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Abstract

In this study, we explore a new probability distribution termed as the Length-Biased Transmuted
Mukherjee-Islam (LBTMI) distribution. This exploration enhances the conventional Transmuted
Mukherjee-Islam distribution by integrating a weighted transformation approach. The paper examines
the probability density function and the corresponding cumulative distribution function associated
with the LBTMI distribution. A comprehensive examination of the unique structural properties of the
proposed model is carried out, including the survival function, conditional survival function, hazard
function, cumulative hazard function, mean residual life, moments, moment generating function
(MGF), characteristic function (CF), cumulant generating function (CGF), likelihood ratio test,
ordered statistics, entropy measures, and Bonferroni and Lorenz curves. To ensure precise estimation of
model parameters, the study employs the maximum likelihood estimation method, contributing
significantly to the advancement of statistical modelling in this domain.

Key words: Transmuted Mukherjee-Islam distribution, Weighted transformation, Reliability
analysis, Maximum likelihood estimator, Ordered statistics

1. Introduction

One fundamental aim of statistics is to develop precise predictive models for real-world phenomena.
However, due to the complex nature of these phenomena, conventional modelling approaches may
prove inadequate. As a result, an array of probability distributions has been devised to address these
challenges by using various transformation approaches. In our study, we introduce a novel extension
of Transmuted Mukherjee-Islam distribution termed as LBTMI distribution. This distribution is
crafted through the Fisher’s [6] weighted transformation technique, initially introduced in 1934, and
further elucidated by Rao [17] in 1965. This method allows us to construct weighted models of
observations based on predefined weighted functions. The weighted distribution reduces to length
biased distribution when the weight function considers only the length of the units. The concept of
length biased sampling was first introduced by Cox [4] and Zelen [26]. Scholars and researchers have
extensively delved into weighted probability models and their wide-ranging applications across
diverse domains. Modi and Gill [13] discussed the length-biased weighted Maxwell distribution,
while Sanat [23] derived the beta-length biased Pareto distribution. Reyad et al. [22] examined the
length-biased weighted Frechet distribution, elucidating its properties and practical applications.
Rather and Subramanian [20] introduced a method for characterizing and estimating the length-
biased weighted generalized uniform distribution. Mudasir and Ahmad [14] provided an in-depth
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discussion on the characterization and estimation of the length-biased Nakagami distribution, and
Khan et al. [7] discussed the weighted modified Weibull distribution. In subsequent years, Rather and
Subramanian [19] explored the length-biased Erlang truncated exponential distribution, highlighting
its practical applications. Mathew and Chesneau [12] studied the Marshall-Olkin length-biased
Maxwell distribution. In recent developments, Rather and Ozel [18] introduced a new length-biased
power Lindley distribution with applications. Al-Omari and Alanzi [1] presented the inverse length-
biased Maxwell distribution and conducted statistical inference with an illustrative application.
Mustafa and Khan [15] developed the length-biased powered inverse Rayleigh distribution with
practical applications.

The Transmuted Mukherjee-Islam distribution had explored by Rather and Subramanian [21]
using the quadratic rank transmutation map studied first by Shaw and Buckley [24] in 2007. Loai M.
A. Al-Zou’bi [2] also obtained various properties of Transmuted Mukherjee-Islam distribution and its
applications. The probability density function of a random variable say Z following Transmuted
Mukherjee- Islam distribution with parameters say (8, v, a)) is given by

f(Z;g,v,a)):ézg‘l 1+w—2w(£} 0<z<v,e>0,v>0,-1<w<1 (1)
1%

And the corresponding cumulative distribution function is

F, () :(éjg 1+ a)—w(é)g ()

Several researchers have explored the quadratic transmutation mapping approach, introducing new
members to this family across various baseline distributions. These include the transmuted extreme
value distribution by Aryal and Tsokos [3], the transmuted Frechet distribution by Mahmoud and
Mandouh [10], the transmuted generalized linear exponential distribution by Elbatal et al. [5], the
transmuted additive Weibull distribution by Mansour et al. [11], the transmuted Gompertz
distribution by Khan et al. [8], and the transmuted generalized inverse Weibull distribution by Khan
et al. [9]. Additionally, Subramanian and Rather [25] examined the weighted version of the
exponentiated Mukherjee-Islam distribution, deriving its statistical properties. Furthermore, Otiniano
et al. [16] delved into the transmuted generalized extreme value distribution.

