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KHAIM BORISOVICH KORDONSKY. 
EDUCATOR AND RESEARCHER (1917-1999) ............................................................. 26 

A. Andronov, V. Shestakov

The article is about Khaim Borisovich Kordonsky (Tula, Russia, 1919 - Boston, USA, 1999) - Soviet 
mathematician, Doctor of Technical Sciences, Professor at the Riga Red Banner Institute of Civil Aviation 
Engineers; specialist in the field of probability and reliability theory, leader of the development of the first 
computer system for making aircraft schedules, Honoured Scientist of the Latvian SSR, Laureate of the State 
Prize of the Latvian SSR. Kordonsky's entire scientific and teaching career is connected with RCIIGA. He is 
one of the founders of reliability theory and the author of the first monograph on the application of probability 
theory to solving real-world problems. The book "Applications of Probability Theory in Engineering" was 
published in 1963 and was reviewed by Academician Yuri Vladimirovich Linnik, the greatest expert in 
probability theory and mathematical statistics in the USSR. Khaim Borisovich also worked on scientific 
problems in statistics, medicine, and technical diagnostics. He conducted joint research with the Department of 
Mathematical Statistics of the Faculty of Informatics and Cybernetics of Moscow State University, headed by 
Academician Yuri Vasilievich Prokhorov, and collaborated with Academician A. N. Kolmogorov. 

A MODIFIED INVERSE WEIBULL DISTRIBUTION 
USING KM TRANSFORMATION ................................................................................. 35 

Gauthami P., Mariyamma K. D., Kavya P. 

In the subject of reliability engineering and statistics, a new reliability model is proposed, where survival 
analysis or lifetime data analysis is of major importance in the current scenario. The goal of this study is to 
introduce a new model that has applications to real data sets from the field of survival analysis. Deriving out 
the new model there are various methods to propose a new model, one of them is by using the method of 
transforming a variable to the variable of interest and there are numerous transformation methods which are in 
use right now. The newly proposed model is achieved by using the transformation method known as KM 
Transformation where it does not require any additional parameters to the baseline distribution which 
absolutely is an advantage. The model considered in this paper as baseline model is Inverse Weibull distribution 
with two parameters, one is a scale and other is a shape parameter. Inverse Weibull distribution is a continuous 
probability distribution which presently has great applications in real life phenomenon as well as so many 
modifications and advanced studies are introduced in this distribution from various fields. A proper study on 
the newly proposed model is done by deriving out its various functions and statistical properties such as 
Probability density function, Cumulative distribution function, Hazard rate function, Moments, Moment 
generating function, Characteristic function, Quantile function, Order statistics, etc. along with its Probability 
density function plot and Hazard rate function plot which have both upside-down and decreasing curves. 
Focusing on the inference procedures, the estimation of the parameters involved in this model is done by using 
the method of Maximum likelihood estimation. A simulation study for valuing the parameter consistency using 
two parameter combinations is carried out as well as a data analysis on an actual data set is also conducted. A 
comparison of the newly proposed model with other popular well-known models such as Inverse Weibull 
distribution (IW), KME distribution and KMW distribution using R programming language yielded that the 
new model is a better fit for the real data considered in this paper. The results and conclusions achieved 
throughout the paper are also mentioned at the last. 
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CLASSICAL AND BAYESIAN STOCHASTIC ANALYSIS 
OF A TWO UNIT PARALLEL SYSTEM WITH WORKING 
AND REST TIME OF REPAIRMAN ............................................................................... 43 

Vashali Saxena, Rakesh Gupta, Bhupendra Singh 

The aim of the present paper is to deal with the analysis of the classical and Bayesian estimation of various 
measures of system effectiveness in a two non-identical unit parallel system. Each unit has two possible modes 
Normal (N) and total failure (F). A single repairman is always available with the system and after working for 
a random period he goes for rest for a random period. After taking complete rest he again starts the repair of the 
failed unit on a pre-emptive repeat basis. The system failure occurs when both the units are in (F-mode). The 
distributions of failure time as well as working and rest time of repairman are assumed to be exponential 
whereas repair time and rest time distribution of repairman are taken as general. A simulation study is also 
conducted for analysing the considered system model both in Classical and Bayesian setups. Bayesian estimates 
of various measure of system effectiveness are also obtained by taking different priors. The comparative study is 
made to judge the performance of Maximum likelihood estimation and Bayesian estimation methods. A 
simulation study at the end exhibits the behaviour of such a system. The Monte-Carlo technique is employed to 
draw observations for this simulation study. To obtain various interesting measure of system effectiveness 
technique have used the Regenerative point technique, MCMC technique and Gibbs sampler technique. From 
the graphs and tables we have drawn various important conclusions such that a smaller value of failure rate 1 
� introduces a larger value of Maximum likelihood estimate and Bayes estimates for fixed value of the 
parameter of the repairman rest time distribution � . Moreso, when the value of the failure rate 1 � increases 
the mean time to system failure and net expected profit are also decreases. To compare the performance of 
asymptotic confidence interval and highest posterior density interval with the maximum likelihood estimates 
technique, it has been observed that width of the highest posterior density interval is less than the width of an 
asymptotic confidence interval. 

PROBABILISTIC ANALYSIS OF A TWO UNIT COLD STANDBY 
SYSTEM WITH REPAIR AND REPLACEMENT POLICIES ..................................... 56 

Alka Chaudhary, Suman Jaiswal, Nidhi Sharma 

The present paper deals with two identical units, one is operative and the other of which other is kept on cold 
standby. If the operative unit fails, it goes under repair and after repair, it is not considered as good as new. If 
the unit fails after the first repair, it is replaced with a new unit. A single repairman is always available with 
the system to repair a failed unit. Failure time, repair time and replacement time distributions are taken as 
exponential to reduce the complexity of the system model. By using the regenerative point technique, the 
various important measures of system effectiveness have been obtained and are shown with the help of graph. 

