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Abstract 

The accelerated Degradation testing (ADT) experiments are important technical methods in 

reliability studies. Different type of accelerating degradation models has developed with the time 

and can be used in different types of situations. However, it has become necessary for the manager 

to test how many numbers of unit should be tested at a particular stress level so that the cost of 

testing is less. Accelerated Degradation testing (ADT) is preferred to be used in mechanized 

industries to obtain the required information about the reliability of product components and 

materials in a short period of time. Accelerated test conditions involve higher than usual pressure, 

temperature, voltage, vibration or any other combination of them. Data collected at such accelerated 

conditions are extrapolated through a physically suitable statistical model to estimate the lifetime 

distribution at design condition stress the life data collected from the high stresses the need to be 

extrapolated to estimate the life distribution under the normal-use condition. A special class of the 

ADT is the step-stress testing which regularly increases the stress levels at some pre-fixed time 

points until the test unit fails. Such experiments allow the experimenter to run the test units at 

higher-than-usual stress conditions in order to secure failures more quickly. The Inverse Gaussian 

process is flexible in incorporating random effects and explanatory variables.  The different types of 

models based on IG process are random drift model, random volatility model and random drift- 

volatility model. In this paper we have considered random drift model for the study on stochastic 

degradation models for simple step-stress model using inverse Gaussian process observed in 

degradation problems. 

Keywords: Degradation problem, random volatility model, accelerated life 

testing, inverse Gaussian process, and random drift-volatility model 

I. Introduction

In automated industries, Accelerated Degradation Testing (ADT) is the ideal method for quickly 

obtaining the necessary information regarding the dependability of product components and 

materials [4]. Higher than normal pressure, temperature, voltage, vibration, etc., or any 

combination of these, are examples of accelerated test conditions. In order to estimate the lifetime 

distribution at design condition stress, data collected under such accelerated conditions are 
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extrapolated using a physically appropriate statistical model. The life data collected from the high 

stresses must also be extrapolated in order to estimate the life distribution under normal-use 

conditions. Step-stress testing is a unique type of ADT in which the stress level is gradually 

increased at predetermined intervals until the test unit malfunctions. 

Such tests are mostly conducted in order to obtain dependability data as soon as possible or to 

save both time and money. Since many pressures tend to accelerate the deterioration process, we 

can employ accelerated degradation tests (ADT) to acquire degradation phenomena more quickly 

[5]. To assess the life characteristics of interest under use conditions, a basic constant stress ADT 

experiment allocates a number of units to different stress levels. The deterioration level of these 

units is then measured, analyzed, and extrapolated to the failure threshold. ADTs have garnered a 

lot of attention because to their ability to significantly reduce the testing length. For ADT data, 

there are two types of models [9]. 

Since Brownian motion's first passage time has an inverse Gaussian distribution, using it as a 

life time model makes sense. It is helpful for researching the dependability and life testing of a 

gadget, product, or subcomponent. In order to shorten the product's life or hasten its performance 

decline, engineers use accelerated testing to estimate the reliability of recently developed products. 

The items are subjected to severe conditions during this test, including a mix of random vibrations, 

increases in temperature, voltage, or pressure [11]. The inverse Gaussian process is a helpful model 

for repair time. Additionally, in the subject of reliability, the inverse Gaussian distribution has been 

applied in numerous fields, including hydrology, cardiology.  

II. Methods

I. Gaussian Process Model Inverse

An inverse Gaussian process {Y(t);  t ≥ 0 } with mean function Ʌ(t) and scale parameter λ has the 

following properties:  

• Y(t) has independent increments for every pair of disjoint intervals (t1 , t2), (t3 , t4) with

t1 < t2 < t3 < t4 the random variables Y(t2) − Y(t1) and Y(t4) − Y(t3) are   independent.

