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Abstract

The transient and metaheuristic cost analysis of a MX /G(a,b) /1 retrial queue with random failure
during an extended Bernoulli vacation with impatient clients is covered in this study. Any batch that
arrives and discovers the server is busy, down, or on vacation joins an orbit. In the alternative, only one
new customer from the group joins the service right away, while the others join the orbit. After providing
each service, the server either waits to serve the following customer with probability (1 — 0) or goes on
vacation with probability 6. It has been found that these systems express steady-state solutions and are
dependent on time probability generating functions in consideration of their Laplace transforms. We also
discuss a few exceptional and particular instances. After that, the impact of different parameters on the
system’s effectiveness is evaluated. We are also talking about ANFIS. Additional approaches employed in
this study to swiftly determine the system’s optimum cost include genetic algorithms (GA), artificial bee
colonies (ABC), and particle swarm optimization (PSO). We also examined the graph-based convergence
of several optimization algorithms.

Keywords: Batch arrival, Retrial queues, Feedback, Extended Bernoulli Vacation, ANFIS, Cost
Optimization.

1. INTRODUCTION

For the development, capacity planning, performance assessment, and optimization of
numerous real-world systems, queueing theory offers a potent tool. Chaudhry and Templeton[1]
provided a comprehensive analysis of bulk queuing. Bulk arrival analysis, a condensed form of
customer examination, is a great place to start with customised models. Bulk service queuing
models were created by Bailey [2]. He invented the process known as “fixed-batch service”. The
server continuously offers a specific batch of services to each set of users in fixed-batch service
queueing systems (QS).

The “retrial queueing”system, which is used when a customer enters and the server is occu-
pied, requires the customer to leave the appropriate area and repeat his request after a certain
period of time. This property is essential for network technologies, cognitive networks, online
computing systems, manufacturing systems, and other systems.

Sumitha and Udaya Chandrika [3] investigated a retrial queuing system with starting failure,
single vacation, and orbital search. In batch arrival retrial queues, Radha et al. [4] studied some
system performance measures are evaluated using the supplementary variable technique (SVT)
and the steady-state (SS) probability generating function (PGF) for system size.

Gomez-Corral has talked a lot about a retrial QS with FCFS discipline and typical retrial
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periods. The M/G/1 retrial queue with feedback and starting failures was described by Krishna
Kumar et al. [5]. Yang, Tao, and Hui Li[6] investigated an M/G/1 retrial queue with a starting
failure-prone server. An analysis of a feedback retrial queuing system with starting failures and a
single vacation was studied by Mokaddis et al. [7].

In a Vacation, queueing system the server could be temporarily unavailable for a number of
reasons, including maintenance monitoring, tending to other queues, or simply taking a break.
When the server is unavailable to users, that time period is referred to as a “vacation ”. A single
server batch arrival Bernoulli feedback QS with a waiting server, K-variant vacations, and anxious
clients was examined by Bouchentouf et al. [8]. The transient behaviour of a batch arrival feedback
retrial queue with starting failure and Bernoulli vacation (BV) was investigated by Ayyappan
and Sathiya [9]. Assuming that repair, service, and vacation times are randomly distributed, the
time-dependent PGF are also computed in relation to their Laplace transforms(LT).

Numerous academics who have studied queueing techniques with interruptions have as their
primary tenet that, in the event of a failure, the service channel will be promptly repaired. A
transient analysis of the M[X1l, M[X2l /G1,G2/1 retrial QS’s with priority services, working break-
down, start up/close down time, BV, reneging, and balking was studied by Ayyappan et al. [10].
Kulkarni et al. [11] established a retrial queue with a server prone to failures and maintenance.
Ayyappan and Shyamala [12] created an MX!/G/1 with Bernoulli schedule, server vacation,
random break down and second optional repair. And also calculate the typical length of the line
and the typical wait period in closed form. When the repair is finished, a number of consumers
who had previously used the services wait for the remainder to be provided. Jau-Chuan Ke et al.
[13] demonstrated a waiting line with customers complaining and providing feedback the servers
malfunctioned. Furthermore, if all servers are already in use when a customer arrives, he will
either join a retrial orbit or decline. When a service is finished, the client can exit the system or
rejoin the retrial group to receive more services. They can also design a cost function to determine
the system’s ideal parameter settings under the stability condition. Computer telecommunication
systems is a example of application for these types.

A consumer may try again until they are happy if they are not satisfied with the service
they received. Takacs [14] investigates this at first, allowing the consumer who has finished the
service to provide feedback to the rear of the line. An M/(G1, G2)/1 feedback retrial queue with
two phase service, variant vacation policy under delaying repair for impatient Customers was
analysed by Rajadurai et al. [15].

Many real-world systems have impatient customers as a built-in feature, particularly when the
customer is a human, a perishable product, or some moving object that can depart the service area
and their waiting period in the queue reaches certain pre-defined threshold values. This clearly
explains why queueing literature frequently discusses the impatience phenomenon. Accounting
impatience is crucial in the setting of lines for group service because a client could spend a
large amount of time in the system while waiting for the accumulation of a sufficient number of
customers.

