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Abstract

This paper introduces an optimization approach to impute missing data within the K-means cluster
analysis framework. The proposed method has been applied to Philippine climate data over the
previous 18 years (2006-2023) with the goal of classifying the regions according to average annual
temperature including the maximum and minimum. This dataset contains missing values which is
the result of the weather stations’ measurement failure for some time and there is no chance of
recovery. As an effect, the regional groupings are greatly affected. This paper adapts a modified
method of missing value imputation suitable for climate data clustering, inspired by the work of
Bertsimas et al. (2017). The proposed methodology focuses on imputing missing values within
observations by finding the value that minimizes the distance between the observation and a cluster
centroid in which the Mahalanobis distance is used as the similarity measure. Consequently, the
outcomes of clustering obtained through this optimization approach were compared with certain
imputation techniques namely Mean Imputation, Expectation-Maximization algorithm, and MICE.
The assessment of the derived clusters was conducted using the silhouette coefficient as the
performance metric. Results revealed that the proposed imputation gave the highest silhouette scores
which means that most of the observations were being clustered appropriately as compared to the
results using other imputation algorithms. Moreover, it was found out that most of the areas showing
the features of extreme condition are located in the middle part of the country.

Keywords: Optimization, K-Means, Mahalanobis

I. Introduction

The risk of extreme temperature most directly affects health by compromising the body’s ability to
regulate its internal temperature. Loss of internal temperature control can result in various illnesses
including heat cramps, heat exhaustion, heatstroke, and hyperthermia from extreme heat events [7].
Thus, awareness of the climatic differences of a particular region of interest becomes a major concern
for the safety of the individual.

In detecting weather phenomena like extreme temperature, it is important to classify or cluster
the regions according to their climatic elements. However, the problem of missing climatic data is
common in most weather stations which might result from damaged or failure of the weather
equipment or instrument. Also, events such as sickness or vacation of the personnel in-charge can
create daily missing data values which could affect the climate statistics. If this happens, there will
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be no record of measurements for a particular time and could affect the clustering of weather data
which is a valuable endeavor in multiple respects. For example, the results can be used in various
ways within a larger weather prediction framework or could simply serve as an analytical tool for
characterizing climatic differences [4].

From the study of Calvo et al. [6], a new clustering technique was shown aiming to generate a
robust regionalization using climate datasets with incomplete information. Their method provided
a new approach to cluster time series of different temporal lengths using most of the information
contained in heterogeneous sets of climate records. Although they showed that their algorithm is
able to generate a climatically consistent regionalization, it must be noted that there is no imputation
happened on the missing information. In a sense, the clustering accuracy is somehow questionable.

A common practice for dealing with missing values in the context of clustering is to first impute
the missing values, and then apply the clustering algorithm on the completed data [5]. From the
study of Bertsimas et al. [3], a flexible framework based on formal optimization to impute missing
data was proposed. Specifically, this framework can readily incorporate various predictive models
like the k Nearest Neighbors (kNN) for data classification in which the missing data of an
observation is imputed by determining the k nearest observations and getting the average of those
k observations. However, the imputation for each observation is not based on the possibility that the
point belongs to a particular cluster. Thus, the kNN imputation is based purely on the k neighbors
without the involvement or intervention of the possible resulting clustering.

Trying to resolve the aforementioned issues or deficiencies, this paper creates an appropriate
imputation technique for missing values when dealing with clustering problem. Specifically, this
study aims to construct a two-step optimization approach for data imputation in K-means cluster
analysis where K is the number of clusters. The first step is to determine the optimal initial cluster
centroids which are the K most frequent nearest neighbors from all incomplete observations, that is,
the K points with highest densities. The second step is then imputing the missing value of an
observation by determining the value that gives the minimum distance from the observation to a
cluster centroid. The outcomes of clustering achieved through this optimization approach will be
compared with some imputation approaches namely Mean Imputation, Expectation-Maximization
algorithm, and Multivariate Imputation by Chained Equations in which the assessment of the
derived clusters will be conducted using the silhouette coefficient.