• Each increment Y(t) − Y(s) has an inverse Gaussian distribution IG(ΔɅ(t), λ ΔɅ(t)2) where

ΔɅ = Ʌ(t) − Ʌ(s) and the PDF of an inverse Gaussian distribution random variable IG(μ, λ)

with mean μ and variance 
μ3

λ
 has discussed by Chikkara and Folks (1989) is

𝑓(𝑥; 𝜇, 𝜆) = √
𝜆

2𝜋
𝑥−

3

2 𝑒𝑥𝑝 (−
𝜆(𝑥−𝜇)2

2𝜇2𝑥
)𝑋 > 0     (1) 

• Y(0) = 0 With probability one. When the amount of degradation reaches a pre-specified

critical level D, failure occurs. Let 𝑇 = 𝐼𝑛𝑓{𝑡: 𝑌(𝑡) = 𝐷} denote the failure time. Since the

inverse Gaussian process has a failure time distribution by [16] 

 𝑃(𝑇 < 𝑡) =  𝑃(𝑌(𝑡) > 𝐷) =  1 − 𝐺(𝐷;  Ʌ(𝑡), 𝜆 Ʌ(𝑡)2) 

= Ф[√
𝜆

𝐷
(Ʌ(𝑡) − 𝐷)] − 𝑒2𝜆Ʌ(𝑡)Ф[√

𝜆

𝐷
(Ʌ(𝑡) + 𝐷)] [−√𝜆𝐷(Ʌ(𝑡) + 𝐷)]  (2) 

where, 𝐺 (. ;  Ʌ, 𝜆) is a cumulative distribution function (CDF) of 𝐼𝐺(Ʌ, 𝜆) and  Φ is the 

standard normal CDF.  From above equation we can write the CDF of the failure time distribution 

as  
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𝐻𝜆(𝑡) =  Ф [√
𝜆

𝐷
(𝑡 − 𝐷)] − 𝑒2𝜆𝑡Ф[√

𝜆

𝐷
(𝑡 + 𝐷)]          (3) 

It is an increasing function. Thus, within this class of models, there is a one-to-one 

relationship betweenɅ(𝑡) and the cdf of the failure time distribution 𝐻𝜆(𝑡) for a fixed scale 

parameter 𝜆.  

𝑓(𝑥; 𝜇, 𝜆) = √
𝜆

2л
𝑥

3

2𝑒𝑥𝑝 (−
𝜆(𝑥−𝜇)2

2𝜇2𝑥
)        (4) 

Where 𝜇 > 0 𝑎𝑛𝑑 𝜆 > 0 the parameter 𝜇 is the mean of the distribution and 𝜆 is a scale 

parameter. (Tweedie) gives three form of above pdf, which he obtained by replace the set of 

parameters (𝜇, 𝜆) 𝑏𝑦 (∝, 𝜆) 𝑜𝑟 (𝜇, 𝜙), 𝑜𝑟 (𝜙, 𝜆) using the relationship given by [13] 

𝜇 =
𝜆

𝜙
= (2 ∝)

−1

2 (5) 

Both 𝜇 and 𝜆 are of the same physical extent as the random variable 𝑋 itself; but the 

parameter 𝜇 =
𝜆

𝜙
  is invariant under a scale transformation of 𝑋as can be seen from the following

relationship: 

𝑓(𝑥;  𝜇, 𝜆) = 𝜇−1𝑓 (
𝑥

𝜇
; 1, 𝜙) = 𝜆−1𝑓 (

𝑥

𝜇
; 𝜙, 1)   (6) 

The probability density can be numerically computed using any of the three forms in 

above equation as shown above the cumulative distribution function depends fundamentally on 

only two variables, which might be taken as 𝑥𝜇 and 𝜙. According, the case 𝜇 = 1 for 

the (𝜇, 𝜙) parametric form of above equation could be adopted as a standard form [18]. This has 

also been obtained as a limiting form of the distribution of the sample size in a Wald’s sequential 

probability ratio test and is sometimes referred to as the standard Wald’s distribution of the 

density function model is 

𝜇 [(1 +
9

4𝜙
)

1

2
−

3

2𝜙
]  (7) 

II. Random Effects Inverse Gaussian Process

Random effects are needed in Inverse Gaussian process to account for inexplicable heterogeneous 

degradation rates within the product population. By linking to the Weiner process this investigates 

different options to incorporate the random effects in the IG process model. Consider the wiener 

process W(x)  = μ x + λ B(x) where μ > 0 is the drift parameter and λ > 0 is the volatility 

parameter and B(x) is the standard Brownian motion [12]. Given a fix threshold Ʌ > 0, it is well 

known that the first passage time TA  = inf  {x > 0│W(x) ≥ Ʌ} follows  IG (
Ʌ

μ
,

Ʌ2

λ2) going one step

further, we consider a series of the thresholds Ʌ(t) indexed by t with Ʌ(0) = 0 and Ʌ(t) increasing 

in t, and define the first passage time process Y(t) =  TɅ(t) It is easily verified that the 

induced {Y(t); t > 0} is an IG process with the mean function 
Ʌ(t)

μ
 and variance function 

Ʌ(t)

λ2  by asset

of the stationary and independent increment property of the Wiener process W(x). 

