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Abstract

This article develops a new control chart for the mean using empirical Bayes estimates. We assume that
the quality characteristic of the proposed control chart follows a normal distribution with unknown mean
and variance. Both the parameters have known prior probability distributions. In practice, the parameters
of priors are unknown and are estimated using the empirical Bayes approach. For the performance
assessment of the new control chart, the Average Run Length (ARL) procedure is used while the process
is in control and out of control. A real-life example is also considered to evaluate the performance of the
proposed control chart.

Keywords: Average Run Length, Empirical Bayes, Mean Chart, Posterior, Statistical Process
Control.

1. Introduction

Statistical Process Control (SPC) is a popular methodology for monitoring and assessing the
quality of a manufacturing process. The main objective of SPC is to minimize the process
variability. A control chart is the main technique SPC uses to measure whether a manufacturing
process is in control. Dr. Walter Shewhart first proposed the control chart technique in the 1920s.
If the quality characteristic under study is quantifiable, we use variable control charts like X̄, R,
and S charts, etc. For these control charts, it is assumed that the quality characteristic follows
a normal distribution. Over the years, researchers have developed control charts for means by
considering different aspects. [5] proposed a X̄ chart when the quality characteristic follows
a skewed distribution. [9] introduced a new X̄ chart by considering variable sample size and
sampling intervals, which can detect the shift in the process mean in less time than a traditional
X̄ chart. [8] gave an idea of the Max chart by combining the X̄ chart and S chart. [18] proposed a
new control chart for mean based on variable and attribute inspections.

The Bayesian approach has recently become very popular among researchers for constructing
control charts. Using empirical Bayes, [11] developed a multivariate process control chart. [19]
compared the effectiveness of different mean charts under the Bayesian approach. [13] have
constructed a new control chart for the coefficient of variation using prior information when
the mean is variable, and the variance is the function of the mean. [17] designed a two-sided X̄
control chart for mean. [4] developed a new control chart for mean using posterior distribution.
[10] measured the performance of a Bayesian Control Chart using empirical Bayes based on
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Weibull data. [2] proposed a mean control chart using a uniform prior. [12] used Empirical Bayes
methods based on loss functions for a sequential sampling plan. [6] used the Bayesian model for
constructing predictive control charts. [1] designed a Bayesian Shewhart-type control chart for
the Maxwell distributed process.

The entire article is arranged in the following way. Section 2 discusses the Shewhart X̄ chart.
In section 3, a discussion is made on the posterior mean control chart. Section 4 briefly describes
the empirical Bayes method. In section 5, we explain the construction of the new control chart for
mean using empirical Bayes estimates. In section 6, the performance of the proposed control chart
is evaluated concerning the Average Run Length values. In section 7, a real-life dataset is taken to
analyze the performance of the proposed control chart for mean. In the last section (section 8),
concluding remarks are given.

2. X-bar Control Chart

Let X1, X2, . . . , Xn be n observations of a quality characteristic X following a normal distribution
with mean, µ and variance, σ2 of a manufacturing process. Then, according to W. Shewhart, the
3-sigma control limits of X̄ chart are

UCL = µ + 3
σ√
n

LCL = µ − 3
σ√
n

3. Posterior Control Chart for Mean

[4] proposed a new posterior X̄ control chart for process mean. Suppose X1, X2, . . . , Xn be n
observations of a quality characteristic X. It is assumed that Xi’s are independently and identically
distributed normal variables with mean µ and variance σ2(known). Here, the process average µ
has normal prior with known parameters.Then Xi’s ∼ N(µ, σ2) and µ ∼ N(θ, λ2), where θ and λ
are known. So, the posterior mean α0 = x̄ζ0 + θ(1 − ζ0) and the posterior variance is ρ0 = n

σ2ζ0

where ζ0 = nλ2

nλ2+σ2 . Hence, the three-sigma control limits of the posterior control chart for the
mean are