DESIGN OF INERTIAL DELAY OBSERVER BASED 
MODEL FOLLOWING DYNAMIC SLIDING MODE CONTROL .......................... 65 

S. S. Nerkar, B. M. Patre 

This paper proposes the design and implementation of Inertial delay observer (IDO) based model following 
dynamic sliding mode control (DSMC). The Inertial delay observer estimates the states as well as the 
uncertainties and disturbances in an integrated manner. The DSMC is provides smooth control signal with the 
mechanism of chattering elimination while maintaining the accuracy of control. The efficacy of the proposed 
technique is demonstrated with numerical simulation of uncertain second order system. The observer based 
model following DSMC technique is also validated through experimentation on Quanser DC servo motor. 
Results show the effectiveness of the combination of the controller-observer design for position control of DC 
motor against uncertainties and sensor noise. The technique is robust due to appropriate estimation and follows 
the model precisely which improves overall life of the system. The stability of the designed observer based 
control scheme is provided by Lyapunov theory. 
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ON RELIABILITY: A MATHEMATICAL FAULT TREE ............................................ 78 

M. S. Fahmy, A. I. Ahmed, M. Khalil

Fault tree analysis (FTA) is a top down approach that was initially used and developed in Bell laboratories in 
the year 1962 by H Watson and A Mearns for the intercontinental ballistic missile (ICBM) system for the US 
air force called the Minuteman System. Since then, the technique has been adopted and adapted by many 
companies who are interested in reliability engineering and dangerous technology. Today FTA is widely used 
in system safety and reliability engineering, aerospace, nuclear power, chemical and process, pharmaceutical, 
petrochemical and other high-hazard industries; but is also used in fields as diverse as risk factor identification 
relating to social service system failure and in software engineering for debugging purposes and is closely 
related to cause-elimination technique used to detect bugs. Now FTA is considered as one of the most important 
system reliability and safety analysis techniques. Fault tree analysis has proved to be a useful analytical tool to 
analyze the potential for system or machine failure by graphically and mathematically representing the system 
itself. It is a top-down approach that reverse-engineers the root causes of a potential failure through the root 
cause analysis process. Our main contribution is to develop a mathematical theory of fault tree analysis using 
some statistical concepts relating to probability of series and parallel systems to set up a mathematical model 
that represent any hierarchical control system to calculate its reliability for both homogeneous and 
nonhomogeneous structures. A Fault Tree is a hierarchical model used to analyze the probability that an event 
will occur. Fault Tree provides all the tools needed to build graphic representations of large-scale problems 
gracefully so we can use it to set up a mathematical model that represent any hierarchical control system and 
evaluate its reliability using our general mathematical formula that represent the structure in its two cases. The 
graphical representation (fault tree diagram) for a hierarchical controlled system enabled us to set up a 
mathematical general formula that help us to evaluate the reliability of the system in general case 
(nonhomogeneous structure) and another derived formula for the special case (homogeneous structure). This 
analysis may help to understand how one or more small failure events lead to a catastrophic failure. 

A TESTING-EFFORT BASED SRGM INCORPORATING 
IMPERFECT DEBUGGING AND CHANGE POINT ................................................. 86 

Umashankar Samal, Shivani Kushwaha, Ajay Kumar 

In this paper, a scheme for constructing software reliability growth model based on Non-Homogeneous Poisson 
Process is proposed. Here, we consider the software reliability growth model that incorporates with imperfect 
debugging, change point and testing effort. However, most researchers assume a constant detection rate per 
fault in deriving their software reliability models. They suppose that all faults have equal probability of being 
detected during the software testing process, and the rate remains constant over the intervals between fault 
occurrences. In reality, the fault detection rate strongly depends on the skill of test teams, program size, and 
software testability. Also in most realistic situations, fault repairhas associated with a fault re-introduction rate 
due to imperfect debugging phenomenon. In this case, the fault detection rate and fault introduction rate will be 
changed during the software development process. Therefore, here we incorporate both generalized logistic 
testing-effort function, change-point parameter into software reliability modelling. The Least Square 
Estimation approach is used to estimate the unknown parameters of the new model. So in our new proposed 
model we collect software testing data from real application and utilize it to illustrate the proposed model. 
Experimental results show that the proposed framework to incorporate both testing-effort and change-point for 
Imperfect-Debugging SRGM has a fairly accurate prediction capability. 
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A NEW PI-EXPONENTIATED METHOD  
FOR CONSTRUCTING DISTRIBUTIONS WITH 
AN APPLICATION TO WEIBULL DISTRIBUTION .................................................. 94 

M. A. Lone, T. R. Jan

A novel method for generating families of continuous distributions is presented by introducing a new 
parameter referred as Pi-Exponentiated Transformation (PET). Various properties of the PET method have 
been obtained. The method has been specialized on two-parameter Weibull distribution, and a new distribution 
called Pi-Exponentiated Weibull (PEW) is attained. A comprehensive mathematical treatment of the new 
proposal is provided. Closed-form expressions for the density function, distribution function, reliability 
function, hazard rate function have been provided. The PEW distribution is quite flexible, and it can be used to 
model data with decreasing, increasing or bathtub shaped hazard rates. Simulation study has been carried out 
to assess the behavior of the model parameters. Finally, the effectiveness of the suggested method is 
demonstrated by examining two real-life data sets. 

A COMPREHENSIVE CASE STUDY ON INTEGRATED 
REDUNDANT RELIABILITY MODEL USING 
k-out-of-n CONFIGURATION ......................................................................................... 110 

Srinivasa Rao Velampudi, Sridhar Akiri, Pavan Kumar Subbara, Yadavalli V S S 

Designers may introduce a system with multiple technologies in series to improve system efficiency. The 
configuration can be applied to k out of n systems if each technology contains k out of n factors. The k out of n 
configuration method is successful until every component of the system is successful. The efficiency of the 
entire system is more in amount than that of a single system factor in a k out of n shape. An Integrated 
Reliability Model (IRM) for the k out of n, here, an additional system is suggested to account for both the 
efficiencies of the factors and the number of factors in every phase and the different constraints to optimize the 
efficiency of the system. To enhance system efficiency, the authors employed the numerous methods of 
Lagrangean approach to determine the numbers and efficiency of the factors as well as the reliabilities of the 
phase under different parameters namely load, size, and cost. The dynamic programming approach and 
simulation method have been adapted to attain an integer result as well as to see the values real. 

