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Abstract 

The paper introduces a Bayesian approach for estimating parameters of the Chris-Jerry distribution, 

focusing on the use of a conjugate prior, specifically the gamma prior. The Bayesian estimation 

method is developed with a various loss function, offering a robust framework for parameter 

estimation. symmetric loss function and    Linex loss functions are commonly used in Bayesian 

statistics to balance the trade-off between bias and variance. The central idea is to derive the Bayes 

estimate of the distribution parameter by leveraging the properties of the conjugate gamma prior. 

Conjugate priors simplify the Bayesian analysis by ensuring that the posterior distribution belongs 

to the same family as the prior, facilitating analytical calculations. The proposed methodology is 

implemented and validated through numerical illustrations using. This involves applying the 

developed Bayesian estimation framework to real-world data or simulated scenarios, demonstrating 

its effectiveness and practical applicability. The numerical and simulation studies are done by using 

r software 

. 
Keywords: prior, posterior distribution, posterior mean loss function, linex loss  

      function and symmetric loss function 

I. Introduction

In the realm of statistical inference, the Bayesian approach stands as a formidable paradigm, offering 
a unique perspective that seamlessly integrates prior knowledge with observed data to yield more 
robust and nuanced estimates. At the heart of Bayesian estimation lies the elegant concept of 
conjugate priors, a fact that not only simplifies the computational complexity but also enriches the 
analytical insights. 

This article aims to unravel the significance of conjugate priors and their pivotal role in 
streamlining the inference process. From their foundational principles to practical applications, this 
paper will explore how these priors provide a harmonious bridge between prior beliefs and 
empirical evidence, creating a coherent framework for making informed decisions. The Bayesian 
paradigm, with its emphasis on updating beliefs in light of new information, has found extensive 
applications across various fields, from finance and engineering to medicine and machine learning. 
Within this framework, the choice of prior distributions can profoundly impact the outcome of 
Bayesian analyses. Conjugate priors, by virtue of their mathematical properties, offer an elegant 
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solution, simplifying the computations involved in posterior distribution calculations. This article 
will delve into the conceptual underpinnings of Bayesian estimation, shedding light on the 
fundamental principles that distinguish it from frequentist approaches. Then   transition to the 
concept of conjugate priors, explaining how these specially chosen prior distributions yield posterior 
distributions of the same family, facilitating analytical tractability. 

Moreover, the research showcases real-world examples where Bayesian estimation with 
conjugate priors has proven to be a powerful tool, enhancing decision-making processes in situations 
ranging from medical diagnostics to quality control in manufacturing. By illustrating the versatility 
and efficiency of this methodology, we aim to empower readers to harness the full potential of 
Bayesian analysis in their own pursuits. 

The Linex loss function, short for Linear Exponential loss function, is a variant of the 
asymmetric loss functions commonly used in regression analysis. Unlike traditional symmetric loss 
functions like Mean Squared Error (MSE) or Mean Absolute Error (MAE), Linex loss asymmetrically 
penalizes overestimation and underestimation differently. It is particularly useful when the cost of 
underestimation is not the same as the cost of overestimation, making it suitable for scenarios where 
errors in one direction are more critical than errors in the other. The Linex loss function is defined 
as 
The LINEX loss function you provided is: 

L(θ, θ̂) = a. eb(θ−θ̂) − b(θ − θ̂) − 1 

where: 
• L(θ, θ̂) is the LINEX loss function.
• θ is the true parameter value.
• θ̂ is the estimated parameter value.
• a and b are parameters that control the shape of the loss function.

This type of LINEX loss function is sometimes used in Bayesian estimation, and Zellner is
indeed associated with Bayesian methods. In Bayesian statistics, the choice of a loss function is 
crucial in constructing a suitable posterior distribution. The LINEX loss function, as you've written 
it, is a combination of linear and exponential terms, and the parameters a and b determine the weight 
given to these terms. 