This paper is arranged as follows. Methodology is introduced and discussed in section 2. The
model solution is presented and derived in section 3. In section 4, the application of the proposed
imputation is illustrated while some concluding remarks are stated in section 5.

II. Methods

This section presents the derivation of the optimization models of the proposed method with
imputation algorithm.

Let X = {x;}]; be the dataset given with p variables and assume that each data vector x;
contains continuous variables indexed by g € {1,2, ..., p}. Now, the missing and known values are
defined by the following sets:

M = {(i,q) : Xiq IS missing},
N = {(i,q) : Xiq IS known}.
Also, let ] be the set of indices of all incomplete observations given by
J ={i: x; has at least 1 missing coordinate}.

Let W € R™P be the matrix of imputed values where wj, is the imputed value for entry x;, for
(,q) € M. The full imputation for observation x; is referred to as w; where j € J. The idea is to
consider the missing data problem as an optimization problem in which it optimizes the missing
values in all incomplete data points. Thus, the key decision variables are the missing values
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{qu :(J,q) € M}

As a similarity measure, we can incorporate different types of distance metrics, but we prefer
to use the Mahalanobis distance because it takes into account the variances and covariances amongst
the variables which is very important in clustering multivariate data. In constructing the
Mahalanobis metric, it involves the centroid of the whole dataset which means that the distance
actually measures a point from the mean of the distribution. Specifically, according to Ghorbani [8],
the Mahalanobis distance measures the number of standard deviations that an observation is from
the mean of a distribution.

In using the Mahalanobis distance as a similarity measure, the nearest neighbors of incomplete
data are formulated based on the differences of the squared Mahalanobis distances of the two
observations. Thus, the nearest neighbor of each w;, j € J is the smallest difference M; — M; for all i =
1,2, ..., n, thatis, the smallest deviations between w; and w; where the squared Mahalanobis distance
M; is given by

Wip —
Mwyp) = [Wa —H1 - Wip = lp]5t . l

Wip — Up
with yu = {#1' s up} and X' are the mean and covariance matrix of the whole data respectively which
are updated per iteration.

Imputation Model

To obtain the imputed values, the Mahalanobis distance between w;, j € ] and its appropriate
centroid w;, I € {1,2,...,K} is minimized. Thus, for each j € J, the goal is to solve the imputation

model:
min M; — M, 1)
subject to
we € {w;} 1=12..,K (2)
Wjq = Xjq G, eN 3)

The solution {wj,}, (j, ) € M are regarded as the imputed values for the corresponding {x;, }. It must
be noted that in the objective function (1), we assume that M; > M.. If M, > M;, we change the
objective to max M; — M, in order to represent the same idea that the value of M; should be near to
M_. In other words, the objective function ensures that whatever imputed values wj, obtained, the
observation w; is very close to its appropriate cluster centroid w, which is selected based on
constraint (2). These centroids are determined in the assignment model discussed in the next section.
The constraint (3) assures that all the observed data are preserved.

Assignment Model

Let K be the number of clusters specified by the analyst. Now, assume that the initial cluster
centroids are given by {Wi, :1=1,2,..,K} which are the K most frequent nearest neighbors from all
incomplete observations. To obtain the initial centroids, the immediate nearest neighbor for each w;,
j € ] must be determined resulting to the following assignment model:

min Y}, zij(Mj - ML-) 4)
subject to
i=1zij =1 )
zjj =0 6)
z;j € {0,1}

The assignment model assigns each incomplete observation to its immediate nearest neighbor
where z;; = 1 if w; is the nearest neighbor of w; and 0 otherwise. The objective function (4) will
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determine which w; is the nearest neighbor of w; among all observations. Because of constraint (5),
there will only be one immediate nearest neighbor per incomplete observation and an incomplete
observation cannot be the nearest neighbor of itself because of constraint (6).