WEIBULL COMPARISON BASED ON RELIABILITY, 
AVAILABILITY, MAINTAINABILITY, AND 
DEPENDABILITY (RAMD) ANALYSIS ........................................................................ 120 

Anas Sani Maihulla, Ibrahim Yusuf, Saminu I. Bala 

As a continuous probability distribution, the Weibull distribution is widely used in the study of reliability, 
availability and other life data. In this research, we propose the RAMD analysis to estimate the three-parameter 
Weibull distribution. The estimation of the distribution parameters is an important problem that has received a 
lot of attention from researchers because of their effects in several measurements. The real data results indicate 
that our proposed estimation method is significantly consistent in estimation compared to the RAMD analysis 
method. The numerical values of filtration system reliability and availability were calculated using Maple 
software. The system of first-order differential equations is formulated using a mnemonic approach and solved 
recursively. Several scenarios were examined to determine the impact of the models under consideration. The 
calculations were done with Maple 13 software. Other reliability measures such as mean time to failure 
(MTTF), mean time to repair (MTTR), and dependability ratio was estimated. The comparative analysis was 
conducted using a reverse osmosis (RO) filtration system. 
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NEW COSINE-GENERATOR WITH AN EXAMPLE OF WEIBULL 
DISTRIBUTION: SIMULATION AND APPLICATION RELATED TO 
BANKING SECTOR ........................................................................................................... 133 

Aijaz Ahmad, Muzamil jallal,  Sh.A.M. Mubarak 

In this work, we propose a novel trigonometric-based generator entitled the "New Cosine-Generator" to acquire 
elevated distribution adaptability. This generator is formed without the insertion of extra parameters. Adopting 
theWeibull distribution as the baseline distribution, and this distribution is referred to as the New Cosine-
Weibull Distribution. Several statistical features of the investigated distribution were studied, including 
moments, moment generating functions, order statistics, and reliability measures. For different parameter 
values, a graphical representation of the probability density function (pdf) and the cumulative distribution 
function (cdf) is provided. The distribution’s parameters are determined using the well-known maximum 
likelihood estimation approach. Finally, simulation analysis and an application is used to evaluate the 
effectiveness of the distribution. 

ON THE INFERENCES AND APPLICATIONS OF 
WEIBULL HALF LAPLACE{EXPONENTIAL} DISTRIBUTION .............................. 146 

Adeyinka S. Ogunsanya, Obalowu Job 

The study of probability distribution has expanded the field of statistical modelling of real life data. It has also 
provided solution to the problems of skewed data which often violate the normality. This research work 
introduces a new T - Half-Lapalace{Exponential} family with a novel Half-Laplace distribution as baseline 
distribution with specific interest in three-parameter lifetime model called the Weibull-Half-
Lapalace{Exponential} (W-HLa{E}) distribution. The W-HLa{E} model is capable of modeling various shapes of 
aging events. The W-HLa{E} distribution is derived by combining Half-Laplace and Weibull distribution using 
the quartile function of Exponential distribution. Some of its statistical properties such as the mean, mode, 
quantile function, median, variance, standard deviation, skewness, and kurtosis are derived. Other statistical 
properties such as survival function, hazard rate, moments, asymptotic limit, order statistics, and entropy 
which is the measure of uncertainty of a random variable are derived and studied. The parameter estimation 
method adopted in this study is the maximum likelihood method. The graphs of W-HLa{E} at different values of 
shape and scale parameters show that the distribution is unimodal hence the mode is given as 𝑚𝑜𝑑𝑒  and it is 
positively skewed with a steep peak. A simulation study is carried on the new proposed distribution using 
maximum likelihood estimation. The simulation also supported the theoretical expression of the statistical 
properties of the proposed distribution such as the location parameter does not affect the variance, skewness, 
and kurtosis of the new distribution. The importance and the flexibility of the proposed distribution in modeling 
some real life data sets is demostrated inn the research. The results of the sudy shows that the proposed W-
HLa{E} distribution perform better than other disribbutions in the literature. 
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APPROXIMATE OPTIMUM STRATA BOUNDARIES FOR 
PROPORTIONAL ALLOCATION USING RANKED SET SAMPLING ................ 161 

Khalid Ul Islam Rather, S.E.H Rizvi, Manish Sharma, M. Iqbal Jeelani, Faizan Danish 

Ranked set sampling is an approach to data collection originally combines simple random sampling with the 
field investigator's professional knowledge and judgment to pick places to collect samples. Alternatively, field 
screening measurements can replace professional judgment when appropriate and analysis that continues to 
stimulate substantial methodological research. The use of ranked set sampling increases the chance that the 
collected samples will yield representative measurements. This results in better estimates of the mean as well as 
improved performance of many statistical procedures. Moreover, ranked set sampling can be more cost-efficient 
than simple random sampling because fewer samples need to be collected and measured. The use of professional 
judgment in the process of selecting sampling locations is a powerful incentive to use ranked set sampling. 
Optimum stratification is the method of choosing the best boundaries that make strata internally homogeneous, 
given some sample allocation. In order to make the strata internally homogenous, the strata should be 
constructed in such a way that the strata variances for the characteristic under study be as small as possible. 
This could be achieved effectively by having the distribution of the study variable known and create strata by 
cutting the range of the distribution at suitable points. If the frequency distribution of the study variable is 
unknown, it may be approximated from the past experience or some prior knowledge (auxiliary information) 
obtained at a recent study. The present investigation deals with paper the problem of optimum stratification on 
an auxiliary variable for proportional allocation under ranked set sampling (RSS), when the form of the 
regression of the estimation variable on the stratification variable given the variance function is known. A cum 
rule of finding approximately optimum strata boundaries has been developed. Further, empirical study has been 
made and presented along with relative efficiency which showed remarkable gain in efficiency as compared to 
unstratified RSS.  

STUDY OF RELIABILITY OF THE ON-TETHER SUBSYSTEM 
OF A TETHERED HIGH-ALTITUDE UNMANNED  
TELECOMMUNICATION PLATFORM ........................................................................ 172 

Dharmaraja Selvamuthua, Adwaith H Sivama, Raina Raja, Vladimir Vishnevskyb 

High-altitude platform (HAP) are stations on an object at an altitude of around 15-50 km at a specified 
nominal fixed point relative to Earth. Tethered high-altitude platform (tHAP) are unmanned aerial vehicle that 
are connected to the ground via a tether with a lift height of 100 − 150 meters, and a multi-copter as high-
altitude mode. The reliability of the tHAP can be assessed with a focus on the tether that connects it to the 
ground. This article proposes a Markov model which obtain the reliability of the tHAP. The tether is considered 
to be made up of multiple wires in such a way that the tether still operates for a given number of functioning 
wires. The failure rates of the wires are dependent on the number of failed wires. Through the reliability 
analysis of the proposed Markov model, the key performance measures such as reliability of the system, mean 
time between failures and the probability of the system being reliable are computed. The optimal number of 
wires is also obtained via the numerical computation of the performance measures. 
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TRUNCATED PRANAV DISTRIBUTION: 
PROPERTIES AND APPLICATIONS ............................................................................ 179 

Kamlesh Kumar Shukla 

In this paper, truncated Pranav distribution has been proposed. The behavior of truncated Pranav distribution 
has been presented graphically. Moment based measures including coefficient of variation, skewness, kurtosis, 
and Index of dispersion have been derived and presented graphically. Nature of survival and hazard rate 
functions are presented graphically. Maximum likelihood method has been used to estimate the parameter of 
proposed model. Simulation based study of proposed distribution has also been discussed. It has been applied on 
two data sets and its superiority has been compare and checked using goodness of fit (AIC and K. S. test) over 
other truncated distributions as well as one parameter distribution, such as exponential, Lindley, Pranav, 
Ishita, truncated Akash, truncated Lindley, and truncated Akash distribution. It was found good fit over above-
mentioned distributions. It can be considered as good lifetime distribution especially for non-skewed data. 