UCL = x̄ζ0 + θ(1 − ζ0) + 3
σ√
n

√
ζ0

CL = x̄ζ0 + θ(1 − ζ0)

LCL = x̄ζ0 + θ(1 − ζ0)− 3
σ√
n

√
ζ0

4. Empirical Bayes method

In the Bayesian method, the probability distribution function’s unknown parameters are con-
sidered the random variables. Suppose X1, X2, . . . , Xn are n observations from f(θ). Here, the
parameter θ has some prior information. , θ has the prior distribution π(θ|ω), where ω is the
hyperparameter. The Bayes’ theorem states that the posterior distribution of θ can be expressed as
proportional multiplication of the likelihood L(θ) and the prior distribution π(θ|ω). Symbolically,
h(θ|x) = L(θ)π(θ|ω)∫

L(θ)π(θ|ω)
∝ L(θ)π(θ|ω)

The Bayesian method is different from the frequentist method. In the parametric empirical Bayes
method, the prior distribution π(θ|ω) takes parametric form, where the prior distribution param-
eters are unknown. [7] estimates the prior parameters using the observed data. These parameters
could be estimated using the empirical Bayes procedure (see [14] and [3]). Given the observations,
the joint likelihood distributions have been compared with the joint prior distributions. The
joint likelihood distributions are just the multiplication of the likelihood distribution of X, and
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joint prior distributions are the multiplication of the prior distributions of the parameters. We
can estimate the prior parameters by comparing them individually with their corresponding
likelihood functions.

5. Control Chart for Mean using Empirical Bayes

Using the empirical Bayes method, we propose a new control chart for the mean. Suppose
X is a quality characteristic of a manufacturing process and is assumed to follow a normal
distribution with mean, µ and variance, σ2. The location parameter, µ, has a normal prior with
unknown parameters, and σ follows an inverse gamma distribution with unknown parameters.
Let X has n observations X1, X2, . . . , Xn, such that Xi ∼ N(µ, σ2). here µ ∼ N(µ0, σ2) and
σ ∼ InverseGamma(α, β).

g(x|µ, σ2) =
1

(σ
√

2π)n
e−

1
2σ2 ∑(xi−µ)2

− ∞ < µ < ∞, σ2 > 0

g(µ|σ2, x) =
1

σ
√

2π
e−

1
2σ2 (µ−µ0) − ∞ < µ0 < ∞

g(σ2|x) = βα

Γα
(σ2)−α−1e

β

σ2 α > 0, β > 0

Hence, the posterior distribution of (µ, σ2) is given by,

g(µ, σ2|x) = g(x|µ, σ2)g(µ|σ2)∫ ∞
0

∫ ∞
−∞ g(x|µ, σ2)g(µ|σ2)dµdσ2

So, posterior mean E(µ|x) = ∑ xi+µ0
n+1 . The empirical Bayes estimate of µ0 is X̄.

So, ˆE(µ|x) = (n+1)x̄
n+1 = x̄.

Now,

E(σ2|x) =
∫ ∞

0
σg(µ, σ2|x)dσ2

=
∫ ∞

0
σg(σ2|x)g(µ|σ2, x)dσ2

=
∫ ∞

0
σg(σ2|x)g(µ|σ2, x)dσ2

=
Γ( n

2 + α)

Γ( n+1
2 + α)

w
n+1

2 +α
1

w
n
2 +α
1

=
Γ( n

2 + α)

Γ( n+1
2 + α)

√
w1

=
2n+2α−1Γ( n

2 + α)√
πΓ(n + 2α)

√
w1

here w1 = ∑ x2
i + 2β + µ2

0 −
x2

0
n+1 .