The inverse relation between the IG and the Wiener processes motivates investigation of 

the IG process from a new perspective. Existing results on the Wiener processes can let somebody 

use support to the development of IG process model with the random effects [10]. 
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III. Random Volatility Model

Consider a Wiener process W(x) =  μ−1x + λ
−1

2 B(x) with the induced IG process other way of 

introducing unit-specific random effects is to assume that each unit possesses a separate realization 

of the volatility parameter. Accordingly, volatility parameter in the Inverse Gaussian process is 

random [17]. With the random volatility parameter in the Inverse Gaussian process all units have 

the same mean degradation path, even though they will have different variance functions. The 

Inverse Gaussian process with random volatility parameter was originally proposed by Wang and 

Xu (2010). 

Shortcoming of random volatility model is unusual to use the volatility parameter to 

control heterogeneity in the Weiner process thus application of random volatility model is limited. 

Thus, random drift model was proposed which overcome inadequacy of random volatility model 

[13]. 

IV. Random Drift Model

An effective way to incorporate random effect in the IG process is to let 𝜇 be a random variable. To 

avoid the negative values of 𝜇 (Whitmore 1986) and ensure mathematical tractability, we assume 

𝜇 − 1 follows a truncated normal distribution 𝑇𝑁 (𝜔, 𝑘−2), 𝑘 > 0 with PDF 

𝑔(μ−1;  𝜔, 𝑘−2) =
𝑘.𝜙[𝑘(𝜇−1−𝜔)]

1−Ф(−𝑘𝜔)
𝜇 > 0         (8) 

Where (. ) is a standard normal PDF. In a degradation test, if the degradation of the ith testing unit 

is observed at time 𝑡𝑖𝑜 < 𝑡𝑖1 < ⋯ .< 𝑡𝑖𝑛𝑖 with observations 𝑌𝑖(𝑡𝑖𝑗), 𝑗 = 0,1,2, … . , 𝑛𝑖 the joint PDF of 

𝑌𝑖 = [𝑌𝑖(𝑡𝑖1), 𝑌𝑖(𝑡𝑖2), … . 𝑌𝑖(𝑡𝑖𝑛𝑖) ] is computed by first conditioning on the random drift parameter 𝜇𝑖 

and then marginalizing it, which yields the following equation is 

𝑓𝐼𝐺(𝑌𝑖) =
1−𝜙(−�̃�𝑖�̃�𝑖)

1−𝜙(−𝑘𝜔)

𝑘

�̃�𝑖
𝛱𝑗=1

𝑛𝑖 √
𝜆𝛬𝑖𝑗

2

2л𝑦𝑖𝑗3

�̃�𝑖
2
�̃�𝑖−𝑘2𝜔2

2
− 𝜆 ∑

𝛬𝑖𝑗2

2𝑦𝑖𝑗

𝑛𝑖
𝑗=1  (9) 

Where,𝑌𝑖𝑗 = 𝑌𝑖(𝑡𝑖𝑗) − 𝑌𝑖(𝑡𝑖𝑗 − 1) is the observed increment 𝛬𝑖𝑗 = Ʌ(𝑡𝑖𝑗) − Ʌ(𝑡𝑖𝑗 − 1) 

        �̃�𝑖𝑗 = √𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗) + 𝑘2      (10) 

𝜔 ̃𝑖𝑗 =
[𝜆𝛬(𝑡𝑖𝑗𝑘𝑗)+𝑘2𝑒𝑥𝑝∝0+∝1𝑥𝑗]

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
 (11) 