MARKOV APPROACH FOR RELIABILITY AND 
AVAILABILITY ANALYSIS OF A FOUR UNIT REPAIRABLE SYSTEM ............. 193 

A. D. Yadav, N. Nandal, S.C. Malik

Efforts have been made to analyze reliability and availability of a repairable system using Markov approach. 
The system has four non-identical units which work simultaneously. The system is assumed as completely non-
functional at the failure of all the units. The failure and repair times as usual follow negative exponential 
distribution. The reliability measures of the system have been obtained by solving the Chapman-Kolmogorov 
equations using Laplace transform technique. The values of availability, reliability and mean time to system 
failure have been evaluated for particular values of the parameters considering all the units identical in nature. 
The effect of failure rate, repair rate and operating time on reliability, MTSF and availability has been studied. 
The application of the work has also been discussed with a real life example. 

A NOVEL EXTENDED VERSION OF THE AILAMUJIA 
INVERTED WEIBULL DISTRIBUTION ........................................................................ 206 

Idzhar A. Lakibul 

Statististical distributions with support on the set of non-negative real numbers are important in modelling 
and describing the behaviour of lifetime data. Ailamujia distribution is one of the non-negative continuous 
distribution that has an application in lifetime data. In this paper, a new three-parameter non-negative 
continuous distribution which is an extension of the Ailamujia Inverted Weibull distribution is introduced. 
This extended distribution is labeled as the Cubic Transmuted Ailamujia Inverted Weibull distribution. The 
proposed distribution is derived from the cubic transmuted family of distributions by specifying Ailamujia 
Inverted Weibull distribution as a baseline distribution. The probability density function of the proposed 
distribution is derived and some of its plots are presented. It can be observed that the proposed distribution can 
model the data which are exponentially and skewed unimodal right tailed data. In addition, survival and hazard 
functions of the proposed distribution are derived. It reveals that the hazard function of the proposed 
distribution can model both monotonic and non-monotonic decreasing failure rate behaviour of the data. Some 
properties of the proposed distribution such as its moments, moment generating function, mean, variance are 
derived. The Maximum Likelihood approach is used to estimate the proposed distribution parameters. 
Furthermore, parameter estimates as well as the performance of the proposed distribution is investigated by 
utilizing two sets of lifetime data. For point of comparison, this paper uses the following criteria: Akaike 
Information Criterion, Bayesian Information Criterion, Kolmogorov - Smirnov statistics, Anderson-Darling 
and Cramer-von Mises. Results show that for both sets of data, the proposed distribution produce better 
estimate as compared to the Quasi Suja and the Weibull-Lindley distributions. So, the proposed distribution 
consider as the best model for modelling the given two real datasets. 
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RELIABILITY MEASURES OF A 2-OUT-OF-3: G SYSTEM 
WITH PRIORITY AND FAILURE OF SERVICE FACILITY 
DURING REPAIR ............................................................................................................... 214 

Anuradha, S.C. Malik 

The objective of this paper is to describe a particular case of the k-out-of-n: G system for k=2 and n=3 with 
different repair policies and to discuss the application of the proposed in a toxic waste incinerator. The system 
has all the three units identical in nature. The system model is developed using semi-Markov process and 
regenerative point technique. The preventive maintenance and repair activities of the units are carried out 
immediately by a single service facility whenever desires. The service facility is subjected to failure during 
repair of the units while it does preventive maintenance of the units without any problem. The failed service 
facility undergoes for treatment to restore its efficiency to perform the remaining jobs with full capacity. The 
provision of priority to preventive maintenance of the units has been made over the repair to avoid the earlier 
failure of the system. The measures that can affect and enhance the performance of the system have been 
discussed for arbitrary values of the rates which follow some arbitrary distributions including the negative 
exponential. The system is analysed in steady state and the graphs have been drawn to see the effect of different 
transition rates such as failure rate, preventive maintenance rate, treatment rate, and repair rate of the units on 
reliability measures and the profit. The study reveals that there is a decline in these measures with the increase 
of the rate by which unit undergoes for preventive maintenance, failure rates of the units and service facility. 
However, the values of reliability measures MTSF, availability and profit function keep on increasing with the 
increase of treatment rate, repair rate of the unit and preventive maintenance completion rate. The profit 
increases if the rate with which a unit completes its preventive maintenance. Hence, implementing the 
preventive maintenance repair policy for a 2-out-of-3 system is beneficial as it increases the availability and 
hence the profit of the system. 

E-BAYESIAN ESTIMATIONS FOR CHEN DISTRIBUTION
UNDER TYPE II CENSORING WITH MEDICAL APPLICATION ......................... 224 

Athirakrishnan R. B., E. I. Abdul Sathar 

The study focuses on the E-Bayesian estimation of a Type-II censored sample from the Chen distribution. Three 
distinct prior distributions for the hyper-parameters and three different loss functions are considered here for 
deriving the E-Bayes estimators of the scale parameter and hazard rate of above said distribution under Type-II 
censoring. Also derived analytical expressions for the E-MSE of the proposed estimators. Additionally, several 
features of the E-Bayesian estimators and E-MSEs are derived. This paper compares E-Bayesian estimation 
with traditional estimation methods like MLE and Bayesian. The applicability of the proposed estimators is 
demonstrated using a real data application. Furthermore, the credible intervals of the scale parameter 
estimators are also provided. The numerical analysis demonstrates that the proposed method is simpler and 
more feasible than traditional techniques.  
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NEW MEDIAN BASED ALMOST UNBIASED EXPONENTIAL  
TYPE RATIO ESTIMATORS IN THE ABSENCE OF AUXILIARY VARIABLE ... 242 

Sajad Hussain, Vilayat Ali Bhat

The problem of biasness and availability of auxiliary variable for the estimating population mean is a big 
concern, both can be handled by proposing unbiased estimators in the absence of auxiliary variable. So in this 
paper unbiased exponential type estimators of population mean have been proposed. The estimators are 
proposed in the absence of the instrumental variable called the auxiliary variable by taking the advantage of the 
population and the sample median of the study variable. To about the first order approximation, the theoretical 
formulations of the bias and mean square error (MSE) are obtained. The circumstances in which the suggested 
estimators have the lowest mean squared error values when compared to the existing estimators were also 
deduced. In comparison to the currently used estimators, it was discovered that the suggested estimators of 
population mean had the lowest MSE, hence highest efficiency. Also least influence from the data’s influential 
observations when it came to accurately calculating the population mean for skewed data. The theoretical 
findings of the paper are validated by the numerical study. 

