
Geovert John D. Labita, Bernadette F. Tubo 
MISSING DATA IMPUTATION VIA OPTIMIZATION… 

MISSING DATA IMPUTATION VIA OPTIMIZATION 

APPROACH: AN APPLICATION TO K-MEANS 

CLUSTERING OF EXTREME TEMPERATURE 

Geovert John D. Labita1, Bernadette F. Tubo2 
• 

1University of Science and Technology of Southern Philippines 
2Mindanao State University – Iligan Institute of Technology 

 1geovertjohn.labita@g.msuiit.edu.ph 

Abstract 

This paper introduces an optimization approach to impute missing data within the 𝐾-means cluster 

analysis framework. The proposed method has been applied to Philippine climate data over the 

previous 18 years (2006-2023) with the goal of classifying the regions according to average annual 

temperature including the maximum and minimum. This dataset contains missing values which is 

the result of the weather stations’ measurement failure for some time and there is no chance of 

recovery. As an effect, the regional groupings are greatly affected. This paper adapts a modified 

method of missing value imputation suitable for climate data clustering, inspired by the work of 

Bertsimas et al. (2017). The proposed methodology focuses on imputing missing values within 

observations by finding the value that minimizes the distance between the observation and a cluster 

centroid in which the Mahalanobis distance is used as the similarity measure. Consequently, the 

outcomes of clustering obtained through this optimization approach were compared with certain 

imputation techniques namely Mean Imputation, Expectation-Maximization algorithm, and MICE.  

The assessment of the derived clusters was conducted using the silhouette coefficient as the 

performance metric. Results revealed that the proposed imputation gave the highest silhouette scores 

which means that most of the observations were being clustered appropriately as compared to the 

results using other imputation algorithms. Moreover, it was found out that most of the areas showing 

the features of extreme condition are located in the middle part of the country. 

Keywords: Optimization, K-Means, Mahalanobis 

I. Introduction

The risk of extreme temperature most directly affects health by compromising the body’s ability to 
regulate its internal temperature. Loss of internal temperature control can result in various illnesses 
including heat cramps, heat exhaustion, heatstroke, and hyperthermia from extreme heat events [7]. 
Thus, awareness of the climatic differences of a particular region of interest becomes a major concern 
for the safety of the individual. 

In detecting weather phenomena like extreme temperature, it is important to classify or cluster 
the regions according to their climatic elements. However, the problem of missing climatic data is 
common in most weather stations which might result from damaged or failure of the weather 
equipment or instrument. Also, events such as sickness or vacation of the personnel in-charge can 
create daily missing data values which could affect the climate statistics. If this happens, there will 
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be no record of measurements for a particular time and could affect the clustering of weather data 
which is a valuable endeavor in multiple respects. For example, the results can be used in various 
ways within a larger weather prediction framework or could simply serve as an analytical tool for 
characterizing climatic differences [4]. 

From the study of Calvo et al. [6], a new clustering technique was shown aiming to generate a 
robust regionalization using climate datasets with incomplete information. Their method provided 
a new approach to cluster time series of different temporal lengths using most of the information 
contained in heterogeneous sets of climate records. Although they showed that their algorithm is 
able to generate a climatically consistent regionalization, it must be noted that there is no imputation 
happened on the missing information. In a sense, the clustering accuracy is somehow questionable. 

A common practice for dealing with missing values in the context of clustering is to first impute 
the missing values, and then apply the clustering algorithm on the completed data [5]. From the 
study of Bertsimas et al. [3], a flexible framework based on formal optimization to impute missing 
data was proposed. Specifically, this framework can readily incorporate various predictive models 
like the 𝑘 Nearest Neighbors (𝑘NN) for data classification in which the missing data of an 
observation is imputed by determining the 𝑘 nearest observations and getting the average of those 
𝑘 observations. However, the imputation for each observation is not based on the possibility that the 
point belongs to a particular cluster. Thus, the 𝑘NN imputation is based purely on the 𝑘 neighbors 
without the involvement or intervention of the possible resulting clustering. 

Trying to resolve the aforementioned issues or deficiencies, this paper creates an appropriate 
imputation technique for missing values when dealing with clustering problem. Specifically, this 
study aims to construct a two-step optimization approach for data imputation in 𝐾-means cluster 
analysis where 𝐾 is the number of clusters. The first step is to determine the optimal initial cluster 
centroids which are the 𝐾 most frequent nearest neighbors from all incomplete observations, that is, 
the 𝐾 points with highest densities. The second step is then imputing the missing value of an 
observation by determining the value that gives the minimum distance from the observation to a 
cluster centroid. The outcomes of clustering achieved through this optimization approach will be 
compared with some imputation approaches namely Mean Imputation, Expectation-Maximization 
algorithm, and Multivariate Imputation by Chained Equations in which the assessment of the 
derived clusters will be conducted using the silhouette coefficient. 