More focus has been placed on the numerous retrial lineups with non-persistent (impatient)
consumers. A discussion about the study of a retrial queue with group service of impatient
clients involved D’rienzo et al. [16]. A batch arrival retrial queuing model with starting failures
and customer impatience was addressed by Nila and Sumitha [17]. Customers arrive in batches
in line with the Poisson process. In certain situations, the clients refuse and break their promises.
The analysis of a retrial QS with priority services, working breakdown, BV, admission control,
and balking was explained by Ayyappan et al. [18]. Ayyappan and Nirmala [19] explored an
analysis of customer’s impatience on bulk service QS’s with an unreliable server, setup time
and two types of multiple vacations. Sethi.R et al. [20] investigated the cost optimization and
ANFIS computing of an unreliable M/M/1 queueing system with customers’ impatience under
n-policy. The ideal Cost Analysis for Discrete-Time Recurrent Queue with Bernoulli Feedback
and Emergency Vacation was described by M. Vaishnawi [21]]. In order to calculate costs, PSO,
ABC, and GA are also used. To ensure the best deal, these methods compare and contrast the
outputs.
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The paper’s structure is as follows: Section 2 provides a detailed explanation of the mathemat-
ical model. Section 3 discusses the ideas and formulae governing our system as well as how to
obtain the time-dependent solution of our model. The PGF for the queue length at each given
epoch and the SS performance of the system are explicitly determined in Section 4. In Section
5, the pertinent stability condition has been uncovered. In Section 6, we precisely estimate the
mean queue size, mean queue waiting time, and efficiency features for each state of the system.
In Section 7, we present a practical illustration. We offer a numerical study and associated graphs
in Section 8. Furthermore, an ANFIS was provided in Section 9. The Cost optimization is offered
by Section 10. The conclusion is presented in Section 11.

2. MODEL DESCRIPTION AND ANALYSIS

We suppose that the underlying queueing model is as follows:

Arrival process: Customers enter a poisson stream, and bulk service is offered on an FCFS basis.
Considering that a batch of “i”customers enters the system, A > 0 represents the average batch
arrival rate, and Ac;dt(i > 1) represents the first order probability during the short interval of
time (@, @ + d@]. We define a batch arrival and a bulk service as having a smallest batch size of
“a”and a highest batch size of “b”.

Retrial process: When a customer arrives and discovers that the server is busy, unavailable, or
broken, the customer has two options: (1) leave the service area with a probability of d and join a
pool of blocked customers known as an orbit; or (2) balk the system with a probability of d in
accordance with FCFS, which implies that only the customer at the head of the orbit queue is
permitted access to the server.

When the server is idle, the customer at the head of the retrial queue engages with potential
primary customers to see who can cancel their service request and, with prob., g, either move up
in the retrial queue or leave the system with prob., (1 — g).

A general (arbitray) distribution with the distribution function A(u) and the density function
a(u) determines the retrial interval.

Let ¢(g)dg be the conditional prob., density of completing the retrial within the range (g, ¢ + dg],
where ¢ is the elapsed retrial time.

and therefore,

a(u) = g(u)e lo ()%

Inter-retrial times have an arbitrary dist., A(¢) with correponding Laplace-Stieltijes transforms
(LST) A*(u).

Service process: The server enters an idle state wherever a fresh or returning user comes before
quickly resuming regular operations for the newcomers. A generic (arbitrary) distance with the
distance function B(g) and the density function b(¢) follows the service time.

Given the elapsed retrial time ¢, define ¢(g)dg as the conditional probability of service completion
within the range (g, ¢ + dg].

and therefore,

b(@) = g(@)e i 916
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The random variable B with the dist., function B(g) and LST B*(w@) denotes the service time.
Random failure: Failures are anticipated to occur sporadically throughout the system and ought
to follow a poisson stream with an average failure rate of T > 0. The repair times follow a general
dist.,, which is represented by the random variable D and the dist., function D(g), with the LST
D*(w).

The length of repairs is determined by a general (arbitrary) dist., with a dist., function D(¢)
and a density function d(g). Given an elapsed repair time of ¢, define a(¢)dg as the conditional
probability of completing repairs within the range (¢, ¢ + dg].

__d(g)
a(g) = 1_713@)

and therefore,

Extended Bernoulli vacation:If there are any unfinished parts of the service, the server has
two options: either accept the BV with a probability of 6 or keep serving them with a probability
of (1 —0). After the vacation is over, the server either undertakes the second type of optional
extended Bernoulli vacation with a prob., of i or continues to serve the remaining batches with a
prob., of (1 —u).

The random variable F with the distance function F(g) and LST F* (@) is employed to represent
the server’s leisure time. This arbitrary variable F follows a general distribution.

The server’s vacation time follows a general(arbitrary) dist., function F(@) and density function
f(@). Let B(g)dg be the conditional prob., of a completion of a vacation during the interval
(¢, ¢ +dg], given that the elapsed repair time is ¢, so that

f(g)

B(g) = 1_71:@)

and therefore,
f(@) = p(@)e i Pl

The system’s stochastic processes are all considered to be independent of one another.
Feedback Rule: Clients who are unhappy with their offerings can re-join the line once they’ve
been completed, give feedback to receive another service with minimal difficulty, or both p
(0 < p < 1), otherwise the system must be terminated with complement prob. 4 = (1 — p)

3. DEFINITIONS:

We define

1. Py (g, @)= Prob., that the server will be idle at time @ with n(n > 0) customers in the orbit and
¢ for the customer’s elapsed retrial time.

2. Qu(g, @)= Prob., that the server will be busy at time @ with n(n > 0) customers in the orbit
and # for the customer’s elapsed retrial time.