2. Probability density function (PDF) and cumulative distribution function (CDF)

Using the weighted transformation approach, the PDF Y, (z) of a non-negative random variable Z is

given by

w(z) y(2).
EW(2))’

Where W(z) be a non-negative weight function and

E(w(z))= Tw(z) y(z)dz < oo.

Note that different choices of the weight function W(Z) give different weighted distributions.

Yo (2) = 2>0

Consequently for weight functionW(z) =12, the resulting distribution is called length-biased

distribution. Let us assume that the PDF of the random variable Z to be Transmuted Mukherjee-
Islam distribution, so the PDF of Length-Biased Mukherjee-Islam(LBTMI) distribution is given by

g(Z;av,w)zW 3)
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Now
e 72\’
E(2)=|z=z2Y1+w-2w| = | |dz

E(z) = %{(1+ a))f 2°dz —%Iz”dzJ

After simplification we get

_ev(l-w)+2¢)

E(z°) =
(e¢+D) (26 +1)
Using (1) and (6) in (3) we get
2 & z“(l+ - 2(0(2) J
Vg V
g(z,g,v,a))= ev((l- w) +2¢)
(e+D)(2e+))
(6 +1) (25+1)z{1+a)—20)(zj )
v
9(z;6,v,0)=

V(- w) + 2¢)
The corresponding CDF of LBTMI distribution is given by

Z (g+1)(2g+1)z{1+w—zw(zn
d

6. )= 2 e

v ((1- o) + 2¢)

_ (e+D)(2e+)) (e, 20 F
GZ(Z)_v”l((l—co)+23)[(1+w)-([z dz (V)g!;z dzJ

After simplification we get

G,(2)= (2e+)(1+w)(v)° z°H —20(s+1) 72641

V(- ) + 2¢)

3. Reliability Analysis
3.1 Survival function

The survival function of LBTMI distribution is given by
R, (©)=P.(T >1)
R () =1-P,(T <)
(e +) 1+ o) (V) t°" =20 (g +1)t*H

Re (=1~ V2 ((1- )+ 2¢)
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V2 (L- ) + 2¢) - (2 + D) (L+ @) (V)17 + 20 (s + )%+

R, (t)= 13
O V2 ((1- ) + 2¢) 49
After simplification we get
V2 (L- ) +2¢) - (28 +1) (1+ ) (V) t° + 20 (s + 1) 1%
R (1) = 2641 (14)
V2 ((1- )+ 2¢)
After simplification we get
V2 (- ) + 28)— (22 +1) 1+ ) (v)° — 20 (e +Dt)
Re(0) = 1s)
v ((1— W) + 25)
3.2 Conditional survival function
In case of LBTMI distribution the conditional survival function is given by
Rrtt) =R (T >t +t|T >1)
P(T>t,+t
Ryt = 22D
AT >1,)
R (t, +t
RT (t | to) = %
T \*0
V2 (1 @) + 22)— (t, +1)° (22 +1) 1+ @) (v)° — 20 (£ +1) (t, +1))
V28+1((1— ) + 25)
R (t]t,) = 16
() v ((1-w) + 26) -t (26 +1) (L+ 0) (v)° - 20 (¢ +1)t) (10)
V21— w) + 2¢)
R(t[t) = vz‘”l((l— W)+ 28)— (t, + t)‘”l((Zg +D) 1+ w) (V)" —20(e+1)(t, +t)) an
T v (1-w) +2¢) -t (2e +1) L+ @) (v)° — 20 (s +D)t)
3.3 Hazard function
The hazard function of LBTMI distribution is given by
te,v,o
H, (= Aol
1-G (1)
(e+1)(2¢ +1)t{l+ - Za)(tj ]
1%
H. (1) = v ((1- ) +2¢)
T 1- (2 +1D) (1+ 0) (V) t°" =20 (e + D t*H
V2 ((1-w) +2¢)
After simplification we have
(6 +1) (22 +1) (v)* t{1+ o= 2a)[£) J
H. () = (18)