A symmetric loss function is a mathematical function used to measure the discrepancy or 
error between predicted and actual values in a regression problem. Unlike asymmetric loss 
functions, which penalize overestimation and underestimation differently, symmetric loss functions 
treat overestimation and underestimation equally 

The symmetric loss function  L(θ, d)  =  C(d −  θ)2𝑓  penalizes the deviation between the 
decision d and the unknown parameter θ. Here, C is a scaling constant, and f is a parameter that 
controls the sensitivity of the loss function to deviations. This loss function is symmetric because it 
penalizes deviations equally on both sides of the decision d. The exponent 2 f controls the curvature 
of the loss function around d. larger values of f make the loss function more sensitive to deviations 
from d, leading to sharper penalties. 
In the context of Bayesian estimation, our exploration centers on the symmetric loss function, 
elegantly expressed as  

L(θ, d)  =  C(d −  θ)2𝑓 

with C serving as a constant. The transformation into the quadratic loss function (QLF) 
occurs when f assumes the value of 1, resulting in the concise form  
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L(θ, d)  =  C(d −  θ)2 

By streamlining the equation through the abstraction of C to 1, we seamlessly transition to 
the squared error loss function (SELF). Introducing an alternative, the absolute loss function takes 
the form L (θ, d) = | (d − θ) |. Notably, the squared error loss function (SELF) 

L(θ, d)  =  (d −  θ)2 

The goal in Bayesian estimation is to find the posterior distribution of the parameter θ given 
the observed data. This involves combining the likelihood function with a prior distribution and the 
loss function. The posterior distribution is then obtained by maximizing the posterior expected loss 
(also known as the Bayes risk) with respect to θ or using other Bayesian decision theoretic criteria.  

II. Review of literature

Box, G. E. P., Tiao, G. C., and Jenkins, G. M [6] done a foundational work in the field of Bayesian 
statistics. Zellner introduces the concept of Bayesian estimation and prediction with asymmetric loss 
functions and computational methods for Bayesian estimation and prediction using asymmetric loss 
functions [20]. Parsian introduces the concept of Bayes estimation using a LINEX loss function and 
explained its uses in Bayesian estimation and its advantages in decision-making under uncertainty 
[18]. Feroze, N. and Aslam, M.  discusses [12] Bayesian analysis of the error function distribution 
using various loss functions and examine how different loss functions impact Bayesian estimation 
in the context of the error function distribution. Zaka, A. and Akhter, A. S. compares [19] various 
methods for estimating parameters of the power function distribution and done a simulation study 
and real-world. Chrisogonus K. Onyekwere and Okechukwu J. Obulezi [8] have proposed a new 
one-parameter distribution named Chris-Jerry is suggested from a two-component mixture of 
Exponential (θ) distribution and Gamma (3, θ) distribution with mixing proportion p = θ/ θ+2 having 
a flexibility advantage in modeling lifetime data. In this paper the posterior mean of Chris-jerry 
distribution is derived with various loss function. 

III. A Bayesian approach for Chris-jerry distribution

The probability distribution function of Chris-jerry distribution is given by 

f(x) =
θ2

θ+2
. (1 + θx2). e−θx              x , θ > 0    (1) 

       In this section the posterior distribution of Chris-jerry distribution is obtained. Let 𝑋1, 𝑋2, …. be 
a sequence of random variables from Chris-jerry distribution, then the likelihood function is given 
by  

π(xi) = ∏
θ2

θ+2
. (1 + θxi

2). e−θxin
i=1   (2) 

The prior is gamma prior (conjugate prior) 

p(θ) =
e−θ.θr−1

ϒr
 r > 0, θ > 0         (3)
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The posterior distribution is given by 

p(𝜃/𝑥) =
1

k
∗

θ2n

(θ+2)n ∗ ∏ (1 + θxi)
𝑛
𝑖=1 ∗ (e−θ ∑ xi

n
1 ) ∗

e−θ.θr−1

ϒr
    (4) 

Were 

k = ∫
θ2n

(θ + 2)n
(1 + θxi)

n. (e−θ ∑ xi
n
1 ) ∗

e−θ. θr−1

ϒr
dθ

∞

0

 

𝐾 = ∑(−1)𝑗𝑐(𝑛 + 𝑗 − 1, 𝑗) ∑ 𝑐(𝑛, 𝑖)(𝑥)𝑙

∞

𝑙=0

 

∞

𝑗=0

{ϒ(2𝑛 + 𝑙 + 𝑗 + 𝑟)}

2𝑛+𝑗[ϒ𝑟][∑ 𝑥𝑖
𝑛
1 + 1]2𝑛+𝑙+𝑗+𝑟

The posterior mean is given by 

𝐸[𝜃] = ∫ θp(𝜃/𝑥)𝑑𝜃
∞

0

 

= ∫ θ
1

k
∗

θ2n

(θ + 2)n
∗ ∏(1 + θxi)

𝑛

𝑖=1

∗ (e−θ ∑ xi
n
1 ) ∗

e−θ. θr−1

ϒr
𝑑𝜃

∞

0

 

Case: I 
Bayesian estimation of θ under linex loss function by Zellner [Zellner, A. (1986).] 