3. R, (¢, @)= Prob., that at time @, there are n(n > 0) customers in the orbit and the server is
offline due to system repair and waiting for repairs to start with elapsed repair time ¢.
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4. V,(g, @)= Prob., that there are n(n > 0) consumers in orbit at time @ and the server is on
vacation with elapsed vacation time g.

5. There are no customers in the orbit at time @, and the server is inactive but still available in the
system, according to the probability Py(w@).

The following differential-difference equations regulate the model:

iPo( @) = —APy(@) + (1 - 9)5/000 Qo(g, @)¢(g)dg + (1 —p) /000 Vo(g,@)B(g)ds (1)

do

P) P)
;an(g,w) +aobile @) = —[A+g(Q)lPu(c@)n=1 (2

d d
ng(g,w) +55Qo(6 @) = —[A+T+¢(0)]Qlc@) ()
aiQn (¢, @) + aiQn (6 @) = —[A+T+¢(6)]Qu(c,@) +A )Y CiQu (g @),n>1 (4
¢ @ k=1
SER(G1@) + - Rol @) = (A + () Rolg,@)n =0 (9
Ru(g 1, @) + %Rn(@w) = —[A+a(0)]Ru(c, @) + A Y CkRy (g, @),n>1  (6)
k=1
d ?
5 0(6 @)+ 5500(6 @) = —[A+(QIVo(g @), n=0 ()
d d n
3 Ve @) + 55Vale, @) = —[A+Be)]Valg @) + A Y CiVii(g@)n =1 (8
6 @ k=1

The following boundary conditions must be met in order to answer the given equation:

P,(0,@) =(1-0)d / " Qule@)p(e)de+ (1-0)d [~ Qua(c @9(c)ds

+ [T Ralg@n(@ds+ (1= p) [ Vals,@)ple)de,n > 1 ©)
b a— 0
Qo(0,@) =Ap(1—g Z A /0 Py_i+p(g, @)dg
b - b o
+(1-0)p) /0 Pils @)slo)ds + . [ Vile @)Ble)ds (10)

a—1
Qu(0,@) =Ap(1 =) T, Ce [ Puosss(o@)dc +p [ Puss(@)g(o)de

+Ag /O Pyyp(g, @)dg + /0 V(g @)B(g)dg (11)

Ro(g, O/(D) :TQO(Q,CD),I’Z =0 (12)
Ry (Q, 0,(,0) :TQH(QI CD)/” >1 (13)
Va(0,0) =6 [~ Qulc,@)9(e)dg,n > 1 (14)

We presume that the system is initially empty of users and that the server is idle. Thus, the initial
conditions are

(15)

46



Rani R and Indhira K RT&A, No 2 (78)
METAHEURISTIC COST SCRUTINY OF MX/G(A, B) /1 RETRIAL QUEUE Volume 19, June, 2024

Generating functions of the queue length (The time-dependent solution):

P(c,¥, @) = Z Y Pi(c, @ 2 Y"P, (@
n=0
Q(g/‘P/(D) = Z ‘Ian(g,(D); Q(T,(D) - Z ‘PHQH(CD)
n=0 n=0
R(g,4 ¥, @) = ) ¥"Ru(6,,@); R(g, ¥, @) = ) ¥"Ru(c, @)
n=0 n=0
V(¥ @)= Z YY"V, (c,@); Z YV, (@

n=0

= Z Ci¥"; Q(Y) = Z QY
n=1 r=0

which define the LT of a function f(w) as it converges within the circle defined by z < 1.

)= | e f(@)de, R(s) = 0
0
Using (15) and the LT from equations (1) through (14), we arrive at

(s M)pols) = 1+ (1= 0)d [~ Qole,)9(e)ds + (1= 1) [ Vale,s)le)de
]

a—an(g,s) +[s+A+2(g)]Pulg,s) =0,n>1

;’ng@,s) + 5+ A+ ¢(c)]Qo(e,s) = 0

jg@(gs) + 5+ A+ P06 s) =AY GOy k(cs)n > 1
k=1

aagRo(g, 1,s) 4 [s+ A+ a(c)]Ro(c,s) =0

0 - _ n _
%Rn(g, 1)+ [s+ A+a()]Ru(gs) =AY, CR,_k(g,s),n>1
k=1

aagVO(g'S) +[s+ A+ B(c)]Volg,s) =0

aagVn(Q/S) + s+ A+B()Valss) = A f CkVuk(gs),n > 1
k=1
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P(0,5) = (1=0)d [~ Qule,9)9(@)ds+ (1=0)d [~ Quos(c,s)p(c)de

+ [T R s)a(e)ds + (1= ) [ Vals,s)Ble)dem > 1 (26)
_ b a—1
Qo(0,5) = Ap(1— ch/ Py_k4p(g,8)dg
r k=0
b [ee] [ee] _
Z/ P (g,s)8(g)dg + Z/ Vi(¢,8)B(¢)dg (27)
Qn(0,8) = Ap(1 - iCk/ Py_kyp(s/s d€+P/ P 14(c,5)8(c)dg
+Ag /0 Pyis(g,s dﬁ./o Viuyn(6,8)B(g)dg (28)
RO(g/O/S) = TQ()(Q,S),?’Z =0 (29)
Ru(g,0,5) = TQu(s,s),n >1 (30)
7(0,5) =0 [~ Qule,s)g(e)d,n > 1 (31)

By multiplying equations (19) through (31) by ¥” and adding the results over n, we can obtain
using the generating function mentioned in equation (16).