V21— w) +2¢) -t (26 +1) L+ @) (v)° — 20 (s +1)t°)
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3.4 Cumulative hazard function

The cumulative hazard function of LBTMI distribution is given by

cH:®)=-h (RT (t))

2e+1 _ _ el & _
H (= V@) 2) 3 l((zg +1) 1+ @) ()° —20(s +1)t) .
v ((1- ) + 2¢)
Similarly, the Conditional Cumulative hazard function of LBTMI distribution is given by
cHr(tlt) = _In(RT (t| to))
Ho (1) = —in[ VA 0) +26) -t + £)°H(2s +1) 1+ ) (V) —20 (s +1) (4, +1))
T Vv (L- ) +28) -t (26 +1) (L+ w) (v)° — 20 (¢ +D)t)
3.5 Reverse Hazard function
The reverse hazard function of LBTMI distribution is given by
H. (t) = g(t,g,v,a))
G ()
(e+1) (2 +1t° [1+ - Za{t) j
14
H (1) = Ve (- ) + 2¢)
' (2 +1) 1+ ) V) 5" = 2w (s +1) 1%
v ((1-w) + 2¢)
After simplification we get
(6 +1) (26 +1) (v)* tf[1+ o= Zw(tj ]
v
H,(t) = 20
- (2 +1) (1+ @) (W)t =20 (s + D t**™ 20
3.6 Mills Ratio
The Mills ratio of LBTMI distribution is given by
Mills ratio =
H, (1)
sretl 2¢+1
Mills ratio — e+ 1+ o) (v)°t 20 (e +1)t 1)

(8+1)(25+1)(v)5t{l+w—2a{tj€]

14

3.7 Mean residual life

The mean residual life (MRL) in case of LBTMI distribution is given by
1 14

MRL =———[tg(t;z,v,0)dt—2
1-G,(2);
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(e+1)(2¢ +l)tg(1+ - Zw(tng
% %

MRL= 1-G,(2) I t v (- w) + 2¢) - 22
(e+1)(2¢ +1)t‘”1[1+ o-— Zw(tTJ
p 14
R=1760) J v (1- )+ 26) at-e =
_ (e+1)(2e+]) (e 20 (42001 B
MRL = 6. @) (-a) 2g)((1+ a))'z[t - 'th dtj z (24)
After simplification we get
VAL - (e +1)(2e+1) )**(1- ) (e+2)+ [+ ) &)+
= A
(-G, ()™ ((L-w) +2e e +2)(2e +2) |20(e +2) 222 - (v)F (L+ ) (26 +2) °7

4. Moments

The rth raw moment about origin of LBTMI distributionis defined as

ul :_[zr 9(z,6,v,0)dz
0

(+1) (25+1)25[1+ w—Zw(ZJEJ
%
' d

B -([ : v (- co) +2¢) :
r_ (‘9+1) (28 +1) g+r ( 2&+r
M = v‘”l((l—a)) N 28)((1+ ! dz - !z dz} (25)
ﬂ' _ (1+g) (1+ 28) w» (V)g+r+l _ Za)(v)25+r+1 (26)
v (- o)+ 2¢) e+r+1 (V)°(2e+r+1)
After simplification we get
,_(E+)Re+) (W) (A-w)(e+r+D)+ 1+ w) &) .
T (1-w)+2¢)(e+r+1) (25 +1+1) @7
Putting I' =1, 2, 3,4 in (26) we get
, (e+D) e+ () (L-0)(e+2)+ 1+ ) &) "
= (=) +25)(5+2) 26 +2) 29
, (e+D) e +D) (M) (A-0)(e+3)+ 1+ ) ¢)
My = (29)
(1- ) +2¢)(s +3) (25 +3)
. (e+D e+ (v)? ((1— w)(e+4)+ 1+ w) g)
My = (30)
(1- o) +2¢)(s +4) (25 +4)
= (e 2e]) ) (- w)(c+5)+(1+w) &) -

