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Abstract 

Natural catastrophes have a tremendous influence on the environment and our economy, which has 
raised significant concerns and spurred scientific research. Several studies have been done to model the 
economic losses brought on by natural disasters. In this article, we primarily concentrate on examining 
the distributions of economic losses resulting from big catastrophes including wildfires, earthquakes, 
droughts, volcanic eruptions, and harsh weather. We recommend utilizing five well-known statistical 
distributions, including the Weibull, Log-logistics, Gamma, Generalized Pareto, and Lognormal 
distributions since we observe the skewed forms of the empirical distributions. We employ the maximum 
likelihood technique for each distribution for the available data sets in order to estimate the distributions. 
The parameter estimations are numerically computed using the PSO method. We select the distribution 
that best fits the economic losses using the Akaike Information Criterion and Kolmogorov-Smirnov 
statistics. We discovered that the Log-logistic distribution is the distribution that fits the total economic 
losses caused by all-natural disasters the best. 

Keywords: Natural catastrophes, Economic losses, Probability distribution models, 
Maximum likelihood estimation, PSO Method, R-software, Goodness-of-fit tests 

I. Introduction

Nature has been giving us gifts since the beginning of time. But we have also had to deal with the terrible 
things about it. Every year, a large number of different natural disasters, including floods, wildfires, 
earthquakes, extreme heat, cold, and volcanic activity, claim the lives of on average 60,000 people. Direct 
and indirect effects are distinguished by a recognised typology of disaster effects [1]. The destruction of 
fixed assets, raw materials, natural resources, high-yielding crops, and the loss of priceless lives are 
examples of direct repercussions. Indirect effects, which are frequently referred to as economic losses, 
are those that have an impact on economic activity over time, particularly in the goods and services 
sectors [2]. 

According to EM-DAT, catastrophes caused 0.1% of fatalities in the previous two decades. High-
impact incidents accounted for 0.1% to 0.4% of all fatalities. Flood and drought were the deadliest 
natural calamities, but they no longer kill many. Earthquakes are the deadliest nowadays. Along with 
life, calamities also destroy resources. These risks affect economic activity, causing volatility and losses 
for the global economy; see [1,2,3,4]. 

Natural disasters have increased dramatically over the last three decades, posing a significant 
threat to the world's economies, particularly those of developing countries. The impact of economic 
losses on developing countries is far greater than that on developed countries. Between 1970 and 2002, 
6436 natural disasters occurred, with developing countries bearing the brunt of the damage. It 
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demonstrates that developing countries are unable to combat these deadly disasters due to a lack of 
resources [2,3]. The relationship between natural disasters and economic losses is widely evident all 
over the world, and a number of studies have prompted the need for disaster mitigation strategies to 
reduce human and economic suffering. For such studies, we refer the readers to follow [5,6]. 

The preceding discussion highlights the necessity of evaluating the distribution of economic losses 
caused by natural disasters. Estimating economic losses due to disasters was a huge difficulty in the 
early days, and it was dependent on a hypothetical or singular historical occurrence rather than 
mathematical or statistical modelling. Few studies have been done to calculate the economic damages 
incurred by various natural disasters. [7] estimated economic losses for the whole spectrum of extreme 
weather, such as draught and flood, by combining stochastic hydro-meteorological crop-loss models 
with a regionalized computable general equilibrium model. [8] estimated the economic losses caused 
by natural disasters using the input-output model and associated modelling frameworks such as the 
social accounting matrix and the computable general equilibrium. Furthermore, [9] introduced a novel 
modelling framework known as the regional input-output model to explore the effects of natural 
catastrophes. 

Coronese et al. [10] estimated the damage and mortality caused by natural catastrophes using a 
quantile regression model. They discovered an increasing trend in extreme natural catastrophe 
damages, which is consistent with a climate-change signal. Natural catastrophe casualties have 
reduced, despite an increase in economic damages. They also noticed an alarming increase in casualties 
associated with severe temperatures. [4] proposed using extreme value theory for modelling economic 
losses in a monograph, and they employed extreme value and extended pareto distributions for fitting 
heavy tailed distributions of economic losses. [11] discovered that generalised extreme value models 
and generalised Pareto distributions match well to the extreme losses of natural disasters and are 
helpful tools for calculating the tails of loss severity distributions. [12] used a generalised Pareto 
distribution to describe economic damages resulting from non-natural disasters. 