SP(6Y,9) + s+ A+ g(O)Ple, ¥,9) =0 (32)
5006, ¥,5) + [s + AL - C(¥) +9(0) Q6 T,5) =0 33)
SER(6,02,5) + (s A= C(¥)) + a(@)IR(5 ¥,5) =0 (34)
S V(6 ,5) + (s AL~ C(¥) + BV (6, ¥,5) =0 (35)

P(O,‘I’,s):(l—Q)(d_+d‘F)/ (c,Y,s)¢ dg—i—/ (c,¥,s)a(c)dc

= p) [V, 5)peds — a1 -0) [ Qole,s)p(6)ds

~(=n) [ Vol s)le)dgn = 1 (36)
¥Q(0,¥,5) = AL -pC(¥) [ Pl ¥5)dc+p [ Ple¥,s)(0)ds

Ag/ (6, ¥s dg+/ (6, ¥, s)B(c)dg (37)

R(c,0,%,5) = 7Q(c, ¥,5), 1 = 1 38)

(0‘1’5-9/ (¢, ¥, s)p(c)de,n > 1 (39)

Equation (18) in (36) gives us

P(0,¥,s) = [1— (s+ A)Py(s)] + (1 —0)(d +d¥) /Ooo Qg ¥, 5)¢(c)dg

+ [T R Y s)ale)de +(1-w) [ V(e ¥ 5)B(e)de
(40)
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Equation (32), when integrated between 0 and ¢, yields

P(c,¥,s) = P(0,¥,s)e s+ 5 (@)@

Once more, integrating equation (41) by parts with respect to ¢ yiedls,

P(¥,s) = P(0,¥,5) [W}

where,

A(s+A) = /Ooo e~ HASGA(¢)

When integrating equations (33) to (35) from 0 to ¢, similar outcomes are found.

Q¢ ¥,s)
R(¢g, 1, ¥,s)

Q(0,F, s)e S(¥s)e— [ o(@)ded

R(c,0,¥,s)e ¢ (¥s)s—J5 a(@)ded
FD(C(‘“»}
0(Y¥,s)
V(g ¥,s) = V(0,%¥,s)e ¢(¥o)—Jy pl@)do

R(g,¥,s) = R(g,0,%,s) [

where the values of P(0,Y¥,s),0(0,¥,s),R(0,¥,s) and V(0,¥,s) are given by (37) to (40).

Taking into account ¢ yiedls, integrate equations (43) to (45) by parts once more.

Q(¥,5) = Q0 ¥,5) 1—§(§1§<‘1;>>
R 5 1—B(Z(¥,s))] [1—D(Z(¥,s))
R(Y,s) :TQ(O,‘P,S)[ Lo ] [ Di(t }
V(¥,s) = V(0,¥,s) 1-;((‘5(;5))

Where,
BE(¥,) = [ e d¥kdB()
DE(¥,s) = [ e C(eaD(q)

FE(Es) = [ e emkdr(g)

(41)

(42)

(43)

(44)

(45)

(46)
(47)

(48)

are, in order, the LST of the following values: retrial time A(g), service time B(g), repair time

D(g), and vacation time F(g).

Now, multiplying both side of equations (41),(43) to (45) by g(c),¢(c),a(g) and B(g) and inte-

grating over ¢, we obtain
| Ple Y9800 = P(0,¥,9)Als + A)
| Qe e s)p(e)de = (0, ¥,5)BE(¥,5))
|7 R ¥,5)a(6)ds = R(6,0,%,9)D(E(Y,5)

| Vet 9B)ds = VO, EFE(E9)
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Using equations (50) in (39)

V(0,%¥,s) =00Q(0,%,s)B({(Y¥,s)) (53)

A(1—g)pC(¥) (1 *:‘J(FSA* DN G pA(s+A) + Ag (W)] (54)
] o 1-B({(¥,5))
R(g,0,%,s) = 1Q(0,¥,s) ((g(‘l’,s)) ) (55)
Using equation (50) to (52) in (40) we get
Nr(Y¥)
(0,%,5) Dr(¥) (56)
Nr(¥) =[1— (s + A)Py(s)][¥* — 0F(Z(¥,5))B({(¥,9))]
Dr(¥) =¥* — 6F((¥,5))B(Z(¥,5))
~[aq - gpeew) (1 “ACEANY LAl A+ A (1 e A)ﬂ
(1= 0@+ BE(s) + DY) (L)
00— WFECE)BECY,)|
where,
0(¥,s) =s+A(1—-C(Y))
Subs/- P(0,¥,s) from equation (56) into equation (53) to (55)
] A= g)pC(¥) (FAE) + pA(s + A) + Ag (A
Qo= T 6FC(Y, 5B (Y,5))
Nr(Y)
5] 7
) (1 B(Z(¥,5))\ [Nr(¥)
Reow s = (S ) [rw)
A(1—-g)pC(Y¥) (17‘1&7/\)) +pA(s+A) +Ag (ki(rSXA))
¥ —0F(((¥,5)BE(¥,5) 9
7(0,%,5) <0B(C(¥,5)) | o |

A(1=g)pC(¥) (= ffX_A))+PA_(S+A)+Ag(1_ffA+A>) 59
Yo —OF(Z(Y,s))B(Z(Y,s))