L(θ, θ̂) = a. eb(θ−θ̂) − b(θ − θ̂) − 1  (5) 

Where a>0, b≠0; a is scale of loss function and b determines its shape. Without loss of generality, we 
assume a= 1 and obtain bayes estimate of θ 

In Zeller's linex loss function, θ̂ represents the reference value or the target value that the 
parameter θ is compared to θ̂. It can be thought of as the "ideal" or "desired" value of θ. The linex 
loss function measures the deviation of θ from θ̂ 

For example, if you are estimating a parameter θ and you have a prior belief or expectation 
about its value, you might set θ̂to that prior belief. Then, the linex loss function would measure how 
much the estimated value of θ deviates from that prior belief. 

Here 

E[L(θ, θ̂)] =
1

kГr
∫[1. eb(θ−θ̂) − b(θ − θ̂) − 1] ∗ p(𝜃/𝑥)

∞

0

dθ 

= ∫[1. eb(θ−θ̂) − b(θ − θ̂) − 1] ∗

∞

0

θ2n+r−1

ϒr(θ + 2)n
(1 + θxi)

n. (e−θ ∑ xi
n
1 −θ)dθ

=
1

ϒr
∫[1. eb(θ−θ̂) − b(θ − θ̂) − 1] ∗

∞

0

θ2n+r−1

(θ + 2)n
(1 + θxi)

n. (e−θ ∑ xi
n
1 −θ)dθ

∑(−1)jc(n + j − 1 , j) ∗ (
1

2
)

j

= d

∞

j=0
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∑ c(n, i)(x)l = f

∞

l=0

 

∑ xi

n

i=1

+ 1 = h

E[L(θ, θ̂)] =
1df

ϒr
[({

e−bθ̂. ϒ(2n + r + j + l)

[h − b]2n+r+j+l
}) − {

b(ϒ2n + r + j − l)

h2n+r+j−l
} + θ̂b {

ϒ2n + r + j + l

h2n+r+j+l
}

− {
ϒ2n + r + j + l

ℎ2n+r+j+l
} ] 

Case: II (Bayesian estimation of θ under Symmetric loss function) 
Symmetric loss function for the decision d for the unknown parameter θ is defined by 

 L(θ, d)  =  C(d −  θ)2𝑓     (6) 

f= 1, 2….. 

E[L(θ, d)] =
1

kГr
∫[C(d −  θ)2𝑓] ∗

∞

0

θ2n+r−1

(θ + 2)n
. (e−θ(∑ xi+1) n

1 ) ∏(1 + θxi)

𝑛

𝑖=1

dθ 

where C is a constant. When f = 1 reduces to quadratic loss function (QLF) given by 

L(θ, d) =  C(d −  θ)2  (7) 

For some constant C. The value of the constant C makes no difference to a decision, and can be 
ignored by setting it equal to 1 and reduced to the SELF. Absolute loss function is another symmetric 
loss function given by 

𝐿 (𝜃, 𝑑) =  | (𝑑 −  𝜃)|  (8) 

The squared error loss function (SELF) is widely used in decision theory problems and is defined as 
L(θ, d)  =  (d −  θ)2                                                                                                        (9) 

IV. Simulation Study

Posterior Distribution: The posterior distribution represents our updated beliefs about the 
parameter θ after observing the data. It is proportional to the product of the prior distribution and 
the likelihood function. Sampling: in this research Markov Chain Monte Carlo (MCMC) methods is 
used, implemented in the r software, to sample from the posterior distribution and estimate the 
parameters of interest. 

The following algorithm outlines the steps involved in Bayesian inference using the specified 
model and data. It involves defining the model, computing the likelihood, performing posterior 
inference, analyzing the results, and outputting the estimates and diagnostics. 

Stan Code Explanation 

• Input Data:
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Obtain input data: 
n: Number of data points. 
x: Observed data points. 
r: Parameter influencing the shape of the gamma prior distribution for theta. 
C: Constant used in the loss function. 
f: Exponent used in the loss function. 
d: Target value used in the loss function. 

• Initialize Model:
Define the prior distribution: 
θ ~ Gamma (shape = r, rate = 1). 

• Likelihood Calculation:
Compute the likelihood using a custom loss function: 
Calculate the log-likelihood contribution for each data point: 
Compute terms related to the observed data x, the parameter theta, and the loss 
function parameters C, f, and d. 
Accumulate the log-likelihood contributions. 

• Posterior Inference:
Combine the prior distribution and likelihood to obtain the posterior distribution: 
Posterior ∝ Prior × Likelihood. 