PERFORMABILITY OPTIMISATION OF MULTISTATE COAL  
HANDLING SYSTEM OF A THERMAL POWER PLANT HAVING 
SUBSYSTEMS DEPENDENCIES USING PSO AND COMPARATIVE 
STUDY BY PETRI NETS .................................................................................................... 250 

Er. Sudhir Kumar, Dr. P.C. Tewari 

This paper deals with an analysis methodology for evaluating the performance of a coal handling system 
utilized in a coal based thermal power plant. To simulate the interactions between the subsystems, a stochastic 
Petri nets technique is used. A licensed software package named Petri module of GRIF were used for 
computations. This work addresses the performability and cost multi-objective optimization problem for a 
series-parallel coal handling system of a thermal power plant having subsystem failure dependencies. 
Performability of subsystems has been examined in relation to variations in failure and repair rates. The 
Particle Swarm Optimization Technique, which is based on an algorithm discussed, has been used to optimize 
the results. Based upon the observation and criticality of failure, the subsystems of the coal handling system 
were given maintenance order priority. A decision support provided at last which will the maintenance 
personnel™s to take better and informed decision while forming the maintenance policies. It has been observed 
that the Crusher and Tippler are crucial components that demand the full attention of plant manager. 

BAYESIAN AND NON-BAYESIAN INFERENCE OF EXPONENTIATED 
MOMENT EXPONENTIAL DISTRIBUTION WITH PROGRESSIVE 
CENSORED SAMPLES ...................................................................................................... 264 

Amal S. Hassan, Samah A. Atia, Hiba Z. Muhammed 

In this paper, a progressive type-II censoring strategy is used to estimate the parameters, reliability and hazard 
rate functions of the exponentiated moment exponential distribution. The maximum likelihood and Bayesian 
techniques have been used to estimate the proposed estimators. Gamma (informative) and uniform (non-
informative) priors are taken into account under the squared error loss function to produce the Bayesian 
estimators. The highest posterior density interval estimations and the 95% approximate confidence intervals 
along with coverage probability are calculated. In order to evaluate the effectiveness of estimates produced by 
the Metropolis-Hastings sampling algorithms, we provide a numerical research. According to the study's 
findings, the Bayes estimates under informative priors are typically more accurate than other estimates. 
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RATIO TRANSFORMATION LOMAX DISTRIBUTION 
WITH APPLICATIONS ..................................................................................................... 282 

Shamshad UR Rasool, S.P. Ahmad  

It has been noted in the literature on probability theory that the classical probability distributions do not 
adequately fit real-world data and do not exhibit non-monotonic hazard rate behavior. To overcome this 
limitation, researchers are focusing on the improvement of these distributions. In this manuscript, we have 
introduced a new probability model called Ratio Transformation Lomax Distribution (RTLD) as a new 
generalization of Lomax distribution. A thorough mathematical analysis of the new distribution is provided in 
closed form such as density function, distribution function, the r-th moment, survival function, hazard 
function, moment generating function, generalized entropy and also the order statistics. The new model’s 
parameters are calculated using the method of maximum likelihood estimation. The proposed distribution’s 
performance and adaptability is backed by three sets of real lifetime data as well as simulated data. 

APPLICATIONS AND SOME CHARACTERISTICS 
OF INVERSE POWER CAUCHY DISTRIBUTION ..................................................... 301 

Laxmi Prasad Sapkota, Vijay Kumar 

Based on the power Cauchy distribution, we have purposed a new distribution called inverse power Cauchy 
distribution that offers greater modeling flexibility for lifetime data. Real-world data can be efficiently analyzed 
using the suggested model because it is analytically sound. Its density function can take on a number of 
different shapes, including reversed-J, symmetrical, and right-skewed. Depending on the different values of the 
parameters, it can adapt to different hazard forms, such as an upside-down bathtub, a monotonically increasing 
or decreasing curve, and others. Its moments, quantile, reliability, hazard, order statistics with density 
function, moment generating function, and entropy are all given with various explicit forms. The observed 
information matrix is created when the new model’s parameters are calculated through maximum likelihood 
technique. A simulation study is conducted to investigate the behaviour of maximum likelihood estimators. The 
proposed model gets a superior fit compared to certain well-known distributions, according to the test of 
goodness-of-fit we conducted. The significance of the purposed distribution is demonstrated empirically using 
two real-world data sets. 

PERFORMANCE AND BEHAVIOR ANALYSIS OF 
WATER CIRCULATION SYSTEM OF A THERMAL 
POWER PLANT ................................................................................................................... 316 

Seema Sharma, Sushma 

This paper analyses the performance and behavior of water circulation system (WCS) of a thermal power plant 
in fuzzy environment. For this purpose, fuzzy λ–τ technique coupled with petrinet modelling has been used. To 
address the vagueness in data, trapezoidal fuzzy numbers have been employed in fuzzy λ–τ technique. Various 
reliability indicators of WCS viz. failure rate, repair time, expected number of failures, mean time between 
failures, reliability and availability have been computed at ±15%, ±25% and ±40% spreads using fuzzy λ–τ 
technique. Further, fuzzy values of reliability indicators have been defuzzified employing COA method and the 
failure dynamics of WCS have been studied on account of decreasing / increasing trends of reliability 
indicators. The outcomes of this study are of great importance for plant personnel / management to enhance the 
availability of WCS. 
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RELIABILITY ANALYSIS OF PARALLEL SYSTEM USING 
PRIORITY TO PM OVER INSPECTION ....................................................................... 329 