Updating equations (56) to (59) in (42), (46) to (48) We determine the PGF of various conditions
in the system under a transient condition.
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4. THE STEADY STATE’S FINDINGS:

To define the SS prob., we disregard the argument @ wherever it appears in the time-dependent
analysis.

limsf(s) = lim_ ()

@W—r 00

P(¥) = P(0, %) (1 _i(A)) (60)
o) = (F e ) poy) (61
A1 = g)pC(¥) (FAM) + pA(n) + Ag (5) o)
¥ —0F(C(¥)BE(Y)
__(1-BE¥) (1-DE(¥)
Ron = () (%) )
AL - g)pC(¥) (FHA) + pA(A) + Ag (5
PO ¥ 0F(Z(¥)B(¥) ©
ver) = os(ece) (L5
AL - g)pC(¥) (F42) + pA(A) + Ag (F42)
po) ¥ 0F(Z(¥)B(¥) e
where,
- 3
NP (1) = 1 = AR (¥~ OF(EC¥)BE(Y)
Dr(¥) = ¥~ OF(C(¥)BE(¥)) _
- [aa-gpeen (SR +paw) +ag (1)
(1- 0@+ a8 + D) (L)
+0(1 - EC(¥)BEP)] (69
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4.1. Queue sizes distribution at a certain epoch:

The PGF is a of the queue size dist., at a random interval, is obtained by adding (60) to (63) with
the idle term.

(¥) = g’:ﬁi; (66)

+0(1 - ) F(Z(E)BE(E))]) — (1 - AA)L()[¥! — 0F(Z(¥))BE(Y))
A1 - g)pC(Y) (1 - A(A)) + pA(A) + g (1 - A(A))]

[(1— BE(¥)) + (1 — BL(¥))(1 — DZ(¥)) +0BZ(¥)(1 — FL(¥))]]

T+ (1- A(N)Z(E)E — 6F(C(¥))BE(¥))

A1 - g)pC(Y) (1 - A(A)) + pA(A) +g (1 - A(A))]]

[(1— BE(¥)) + (1 — BL(¥))(1 — DZ(¥)) +0BZ(¥)(1 - FL(¥))]]

5. StaBILITY CONDITION

The PGF needs to meet P(1)=1. Applying the L'Hopital rules and equating the expression to 1
results in the result that satisfies the requirement.

b—[(1=g)pE(N) (1= AAD][(A = 0)(d+d) +6(1— )]+ p(1-8)(1-A(A))

+ pA(A)+g(1— A(A))[(1—0)(d+d)(1 — AE(I)E(B)) + TE(B)

—OA(1—u)E(I)Aq1] + ABE(I) A4

Now we can determine the prob., that are unknown. P(1)=1 is therefore fulfilled if

A(N) +pAA) +8 (1= A(A))]
+0(1—w)F(Z(Y))B(E(Y))| >0

(1= g)pE(D) (1 = AA)[(A—0)(d+d) +0(1— )] + [p(1 - g)(1— A(A))
+pA(A) +8((1 = A(A))][(1 = 0)(d +d)(1 — AE(I)E(B))
b= +TE(B) — 0A(L = pE(D A + AGE(DAL
b

then p < 1 is the condition to be satisfied for the existence of the SS for the model under

consideration.

6. PERFORMANCE EVALUATION:
This section includes system performance metrics, a model stability study, and some unique

system prob., while the system is in various states.
We obtain the following prob., if the system fulfills the stability requirement p < 1.
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* Let P be the SS Prob., that the server is idle during the retrial time.

o o (1-0)(1— Apy)(1— A(A))
P=Jm P¥) = P() = R g o — ) — ACA)) + pACA) + 5= A
[(1—0)(d+d) +6(1 - p)]

o If the server is busy, let Q be the SS Prob.,

Q = lim Q(Y)

Y—1

Q(1) =E(B)x

(1= Apo)[p(1—g)(1 — A(A)E(])]
b+ AGE(I)Ay — [(1 - g)pE(I)(1 g(/\))][( ){bz d) +6(1— )]
)E )—

+Hp(1—2)(1— A(A)) + pA(A) +g(1 — A(A))]
(1—9)(d+d)(1—AE( (B)) + TE(B) — A8(1 — p)E(I) Ay

* R ought to indicate the SS Prob., that the server is being repaired.
R =1lim R(Y)
Y1
R(1) =TE(B)E(D)x

(1= Apo)[p(1 —g)(1 — A(A))E(D)]
(1 (

[p
b+ AGE(1) Ay — ([(1 = )pE(N)(1 = A(A))][(1 = 0)(d +d) +6(1 — p)]
+p(1-¢g)(1 A())P()+( —A(A))]
[(1=6)(d +d)(1— AE(1)E(B)) + TE(B) — A6(1 — ) E(I) Aq])

¢ Using V as the SS Prob., we may assume that the server is on vacation.

V =lim V(¥)
Y—1
V(1) =0E(F)E(I)x

b+ ABE(I)Ay — ([(1 — g)pE(I)(1 — A(A))][(1—6)(d +d) +6(1
+[p(1—g)(1 A(( ))+pASS/?

6.1. Average queue length:

Computing at ¥ = 1 and differentiating (65) with regard to ¥ yields the mean number of users
in the queue (L;) under SS conditions.

d
= 11m ﬁP(‘I’)

Nr”(l)Dr (1) — Dr"(1)N7'(1)
2(Dr'(1))?