This paper is arranged as follows. Methodology is introduced and discussed in section 2. The 
model solution is presented and derived in section 3. In section 4, the application of the proposed 
imputation is illustrated while some concluding remarks are stated in section 5. 

II. Methods

This section presents the derivation of the optimization models of the proposed method with 
imputation algorithm. 

Let 𝑋 = {𝑥𝑖}𝑖=1
𝑛  be the dataset given with 𝑝 variables and assume that each data vector 𝑥𝑖

contains continuous variables indexed by 𝑞 ∈ {1, 2, … , 𝑝}. Now, the missing and known values are 
defined by the following sets: 

ℳ = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔}, 
𝒩 = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑘𝑛𝑜𝑤𝑛}.   

Also, let 𝐽 be the set of indices of all incomplete observations given by 
𝐽 = {𝑖 ∶  𝑥𝑖  ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒}. 

Let 𝑊 ∈ ℝ𝑛×𝑝 be the matrix of imputed values where 𝑤𝑗𝑞  is the imputed value for entry 𝑥𝑗𝑞  for
(𝑗, 𝑞) ∈ ℳ. The full imputation for observation 𝑥𝑗 is referred to as 𝑤𝑗  where 𝑗 ∈ 𝐽. The idea is to 
consider the missing data problem as an optimization problem in which it optimizes the missing 
values in all incomplete data points. Thus, the key decision variables are the missing values 
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{𝑤𝑗𝑞 ∶ (𝑗, 𝑞) ∈ ℳ}. 
As a similarity measure, we can incorporate different types of distance metrics, but we prefer 

to use the Mahalanobis distance because it takes into account the variances and covariances amongst 
the variables which is very important in clustering multivariate data. In constructing the 
Mahalanobis metric, it involves the centroid of the whole dataset which means that the distance 
actually measures a point from the mean of the distribution. Specifically, according to Ghorbani [8], 
the Mahalanobis distance measures the number of standard deviations that an observation is from 
the mean of a distribution. 

In using the Mahalanobis distance as a similarity measure, the nearest neighbors of incomplete 
data are formulated based on the differences of the squared Mahalanobis distances of the two 
observations. Thus, the nearest neighbor of each 𝑤𝑗 , 𝑗 ∈ 𝐽 is the smallest difference 𝑀𝑗 − 𝑀𝑖 for all 𝑖 =

1, 2, … , 𝑛, that is, the smallest deviations between 𝑤𝑗  and 𝑤𝑖  where the squared Mahalanobis distance 
𝑀𝑖 is given by 

𝑀𝑖(𝑤𝑖 , 𝜇) = [𝑤𝑖1 − 𝜇1 … 𝑤𝑖𝑝 − 𝜇𝑝]𝛴−1 [

𝑤𝑖1 − 𝜇1

⋮
𝑤𝑖𝑝 − 𝜇𝑝

] 

with 𝜇 = {𝜇1, … , 𝜇𝑝} and 𝛴 are the mean and covariance matrix of the whole data respectively which 
are updated per iteration. 

Imputation Model 

To obtain the imputed values, the Mahalanobis distance between 𝑤𝑗 , 𝑗 ∈ 𝐽 and its appropriate 
centroid 𝑤𝑖𝑙

, 𝑙 ∈ {1, 2, … , 𝐾} is minimized. Thus, for each 𝑗 ∈ 𝐽, the goal is to solve the imputation
model: 

 min 𝑀𝑗 − 𝑀𝑐 (1) 
subject to 

𝑤𝑐 ∈ {𝑤𝑖𝑙
} 𝑙 = 1, 2, … , 𝐾 (2) 

    𝑤𝑗𝑞 = 𝑥𝑗𝑞   (𝑗, 𝑞) ∈ 𝒩 (3) 
The solution {𝑤𝑗𝑞}, (𝑗, 𝑞) ∈ ℳ are regarded as the imputed values for the corresponding {𝑥𝑗𝑞}. It must 
be noted that in the objective function (1), we assume that 𝑀𝑗 > 𝑀𝑐. If 𝑀𝑐 > 𝑀𝑗, we change the 
objective to max𝑀𝑗 − 𝑀𝑐 in order to represent the same idea that the value of 𝑀𝑗 should be near to 
𝑀𝑐. In other words, the objective function ensures that whatever imputed values 𝑤𝑗𝑞  obtained, the 
observation 𝑤𝑗  is very close to its appropriate cluster centroid 𝑤𝑐 which is selected based on 
constraint (2). These centroids are determined in the assignment model discussed in the next section. 
The constraint (3) assures that all the observed data are preserved. 