• Bayesian Inference:
Use Bayesian inference techniques (such as Markov Chain Monte Carlo) to sample 
from the posterior distribution: 
Obtain posterior samples for the parameter theta using Stan's sampling algorithm. 
Specify the number of chains and iterations for sampling. 

• Analysis:
Analyze the posterior samples to estimate the posterior distribution of theta: 
Compute summary statistics (e.g., mean, median, quantiles) of the posterior 
samples. 
Visualize the posterior distribution if necessary. 

• Output:
Output the results of the analysis, such as posterior mean estimates, credible 
intervals, and diagnostic information about the inference procedure. 

Table 1: Comparison of Posterior Means for Different Loss Functions and Sample Sizes (simulated 

data) 
n/ 𝐸[𝜃] 50 100 200 

Without loss 0.0861636 0.04134565 0.02038608 
Symmetric loss function 3.458547 3.045888 2.563339 
Quadratic loss function (QLF) 0.08745913 0.04159895 0.02039235 
Squared error loss function 0.08671715 0.04156098 0.02036867 
Linex loss function 0.08599036 0.04149021 0.0203717 

From the above table show that the posterior mean increase when d and f values increase. Which 
mean the larger values of  f make the loss function more sensitive to deviations from d, leading to 
sharper penalties. 
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V. Real life data

Table: 2 shows the life of fatigue fracture of Kevlar 373/epoxy subjected to constant pressure at 90 

% stress level until all had failed. Source:(8) 
0.0251 0.6748 0.912 1.3503 1.7746 2.0408 2.4951 4.8073 
0.0886 0.6751 0.9836 1.3551 1.8475 2.0903 2.526 5.4005 
0.0891 0.6753 1.0483 1.4595 1.8375 2.1093 2.9911 5.4435 
0.2501 0.7696 1.0596 1.488 1.8503 2.133 3.0256 5.5295 
0.3113 0.8375 1.0773 1.5728 1.8808 2.21 3.2678 6.5541 
0.3451 0.8391 1.1733 1.5733 1.8878 2.246 3.4045 9.096 
0.4763 0.8425 1.257 1.7083 1.8881 2.2878 3.4846 
0.565 0.8645 1.2766 1.7263 1.9316 2.3203 3.7433 

0.5671 0.8851 1.295 1.746 1.9558 2.347 3.7455 
0.6566 0.9113 1.3211 1.763 2.0048 2.3513 3.9143 

. 

Figure: 1 Graph of posterior distribution of Chris-jerry distribution   

Table: 3 Comparison of Posterior Means for Different Loss Functions (real-life data) 

Loss functions Posterior Mean 

Without any loss function 1.179317 

Symmetric loss function 1.220796 

quadratic loss function 1.200863 

Squared error loss function 1.201302 

Linex loss function 1.197762 
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The above presents a comparative analysis of posterior means under different loss functions, 
revealing notable disparities in estimation outcomes. Without any loss function, the posterior mean 
is observed to be substantially higher, suggesting potential bias in the estimation process. 
Conversely, employing loss functions leads to a decrease in the posterior mean, highlighting the 
influence of the chosen loss function. Specifically, the symmetric loss function yields the highest 
posterior mean, while the Linex loss function results in the lowest. These findings underscore the 
significance of selecting an appropriate loss function. Notably, the posterior mean of the provided 
data has been calculated, emphasizing the practical relevance of these results. 

VI. Conclusion

The Bayesian estimation of parameters for the Chris-Jerry distribution with a gamma prior, 
considering various loss functions, reveals subtle differences in posterior mean estimates. The 
absence of a specific loss function yields a posterior mean estimate of 1.179317, while employing a 
symmetric loss function slightly increases the estimate to 1.220796. Conversely, quadratic and 
squared error loss functions result in slightly lower estimates of 1.200863 and 1.201302, respectively. 
The use of a Linex loss function produces a posterior mean estimate of 1.197762. These findings 
underscore the importance of the choice of loss function in Bayesian estimation. While variations are 
observed in the posterior mean estimates across different loss functions, the differences remain 
relatively subtle, indicating robustness in the estimation process. However, it is essential to note that 
these results are contingent upon the provided dataset and may vary with alternative datasets or 
priors. In conclusion, this study contributes to the understanding of Bayesian estimation methods 
for the Chris-Jerry distribution with a gamma prior. Future research could delve deeper into 
exploring additional loss functions and their implications for parameter estimation in Bayesian 
frameworks, thereby enhancing the applicability of these methods in diverse statistical analyses. 
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