Neetu Dabas, Reetu Rathee, Abhishek Sheoran 

Reliability optimization of a system is an extant problem. By solving these problems, new methodologies are 
obtained that have invent new engineering technology and changes the management perspective. Aim of the 
reliability analysis is to study the failure mechanisms of a system and and outcomes of the analysis serve to 
identify design solutions and maintenance actions for preventing the failures from occurring. So, it is used to 
evaluate and improve the quality of products, processes, and systems. Measurement, planning, and 
improvement in the reliability are the things which are well do in any business but only when efforts are 
focused on important problems which are highlighted by monetary values, improve reliability, reduce 
unreliability costs, generate more profit, and get more business. To serve this purpose, present study 
investigates a parallel system of two identical units which is based on several assumptions like, the system is 
served by one serviceman who is immediately available for service when it will call. System failure rate is fix 
and the failure type (repairable or replaceable) is known by inspection. The failure and repair activities are 
stochastically independent, and their rates are exponentially distributed. Priority to PM over inspection is 
given in the system. Several measures of reliability effectiveness like MTSF, availability and cost-benefit 
analysis of the system are obtained by semi-Markov and regenerative point approach. Reliability characteristics 
parameters are random variables, and results are obtained in the form of graphs and tables by changing the 
values of these variables one by one, while keeping other variables constant at that point. From the results we 
conclude how to make the given system more profitable. Findings of present system model shows that when the 
failure rate is low then the system obtained more profit by increasing preventive maintenance rate. On the other 
hand, when failure rate going high then we make the system more profitable by increasing inspection rate. 
These insights of modelling and analysis helps the system developers and managers to make good choices of 
action against specified criteria that managing engineered products and industrial plants safely and reliably. 
This leads to more profit and making a business more growing. 

SOME USEFUL PATHWAY MODELS FOR RELIABILITY ANALYSIS ................ 340 

T. Princy

In this paper, we first discuss pathway model in general. Then a special case for the real scalar variable is 
considered. This special case is relevant in reliability problems. In the pathway model, an arbitrary function is 
introduced so that the hazard function resulting from this model is of a given shape such as a bathtub type 
hazard function. The model is also derived by using an entropy optimization procedure by introducing a new 
entropy measure. It is shown that a large number of densities in current use are connected to the pathway 
model. Certain combinations of pathway densities resulting in hazard functions of desired shapes, multi-
component failure situation etc are examined from a reliability point of view. For further use of the proposed 
model, the unknown parameters are estimated using the method of maximum likelihood estimation. The 
behaviour of the reliability measure has been observed graphically for arbitrary values of the parameters related 
to the number of components and operating time. 

REPRESENTATION OF CERTAIN LIFETIME MODELS 
VIA SEQUENCES OF SPECIAL NUMBERS ................................................................. 360 

Christian Genest, Nikolai Kolev 

Stimulated by the work of Rz ˛ adkowski et al. (2015, J. Nonlinear Math. Phys., 22 (2015), 374–380), the 
authors derive representations for certain classes of univariate and bivariate lifetime distributions in terms of 
sequences of Bell, Bernoulli, and Stirling numbers of the second kind, their generalizations, and associated 
polynomials. Gould–Hopper polynomials are used in the bivariate case, leading to representations for large 
classes of distributions satisfying a law of uniform seniority for dependent lives formulated by Genest and 
Kolev (Scan. Act. J., 2021-8 (2021), 726–743). 
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POWER GENERALIZED DUS TRANSFORMATION IN 
WEIBULL AND LOMAX DISTRIBUTIONS ................................................................ 368 

Beenu Thomas, V. M. Chacko 

A strong need for an appropriate lifetime model arises in reliability analysis. A large number of lifetime 
distributions are available in the literature. To analyze reliability data, a more suitable lifetime distribution is 
plausible. Power Generalized DUS (PGDUS) transformation of the lifetime model gives a solution to fit the 
data with more precision. PGDUS transformation of the exponential distribution is the first attempt in this 
regard. This new class of distributions can be used for model series systems in which the components are 
distributed as DUS transformations of some lifetime model. This paper introduces two novel classes of 
distributions using PGDUS transformation, which is a generalization of DUS transformation, with Weibull 
and Lomax distributions as the baseline distributions. Some analytical properties like moments, moment 
generating function, characteristic function, cumulant generating function, quantile function, distribution of 
order statistics, and R.nyi entropy are derived. The maximum likelihood estimation procedure is employed to 
estimate the unknown parameters. Moreover, a simulation study has been conducted, and data has been 
analyzed for each of the proposed distributions to demonstrate how well the distributions would perform in a 
real-life situation. In comparison with some other recent new models, the proposed distribution is found to be a 
better model. 

ON AN EXTENSION OF THE TWO-PARAMETER 
LINDLEY DISTRIBUTION ............................................................................................... 385 

Jiju Gillariose, Lishamol Tomy 

AIM: Lindley distribution has been widely studied in statistical literature because it accommodates several 
interesting properties. In lifetime data analysis contexts, Lindley distribution gives a good description over 
exponential distribution. It has been used for analysing copious real data sets, specifically in applications of 
modeling stress-strength reliability. This paper proposes a new generalized two-parameter Lindley distribution 
and provides a comprehensive description of its statistical properties such as order statistics, limiting 
distributions of order statistics, Information theory measures, etc. METHODS: We study shapes of the 
probability density and hazard rate functions, quantiles, moments, moment generating function, order statistic, 
limiting distributions of order statistics, information theory measures, and autoregressive models are among 
the key characteristics and properties discussed. The two-parameter Lindley distribution is then subjected to 
statistical analysis. The paper uses methods of maximum likelihood to estimate the parameters of the proposed 
distribution. The usefulness of the proposed distribution for modeling data is illustrated using a real data set by 
comparison with other generalizations of the exponential and Lindley distributions and is depicted graphically. 
RESULTS/FINDINGS: This paper presents relevant characteristics of the proposed distribution and 
applications. Based on this study, we found that the proposed model can be used quite effectively to analyzing 
lifetime data. CONCLUSIONS: In this article, we proffered a new customized Lindley distribution. The 
proposed distribution enfolds exponential and Lindley distributions as sub-models. Some properties of this 
distribution such as quantile function, moments, moment generating function, distributions of order statistics, 
limiting distributions of order statistics, entropy, and autoregressive time series models are studied. This 
distribution is found to be the most appropriate model to fit the carbon fibers data compared to other models. 
Consequently, we propose the MOTL distribution for sketching inscrutable lifetime data sets. 
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ANALYSING RANDOM CENSORED DATA 
FROM DISCRETE TEISSIER MODEL ........................................................................... 403 

Abhishek Tyagi, Bhupendra Singh, Varun Agiwal, Amit Singh Nayal 

This paper deals with the classical and Bayesian estimation of the discrete Teissier distribution with randomly 
censored data. We have obtained the maximum likelihood point and interval estimator for the unknown 
parameter. Under the squared error loss function, a Bayes estimator is also computed utilizing informative and 
non-informative priors. Furthermore, an algorithm to generate randomly right-censored data from the proposed 
model is presented. The performance of various estimation approaches is compared through comprehensive 
simulation studies. Finally, the applicability of the suggested discrete model has been demonstrated using two 
real datasets. The results show that the suggested discrete distribution fits censored data adequately and can be 
used to analyse randomly right-censored data generated from various domains. 