Then the log-likelihood function is given by 

  𝑙(𝜃) = ∑ ∑ [𝑙𝑛
𝑘

�̃�𝑖𝑗
+

�̃�𝑖𝑗
2
�̃�𝑖𝑗

2−𝑘2𝑒𝑥𝑝(2∝0+2∝1𝑥𝑗)

2
+

1

2
∑ [𝐼𝑛(𝜆𝜕𝛬𝑖𝑗𝑘) −

𝜆𝛬
𝑖𝑗𝑘2

𝑦𝑖𝑗𝑘
]

𝑘𝑗

𝑘=1
]

𝑁𝑗

𝑗=1
𝑗
𝑖=1       (12) 

𝑙(𝜃)   is the likelihood function up to a constant can be expressed by the above equation. 

Where    𝜃 is a parameter vector include ∝0 , ∝1 , 𝜆, 𝛽, 𝑎𝑛𝑑 𝑘 

V. Accelerated Degradation Test Assumptions

Let total N number of units is put into test. Suppose 𝑆0 be the usage stress 𝑆𝐻 being the maximum 

acceptable stress. To collect the degradation data timely we allocate these units J stress level 

𝑆1 < 47 𝑆2 < ⋯……… < 𝑆𝐽 with 𝑆0 < 𝑆1and 𝑆𝐽 = 𝑆𝐻 consider 𝑁𝑗 units to be allocated to jth stress 

level.  𝑗 = 1, 2, 3, … . . 𝐽. The degradation of these units is affected by the stress. Here, we have 
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assumed 𝜇𝑖 =  ℎ(𝑠), and 𝜆is constant over𝑠, where ℎ(𝑠) is a link function reflecting the effect of the 

stress on the degradation process [17].  

Due to the above assumption the degradation speed and drift changes with the stress. 

Another alternative is that 𝜆 = ℎ(𝑠) while 𝜇 is constant which is not valid for random drift model 

since𝜇 is changing from unit to unit. For simplicity and without loss of generality, the additional 

assumptions are, the measurement time interval, and the number of measurements 𝐾𝑗under the jth 

stress level, where 𝑗 = 1,2, ……… 𝐽, are pre-determined and the link function follows one of the 

following acceleration relations: 

• Power law relations ℎ(𝑠) =  𝜑0 . 𝑠
∝

• Arrhenius relation ℎ(𝑠) =  𝜑0 . 𝑒
−∝

𝑠

• Exponential relation ℎ(𝑠) =  𝜑0 . 𝑒
∝𝑠

In real time applications the time approved for the test is often given by the manager and 

time intervals at which the units are measured are predetermined because of the working time of 

experimenters [10]. Thus, we assume that 𝜏𝑗 and 𝑘𝑗 are given. In our model we delight these two 

variables as decision variables, and then we optimally determine their values. When the assumed 

stress-degradation relation i.e., is correct we can use a two-stress ADT, i.e., 𝐽 = 2 in our model. But, 

in this minimum variance plan we are unable to check the validity of the assumed stress-

degradation relationship. Thus, we prefer to use three-stress ADT planning taking 𝐽 = 3 to check 

the validity of the assumed model. In our settings, the purpose of ADT planning is to optimally 

determine the stress levels (𝑆𝑗), and the number of samples for each stress level (𝑁𝑗) are be 

investigated in our proposed work [4].  

VI. Normalizing the Stress Level

We standardize the stress levels depending on the acceleration relationship of the stress on the rate 

of degradation as follows:  

𝑍𝑗 =
𝑙𝑛𝑆𝑗−ln𝑆0

𝑙𝑛𝑆𝐻−ln𝑆0
 For the power law relation 

 𝑍𝑗 =

1

𝑆0
 − 

1

𝑆𝑗
1

𝑆0
 − 

1

𝑆𝐻

       For the Arrhenius relation 

𝑍𝑗 =
𝑆𝑗 − 𝑆0

𝑆𝐻− 𝑆0
       For the exponential relation 

From the above consistency, it is readily seen that 𝑥0  = 0, 𝑥𝑗 = 1, and 0 < 𝑍𝑗 ≤ 1 for 

𝑗 = 1,2… . , 𝐽  then. 
ℎ(𝑥) = 𝑒𝑥𝑝 (∝0+∝1 𝑍𝑗) 