P(1) =
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D'(1) = ~AE(1) {¥* — 0F(G(¥))BE(¥)) — [(1 ~ )pC(¥) (1~ A(A) + pA(A

) +p
g (1— A(A))] [(1 —0)(d+d¥)B({(¥)) +TD({(¥)) ( ‘Igf ;P )

+0(1— ) F(Z(¥)BEZ(¥))]}

D'(1) = —A*{E(I(I-1))[1 -0 — [p— g(p — 1) (1 — A(A))][1 — Op]]
+2E(I)[b + AGE(1) Ay — ([(1 — )pE(1)(1 — A(A))][(1 — 8)(d +d) + (1 — p)]
+p(1—g)(1 = A(A)) + pA(A) + g(1 — A(A))][(1 — 0)(d +d)(1 — AE()E(B))
+TE(B) — AO(1 — ) E(1) A1])]}

N'(1) = = A’E(D) {1 -0 [p(1— g)(1 = A(A)) + pA(A) +g(1 = A(A)][(1 - 0)(d +d)
+0(1— )} + (1= A) {=AE(D) (1 - 0)(1 — A(A)) + A2E()E(B)
(p(1-8)(1 = A(A)) + pA(A) +8(1 = A(A))) + OAE(DE(F) }

N"(1) = = A*{E(I(I-1)) (1 — 8 — Ay(1 — 6p0)) + 2E(I) (b + 6AE(D) Ay — Az(1 — 6p1)
+A4[(1-6) (1 - AE(I)E(B))] + TE(B) — 0A(1 #)E(I)fh)}

+ (1= A) {1 - AA)[-(1 = O)AE(I(I - 1)) = AE(I) (b + OAE(I) Ay)]
+AZE(I)E(B) Az + A?[E(I(I = 1))E(B) + E(1)E*(B)][p(1 — §)((1 — A(A)))
+pA(A) +8((1— A(A)))] — OA’E(B)E(F)E(I)?

+AG[E(I(1 = 1))E(F) + E(1)EX(F)]}
where,
Ay =E(B) + E(F)
Az =p(1 - E(D((1 - A(A)))
Ag=p—g(p-1)(1-AA))

* The Little’s formula (W) is used to determine how long an average customer waits in
queue.

7. Practical application of the model:

The field of telecommunications networks may be able to use the suggested model. This
system manages a lot of consumer telephone communications. Call takers are referred to as
servers and callers as customers in this context. A consumer may elect to exit the system if he
calls and discovers that all the servers are occupied (impatience). Customers wait in orbit while
the server is overloaded, out of commission, or undergoing maintenance. If a server has any
questions or concerns that fall outside of their area of expertise, they may need to refer them
to other servers who are available or speak with a senior in order to acquire the answers. A
service failure can be used to represent this circumstance. The speed at which the agent receives
responses from the expert in this case is known as the repair rate. Additionally, the server may do
various maintenance procedures known as "vacations." Additionally, after each customer’s service
is finished, dissatisfied customers may re-join the line and be classified as feedback consumers.

8. Numerical Results

In this section, we’ll use MATLAB to demonstrate how different parameters affect observations of
system behavior. The batch size distance of the arrivals in this section is geometry; with a mean
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of 2. Here, the exponential distance is followed by the service, vacation, and repair stages. By
creating erroneous assumptions about the parameters, we make sure that the stability criterion is
satisfied. Tables 1 to 3 present estimated values for our queueing system’s utilization factor (p),

average queue length (L,), and average waiting time (W;).

Table 1: The effects of arrival rate (A) on p, Lg, and Wy

g=05p=15E=06G=220=3,d=3,

e=06,y=09,B=15D=1,F=07z=1b=2,1=138

Arrival rate (A) 0 L, W,
0.30 0.022680 | 3.505127 | 5.841879
0.31 0.096336 | 4.616984 | 7.446748
0.32 0.169992 | 6.010404 | 9.391256
0.33 0.243648 | 7.742148 | 11.730527
0.34 0.317304 | 9.878047 | 14.526540
0.35 0.390960 | 12.494169 | 17.848813
0.36 0.464616 | 15.678118 | 21.775164

Table 2: The effects of the service rate ¢p(g) on p, Ly, Wy

§=78p=07E=08G=60=1,d=3,¢=4.56,
u=07,D=1F=07A=03z=1,b=2,1=1

service rate (B) 0 L, W;
0.50 0.737200 | 0.223375 | 0.372292
0.51 0.687360 0.189247 | 0.315412
0.52 0.637520 | 0.160488 | 0.267480
0.53 0.587680 | 0.135989 | 0.226649
0.54 0.537840 0.114943 0.191572
0.55 0.488000 | 0.096748 | 0.161247
0.56 0.438160 | 0.080947 | 0.134912

Table 3: The effects of the Breakdown rate (T) on p, Ly, Wy

§=02,p=07E=29G=9,0=1,

d=7,e=86u=02B=7D=2F=07A=04z=2,b=4

breakdown rate 0 Lq W,

(1)

1.0 0.264592 | 5.619523 | 7.024404
1.1 0.303092 | 6.095933 | 7.619916
1.2 0.341592 | 6.575234 | 8.219042
1.3 0.380092 | 7.057428 | 8.821784
1.4 0.418592 | 7.542516 | 9.428145
1.5 0.457092 | 8.030500 | 10.038125
1.6 0.495592 | 8.521381 | 10.651727

55




Rani R and Indhira K RT&A, No 2 (78)
METAHEURISTIC COST SCRUTINY OF MX/G(A, B) /1 RETRIAL QUEUE Volume 19, June, 2024

The two-dimensional graph that represents the system measurement of performance is shown
in Figure 1 (a —¢).

e The figure 1 (a) demonstrates how the utilization factor (p), estimated queue length (L,),
and expected waiting time (W) all increase as the arrival rate (A) does.

e The figure 1 (b) shows that while the utilization factor (p) decreases, the service rate ¢(g)
rises. Expected waiting time (W) and queue length (L,;) decrease.