The empirical Bayes procedure will be used to estimate the parameters. So the estimated values
of the parameters of the likelihood function of σ2 are α̂ = (n − 3)/2 and β̂ = ∑n

i=1(X − X̄)2/2
(see [15]). Therefore

ˆE(σ|x) =
Γ( n

2 + n−3
2 )

Γ( n+1
2 + n−3

2 )

√
2

n

∑
i=1

(xi − x̄)2

=
Γ( 2n−3

2 )

Γ( 2n−2
2 )

√
2

n

∑
i=1

(xi − x̄)2

=
Γ( 2n−3

2 )

Γ( 2n−2
2 + 1

2 )

√
2

n

∑
i=1

(xi − x̄)2
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Hence, the control limits of the proposed control chart for the mean are

UCL = x̄ + L
Γ( 2n−3

2 )

Γ( 2n−2
2 + 1

2 )

√
2

n

∑
i=1

(xi − x̄)2

CL = x̄

LCL = x̄ − L
Γ( 2n−3

2 )

Γ( 2n−2
2 + 1

2 )

√
2

n

∑
i=1

(xi − x̄)2

Here, L is the control chart coefficient.

6. Evaluation of Performance and Comparisons

This section uses Monte Carlo Simulation to compute the proposed control chart’s Average Run
Length (ARL) for mean using empirical Bayes. We consider different sample values of n and
compare the computed in-control-ARL (ARL0) and out-of-control ARL (ARL1) with the existing
posterior mean control chart and Shewhart Control Chart. The decision is based on the value of
ARL1. The control chart with a smaller ARL1 value is more efficient in detecting a shift in the
process mean than other control charts. We consider the shift in process mean as µ∗ = µ + cσ.

Algorithm for construction of UCL and LCL is as follows.

• Step 1: Select a random sample of size n, say, x1, x2, . . . , xn from N(µ, σ2) distribution. Here
we assume that µ has a normal prior and σ has an Inverse Gamma prior with unknown
parameters.

• Step 2: Estimate the posterior distribution parameters using the empirical Bayes procedure.

• Step 3: For given values of n and fixed in-control Average Run Length(ARL), say r0, find
the control chart coefficient L.

• Step 4: Find UCL and LCL for each i, i = 1, 2, . . . , n. The process is in control if all the
values of xi fall within the UCL and LCL of the proposed mean chart.

• Step 5: Next, we find the ARL0 value for a particular choice of the process mean µ.

• Step 6: We shift the process mean µ to a certain amount, say c and compute ARL1 by
repeating steps 1 to steps 5.

Here, we fixed the ARL0 at 370. The ARL values of the proposed control chart are given in Table
1 - Table 3.

We can see the proposed control chart for mean using empirical Bayes estimators has the
least ARL among all the control charts under consideration. The ARL1 of the proposed chart
decreases quickly for a small shift in the process mean. As we increase the sample size, the ARL1
values of the control chart decrease. Therefore, we can conclude that the new control chart for
using empirical Bayes estimators is more efficient than the posterior control chart and Shewhart
X̄ control chart.

7. Illustrative Example

In recent trends, SPC researchers use both simulated and real-life data to evaluate the performance
of a control chart. In this study, we have considered a real dataset from [16] to evaluate the
performance of the new control chart for mean using empirical Bayes estimates. The data set is
given in the appendix section. Here, we have filled out height data in ten subgroups of size 10.
It is assumed that the control chart statistic, fill height, follows normal distribution where the
parameters µ and σ have unknown prior distribution. Using the empirical Bayes procedure, the

RT&A, No 2 (78) 

 Volume 19, June, 2024 

212



Souradeep Das and Sudhansu S. Maiti
A NEW BAYESIAN CONTROL CHART FOR PROCESS MEAN

Table 1: Comparison of average run lengths of Empirical Bayes control chart for Mean with Posterior Mean Control
Chart and Shewhart X̄ Control Chart for n = 10 and ARL = 370

Shift Empirical Bayes Mean Chart Posterior Mean Chart Shewhart X̄ Chart
L = 3 L = 3 L = 3

0.0 370.398 370.398 370.398
0.05 281.397 312.467 328.011
0.1 183.248 221.991 249.167