ℎ(𝑥) =  𝜑0 . 𝑒
−∝
𝑠

ln ℎ(𝑥) = ln𝜑0 −
∝

𝑠
Were, ∝0= ln 𝜑0 −

∝

𝑆0
, ∝1=∝ (

1

𝑆0
−

1

𝑆𝐻
) For the Arrhenius function, ∝0= ln 𝜑0 +∝ 𝑙𝑛𝑆0 , ∝1=

∝ (ln 𝑆𝐻 − 𝑙𝑛𝑆0) For the power law function and ∝0= ln 𝜑0 +∝ 𝑆0 , ∝1=∝ (𝑆𝐻 − 𝑆0) For the 

exponential function. 

VII. Inferential Procedure

We suppose that the ith unit under the jth stress level is measured at time tijk  = kτj with 

observations Yij (tijk), k = 0,1, … … . . , kj . Let Yijk = Yij (tijk) − Yij (tij, k − 1) be the observed 

increments, and Ʌijk = Ʌ(tijk) − Ʌ(tijk, k − 1). Now, the log-likelihood function up to a constant can 

be expressed by the equation above 1. The Fisher information matrix I(θ) for the element 

∝0, ∝1, k, ω, Ʌ(. ) can be developed as below [5]. We assume nonlinear function for Ʌ(. ), i.e., 
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Ʌ(t) =  tβ and then θ = (k, ω, ∝0, ∝1, β)’ detailed expression for the elements along with the 

elements of the fisher information matrix can be developed as follows. 

𝜕𝑙(𝜃)

𝜕𝜔𝑗
= ∑ ∑ [0 +

1

2
{
2(𝜆𝛬(𝑡𝑖𝑗𝑘𝑗)+𝑘2𝜔𝑗)𝑘

2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
− 2𝑘𝜔𝑗

2} +
1

2
∑ (0 − 0)

𝑘𝑗

𝑘=1
]

𝑁𝑗

𝑖=1
𝐽
𝐽=1    (13) 

𝜕𝑙(𝜃)

𝜕𝜔𝑗
= ∑ ∑ [{

𝑘2(𝜆𝛬(𝑡𝑖𝑗𝑘𝑗)+𝑘2𝜔𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
2𝑘2𝜔𝑗}]

𝑁𝑗

𝑖=1
𝐽
𝐽=1     (14) 

𝜕2𝑙(𝜃)

𝜕𝜔𝑗2
= ∑ ∑ [{

−𝑘2(0+𝑘2)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
− 𝑘2}]

𝑁𝑗

𝑖=1
𝐽
𝐽=1   (15) 

𝜕2𝑙(𝜃)

𝜕𝜔𝑗2
= ∑ ∑ (

−𝑘2(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗))

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2 − 𝑘2)
𝑁𝑗

𝑖=1
𝐽
𝐽=1       (16) 

𝜕𝑙(𝜃)

𝜕𝛽
= ∑ ∑ [(

𝛬𝑖𝑗𝑘

𝜕𝛽
{

𝜆(𝜆𝛬𝑖𝑗𝑘+𝑘2𝜔𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
}) + ∑ (

1

𝛬𝑖𝑗𝑘
−

2𝜆𝛬𝑖𝑗𝑘

𝑌𝑖𝑗𝑘
)

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽

𝑘𝑗

𝑘=1
]

𝑁𝑗

𝑖=1
𝐽
𝑗=1    (17) 

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽
= ∑ ∑ [

(𝜆
𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽
){(2𝑘𝜔𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗))+2𝑘𝜔𝑗−𝑘𝜆𝛬(𝑡𝑖𝑗𝑘𝑗)+𝑘3𝜔}

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
2 −

𝑘𝜆
𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
]

𝑁𝑗

𝑖=1
𝐽
𝐽=1        (18) 

𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
= ∑ [𝑍𝑗𝑒𝑥𝑝(∝0+∝1 𝑥𝑗)

𝜕𝑙(𝜃)

𝜕𝜔𝑗
+ 𝑒𝑥𝑝(∝0+∝1 𝑥𝑗)

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2 𝑥𝑗]

𝐽
𝑗=1     (19) 

𝜕2𝑙(𝜃)