(1- ) +2¢)(s +5) (26 +5)

The variance and coefficient of variance (C.V ) respectively are given by

o = s ~ (14’
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And

CV=—; where o=/ — (1)’

x.|Q

5. Harmonic mean

The harmonic mean of LBTMI distributionis defined as

Harmonic mean= E(%)

(e +1) (2¢ +1)Z£(1+a)—2w(zng
1 v) ),

H i ==
armonic mean !z )+ 22)

(e+D)(2s +l)z“(1+ - 2a)(zﬂ
d

Harmonic mean = Z 32

! Ve (- o) + 2¢) 2

Harmonic mean = (gl+1) (2 +1) 1+ w)j 727z - 2—0).[ z%7dz (33)
yer ((1— W) + 28) ° (28

After simplification we get

(e +1) (2 +1)((1- @) + 1+ @))

Harmonic mean = 5
v((l— W)+ 25)(25 )

(34)

6. MGF, CF, and CGF

The moment generating function of LBTMI distribution is

M, (t) =E(e")

(e +1) (25+1)Z£[1+a)—2w(zjg]
1%

v ((1- o) +2¢) o

M, (t) = jetz

z (35)

(g+1)(28+1)Z{l+a)—2a)(z)£}
e @' -
Mz(t)—‘([kz_;‘ Kl Vg+1((1_a))+28) |

M, (t) = i%?zkg(z;g,v,a)hz
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Mz(t)=ki%u;

M, (t) = i O (+D)Re+) (W)  (A-w)(e+k+D) +(1+w)¢) 36)
~ Kl (1- o) +2¢)(s +k +1) (2c + k +1)
The characteristics function of LBTMI distribution is
¢, (1) =E(")
(e+1)(2¢ +l)zg£1+ w— Zw(zng
r tz v
% (1) = !:e v ((L-w) +2¢) dz
(e+1)(2¢ +l)z‘g[l+ - Zw(ZTJ
& (et2)" v
¢, (1) = i‘kz_;, o (A a) 1 26) dz (37)
¢, (t) =i%]ﬁzkg(z;8,v,w)dz (38)
5,0=3
&) (e +) e +) (V)  (L-o)(e+k+D) + L+ w) €)
2 (t)_kz,(; k! (1-w)+2s) (e +k+1) (2c +k +1) 9
The cumulant generating function of LBTMI distribution is
x; (1) = log (M (1))
B = (t)* (8+1)(26‘+1)(V)k((1—6())(8+k+1)+(1+a))8)
< (1) _'Og(kz_(; k! (1—0)+26) (e +k+1) (2c +k +1) J 40

7. Estimation of Parameters

Let Z;,Z,,23,...,Z, be a random sample of sizell from LBTMI distribution. Then the likelihood

function is defined as the joint density of the random sample, which is given as

(e+1)(2¢ +1)Z{1+ ®— Za)(zng

14

L(g, v, w) :ﬁg(zl;g,v,a)): (41)
1=1

Ve ((L- o) + 2¢)
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(6 +1) (s +1)2, 1+ a)—Zw(z'j
n 1%

Hew )= 1,:1[ V(- w) +2¢) )
_ (e+D)" (2e+D)" LR | e B Z ‘
L(g,v,®) = e ((1_(0) " 25)” (1:1[ Z, j 1;[ 1+ w 260( , j (43)

Taking logarithm on both sides we get
log L(¢, v, w) = nlog(e +1) + nlog(2¢ +1) — n(e + 1) log(v) — nlog((L - ») + 2¢)

+(5)i|09 Z, +i|og(l+a)—(2—)ai(zl)€j (44)
=1 =1 %

Differentiating equation (43) partially with respect to £ and equating to zero we get

n 2n 20 AN
g_+1+25+1 nlog(v) - - +Zlogz,—;[ - o gj( j IOQ(V)— (45)