Assignment Model 

Let 𝐾 be the number of clusters specified by the analyst. Now, assume that the initial cluster 
centroids are given by {𝑤𝑖𝑙

∶ 𝑙 = 1, 2, … , 𝐾} which are the 𝐾 most frequent nearest neighbors from all
incomplete observations. To obtain the initial centroids, the immediate nearest neighbor for each 𝑤𝑗 , 
𝑗 ∈ 𝐽 must be determined resulting to the following assignment model: 

min ∑ 𝑧𝑖𝑗(𝑀𝑗 − 𝑀𝑖)
𝑛
𝑖=1  (4) 

subject to 
 ∑ 𝑧𝑖𝑗

𝑛
𝑖=1 = 1 (5) 

    𝑧𝑗𝑗 = 0 (6) 
 𝑧𝑖𝑗 ∈ {0, 1} 

The assignment model assigns each incomplete observation to its immediate nearest neighbor 
where 𝑧𝑖𝑗 = 1 if 𝑤𝑖  is the nearest neighbor of 𝑤𝑗  and 0 otherwise. The objective function (4) will 
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determine which 𝑤𝑖  is the nearest neighbor of 𝑤𝑗  among all observations. Because of constraint (5), 
there will only be one immediate nearest neighbor per incomplete observation and an incomplete 
observation cannot be the nearest neighbor of itself because of constraint (6). 

From all of the nearest neighbors, the 𝐾 most frequent observations can then be formulated as 
an optimization problem using the binary variables 𝑦𝑖 ∈ {0, 1} as follows: 

max∑ 𝑦𝑖 ∑ 𝑧𝑖𝑗𝑗∈𝐽
𝑛
𝑖=1  subject to      ∑ 𝑦𝑖

𝑛
𝑖=1 = 𝐾 (7) 

The solution {𝑦𝑖1 , … , 𝑦𝑖𝐾} of model (7) corresponds to the desired initial centroids {𝑤𝑖1 , … , 𝑤𝑖𝐾}. It 
must be noted that the assignment model will work only on complete data with imputed values. For 
the first iteration with missing values, the model can be started with mean values as the warm start 
values for the optimization process. The imputed values from the imputation model are then based 
on the centroids obtained from the assignment model. In return, the centroids are updated based on 
the new imputed values making this procedure an iterative process. 

Imputation Algorithm 

The proposed data imputation algorithm is given in the following steps: 
1. Input: 𝑋 ∈ ℝ𝑛×𝑝, a data matrix with missing entries ℳ = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔},

warm start 𝑊0 ∈ ℝ𝑛×𝑝 and number of clusters 𝐾. 
2. Output: 𝑊∗, a full matrix with imputed values, 𝜇∗ = {𝑤𝑖1 , … , 𝑤𝑖𝐾} initial centroids.
3. Initialize: 𝑊𝑜𝑙𝑑 ← 𝑊0

4. repeat

5. Update mean 𝜇 and covariance matrix 𝛴 based on 𝑊𝑜𝑙𝑑 .
6. Update the auxiliary variables 𝑍∗ using the assignment model.
7. Update the initial centroids 𝜇∗ following:

∑𝑧𝑖𝑙𝑗

𝑗∈𝐽

> ∑𝑧𝑖𝑗

𝑗∈𝐽

 ∀𝑖 ∈ {1, 2, … , 𝑛} 

8. Update the imputation 𝑊∗ using the imputation model.
9. (𝑍𝑜𝑙𝑑 ,𝑊𝑜𝑙𝑑 , 𝜇𝑜𝑙𝑑) ← (𝑍∗,𝑊∗, 𝜇∗)

10. until 𝜇∗ = 𝜇𝑜𝑙𝑑

III. Results

This section presents the solution of the proposed imputation method using Mahalanobis distance. 