𝜕∝0
2

= ∑ [𝑒𝑥𝑝(∝0+∝1 𝑍𝑗)
𝜕𝑙(𝜃)

𝜕𝜔𝑗
+ 𝑒𝑥𝑝(∝0+∝1 𝑍𝑗)

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
]𝐽

𝑗=1   (20) 

𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽
= ∑ ∑ [

1

2
{

2(2𝜆𝛬(𝑡𝑖𝑗𝑘𝑗))
𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽
+𝑘2𝜔

𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2 −
𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)𝜆

𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
2 } +

1

2
∑ (−

𝛬𝑖𝑗𝑘

𝑌𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
)

𝑘𝑗

𝑘=1
]

𝑁𝑗

𝑗=1
𝐽
𝑗=1         (21) 

And then the fisher information matrix can be developed as given below: 

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0
2 ] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝑘 
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝜆 
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1
2 ] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝑘 
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝜆 
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝑘 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝜆 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝1𝜕𝑘 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝1𝜕𝜆 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝1𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘 2
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜆 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽  
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜆 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝜆 2
]

[−
𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽  
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝛽 2
]

   (22) 

The log-likelihood function can be maximized to obtain maximum likelihood estimator MLEs [9]. 

The direct maximization of log-likelihood function gives equations which are computationally 

difficult to solve. Under the truncated normal distribution, direct maximization of the likelihood 

function often yields a solution far away from the MLE.  

III. Results

I. Numerical Study

Utilizing the methodology of G. Yang et al. (2007), the suggested process is demonstrated here. In a 

case study, 30 samples at the electrical connector were found to have failed if the data were 

collected under one of three temperature levels: 55°C, 75°C, or 100°C. The resistors in the MEMS 

LAB at the Faculty of Engineering and Technology were all part of a constant stress ADT. The 

normal use temperature and threshold value for the percent increase in resistance were assumed to 

be l=6, where observed at different times during the measurement. The samples are tabulated in 

Table 1 with the 7th point of the second unit under 55°C labeled blank, as suggested by Yang et al. 

(2007), to maintain the monotone behavior of the stress. 
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Table 1: Stress relaxation data under the temperature level 

Temperature 
S. 

No 
Stress loss Mean 

Time 

550c 

1 2.13, 2.06, 3.43, 4.36, 5.86, 6.24, 6.63, 7.34, 7.58, 8.42, 9.57 

7.60 

2 2.34, 3.65, 4.69, 4.85, 5.36, 0, 6.59, 8.48, 9.35, 10.95 

3 2.8, 3.56, 4.65, 5.89, 6.3, 7.65, 8.95, 9.21, 10.45, 11.32 

4 2.96, 3.58, 5.38, 5.32, 7.68, 8.27, 8.61, 9.854, 10.97, 11.57 

5 
3.65, 4.55, 5.33, 7.58, 8.39, 9.37, 9.33, 10.24, 11.89, 12.54, 

13.59  

6 3.59, 5.69, 5.87, 6.29, 8.98, 10.25, 11.00, 12.69, 13.69, 15.91 

750c 

7 2.98, 4.98, 5.87, 6.38, 8.56, 10.21, 11.98, 11.00, 13.24, 15.38 

10.65 

8 3.65, 4.27, 6.29, 8.91, 9.54, 10.14, 12.69, 14.32, 16.90 

9 3.69, 4.28, 6.72, 8.34, 8.64, 10.81, 11.20, 14.57, 16.90, 18.18 

10 3.58, 4.92, 6.91, 7.34, 9.38, 11.78, 12.98, 13.92, 15.39, 18.29 

11 3.58, 4.87, 7.96, 8.64, 10.94, 12.61, 13.94, 15.38, 17.82, 19.34 

12 5.96, 5.89, 8.91, 9.67, 12.67, 13.54, 15.98, 17.51, 20.64, 23.94 

1000c 

13 4.89, 5.91, 8.47, 9.38, 11.84, 13.57, 15.94, 16.97, 18.54, 19.82 

14.09 

14 4.94, 6.85, 7.95, 9.64, 10.87, 12.67, 15.47, 16.32, 18.94, 21.98 

15 5.97, 6.31, 8.57, 10.91, 12.97, 14.51, 16.78, 18.96, 19.49, 21.34 

16 4.25, 7.58, 9.34, 10.64, 13.95, 15.27, 16.97, 19.84, 20.46, 22.7 

17 5.94, 6.28, 8.94, 12.73, 14.61, 16.37, 18.39, 21.78, 22.96, 24.75 

18 
4.18, 8.91, 10.94, 12.71, 15.67, 17.64, 19.78, 21.64, 24.97, 

28.45 

Table 2: Measurement time under different temperatures 

Temperature Measurement time epochs (in hours) 