From all of the nearest neighbors, the K most frequent observations can then be formulated as
an optimization problem using the binary variables y; € {0, 1} as follows:

max iy yi Xjej Zij subjectto XL,y =K @)

The solution {yil, ...,yiK} of model (7) corresponds to the desired initial centroids {Wil, ...,WL-K}. It
must be noted that the assignment model will work only on complete data with imputed values. For
the first iteration with missing values, the model can be started with mean values as the warm start
values for the optimization process. The imputed values from the imputation model are then based
on the centroids obtained from the assignment model. In return, the centroids are updated based on
the new imputed values making this procedure an iterative process.

Imputation Algorithm

The proposed data imputation algorithm is given in the following steps:
1. Input: X € R™?, a data matrix with missing entries M = {(i, qQ) : Xig s missing},
warm start W° € R™® and number of clusters K.
2. Output: W, a full matrix with imputed values, u* = {Wi g wl-K} initial centroids.
3. Initialize: W°'¢ « W°

4. repeat
5. Update mean y and covariance matrix X based on W°'.
6. Update the auxiliary variables Z* using the assignment model.
7. Update the initial centroids p* following:
zzi” > ZZU vie{l,2,..,n}
jel jel
8. Update the imputation W* using the imputation model.
9. (Zold’ Wold“uold) P (Z*, w*, #*)

10. until p* = p°“

III. Results

This section presents the solution of the proposed imputation method using Mahalanobis distance.

Proposition 1. Let X = {x;}I-; be a dataset given with p variables where the missing and known
values are specified by the sets M = {(i, qQ) : Xig s missing} and N = {(i,q) : Xiq IS known}
respectively. If (j, q) € M, then the solution of the optimization problem (1-3) is given by

p

1
Wiq = Hq — 20 Z Uqa(Wja - lla)
%qq
a:a#q

where Uq Oqqa ER and Oqq > 0.
Proof. Let (j,q) € M and consider the optimization problem (1-3). Suppose that w, = w;, such that
M; — M;, < M; — My, for all m # [. Then by considering an unconstrained optimization where we
plugin the values of the x;, to the corresponding w;, for all (j,q) € V' in objective function (1), we
can use the concept of relative minimum in calculus to solve for w;, that would minimize M; — M;,.

Since the missing variable wj, is present only in M;, the problem reduces to differentiating,
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Wj1 —
Mj=[Wir—H o Wig THe o wy, — ]t Wia T Ha
lep - ,upJ

with respect to w;, where u = {,ul, ...,,up} and X are the mean and covariance matrix respectively.
Now, suppose that

0'11 cee O—lq s O—lp
y 1= Oq1 - Oqq - Ogp
lo_pl o‘pq GppJ

then we have

14 14
Mj = Z Z Uab(Wia - .ua)(wjh - ﬂb)-
b=1a=1

To differentiate M;, we have to separate the terms containing w;,, that is,

P p p
M= Gga(Wig = i) Wia = H) + D D" Gan(Wja = ) (W — )
a=1

b:b#q a:a#q
p
Dqu(Mf) = 2044 (Wjq — #q) + z 09a(Wja = Ha)-
a:a%q
Finally, equating the derivative to zero will solve for the imputed value as follows
P
204q(Wjq — 1q) + Z 0a(Wja = Ha) = 0
a:azq
P
20qqWjq = 20qqHq — Z 0qa(Wja — Ha)
a:a+q
[
1
Wig = Hq ~ 5 Z 0qa(Wia = Ha) - u
a:a+q

The following theorem will be used to prove the next proposition.

Theorem 1 (Andreasson etal.). Suppose that f: R? - Risin C? on RY, thatis, f is twice differentiable
with continuous second partial derivatives. Then Vf(w*) = 0@ and V2f(w*) is positive definite
d
implies that w* is a strict local minimum of f where Vf(w) = (Zf—y) .Ford=1, f'(w*) =0 and
q =1

q
f"(w*) > 0 implies w* € R is a strict local minimum.

Proposition 2. The solution w;, given in Proposition 1 is a strict local minimum of the optimization
problem (1-3) in an unconstrained setting.