Proposition 1. Let 𝑋 = {𝑥𝑖}𝑖=1
𝑛  be a dataset given with 𝑝 variables where the missing and known

values are specified by the sets ℳ = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔} and 𝒩 = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑘𝑛𝑜𝑤𝑛} 
respectively. If (𝑗, 𝑞) ∈ ℳ, then the solution of the optimization problem (1-3) is given by 

𝑤𝑗𝑞 = 𝜇𝑞 −
1

2𝜎𝑞𝑞

∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

 

where 𝜇𝑞 , 𝜎𝑞𝑎 ∈ ℝ and 𝜎𝑞𝑞 > 0. 
Proof. Let (𝑗, 𝑞) ∈ ℳ and consider the optimization problem (1-3). Suppose that 𝑤𝑐 = 𝑤𝑖𝑙

 such that
𝑀𝑗 − 𝑀𝑖𝑙

< 𝑀𝑗 − 𝑀𝑚 for all 𝑚 ≠ 𝑙. Then by considering an unconstrained optimization where we
plugin the values of the 𝑥𝑗𝑞  to the corresponding 𝑤𝑗𝑞  for all (𝑗, 𝑞) ∈ 𝒩 in objective function (1), we 
can use the concept of relative minimum in calculus to solve for 𝑤𝑗𝑞  that would minimize 𝑀𝑗 − 𝑀𝑖𝑙

.
Since the missing variable 𝑤𝑗𝑞  is present only in 𝑀𝑗, the problem reduces to differentiating, 
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𝑀𝑗 = [𝑤𝑗1 − 𝜇1 ⋯ 𝑤𝑗𝑞 − 𝜇𝑞 ⋯ 𝑤𝑗𝑝 − 𝜇𝑝]𝛴−1

[

𝑤𝑗1 − 𝜇1

⋮
𝑤𝑗𝑞 − 𝜇𝑞

⋮
𝑤𝑗𝑝 − 𝜇𝑝]

with respect to 𝑤𝑗𝑞  where 𝜇 = {𝜇1, … , 𝜇𝑝} and 𝛴 are the mean and covariance matrix respectively. 
Now, suppose that 

𝛴−1 =

[

𝜎11 ⋯ 𝜎1𝑞 … 𝜎1𝑝

⋮  ⋮ ⋮ 
𝜎𝑞1

⋮
𝜎𝑝1

⋯

⋯

𝜎𝑞𝑞

⋮
𝜎𝑝𝑞

⋯

⋯

𝜎𝑞𝑝

⋮
𝜎𝑝𝑝]

, 

then we have 

𝑀𝑗 = ∑ ∑ 𝜎𝑎𝑏(𝑤𝑖𝑎 − 𝜇𝑎)(𝑤𝑗𝑏 − 𝜇𝑏)

𝑝

𝑎=1

𝑝

𝑏=1

. 

To differentiate 𝑀𝑗, we have to separate the terms containing 𝑤𝑗𝑞 , that is, 

𝑀𝑗 = ∑ 𝜎𝑞𝑎(𝑤𝑗𝑞 − 𝜇𝑞)(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎=1

+ ∑ ∑ 𝜎𝑎𝑏(𝑤𝑗𝑎 − 𝜇𝑎)(𝑤𝑗𝑏 − 𝜇𝑏)

𝑝

𝑎:𝑎≠𝑞

𝑝

𝑏:𝑏≠𝑞

𝐷𝑤𝑗𝑞
(𝑀𝑗) = 2𝜎𝑞𝑞(𝑤𝑗𝑞 − 𝜇𝑞) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

. 

Finally, equating the derivative to zero will solve for the imputed value as follows 

2𝜎𝑞𝑞(𝑤𝑗𝑞 − 𝜇𝑞) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

= 0 

2𝜎𝑞𝑞𝑤𝑗𝑞 = 2𝜎𝑞𝑞𝜇𝑞 − ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

 

𝑤𝑗𝑞 = 𝜇𝑞 −
1

2𝜎𝑞𝑞

∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

.  ∎ 

The following theorem will be used to prove the next proposition. 

Theorem 1 (Andreasson et al.). Suppose that 𝑓:ℝ𝑑 → ℝ is in 𝐶2 on ℝ𝑑, that is, 𝑓 is twice differentiable 
with continuous second partial derivatives. Then ∇𝑓(𝑤∗) = 0(𝑑) and ∇2𝑓(𝑤∗) is positive definite 

implies that 𝑤∗ is a strict local minimum of 𝑓 where ∇𝑓(𝑤) = (
𝜕𝑓(𝑤)

𝜕𝑤𝑞
)

𝑞=1

𝑑

. For 𝑑 = 1, 𝑓′(𝑤∗) = 0 and 

𝑓′′(𝑤∗) > 0 implies 𝑤∗ ∈ ℝ is a strict local minimum. 