ON GOMPERTZ EXPONENTIATED INVERSE 
RAYLEIGH DISRIBUTION .............................................................................................. 412 

Sule Omeiza Bashiru, Halid Omobolaji Yusuf 

In this paper, we proposed a four parameter Gompertz Exponentiated Inverse Rayleigh Distribution. The 
proposed distribution is an extention of the Exponentiated Inverse Rayleigh Distribution which was 
compounded with the Gompertz generated family of distribution. Several of its statistical and mathematical 
properties including quantiles, median, moments, skewness and kurtosis are derived. Also, the reliability and 
hazard rate functions are derived. To estimate the new model parameters, the maximum likelihood technique is 
used. To evaluate the effectiveness of the estimators in this model, a simulation study was carried out and the 
result of the simulation study indicated that the model is consistent since the value of the mean square error 
decrease as sample size increases. Finally, the usefulness of the proposed distribution is illustrated with two 
datasets and it is discovered that this model is more adaptable when compared to well-known models.. 

MODELLING OF RELIABILITY INDICATORS BY 
MEANS OF THE INTERFERENCE METHOD ............................................................. 425 

Alena Breznická, Pavol Mikuš 

The article describes the application of the simulation modeling of tasks of the interference theory of reliability 
(SSI - stress - strength interference reliability model) in the MATLAB programming language. It points to the 
possibility of creating your own purpose-built models designed to predict the evolution of the reliability of the 
technical system during the user's interactive activity. Reliability simulation by changing load and resistance 
parameters makes it possible to find acceptable reliability parameters. 
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SELECTION PROCEDURE FOR SKIP LOT SAMPLING 
PLAN OF TYPE SKSP-R BASED ON PERCENTILES OF 
EXPONENTIATED RAYLEIGH DISTRIBUTION ...................................................... 432 

P. Umamaheswari, K. Pradeepa Veerakumari, S. Suganya

In this study, acceptance sampling techniques are effective for reducing the cost and time of the submitted lots. 
In this hectic environment, a high level of product reliability and quality assurance is expected. Use the 
abbreviated life tests in the acceptance sampling plan as a result. To make a choice on the product, sampling 
plans with time-truncated life tests are used. This study uses percentiles under the exponentiated Rayleigh 
distribution to build a skip lot sampling plan of the SkSP-R type for a life test. A truncated life test may be 
carried out to determine the minimum sample size to guarantee a specific percentage life time of products. In 
particular, this paper highlights the construction of the Skip lot Sampling Plan of the type SkSP-R by 
considering the Singe Sampling Plan (SSP) and Double Sampling plan(DSP) as reference plans for life tests 
based on percentiles of Exponentiated Rayleigh Distribution (ERD). Calculations are made for various quality 
levels to determine the minimum sample size, prescribed ratio, and operational characteristic values. The 
proposed sampling plan, which is appropriate for the manufacturing industries for the selection of samples, is 
also analyzed in terms of its parameters and metrics. Illustrations are provided to help you comprehend the 
plan. In addition, it addresses the feasibility of the new strategy. 

APPLICATION OF FUZZY LINEAR PROGRAMMING 
APPROACH FOR SOLVING MIX-PRODUCT SELECTION PROBLEM ............... 440 

Mahesh M. Janolkar, Kirankumar L. Bondar, Pandit U. Chopade 

In this paper, the modified SMF system is used in the real MPS problem. This problem occurs in the production 
planning process where the decision maker plays an important role in making decisions in an uncertain 
environment. As researchers, we are trying to find the best solution for the final decision maker. SMF analyzed 
FLP production equipment using data actually collected from chocolate production companies. The problem of 
MPS incompatibility has been described. The aim of this article is to find the best UOP with high satisfaction 
and nonsense as the main thing. Since there are so many decisions to make, the best UOP table is defined in 
terms of insensitivity and satisfaction to find a solution with a high UOP level and a high level of satisfaction. 
OF indicates that a high UOP will not lead to a high level of satisfaction. The results of this work suggest that 
the best decision is based on the negative impact on the FS of the MPS. In addition, a high level of UOP is 
achieved when the blur is low. 

STOCHASTIC ANALYSIS OF DISCRETE PARAMETRIC 
MARKOV CHAIN SYSTEM MODEL ............................................................................ 454 

Manoj Kumar, Shiv Kumar 

The present paper deals with the behavior of the parallel model system of two non-identical units, warm 
standby models have been developed by in view of all random variables are independent. Initially priority unit 
is working and the non-priority unit is warm standby. Two repairmen are always available with the system to 
carry out the system operation as soon as possible, skilled repairmen carry out phase-1 repair while ordinary 
repairmen carry out a phase-2 repair. The main unit is take two phases for his repair while the repair of the 
ordinary unit is completed in one phase. The statistical measures of the model are analyzed probabilistically by 
applying the regenerative point technique the distribution of failure and repair time of the system taken as a 
geometric distribution with different parameters. 
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PHASE TYPE QUEUEING MODEL OF SERVER VACATION,  
REPAIR AND DEGRADING SERVICE WITH BREAKDOWN, 
STARTING FAILURE AND CLOSE-DOWN ................................................................ 464 

G. Ayyappan, S. Meena

We consider a single server phase type queueing model with server vacation, repair, breakdown, degrading 
service, starting failure and closedown. When the arrival rate of the customer follows the Markovian Arrival 
Process (MAP) and the service rate of the server follows the phase-type distribution. If no one is in the system 
when the server is back from the vacation, then the server will wait until the customer arrives. If the customer 
arrives at the moment with no starting failure, then he provides service, otherwise the server immediately goes 
to the repair process. Here, the service rate declining until degradation fixed. After completion of K services the 
degradation is addressed. During the period of service, the server may get a breakdown at any moment, and 
then the server immediately goes for a repair process. After completing the service, he switches to the close-
down process, and then he goes on vacation. Using the Matrix-Analytic method, The stationary probability 
vector representing the total number of customers in the system is examined. The analysis of the busy period, 
the mean waiting time, and cost analysis are discussed. A few significant performance measures are attained. 
Finally, some numerical examples are given. 