Proof (for the case when d =1). Let f:R —> R be defined by the objective function in the
optimization problem (1-3) in an unconstrained setting. Following the same argument from the

proof of Proposition 1, for any solution w*, we have
P

f'w) =205,(W* —pg) + Z aqa(wja —Hy) = W) =20,
a:a#q
Since f'(w") and f"(w") are linear functions, then they are continuous. Also, f"'(w) = 20,4, > 0 since
the diagonal entries of a covariance matrix are positive assuming that the data samples are unique.
Now,
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L p p
f’(qu) = 204q | Hq — 20 Z Uqa(wja - “a) —Hq |t Z an(wja - '“a)
4 a:a+q a:a*q
1 p D
= 204q e Z Uqa(wja _“a) + Z Uqa(Wja _“a)
a9 a:a*q a:a+q
p p
== Z Uqa(wja - “a) + Z Uqa(Wja - ”a)
a:a*q a:a#q
=0.
Thus, by Theorem 1, the solution wy, is a strict local minimum. ]

IV. Application

The proposed methodology is applied on the historical Philippine climate data (2006-2023) taken
from the 52 weather stations around the country which can be downloaded at
https://en.tutiempo.net/climate/philippines.html and shown in Table 2. This dataset of three

continuous variables per year (52 X 54 data matrix) contains actual missing values. This study can
be considered as a multivariate time series clustering with the goal of classifying the regions
suspected to have extreme temperature conditions.

In doing the experiment, the missing elements among the data are firstly imputed using the
different imputation methods, and then the traditional K-means algorithm is applied into the
imputed dataset. The experiments with random centroid initialization (mean, MICE, EM) are
repeated 100 times with different random seed to reduce the effect of randomness caused by the
traditional K-means, and report the best result.

We use the R function “silhouette()” from the R package “cluster” for obtaining the silhouette
scores of the clustering results. Silhouette coefficient or Silhouette score ranging from -1 to +1 is a
measure of how similar an object is to its own cluster compared to other clusters. In other words, it
is a metric used to calculate the goodness of a clustering [2]. A high value indicates that the object is
well matched or having a high relationship to its own cluster. Thus, it acts as the accuracy in the case
when the cluster labels are not known.

Table 1 shows the silhouette score results from different number of clusters where the numbers
in red are the highest score per case.

Table 1: Silhouette Scores (%) using different imputation algorithms

# of Proposed Mean MICE Expectation-
Clusters Imputation Imputation Maximization
K=2 84.78 75.26 61.51 70.98
K=3 72.6 62.7 52.64 58.66
K=4 58.02 36.03 29.39 21.75
K=5 58.02 22 26.38 19.12
K=6 57.99 20.5 33.33 19.04
K=7 41.11 20.09 17.89 18.17
K=8 38.06 17.89 17.66 17.16
K=9 36.56 17.59 17.03 16.65
K=10 36.27 16.88 15.74 17.75
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Using the proposed imputation method, we can classify the extreme temperature areas. For example,
if we set K = 10, results showed that there are two clusters exhibiting extreme temperature having
an overall average of at least 28°C. These areas are shown in Figure 1.

Extreme Temperature:

* Iba, Zambales

* Manila

* Sangley Point, Cavite

* Catarman, Northern Samar
+ Catbalogan, Western Samar
* Guiuan, Eastern Samar

* Roxas, Capiz

+ Tagbilaran, Bohol

* Butuan

Figure 1: Philippine map with clustering results from the proposed imputation

From Figure 1, the areas with red spots are classified with extreme temperature. It can be observed
that most of the areas are located in the middle part of the country.

V. Concluding Remarks

This paper presents a missing data imputation algorithm that can handle partitional clustering.
It is created out of an optimization approach for imputing missing data and making use of the
Mahalanobis distance metric as a similarity measure. Also, it avoids the problem of centroid
initialization when performing K-means clustering because the initial cluster centroids are fixed
based on the algorithm’s generated centroids.

When clustering the Philippine Climate data with 21% actual missing values, we were able to
identify 9 places with extreme temperature classification which means that these places must be
considered when predicting extreme temperature occurrence. It was found out that the proposed
imputation using Mahalanobis distance gave higher clustering performance and is consistent for
different number of clusters which means that the proposed optimization approach using
Mahalanobis distance is a suitable imputation algorithm in the context of partitional clustering.
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