Proposition 2. The solution 𝑤𝑗𝑞  given in Proposition 1 is a strict local minimum of the optimization 
problem (1-3) in an unconstrained setting. 
Proof (for the case when 𝒅 = 𝟏). Let 𝑓:ℝ → ℝ be defined by the objective function in the 
optimization problem (1-3) in an unconstrained setting. Following the same argument from the 
proof of Proposition 1, for any solution 𝑤∗, we have 

𝑓′(𝑤∗) = 2𝜎𝑞𝑞(𝑤
∗ − 𝜇𝑞) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

⇒ 𝑓′′(𝑤∗) = 2𝜎𝑞𝑞 .

Since 𝑓′(𝑤∗) and 𝑓′′(𝑤∗) are linear functions, then they are continuous. Also, 𝑓′′(𝑤) = 2𝜎𝑞𝑞 > 0 since
the diagonal entries of a covariance matrix are positive assuming that the data samples are unique. 
Now, 
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𝑓′(𝑤𝑗𝑞) = 2𝜎𝑞𝑞 (𝜇𝑞 −
1

2𝜎𝑞𝑞

∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

− 𝜇𝑞) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

= 2𝜎𝑞𝑞 (−
1

2𝜎𝑞𝑞

∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

 

= − ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

+ ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

= 0.      

Thus, by Theorem 1, the solution 𝑤𝑗𝑞  is a strict local minimum. ∎ 

IV. Application

The proposed methodology is applied on the historical Philippine climate data (2006-2023) taken 
from the 52 weather stations around the country which can be downloaded at 
https://en.tutiempo.net/climate/philippines.html and shown in Table 2. This dataset of three 
continuous variables per year (52 × 54 data matrix) contains actual missing values. This study can 
be considered as a multivariate time series clustering with the goal of classifying the regions 
suspected to have extreme temperature conditions. 

In doing the experiment, the missing elements among the data are firstly imputed using the 
different imputation methods, and then the traditional 𝐾-means algorithm is applied into the 
imputed dataset. The experiments with random centroid initialization (mean, MICE, EM) are 
repeated 100 times with different random seed to reduce the effect of randomness caused by the 
traditional 𝐾-means, and report the best result. 

We use the R function “silhouette()” from the R package “cluster” for obtaining the silhouette 
scores of the clustering results. Silhouette coefficient or Silhouette score ranging from -1 to +1 is a 
measure of how similar an object is to its own cluster compared to other clusters. In other words, it 
is a metric used to calculate the goodness of a clustering [2]. A high value indicates that the object is 
well matched or having a high relationship to its own cluster. Thus, it acts as the accuracy in the case 
when the cluster labels are not known. 

Table 1 shows the silhouette score results from different number of clusters where the numbers 
in red are the highest score per case. 

Table 1: Silhouette Scores (%) using different imputation algorithms 

# of Proposed Mean 
MICE 

Expectation- 
Clusters Imputation Imputation Maximization 

K=2 84.78 75.26 61.51 70.98 

K=3 72.6 62.7 52.64 58.66 

K=4 58.02 36.03 29.39 21.75 

K=5 58.02 22 26.38 19.12 

K=6 57.99 20.5 33.33 19.04 

K=7 41.11 20.09 17.89 18.17 

K=8 38.06 17.89 17.66 17.16 

K=9 36.56 17.59 17.03 16.65 

K=10 36.27 16.88 15.74 17.75 
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Using the proposed imputation method, we can classify the extreme temperature areas. For example, 
if we set 𝐾 = 10, results showed that there are two clusters exhibiting extreme temperature having 
an overall average of at least 28°C. These areas are shown in Figure 1. 

Figure 1: Philippine map with clustering results from the proposed imputation 

From Figure 1, the areas with red spots are classified with extreme temperature. It can be observed 
that most of the areas are located in the middle part of the country. 

V. Concluding Remarks

This paper presents a missing data imputation algorithm that can handle partitional clustering. 
It is created out of an optimization approach for imputing missing data and making use of the 
Mahalanobis distance metric as a similarity measure. Also, it avoids the problem of centroid 
initialization when performing 𝐾-means clustering because the initial cluster centroids are fixed 
based on the algorithm’s generated centroids. 

When clustering the Philippine Climate data with 21% actual missing values, we were able to 
identify 9 places with extreme temperature classification which means that these places must be 
considered when predicting extreme temperature occurrence. It was found out that the proposed 
imputation using Mahalanobis distance gave higher clustering performance and is consistent for 
different number of clusters which means that the proposed optimization approach using 
Mahalanobis distance is a suitable imputation algorithm in the context of partitional clustering. 
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