The majority of academicians generally support the use of generalised extreme value distributions 
to describe economic damages brought on by natural disasters. Only one or two natural disasters are 
modelled using probability distribution models. Numerous probability models that are available in the 
literature could match such datasets more accurately than the generalised Pareto distribution. In this 
article, we use different probabilistic models to fit the economic losses caused by six significant 
calamities: drought, earthquake, extreme weather, extreme temperature, wildfire, and volcanic activity. 
For each of these data sets, we look at five three-parameter statistical distributions (size, shape, and 
placement). The new research completely contradicts the studies under consideration and discovers a 
very suitable distribution for natural disasters. For the purpose of calculating numerical maximum 
likelihood estimates of the unidentified model parameters, we use the particle swarm optimization 
approach (PSO). We employ goodness-of-fit tests like Kolmogorov-Smirnov and Akaike Information 
Criterion to choose the probability distribution model that best fits the distribution of natural 
catastrophes. 

This paper is organized into different sections. In the first section, we review the literature on the 
economic loos due to natural disasters.  Which is then followed by a discussion on data and variables 
viz. drought, earthquake, extreme temperature, extreme weather, volcanic activity, and wildfire. Which 
is then knowledge about the three parametric distribution (viz. Weibull, Log-logistics, Gamma, Gen. 
Pareto, and Log-normal) and estimation techniques. Analysis of results follows which is finally 
concluded by the discussion of the results with respect to the objectives of the study. 

II. Data description

The Pro Vention Consortium of the World Bank Catastrophe Management Facility launched a 
coordinated effort to review the quality, accuracy, and completeness of three global disaster data sets 
after realising the need for higher quality data to enhance disaster preparedness and mitigation. These 
were EM-DAT managed by the Centre for Research on the Epidemiology of Disasters (CRED), Sigma 
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maintained by Swiss Reinsurance Company (Zürich), and Nat Cat maintained by Munich Reinsura nce 
Company (Munich). 

Over 22,000 mega catastrophes have occurred throughout the world since 1900, and EM-DAT 
provides crucial core data on their incidence and consequences. The database is created using data from 
a variety of sources, including UN agencies, non-governmental organisations, insurance firms, research 
institutions, and press outlets. Our catastrophe information is taken from the EM-DAT International 
Disaster Database, which CRED and the US Office for Foreign Disaster Assistance both administer 
(OFDA). A disaster is one that meets at least one of the following criteria, according to the database: 10 
or more fatalities, 2000 or more people impacted by hunger and drought, 100 or more by other 
calamities, a government disaster declaration, or an appeal for outside help. 

We examine economic losses caused by draughts, earthquakes, volcanic activity, harsh weather, 
high temperature, and wildfires. Minimum value, maximum value, mean, variance, standard 
deviation, coefficient of variation, skewness, and kurtosis of economic losses due to natural disasters 
were computed. Table 1 shows an overview of the descriptive statistics for each economic variable. 

Table 1: The descriptive statistics of economic losses due to the natural disasters 

Variable Mean Variance 
Coefficient 
Variation 

Skewness Kurtosis 

Draught 340.33 264018.7 150.98 2.66 8.0 
Earthquake 981.81 8821100.0 302.51 5.73 38.6 

Extreme Tem. 196.46 185152.3 219.03 3.92 16.3 
Extreme 
Weather 1363.40 7919309.0 206.40 3.60 16.4 
wildfire 200.53 141181.8 187.37 4.23 21.9 
Volcanic 
Activity 14.05 666.4 183.74 2.48 5.6 

According to the overview, between 1900 and 2018, the minimum damages attributable to natural 
disasters ranged from $0.02 billion to $0.10 billion. Volcanic activity provided the lowest minimum 
losses, but drought and wildfire caused the highest minimum losses. Natural disasters can cause 
maximum losses ranging from $100 to $23030 billion. Volcanic activity has the lowest maximum losses, 
whereas earthquakes have the highest possible losses. The mean or average of all disaster-related losses 
from 1900 to 2018 ranges from $14.05 to $1363.40 billion, with extreme weather events having the 
highest mean value and volcanic activity having the lowest mean value. The range of the standard 
deviation for all six variables is $25.8 to $297 billion. Volcanic activity has the lowest standard deviation 
while earthquakes have the highest. The fact that some effects created by extreme value to the huge 
value in the raw data makes it evident that the standard deviation for each variable is always larger 
than the mean. The degree of asymmetries in a distribution around the mean is determined using the 
coefficient of skewness. All distributions are positively skewed as the skewness value is more than zero 
and lies in between 2.48 and 5.73. The skewness value for an earthquake is the highest at 5.73, clearly 
showing that it is very obviously skewed and that its asymmetric tail is extending to the right, while 
the skewness value for volcanic activity is the lowest at 2.48, showing that it is less obviously skewed 
and that its symmetric tail is also extending to the right. 