_ . ZI
(v)
Differentiating equation (43) partially with respect to V and equating to zero we get
- 2w(z))¢ n(e+1
5 a n(e+D) )
= w v
| 1(1+w—g<z.)fj(v)“l
(v)
Differentiating equation (43) partially with respect to @ and equating to zero we get
Z &
.12
n 14
=0 (47)

(1a))+25+.21:( 20 ]
1+o-—(2))°
)

Simultaneously solving equation (44), (45), and (46), gives the maximum likelihood estimators of
parameters involved in the given distribution. However, direct evaluation of the aforementioned
system of nonlinear equations is unfeasible. To obtain maximum likelihood estimates for the
distribution parameters, it is necessary to employ iterative methods such as the Newton-Raphson
method, Mathematica, or the Secant method to solve this system effectively.

8. Distribution of ordered statistics

Suppose we draw a random sample Z;, Z,, Z3,...,Z, of size N from LBTMI distribution. Then the
ordered statistics corresponding to the given sample is Zyy,Z ), L3y, Z(, such that
Ly <Zypy<Lg <. <L, Where

z

@)
=min( z,, z,, Z5,..., Z,)

' 5n

&)
and  Z,y =max(z,2,,23,...,Z;)

'"n

The PDF of k" ordered statistics from LBTMI distribution is given by

ni . k-1 n—k
gz(k) (Z) = m g(Z’ &V, a)XGz (Z)) (l_ G, (Z))
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(g+1)(2g+1)zf[1+w-2w(zjg} e D)) (e s
B nl v e+) 1+ ) (V) 7" - 20(s +1) 2%
9, (2)= (k=1)!(n-k)! v ((L- @) + 2¢) [ v (- @) +2¢) j 49
[ @D o)) ~20(+ )7
v ((1- w) + 2¢)
(e+]) (28+1)Z€[1+a)—2a)[2)€j k-1
(Z) _ n! 4 (2e +) 1+ @) (V) 7" - 20 (e + 1) 2% (49)
92 )= 4 in =), V(=) +22) V(1= @)+ 26)
[V rH-0)+ 26)- 726 + ) 1+ 0) () ~20(e+ 07" )
V(- ) + 2¢)
And the corresponding CDF of k™ ordered statistics is
G, (2)=2.("C))(G,(2))(1-G, (2))""
j=k
 ((e+) 1+ @) () 2 — 2 (e +1) 221
( Ci ) 2+l
n v (- o) + 28)
G, (D) =, (50)
i=k N

Vz‘ﬁl((l—a))+28)—Zg+1((28+1)(1+a))(v)8 —2(0(8 +1)ZE) n-j
V2$+l((1—0))+23)

On substituting K =1, N in equation (48) we get the PDF of smallest and highest ordered statistics

respectively and are given as

(e+1)(2¢ +1)Z€[l+ - ZwEZJEJ
v
9z, (z)=n Vv (L- o) + 2¢) *

V(-0 +26)- (26 4D 04 ) )~ 20(e +12°)|” 61)
V2g+1((1_ w) T 25)

92, (Z) =

(e+1)(2¢ +1)z"[1+ o 2w(zjg] o
V) ) (2e +)(1+ @) (v) 27" - 20( +1) 2% (52)
Vv (L- ) + 2¢) V2 (L- ) + 2¢)

Their corresponding CDFs are obtained on substituting K =1, N in equation (49) and are given by

GZ (Z):l— 1-— (25+1)(1+CO)(V)SZS+1—2&)(8+1)225+1 n .
@ 2L ((1_ o)+ 28)
And
_[@e4D U+ @) () 2 ~20(e + D2 |
GZ(") (2) = [ V26+1((1— o)+ 28) j (54)
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9. Likelihood ratio test

The likelihood ratio test is a statistical technique designed to explore the adequacy of fit between two
models. Specifically, in the realm of probability distributions, it is utilized to check the suitability of
two distinct distributions in explaining observed data and its purpose is to ascertain whether the
inclusion of additional parameters in a statistical model substantially enhances its ability to accurately

represent the data or not. Suppose Z;, Z,, Z3,...,Z, be a random sample of size 1 from LBTMI
distribution.. To test the hypothesis