55℃ 107, 238, 540, 838, 1063, 1249, 1536, 1789, 2164, 2414, 1812 

75℃ 45, 109, 247, 411, 641, 758, 1017, 1232, 1621, 249 

100℃ 44, 110, 204, 322, 457, 684, 847, 1041, 1204 

Figure 1: Measurement temperatures 
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In the following, we will determine the optimal ADT plans based on both models. Suppose 

10 units are available for the ADT test. In the ADT, we set 𝜏𝑗 = 24, and 𝑘𝑗 = 14  for all𝑗 = 1,2, … . 𝐽. 

this setting means that we measure the degradation level once every day, and the test lasts two 

weeks [19]. Our planning involves selecting the stress level, (𝑥1, 𝑥2, … , 𝑥𝐽−1) , and the proportion of 

samples allocated to each testing level, (𝑁1, 𝑁2, … , 𝑁𝐽−1)) . Consider a two-level ADT plan. Suppose 

we are interested in minimizing the asymptotic variance of B10, the 0.1-quantile of the failure time 

distribution at use conditions. When 𝐽 = 2 yields the optimal ADT design 

The elements of fisher matrix by solving through mat lab are: 

[
 
 
 
 

−1.258 × 108 −1.269 × 108 −1.6891 × 109 −20.91 × 108 −1.62 × 105

−1.18 × 108 −8.94510 × 107 −1.6541 × 109 −15.7351 × 108 −1.127 × 108

−1.26578 × 109

−21.32 × 108

−1.29 × 105

−1.3298 × 109

−15.761 × 108

−1.113 × 108

−6.791 × 109

−8.458 × 1012

−1.325 × 108

−8.734 × 1012

−4.9780 × 109

−1.39 × 107

−1.339 × 109

−1.38 × 107

−5.69 × 107 ]

Table 3: Optimization table for random drift model 

Process 𝑥1 𝑥2 𝑁1 𝑁2 𝑆𝑡𝑑(𝜑𝑝) 

Random drift 

model 
0 1 1 9 4216 

The table above displays the ideal ADT design. The fact that 0 is the ideal lower stress value is 

visually appealing. This outcome is accurate since, even when testing the unit under real-world 

conditions, the degradation under typical use conditions happens quickly enough to minimize the 

inaccuracy brought on by extrapolating to the failure threshold. 

Table 4: Optimization table for simple IG process 

Process 𝑥1 𝑥2 𝑁1 𝑁2 𝑆𝑡𝑑(𝜑𝑝) 

Simple Inverse 

Gaussian model 
0 1 1 9 17450 

IV. Discussion

Due to its ability to account for variance in sample product results from unit to unit, the random 

drift model was chosen for this paper's investigation. With time, many techniques for testing the 

product are developed. Accelerated deterioration testing, however, is more beneficial in the 

electronics sector than other approaches. Testing the product quickly is necessary because the 

corporation creates huge samples of comparable products. To study deterioration performance 

more effectively, an accelerated degradation test is more appropriate since it increases the stress 

value during life testing, causing the part to fail faster, and it gathers degradation data to forecast 

product reliability.  

With time, several accelerating degradation models have emerged that can be applied in 

various contexts. However, to reduce testing costs, it has become imperative for the management 

to test the number of units that should be tested at a certain stress level. The development of the 

Simple Stress Accelerated Degradation Test technique considered a number of necessary criteria, 

including tightening the value of constraints, robustness, and optimality of design. Therefore, the 

number of units and stress value are optimized using the inverse Gaussian process. This paper 

presents a proposed model that minimizes the asymptotic variance value to estimate the number 

of units required for the optimal stress level. A helpful tool for evaluating the value of vectors 

required to estimate the asymptotic variance is the Fisher information matrix. 
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