The relative peak or flatness of a distribution can be assessed using the value of kurtosis. Kurtosis 
values range from 5.6 to 38.6, and they are always greater than 3. All distributions of economic losses 
have a greater peak than the typical normal distribution. Earthquake's height value is 38.6, which 
suggests the likelihood of a leptokurtic distribution, in which the data set tends to have a prominent 
peak close to the mean and a heavy tail. Volcanic activity obtains the lowest value and tends to have a 
flat peak close to the mean in the data set. The same can be deduced from Figure 1.  It is possible for us 
to state here that one ought to employ the probability distribution models for the purpose of fitting 
such data sets which are positively skewed and have a frequency curve with high peaks. 
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III. Methodology

In this section, we will explain the statistical approaches that would be utilised to achieve the fitting of 
economic variables, which was covered in the previous section. Inclusion in this category includes that 
of probability distributions, parameter estimation, and the goodness-of-fit criterion. 

Figure 1: Boxplots of economic losses due to six main natural disasters 

I. Probability distributions

The human mind is capable of incredible feats, and statistical modelling is one of them. It involves 
abstracting the results of observation in order to determine the similarities and differences between 
occurrences. When it comes to protecting ourselves against the effects of natural disasters, statistical 
models are a typical tool. The process of evaluating risks, making forecasts, and issuing warnings all 
depend heavily on modelling.  

It is possible to draw the conclusion from the previous section that a statistical distribution with a 
right-skewed spread is the most accurate when it comes to modelling economic losses due to natural 
disasters. The current article makes use of five positively skewed distributions, namely the Weibull 
distribution, the Log-logistics distribution, the gamma distribution, the generalised Pareto distribution, 
and the Lognormal distribution, in order to fit the economic losses caused by natural disasters such as 
drought, earthquake, extreme temperature, extreme weather, volcanic activity, and wildfire. The 
probability density function (PDF), and cumulative distribution function (CDF) are given in Table 2.  

The three-parameter Weibull distribution is commonly utilised in reliability and life data analysis 
[13]. Weibull distributions with β=1 have a constant failure rate, indicating usable life or random 
failures. Weibull distributions with β > 1 have a wear-out failure rate. Next is the Log-logistics three-
parameter distribution, often known as the Fisk distribution in economics [14]. Characterizing the 
lifetime distributions log logistics distributions have property of a constant discrete Log-odds rate 
(LOR) with respect to t and ln t [15]. A random variable with a logistic logarithm has a log-logistic 
distribution. It resembles Lognormal but has heavier tails. Its cumulative distribution function is closed, 
unlike the lognormal. This distribution can exhibit a monotonically decreasing failure rate function for 
some parameter values. It is a survival analysis model for occurrences whose rate rises then falls. Some 
applications of the log-logistic distribution are discussed in economics to model wealth or income 
distribution [16] and in hydrology to estimate stream flow and precipitation [17]. 
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Table 2: The PDF & CDF of the distributions 
Model  PDF and its Support  CDF 
Weibull 

𝑓(𝑥) =
ఉ

ఈ
ቀ

௫ିఊ

ఈ
ቁ

ఉିଵ

𝑒ିቀ
ೣషം

ഀ
ቁ

ഁ

, x ≥  γ, β >

 0, α >  0.