Hy,:9(2)=f(z;¢,v,m,) against H,:9(2)=9(z;&,v,w)

The likelihood ratio test is defined as

T 9(z:6,v, )
a1 F(zev, o)

(e+)(2e+)z,° |1+ w— Zw(zkj

1%
n e+l _
/= H v (- o) + 2¢) : (55)
< izk“’*1 1+ a)—Za)(ij
Ve v

e+ (2e+D) )
g_(gv((l—a))+25)J lk:!zk 0)

So, we reject null hypothesis at & level of significance if ¢ > K such that P/ > K*) =, where K~

is the critical value at ¢ level of significance of the given test statistics. That is,

(e+D)(2e+D) \ )
(81/((1—(0)+28)J sz >k 7

d . gv((l—a))+25) !
[[z>K ( (e+D) (26 +]) j &8)

For large sample size N, —2log(¢) is distributed as Chi-square distribution with one degree of

freedom. Also p-value is calculated from the chi-square distribution. On the basis of p-value, we reject
the null hypothesis when the p-value is less than level of significance.

10. Entropy measures

10.1 Renyi entropy and Tsallis entropy

By definition, the Renyi entropy is given by
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R(r) = 1_% IogU(g(zk e, v,0)) dzj (59)

v

(e+)(2¢ +1)z{1+a>—2a)(zn
d

1 14
R(r) =—I 60
(@) 1-7 °d -([ v”l((l— W) + 28) ’ (©0)

[z“ " ("CL)(=D)F L+ m)’—{za)(i ] sz]
k=0 1%

1 (c+1)(2e+1)
R(0)= 1-7 g (v‘”l((l— )+ 25))

O e <

1 (e+D)(2s+1) \ &, K [ 20 o e(k+7)
R(r)l_rlog( v“l((l—a))+28)j > (COD ) [(V)SJ ! z dzJ (61)
After simplification we get

_ 1 [((E+)Re+D)) () S (CIED Lt o) w)"
R(r)—l_Tlog( (@o)s26) kZ:; k)41 j (62)

Similarly, the Tsallis entropy associated with the given distribution is given by

T =i(1—j(g(zk;g,v,w))fdzJ

e A
g T S )
11. Bonferroni and Lorenz curves
The Bonferroni curve of the given distribution is given by
¥(() = glﬂ; [[29(@ v, 0
e g DAL B0 g
(6 +1) (2¢ +1)z‘{1+ - 2%5”

YO g2 o
0= L e ofea e

— 1 (‘9 +1) (28 +1) ((0)5*2 B 2w (¢)25+2
= Ve (- o)+ 25)[(“ w)( £+2 J (v)° ( 2612 B 0

After simplification we get

W(L) = (e +1) (2 +1)(p)° " ((l+ 0)(2e +2)(v)* -20(e + 2)(p)° )
¢ v ((1-w) +2¢)e +2)(2s + 2)

(67)
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Also, the Lorenz curve of the given distribution is given by

D(5)=¢ ¥(S)

o) o ETIC ) o 20 roterde])
¢ v ((1- o) +2¢s)e +2)(2¢ +2)
R e (20 R RO 25 YOI S YO

v ((L- ) + 28 (& + 2)(2¢ + 2)

12. Conclusion

In this paper, we have introduced a novel extension of the Transmuted Mukherjee-Islam distribution.
This extension incorporates a weighted transformation approach and the existing three-parameter
Transmuted Mukherjee-Islam distribution and generates four parametric innovative model known as
the Length-Biased Transmuted Mukherjee-Islam distribution. We conduct a thorough analysis of the
Length-Biased Transmuted Mukherjee-Islam distribution, investigating its mathematical formulation
and statistical properties in detail. Parameter estimation for this new distribution is performed using
maximum likelihood estimation techniques. Additionally, to assess the goodness of fit between these
two models, we employ the likelihood ratio test.
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