* The breakdown rate (7), utilization factor (p), expected queue size (L;), and expected
waiting time (W;) all show increasing trends in the figure 1 (c).

The three-dimensional graph of the system indicators of performance is shown in Figure 2
(a—c).
e The surface in figure 2 (a) shows the growth of the arrival rate (A), estimated length of the
line (L;), and estimated wait time (Wy).

* Figure 2 (b) shows that as the service rate ¢(g) rises, the estimated queue size (L;) and
waiting time (W) both decrease.

* Figure 2 (c) shows that as the breakdown rate T rises, expected queue lengths (L;) and
waiting times (W;) also rise.

The numerical results above allow us to determine the influence of attributes on the system’s
evaluation criteria, and we can be assured that they are representative of realistic conditions.
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Figure 1: 2D representation effects
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Figure 2: 3D representation effects

9. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS modal is actually applicable in a variety of fields, such as modes of transport,
congestion, telecommuting, atmospheric research, etc. Artificial neural networks are used in
communications networks to accomplish a variety of goals, including an increase in customers,
expense reduction, shorter wait times, etc. With variations in arrival rates while on vacation,
service rates, repair rates, and repair to busy rates, the current modal allows us to examine the
impatience of the client while they wait for the service.

A very helpful approach for ANFIS is created by combining soft computing methods, artificial
neural networks (ANNSs), and fuzzy systems (FS). We are showing a simplified idea of the ANFIS
architecture by using the fuzzy parameters. We can implement an ANFIS input-output function
and input-output data pairs as fuzzy if-then logic. The fuzzy toolbox of MATLAB software can
be utilized for contrasting the computational findings with the implementation of an ANFIS
network.

The input parameters and the membership function are assumed to be the A, ¢(¢), and T
Gaussian functions in order to produce computational results based on ANFIS. (see Fig. 3a, b,
¢). It is assumed that the linguistic values are low, moderate, or high. Tick marks are placed
over the curves made for the results obtained analytically in Figure 1a, 1b and 1c to indicate the
results produced by the ANFIS approach for the queue size. The figures show that the numer-
ical outcomes produced using the Runge-Kutta method and the ANFIS results are nearly identical.
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10. Cost Optimization:

(b) p, Ly, W, verses Service rate ¢(c)

The term "optimization" describes the method of determining the set of parameters for an ob-
jective function that produces the highest or lowest outcome. The continual, business-oriented
activity known as "cost optimization" aims to reduce expenditures and costs while raising the
organization’s value. Standardizing, streamlining, and rationalizing platforms, application de-
velopment, procedures, and services are all part of this process, along with establishing the
most competitive possible terms and prices for all business transactions. The operating cost and
profit of a system are closely tied in real-world situations. Therefore, the system’s designers or
managers place a lot of emphasis on reducing operational expenses per unit of time in order to
enhance the system’s earnings. Our objective is to identify the best cost per unit of time (TC)
characteristics. In order to do this and increase the cost-effectiveness of our developed approach,
we will build our competence in this field.

Cj, - Holding expense for every user in the system per unit of time.
Cp, - The cost for each unit of time the server is turned on and used.
Cy - The cost imposed on the server in vacation mode per unit of time.

C; - The cost to repair the server after its failure, calculated per unit of time.
C; - The cost per unit over a busy time.
C; - Cost for each unit of time used over the vacation period.

TC =CyLly+ GV 4+ CQ + CGR+ Cryp + Covo
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The TC problem is solved using metaheuristic optimisation methods including PSO, ABC,
and GA. In view of the importance of cost optimisation, this study was conducted using the
global search optimisation algorithms particle swarm optimisation (PSO), artificial bee colony
(ABC), and genetic algorithms (GA), each of which is separately described in three different
subsections of this section. If the algorithm’s assumptions are correct, local search techniques
frequently offer the level of computer efficiency required to find the global optimal. Tables 5 to 7
display the effects of A, T, and ¢ on TC* using PSO, ABC, and GA.

Table 4: Cost sets for optimal policy

Cost | Cp, Cy Cp C, C @)
sets
1 10 9 7 6 7 8
2 8 4 6 4 8 9
3 7 6 8 3 9 6

10.1. Particle Swarm Optimization (PSO)

One of the meta-heuristic methods used to solve optimization issues is the particle swarm
optimization (PSO) technique, which has been employed successfully in a number of single
objective optimization problems. Kennedy and Eberhart first proposed this algorithm. The PSO
algorithm has the benefit of being simple to implement and apply for solving different function
optimization problems, which can be categorized as function minimization or maximization
problems.