𝐹(𝑥) = 1 − 𝑒ቀ
௫ିఊ

ఈ
ቁ

ഁ

Log-
logistics 

𝑓(𝑥) =
ቆଵା

ഁ

ഀ
(௫ିஓ)ቇ

ష൬
భ
ഁ

శభ൰

ఙ൮ଵାቆଵା
ഁ

ഀ
(௫ିஓ)ቇ

ష൬
భ
ഁ

൰

൲

మ, x ≥ γ, β >0, α >0. 𝐹(𝑥) = ൮1 + ൭1 +
𝛽

𝛼
(𝑥 − γ)൱

ି൬
ଵ
ఉ

൰

൲

ିଵ

Gamma 𝑓(𝑥) =
ଵ

௰ఈఉഀ
(𝑥 − 𝛾)ఈିଵ 𝑒

ିቀ
ೣషം

ഁ
ቁ
 , γ <  x <

 ∞, β >  0, α >  0. 𝐹(𝑥) =

𝛤(𝑥 − 𝛾)
𝛽ఈ

𝛤𝛼
Gen. 
Pareto 𝑓(𝑥) =

ଵ

ఈ
൬1 + 𝛽 ቀ

௫ିஓ

ఈ
ቁ൰

ିଵିቀ
భ

ഁ
ቁ

, x≥ 𝛾, 𝛽 > 0. 𝐹(𝑥) =  1 − ቀ1 +
ఉ(௫ିஓ)

ఙ
ቁ

ିቀ
భ

ഁ
ቁ

 for 𝛽 ≠0 

Log-
normal 

𝑓(𝑥) =
ଵ

(௫ିఊ)ఈ√ଶగ
𝑒𝑥𝑝 ቄ

[௟௡(௫ିఊ)ିఉ]మ

ଶఈమ ቅ, x > γ ≥ 0, − 
∞ < 𝛽< ∞ , α > 0. 

𝐹(𝑥) = 𝛷 ቆ
𝑙𝑛(𝑥 − 𝛾) − 𝛽

𝛼
ቇ

It is positively skewed and the amount of skew depending inversely on the shape parameter. In 
gamma distribution median does not have a closed-form equation. Some applications of the gamma 
distribution are discussed in climatology to estimate the different behaviour of the natural climatic 
events [18] and in hydrological analysis [19]. Environmental studies use the Generalized Pareto 
distribution to model heavy-tailed data sets [4]. The distribution is called the "peaks over thresholds" 
model because it models flood control threshold exceedances. Generalized Pareto distribution models 
are used for extreme event [20]. The log-normal distribution is a function distributing a dependent 
variable in a normal or Gaussian fashion on a logarithmic scale of the independent variable (i.e., if the 
random variable X is log-normally distributed then Y=ln(X) has a normal distribution). A distribution 
that is log-normal in one of its moments will be log-normal in any of its moments with the same 
geometric standard deviation, describing the spread of the dependent variable [21]. The median size of 
any moment is connected to the median size of any other moment by an analytical relationship derived 
by [22]. One of the most common applications where log-normal distributions are used in finance is in 
the analysis of stock prices [23].  

II. Maximum Likelihood Estimation

The most common method for obtaining estimators is by far the maximum likelihood approach. 
According to the MLE concept, the probability distribution that is "most likely" to accommodate for the 
observed data is the one that is wanted. As a result, one must look for the parameter vector value that 
maximises the likelihood function 𝐿(𝜃|𝑥). The notion of maximum likelihood, which selects as the 
estimator that value of the parameter that maximises the PDF 𝑓ఏ(𝑥), effectively presupposes that the 
sample is representative of the population.  

For each sample point x, let 𝜃෠(𝑥) be a parameter value at which 𝐿(𝜃|𝑥) attains its maximum as a 
function of 𝜃, with x held fixed. Then 𝜃෠(𝑥) is called the MLE of the parameter 𝜃, ( 𝜃  may be vector 
valued). Obtain n independent observations, x₁, x₂, ..., xₙ the estimates of parameters 𝜃෠ଵ, 𝜃෠ଶ, … … … , 𝜃෠௞ 
can be obtained by solving the differentiation of the logarithmic likelihood function as; 

డ௟௢௚௅൫ఏ෡; ௫₁,௫₂,...,௫ₙ ൯

డఏೕ
= 0, 𝑗 =  1, 2, … , 𝑘.  (1) 

Here, we discuss the complete producer of finding the MLEs of the Weibull distribution 
parameters. Consider the pdf and cdf of the Weibull distribution from Table 2. Assuming that the 
observations are independently distributed, the likelihood function is defined by, 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