0.15 128.813 144.631 181.701
0.2 86.003 94.297 123.981

0.25 58.238 68.997 87.457
0.3 34.184 39.832 59.301
0.4 9.327 18.115 28.034
0.7 2.265 3.168 4.387
0.9 1.183 1.719 2.814

Table 2: Comparison of average run lengths of Empirical Bayes control chart for Mean with Posterior Mean Control
Chart and Shewhart X̄ Control Chart for n = 20 and ARL = 370

Shift Empirical Bayes Mean Chart Posterior Mean Chart Shewhart X̄ Chart
L = 3 L = 3 L = 3

0.0 370.398 370.398 370.398
0.05 236.234 289.754 300.373
0.1 131.197 168.103 185.559

0.15 67.469 91.476 106.358
0.2 34.482 50.893 61.539

0.25 21.107 29.555 36.807
0.3 12.893 17.985 22.885
0.4 5.221 7.663 9.959
0.7 1.934 2.988 3.824
0.9 1.021 1.504 2.357

Table 3: Comparison of average run lengths of Empirical Bayes control chart for Mean with Posterior Mean Control
Chart and Shewhart X̄ Control Chart for n = 30 and ARL = 370

Shift Empirical Bayes Mean Chart Posterior Mean Chart Shewhart X̄ Chart
L = 3 L = 3 L = 3

0.0 370.398 370.398 370.398
0.05 183.609 262.736 271.659
0.1 96.064 130.865 142.164

0.15 34.627 63.37 71.433
0.2 24.922 32.409 37.614

0.25 9.088 17.731 20.860
0.3 3.167 10.384 12.343
0.4 2.081 4.338 5.163
0.7 1.355 2.805 3.532
0.9 1.008 1.244 1.841

prior parameters are estimated. The UCL and LCL of the new control chart for mean based on
empirical Bayes for the data set are 0.7288446 and -0.6888446, respectively. From figure 2, we
can see that the proposed control chart based on empirical Bayes can detect an out-of-control
observation more precisely than the posterior control chart for mean and Shewhart X̄ chart.
In figure 4, the Average Run Lengths of the proposed chart and other control charts are drawn.
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Figure 1: Comparison of ARLs of Empirical Bayes Mean Control Chart for different sample values

Table 4: Comparison of average run lengths of Empirical Bayes control chart for Mean with Posterior Mean Control
Chart and Shewhart X̄ Control Chart

Shift Empirical Bayes Mean Chart Posterior Mean Chart Shewhart X̄ Chart
L = 3 L = 3 L = 3

0.0 370.398 370.398 370.398
0.05 297.351 322.097 334.916
0.1 180.398 227.721 257.719

0.15 101.842 147.533 182.071
0.2 58.247 94.044 124.894

0.25 34.533 60.687 85.584
0.3 21.331 40.032 59.301
0.4 9.217 18.786 29.912
0.7 1.867 3.538 5.911
0.9 1.198 1.829 2.822

From table 4 and figure 2, we can conclude that the proposed mean chart using the empirical
Bayes estimator has smaller ARL values than the posterior mean control chart as well as Shewhart
X̄ control chart when there occurs a shift. In figure 1, we can see that the width of control limits
for the proposed control chart is narrower than the posterior mean control chart and Shewhart X̄
chart. This implies that the new mean chart based on empirical Bayes estimate can detect an ’out
of control state’ of a process mean earlier.

8. Conclusion

This article proposes a new control chart for mean using the empirical Bayes approach. For the
mean, we compare the performance of the new control chart with that of the existing control
charts. We used ARL values to measure the performance of the control charts for the mean. It is
observed that the proposed control chart can detect the smaller shift in the process mean quickly
than the posterior mean control chart and Shewhart X̄ control chart. It was also noted that the
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Figure 2: Empirical Bayes control chart with that of Posterior Control Chart

Figure 3: Empirical Bayes Control Chart and Shewhart X̄ control chart

proposed control chart performed better for larger sample sizes.
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Figure 4: Comparison of ARLs of Empirical Bayes Mean Control Chart with other Control Charts for the example
dataset
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