Table 5: Effect of A, T,¢(g) on TC* using PSO

§=02,p=07,G=9,0=095d="7¢=86,
c=02,B=7D=21=16b=4

Cost sets TC*
Cost set 1 Cost set 2 Cost set 3

0.4 149.1752 133.0711 127.2781
A 0.5 162.6882 143.5244 136.3697
0.6 173.5857 152.1798 143.7058
1.6 149.1752 133.0711 127.2781
T 1.7 161.5959 141.8755 134.7960
1.8 175.6139 151.7985 143.2466
7 149.1752 133.0711 127.2781
¢(c) 8 184.5033 159.0594 151.0219
9 230.2302 192.6975 181.7546

10.2. Artificial Bee Colony(ABC)

One of Dervis Karaboga’s most recent algorithms—created in 2005—is called the Artificial Bee
Colony and was modeled after the cunning behaviour of honey bees. Basic process indicators like
colonies and highest levels are essentially all that are used. Like PSO and differential evolutionary
approaches, it is equally simple to comprehend. The search for huge areas of nectar-containing
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food sources, and ultimately the one with the most nectar, is the bees’ main goal. This population-
based search approach is the main one used by ABC. The cost of the suggested structure is
decreased through a process known as ABC.

Table 6: Effect of A, T, ¢(g) on TC* using ABC

§=02,p=07,G=90=095d="7¢=86,
c=02,A=04D=21=16b=4

Cost sets TC*
Cost set 1 Cost set 2 Cost set 3

0.4 108.0030 108.8585 109.6965
A 0.5 112.6458 113.7397 114.0666
0.6 115.8805 117.2631 116.9601
1.6 108.0030 108.8585 109.6965
T 1.7 112.4344 113.2737 114.1395
1.8 117.4656 117.8425 118.7674
7 108.0030 108.8585 109.6965
¢(c) 8 120.7245 120.9982 122.5394
9 138.2173 134.5400 136.4184

10.3. Genetic Algorithm (GA)

The genetic algorithm, created in the 1960s and 1970s by Bremermann, Holland, and their
colleagues, is a technique for addressing optimization problems brought on by natural selection,
the mechanism that promotes evolution in biology. They are frequently employed to deliver
superior solutions to stochastic search issues. The full procedure serves as a representation of the
criteria for choice that were used to select the people who would make the best parents for the
coming human generation.

Table 7: Effect of A, T,¢(g) on TC* using GA

¢=02,p=07G=9,0=095d=7¢=86,
c=02,A=04D=2B=7b=4

Cost sets TC*

Cost set 1 Cost set 2 Cost set 3

0.4 152.5341 131.8364 124.6592

A 0.5 163.2414 141.3111 131.8853

0.6 170.0165 148.0781 136.4720

1.6 152.5341 131.8364 124.6592

T 1.7 167.5959 142.6723 133.7200

1.8 184.4744 154.7915 143.8279

7 152.5341 131.8364 124.6592

¢(¢) 8 192.8582 162.3320 151.7762

9  243.6750 200.7627 185.9493
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10.4. Analogy of PSO, ABC and GA

This section compares the three approaches—particle swarm optimization (PSO), artificial
bee colony (ABC), and genetic algorithm (GA)—to determine which has the least expense using
the corresponding MATLAB programs. Then, one by one, the MATLAB programs for each of
the aforementioned algorithms are run. We found that all three programs generated values that
were nearly identical. Because of this, the three solutions are nearly comparable in terms of their
optimum results and the fewest associated costs. It proves the reliability (local) and potency of
these three simple techniques. Any technique can be used to calculate the optimal cost; however,
PSO outperforms all others in comparison to our model. Because PSO has so many advantages,
we have found that it is the best approach out of all of them. It performs well in global queries,
requires a small number of arguments, is easy to configure, and is unaffected by design variable
scalability. In addition to suffering sluggish convergence in a concentrated searching region, PSO
has a tendency to lead to swift and early convergence in mid-optimal locations (being able to
impair local search capabilities).

10.5. Convergence in PSO, ABC and GA

After employing an optimization methodology like PSO, ABC, or GA, it is crucial to comprehend
whether a particle recovers to normal or not and when it will roam around in search of a better
solution. As a result, convergence is a significant component of cost evaluation. A statistical
analysis (Fig. 4) of the outcomes demonstrates that ABC exceeds the PSO approach. For the whole
standard optimization, ABC had fewer functional evaluations overall than PSO. The findings
demonstrate that PSO converges more quickly. ABC cannot be employed if a speedy result is
required for time-sensitive applications.

The study shows the applicability of our concept to real-world situations. Some of the
analysts’ financial issues will be partially overcome once they know how much the system will
cost overall. The current situation may heavily rely on the cost-benefit assessment that was
produced, which serves to illustrate the logic of our strategy and aid network administrators and
specialists in lowering the issue of communications services that explicitly deal with blocking.

11. Conclusion:

This paper investigates the MX/G(a,b)/1 retrial queue with random failure and feedback
under extended Bernoulli vacation with impatient customers. The SVT is utilized to determine
indicators of efficiency for the various system stages. The efficiency of the system is then evaluated
after considering the effects of various parameters. Finally, we gave a thorough explanation of the
ANFIS. PSO, ABC, and GA are also used to compute the total cost. In an effort to find the best
offer, these techniques compare and contrast the outcomes. The impetus for this study came from
the prospective applications for the developed model, such as call centres, wireless networks, or
telecommunication infrastructures, which might be powered by controlled precision test queueing
systems to provide outstanding service at low prices. The simple mail transfer protocol utilizes a
way to convey the messages between the mail servers. The recommended approach might be
used in an email system’s transfer model.
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