160



Ashish Jha, Vikas Kumar Sharma, Abhimanyu Singh Yadav 
MODELLING ECONOMIC LOSSES DUE TO NATURAL DISASTER… 

𝐿(𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎) = ∏ 𝑓(𝑥௜ , 𝛼, 𝛽, 𝛾)  (2)௡
௜ୀଵ

Our aim of estimation is to determine the three unknown parameter 𝛼, 𝛽, 𝛾 by the maximizing the 
likelihood (2) or equivalently log-likelihood function (3). The log-likelihood function is shown below. 
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Using the conventional approach, we take the partial derivatives of the log-likelihood function (3) 
in terms of 𝛼, 𝛽, 𝛾 and set them equals to zero. We obtain the following equations, 
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It is commonly understood that obtaining estimates of unknown parameters by solving equations 
given above numerically is challenging. The particle swarm optimization (PSO) approach is used to 
find unknown parameters estimates and is inspired by the notion of heuristic algorithms. Using this 
process, we can find the MLE for all of the distributions under consideration.   

III. Particle Swarm Optimization Method

The biologically inspired approach known as particle swarm optimization, which was initially 
described by [24], is based on the flocking behaviour of birds. PSO is a population-based, self-adaptive 
search optimization method also referred to as an optimizer. All of the particles in the swarm move 
faster toward the best individual and overall position while continuously evaluating the value of their 
present location according to the same controlling principle. Each particle has a memory that aids it in 
remembering its most recent optimal location. Particle positions are classified as either personal best 
(pbest) or global best (gbest). Each particle has a unique pbest that is based on the journey it has taken. 
The particle compares the fitness value of its present position to that of pbest at each step along its 
route. The pbest is changed to the present location if the latter has a greater fitness value. Each particle 
also had a method of knowing where the swarm's greatest concentration of flowers had been located. 
The gbest, is the name given to this site of the best fitness ever found. There is a single gbest to which 
every particle is drawn throughout the whole swarm. 

In a n-dimensional search space, the position and velocity of individual (particle or solution) i are 
represented as the vectors 𝑋𝑖 =  (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛) denote a particle’s position (coordinate) and 𝑉𝑖 =

(𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑛, ) denote the particle’s flight velocity over a solution space in the PSO algorithm. Each 
individual x in the swarm is scored using a scoring function that obtains a score (fitness value) 
representing how good it solves the problem. Let pbesti and gbest = (x1gbest,..., xgbestn ) be the position of 
individual i and its neighbors’ best position so far, respectively. Each particle records its own personal 
best position (pbest), and knows the best positions found by all particles in the swarm (gbest). Then, all 
particles that fly over the n-dimensional solution space are subject to updated rules for new positions, 
until the global optimal position is found. The modified velocity and position of each individual can be 
calculated using the current velocity and the distance from pbesti to gbest as follows:  

𝑉௜
௞ାଵ =  𝜔𝑉௜

௞ + 𝐶ଵ𝑅௥௔௡ భ
൫𝑝𝑏𝑒𝑠𝑡௜
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 𝑋௜
௞ାଵ = 𝑋௜

௞ + 𝑉௜
௞ାଵ   (5) 

where  𝑉௜
௞ velocity of individual i at iteration k, ω weigh parameter (inertia weight), c1, c2 acceleration 

coefficients, 𝑅௥௔௡ௗభ
 𝑎𝑛𝑑 𝑅௥௔௡ௗమ

 random numbers uniformly distributed between 0 and 1, 𝑋௜
௞ position of 

individual i at iteration k, 𝑝𝑏𝑒𝑠𝑡௜
௞ best position of individual i until iteration k, 𝑔𝑏𝑒𝑠𝑡௜

௞ best position of 
the group until iteration k.  

The fundamental structure and pseudo-code of PSO algorithm 
for each particle 

 generate an initial particle 
  end 
 do  
 for each particle 

 calculate fitness value  
 if  the fitness value is better than the best fitness value (pBest) in history 

 set current value as the new pBest 
 end 

 end 
 choose the particle with the best fitness values of all the particles as the gBest 
 or each particle  

 calculate particles velocity according eq (5) 
 update particle position according eq (6)  

 end 
 while maximum iteration criterion is not attained. 

