuracy and loss plot visualizes the training process, showcasing the evolution of 

accuracy and loss over the training epochs, as shown in Figure 7. 
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Figure 7: Epochwise Accuracy and Loss Plot 

Figure 8: Confusion Matrix for Different Stress Conditions 

Figure 8 illustrates the Confusion Matrix, delineating each row as representing the actual stress 

level observed in the dataset, while each column represents the predicted stress level generated by 

the model. 

By analyzing the values within the confusion matrix, we can assess the model's ability to classify 

instances into their respective stress categories correctly. For instance, the diagonal elements of the 

confusion matrix represent the instances where the predicted stress level aligns with the actual stress 

level, indicating accurate predictions by the model. On the other hand, off-diagonal elements 

highlight instances where the model misclassifies the stress level, providing insights into the types 

of errors made by the model. It defines various stress conditions observed in the study. Stress levels 

are stratified into three distinct categories: 0, 1, and 2, each conveying specific contextual nuances. 

Stress level 0 denotes a neutral state, indicative of an absence of significant stressors and a generally 

favourable condition. Conversely, stress level 1 signifies the experience of stress triggered by 

particular circumstances such as meetings, presentations, or looming project deadlines, reflecting 

stress responses associated with task-related pressures. In contrast, stress level 2 delineates stress 

stemming from routine work responsibilities within the organizational setting, highlighting stress 

manifestations arising from day-to-day job demands and obligations. This categorization provides 

a nuanced understanding of stress dynamics, encompassing varying stressors in professional 

environments. 
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Figure 9: The flow of Stress Detection 

Figure 9 illustrates the overall flow of stress detection systems, 

 The stress detection process begins by gathering data through smartwatches worn by 15

employees. These smartwatches collect various physiological information that could

indicate stress levels.

 A dataset is constructed with the collected data. This dataset includes information in terms

of frequency, time, and nonlinear domains. These aspects provide a comprehensive view of

the physiological signals related to stress.

 Preprocessing techniques are applied to enhance the quality of the dataset. This involves

cleaning and refining the data to eliminate noise, inconsistencies, or irrelevant information.

 The dataset identifies 22 features derived from Heart Rate Variability (HRV).

 A subset of 8 features are selected using Principal Component Analysis (PCA) to streamline

the analysis. This reduces the complexity of the data while retaining its essential patterns.

 The process of model evaluation involves using k-fold stratified sampling. This technique

ensures that the dataset is divided into subsets while maintaining the distribution of stress

levels in each subset. Subsequently, a Long Short-Term Memory (LSTM) model is employed,

a type of neural network well-suited for sequence data. This model utilizes the selected

features to predict and categorize stress levels in subjects.

IV. Personalized Model

As different users have relatively different responses to stress conditions, examining the individuals' 

heart rate variability ranges, the dataset and machine learning model should be designed carefully. 

So we have applied the clustering algorithm after applying LSTM Model on 15 Individuals and after 

applying  K-means Clustering Algorithm.  

Authors investigated stress response patterns through the application of K-means clustering. The 

authors utilize K-means clustering to analyze and group stress response data from individuals. By 

applying this technique, they aim to identify distinct. This study contributes to the field of stress 
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research by utilizing a data-driven approach to understand and categorize stress response 

behaviours [25].Research was conducted to investigate stress response clusters using K-means 

analysis. The authors explore distinct clusters within stress response data by employing the K-means 

clustering algorithm. The study aims to identify and characterize patterns in how individuals 

respond to stress factors [26].  

Figure 10: The flow of Personalized Stress Detection 

Figure 11: Clusters According to Stress Response of Individuals 
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Performing K-means clustering on individuals based on their response to stress conditions. K-means 

clustering is a popular unsupervised machine-learning technique used for grouping similar data 

points into clusters. In your case, the data points would represent individuals, and the features could 

be the responses of those individuals to stress conditions. Calculating the average heart rate and 

condition for each subject creates a data frame that is subsequently sorted by condition values in 

Figure 10. Employing the K-Means algorithm with three clusters, the script performs clustering on 

the data and assigns cluster labels to each subject. These cluster labels are then mapped to stress 

response labels, and the resulting categorical stress levels are incorporated into the data frame. The 

data visualization aspect involves generating a 3D scatter plot using Plotly Express, wherein cluster 

labels, subject IDs, and stress response labels are represented along the x, y, and z axes, respectively, 

as shown in Figure 11. Customizations to the plot are applied, including axis labels, hover data, and 

legend formatting. Overall, it serves to analyze and visualize stress response patterns in relation to 

different subjects. 

V. Discussion
Our study delves into stress assessment and management, leveraging the unobtrusive and non-

invasive capabilities of wearable technology, specifically the Apple Watch. The overarching goal is 

to develop a methodology that enables the continuous and accurate detection of stress over extended 

periods, aligning with the growing emphasis on holistic well-being and stress management in 

today's fast-paced world. Our study aimed to utilize Apple Watch-acquired HRV data for 

personalized stress assessment, employing a robust methodology involving feature extraction, 

model development, and validation. Through rigorous analysis, we achieved an impressive 88% 

accuracy rate in predicting stress levels using an LSTM model, highlighting the efficacy of our 

approach. These findings underscore the potential of wearable technology in monitoring and 

managing stress effectively. While promising, our study acknowledges limitations such as the small 

sample size and the need for further validation. 

Additionally, it's worth noting that other models beyond LSTM, such as Random Forest or Support 

Vector Machines, could also be explored for stress prediction. Recommendations include validation 

across diverse populations and settings, comparative analysis with existing methods, and 

exploration of long-term intervention effects. Overall, our study contributes to advancing stress 

assessment methodologies and offers practical solutions for personalized stress management in real-

world contexts. Lastly, the use of wearable devices for stress assessment raises ethical considerations 

related to data privacy, informed consent, and potential stigmatization. It is essential to address 

these ethical concerns and ensure responsible use of personal health data in stress management 

interventions. 

VI. Conclusion and Future Work

Based on our experimental findings, it was evident that applying suitable preprocessing techniques 

led to a notable enhancement in classifier efficiency, improving results by approximately 4-5%. We 

are achieving 88% accuracy using LSTM. This study offers a meticulously designed blueprint for 

stress detection. It underscores the potential of smartwatch-derived physiological data and 

advanced machine learning techniques in comprehensively addressing the complex challenge of 

stress assessment. This research's outcomes contribute to our understanding of stress dynamics and 

the development of reliable tools for stress monitoring, holding significant implications for 

individual well-being and workplace productivity. As this research advances stress detection using 

physiological data and LSTM analysis, several avenues for future work emerge. One significant 

direction is the exploration of a more extensive and diverse dataset to validate the model's 

performance across different demographic and environmental factors. Incorporating physiological 

signals beyond HRV, such as skin conductance and body temperature, could enrich the model's 

accuracy. Personalized features can be added to detect stress in individuals. Researchers could 

consider exploring more advanced clustering techniques that can capture variations within clusters 
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more effectively or combining clustering with other analysis methods to provide a more 

comprehensive understanding of stress response patterns at both the group and individual levels. 

This paper is a strong foundation for further research in stress analysis and physiological responses, 

potentially contributing to both scientific understanding and practical applications in health and 

wellness for individuals. 
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