Marinho et al. [25] introduce the Adequacy Model computational library version 2.0.0 for the R 
statistical environment with two major contributions: a general optimization technique based on the 
PSO method (with a minor modification of the original algorithm) and a set of statistical measures for 
assessment of the adequacy of the fitted model. The goodness.fit() function provides some useful 
statistics to assess the quality of fit of probabilistic models. The function can also compute other 
measures such as AIC and KS test statistic. The general form for the function is given below: 

Goodness.fit (pdf, cdf, starts=NULL, data, method=”PSO”, lim_inf, lim_sup, min(x), e, s, N, domain=c (0, inf)) 
where, 

 pdf: probability density function (pdf);
 cdf: cumulative distribution function;
 starts: initial parameters to maximize the likelihood function;
 data: data vector;
 method: method used for minimization of the -log-likelihood function.
 method = “PSO”, then all arguments of the PSO() function could be passed to the goodness.fit()

function.
 lim_inf and lim_sup: define the inferior and superior boundaries of the search space,

respectively;
 e: current error. The algorithm stops if the variance in the last iterations is less than or equal to

e;
 S: number of considered particles
 domain: domain of the pdf. By default the domain of the pdf is the open interval (0, 1).
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IV. Model selection criterion

The choice of the best probability distribution is a crucial step. The best distribution model for economic 
variables is determined using the goodness-of-fit (GoF) test and Akaike information criterion 
(AIC). The model with the lowest AIC value is the best fitting model. We discover the more accurate 
estimate for selecting the optimal model using the PSO approach. In addition, we carry out the same 
task as a probability plot using an empirical CDF plot. The empirical cumulative probability that is 
closest to the S-curve empirical one is chosen as the best fitting. The GoF test determines if a statistical 
model fits a collection of observations supplied in advance. Accordingly, the GoF measures are 
primarily used to summarise the discrepancy between observed values and predicted values under the 
specified statistical model. The minimal error produced, as assessed by the methods below, will be used 
to find the distribution that is best fitted: 

The AIC, developed by [26], ranks models according to how well they fit the data and how little 
error they generate in their estimates. To move away from a solely inferential and limited approach to 
model selection, AIC has become part of a growing movement. It is defined as follows.  

 𝐴𝐼𝐶 =  −2𝑙𝑜𝑔𝐿൫𝜃෠௞൯ + 2𝑘   (7) 

Among all investigated distributions, the model with the lowest AIC value is regarded to be the 
best fitting model. Kolmogorov- Smirnov test compares empirical and theoretical distributions. Let us 
consider F₀(x) is the population CDF and Sɴ(x) the observed cumulative step function of a sample (i.e., 
Sɴ(x)  = k/N, where k is the number of observation less or equal to x), then KS test statistic is defined as 

𝑇 = max
௫

|F₀(x)  −  Sɴ(x)|.   (8) 

For implications, we reject the hypothesis at the level of significance, 𝛼, if T exceeds the  1 − 𝛼 
quantile as given by the table of quantile for the KS test statistic.  

IV. Results and Discussion

The economic losses caused by six natural catastrophes (drought, earthquake, extreme weather, 
extreme temperature, wildfire, and volcanic activity) are examined in this part and fitted to the five 
probability distributions discussed in section 2. First, the investigation focuses on determining the best-
fitting model using the AIC value. Among all the models evaluated, the model with the lowest AIC 
was deemed the best. However, the PSO technique in R was used to estimate the parameters of the five 
theoretical probability distributions using maximum likelihood estimation. Tables [3–8] provide the 
MLEs, KS statistic (along with p-value), and AIC value for each fitted model for each economic variable. 
The fitting results show that some PDF characteristics are more suited for some places while being less 
appropriate for others. 

Table 3: MLEs, KS statistics, p-value and AIC for all five distributions for Drought data 

Distribution MLE P - Value Statistic AIC 
Log-Logistic 0.7277 94.8424 0.1000 0.5207 0.1131 653.0388 
Weibull(3P) 0.3469 87.8642 0.0978 0.0005 0.2852 659.8648 

Gamma 0.3742 0.0005 0.0629 0.0173 0.2161 654.3794 
Gen.Pareto 1.0106 99.7400 0.0660 0.2976 0.1360 662.5274 
Lognormal 2.6033 4.5910 0.0068 0.4443 0.1202 662.7647 

Figure 3 depicts the PDF plot of all heavy-tailed variables. Our findings are closed in terms of log-
logistic and Weibull distributions. The empirical investigations show that Weibull considerably fits the 
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greatest value whereas Generalised Pareto underestimates it. Meanwhile, of all competing models in 
the research, Generalised Pareto provides the weakest match. The log-logistic model is the second best. 
The KS test statistic are used to select the distribution at 95% confidences interval from the Tables [3-
8] we compare the results for all the distribution.

To fit the distributions for economic losses owing to drought, Table 3 shows that the p-value of
Weibull and Gamma is less than 0.05 so we reject the null hypothesis. Log-logistic distribution has the 
lowest AIC value (653.0338), highest likelihood estimates (0.7277, 94.8424, 0.1), and smallest p-value 
(0.5207). The gamma distribution has the second-lowest AIC value (654.3794) among all distributions. 
Table 4 shows that the p-value of Weibull, Gamma and General Pareto is less than 0.05 that implies we 
reject the hypothesis. Log-logistic has the lowest AIC for earthquake economic losses (1117.5730). 
Weibull has a higher AIC value than Lognormal (1122.6180). 

Table 4: MLEs, KS statistics, p-value and AIC for all five distributions for earthquake data 

Distribution MLE P - Value Statistic AIC 

Log-Logistic 0.5823 68.3169 0.0650 0.3430 0.1029 1117.5730 
Weibull(3P) 0.4213 89.6176 0.0616 0.0046 0.1912 1145.4830 

Gamma 0.4980 0.0015 0.0603 0.0225 0.1644 1240.6280 
Gen. Pareto 2.4820 25.8344 0.0565 0.0332 0.1571 1136.3800 
Lognormal 2.6557 4.0074 0.0439 0.1001 0.1343 1122.6180 

Table 5 shows that the p-value of Gamma is less than 0.05 so we reject the hypothesis. Log-logistics 
has the lowest AIC value (384.8178) across all distributions. Generalized Pareto has the second lowest 
AIC, whereas gamma has the highest. According to Table 6, the p-value of Weibull and Gamma is less 
than 0.05 that implies we reject the null hypothesis. The gamma distribution has the highest AIC value 
among all distributions for the distribution of economic losses brought on by extreme weather, while 
log-logistic has the lowest value. 

Table 5: MLEs, KS statistics, p-value and AIC for all five distributions for Temperature data 

Distribution MLE P - Value Statistic AIC 
Log-Logistic 0.7077 72.8837 0.0600 0.2893 0.1737 384.8178 
Weibull(3P) 0.5810 89.9062 0.0303 0.4292 0.1546 388.0758 

Gamma 0.6875 0.0025 0.0083 0.0068 0.2979 397.0683 
Gen.Pareto 0.8057 62.7886 0.0392 0.9816 0.0824 386.1265 
Lognormal 1.7809 3.8543 0.0110 0.6215 0.1332 390.8100 

Table 6: MLEs, KS statistics, p-value and AIC for all five distributions for Extreme Weather data 

Distribution MLE P - Value Statistic AIC 
Log-Logistic 0.5061 70.7698 0.0500 0.2772 0.1025 1343.7310 

Weibull 0.2981 83.7310 0.0389 0.0003 0.2180 1372.3730 
Gamma 0.2195 0.0004 0.0172 0.0068 0.1738 1384.3180 

Gen. Pareto 3.0613 23.8658 0.0496 0.0984 0.1266 1366.3450 
Lognormal 3.4142 4.7270 0.0423 0.5663 0.0811 1349.6740 
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(a) Drought (b) Earthquakes

(c) Extreme Temperature (d) Extreme Weather

(e) Volcanic Activity (f) Wildfire

Figure 2: Fitted CDF plots for economic losses. 
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(a) Drought (b) Earthquakes

(c) Extreme Temperature (d) Extreme Weather

(e) Volcanic Activity (f) Wildfire

Figure 3: Fitted PDF plots for economic losses 
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According to Table 7, the economic losses as a result of volcanic activity we discovered out of all 
the distributions, log-logistic has the least AIC value, followed by Weibull. Among all, Generalized 
Pareto has the highest AIC values. 

 Table 7: MLEs, KS statistics, p-value and AIC for all five distributions for Volcanic data 

Distribution MLE P - Value KS AIC 
Log-Logistic 0.6367 2.2675 0.0200 0.9628 0.0948 168.3601 
Weibull(3P) 0.5663 9.6857 0.0199 0.0817 0.2390 171.2018 

Gamma 0.3550 0.0253 0.0165 0.2350 0.1955 174.1816 
Gen.Pareto 1.0966 1.9923 0.0200 0.6410 0.14019, 177.8270 
Lognormal 0.8888 2.8176 0.0199 0.9108 0.1061 174.4506 

Next, from Table 8 we discovered that among all distributions, Weibull has a lower AIC value than log-
logistic, which has the second lowest value for the distribution of economic losses caused by wildfire. 
The AIC value of Generalized Pareto is the highest of all. 

Table 8: MLEs, KS statistics, p-value and AIC for all five distributions for Wildfire data 

Distribution MLE P - Value KS AIC 
Log-Logistic 0.5814 40.4627 0.1000 0.5036 0.1244 510.7080 
Weibull(3P) 0.5027 82.5439 0.0998 0.3161 0.1446 504.5558 

Gamma 0.3547 0.0017 0.0477 0.9977 0.0594 516.5590 
Gen. Pareto 1.4600 36.3105 0.0794 0.3054 0.1460 534.6831 
Lognormal 2.9891 2.6805 0.0896 0.0507 0.2044 525.7421 

V. Conclusion and future work

The goal of the current work is to identify the most appropriate three parametric probability models 
for datasets of economic losses from natural catastrophes. For modelling economic losses, scholars have 
previously advocated using the Generalized Pareto or extreme value distribution. Both probability 
distributions are specified on the real line, and economic losses occur on the positive real line. As a 
result, these distributions can offer a negative lower bound on the economic losses. In this work, we 
take into account five significant probability distributions (Weibull, Log-logistics, Gamma, Generalized 
Pareto, and Lognormal) that are defined on the positive real line to describe the economic scenarios. 
Utilizing the KS-test, CDF plot, and AIC criterion, the best fitted probability distribution is determined 
for each dataset. Empirical CDF plots show that Weibull and log-logistic fit pretty well, whereas 
generalised Pareto fits poorly. According to the KS-test statistic, we discovered that the Log-logistic 
and Lognormal suit all economic losses resulting from natural catastrophe data for the stated level of 
significance, 5%. However, draught, earthquake, and extreme weather datasets cannot be fitted by 
Weibull or Gamma. The earthquake dataset does not match the generalised Pareto model. The Log-
logistic distribution offers the greatest fit among all taken distributions for five datasets (drought, 
earthquake, extreme weather, extreme temperature, wildfire, and volcanic activity) according to the 
AIC criteria. It is, nonetheless, the second-best fitted distribution for the wildfire dataset. It should be 
noticed that the Weibull distribution is rejected by the KS-test yet has the minimum AIC for the wildfire 
dataset. As a result, we may also suggest log-logistic for modelling economic losses from wildfires. 
Finally, we advise using the log-logistic probability model to fit and analyse economic losses brought 
on by natural catastrophes in future research. 

 Regression analysis is employed when the assumption of normality is taken into consideration to 
develop and investigate the relationship between the response and explanatory variables. In certain 
applications, the assumption of normalcy is not valid practically; see [27]. Numerous examples are 
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given in [28] that demonstrate the usage of skewed or non-normal distributions for both random 
components and response variables. In such circumstances, we advise fitting parametric regression for 
the economic losses using the log-logistic probability model. The model may be defined as  

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑙𝑜𝑠𝑠 (𝑌) = 𝛽𝑋ᇱ +  𝜎 𝜀 

where 𝑋՚ are the features matrix (regressions of economic losses), 𝛽 is a vector of regression coefficients, 
𝜎 is a scale parameter and 𝜀 stands for random component that may follow the log-logistics distribution. 
Readers are encouraged to take this work into consideration while planning their own future projects 
on modelling of economic losses due to natural disasters. 

Table 9: Ranks of the fitted distributions based on AIC values. 
Variables 

Distributions Draught Earthquake 
Extreme 

Temperature 
Extreme 
Weather 

Volcanic 
Activity Wildfire 

Log-Logistic I I I I I II 
Weibull (3P) III V III IV II I 

Gamma II IV V V III III 
Gen. Pareto IV III II III V V 
Lognormal V II IV II IV IV 
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