COMPARISON OF MAXIMUM LIKELIHOOD ESTIMATION 
AND BAYESIAN ESTIMATION ON EXPONENTIATED 
POWER LOMAX DISTRIBUTION ................................................................................. 484 

S. Amirtha Rani Jagulin, A. Venmani

The aim of the paper is to apply the Bayesian estimation under squared error loss function to the Exponentiated 
Power Lomax (EPOLO) distribution to estimate the parameters and then compare with maximum likelihood 
estimation. The reliability of the distribution is analyzed by computing survival and hazard function for the 
exponentiated power lomax distribution. The mean square error will help to compare the different estimates like 
Bayesian and maximum likelihood estimation to decide the best one. Bayesian estimation and the maximum 
likelihood estimation are discussed for the distribution. A simulation study is done using the R programming 
software to generate random values and estimate the parameters for different n = 15, 30, 50, 100 and parameter 
values taken as 0.5 and 1.5. At n=100 and c= 0.5 the mean square error of bayes and mle are same and survival 
and hazard function mean square error are decreases when the sample size increases, this indicates the 
distribution is fitted good in all areas. 

HUNTSBERGER TYPE SHRINKAGE ENTROPY 
ESTIMATOR FOR VARIANCE OF NORMAL 
DISTRIBUTION UNDER LINEX LOSS FUNCTION ................................................. 491 

Priyanka Sahni, Rajeev Kumar 

The aim of the paper is to develop a better estimator for the entropy function of variance of the normal 
distribution. The present paper proposes a Huntsberger type shrinkage estimator of the entropy function for the 
variance of normal distribution. This Huntsberger type shrinkage entropy estimator is based on test statistic, 
which eliminates arbitrariness of choice of shrinkage factor. For the proposed estimator risk expressions under 
LINEX loss function have been calculated. Numerical computations and graphical analysis is carried out for 
risk and relative risks for the proposed estimators. It is also compared with the existing best estimator for 
distinct degrees of asymmetry and different levels of significance. Based on the criteria of relative risk, it is 
found that the proposed Huntsberger type shrinkage estimator is better than the existing estimator for the 
entropy function of variance of normal distribution for smaller values of level of significance and degrees of 
freedom. 
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THE INVERSE BURR LOG-LOGISTIC DISTRIBUTION: 
PROPERTIES, APPLICATIONS AND DIFFERENT  
METHODS OF ESTIMATION ......................................................................................... 500 

Festus C. Opone, Kadir Karakaya, Francis E.U. Osagiede 

Lifetime distributions have played a significant role in lifetime data analysis. Despite the numerous 
distributions in literature, there have been several motivations for developing new ones. In this paper, a new 
lifetime distribution is proposed. Some important functions of the new distribution, such as probability density, 
cumulative distribution, survival, hazard, and quantile are derived in closed form. Some distributional 
properties such as moments, moment generating function, linear representation, probability weighted 
moments, etc. are obtained. Some estimators such as the least square estimator (LSE), the weighted least square 
estimator (WLSE), the Anderson-Darling estimator (ADE) and the Cramer-von Mises estimator (CvME) are 
investigated for three unknown parameters. The efficiency of the estimators is checked via Monte Carlo 
simulation based on the bias and mean square error criteria. The usability of the new distribution is 
investigated with two real data sets and empirical results obtained reveal that the new distribution offers a 
promising fit for the data sets under study. 

ON STRESS STRENGTH RELIABILITY ESTIMATION 
OF EXPONENTIAL INTERVENED POISSON DISTRIBUTION ............................ 516 

K. Jayakumar, C. J. Rehana

Aim. Inferences on stress strength reliability has many applications in reliability theory. In this paper, we made 
a comparative study of Simple random sampling, Ranked set sampling and Percentile ranked set sampling by 
considering the estimation of stress strength reliability when the stress and strength are independently 
following Exponential Intervened Poisson distribution. Methods. We used the method of Maximum likelihood 
estimation for finding the estimate of stress strength reliability. The efficiency of the proposed estimators of 
stress strength reliability using three sampling schemes are compared via a Monte Carlo simulation study. 
Also at the end of the study a real life data set is analyzed to understand the usefulness of the study. Results. 
The findings in this study are the stress strength reliability estimates under Percentile ranked set sampling 
performs better than the corresponding ones under Simple random sampling and Ranked set sampling. 
Conclusion. So we can conclude that making refinements in Ranked set sampling increases the efficiency of 
estimators by minimizing the chance of incorrect ranking. 

A DISCRETE PARAMETRIC MARKOV-CHAIN SYSTEM MODEL 
OF A TWO-UNIT STANDBY SYSTEM WITH TWO TYPES OF REPAIR ............. 527 

Laxmi Raghuvanshi, Rakesh Gupta, Pradeep Chaudhary 

The aim of the present paper is to deal with the cost-benefit analysis of a two identical unit cold standby system 
model. There are two modes of a unit say Normal(N) and Total failure(F). When a unit operates then any of the 
two types of failure minor or major may occur some fixed known probabilities. Two repairmen are always 
available with the system to repair a unit failed with minor or major fault respectively. Upon failure of an 
operative unit the cold standby unit starts operations instantaneously with a perfect switching device. After 
minor and major repair of a failed unit it becomes as good as new. The distributions of failure times of minor 
and major faults and each type of repair time are assumed to follow geometric distributions with different 
parameters. Using regenerative point technique with the basic tools of probabilistic argument and Laplace 
Transform various important measures of system effectiveness useful to system designers and operations 
managers have been obtained.  
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TRANSMUTED EXPONENTIATED KUMARASWAMY DISTRIBUTION .......... 539 

Jeena Joseph, Meera Ravindran 

In this paper, a generalization of the Exponentiated Kumaraswamy distribution referred to as the Transmuted 
Exponentiated Kumaraswamy distribution is proposed. The new transmuted distribution is developed using 
the quadratic rank transmutation map. The mathematical properties of the new distribution is provided. 
Explicit expressions are derived for the moments, incomplete moments, moment generating function, quantile 
function, entropy, mean deviation and order statistics. Survival analysis is also performed. The distribution 
parameters are estimated using the method of maximum likelihood. Simulation of random variables is 
performed in order to investigate the performance of the estimates. An analysis using real life data is conducted 
to demonstrate the usefulness of the proposed distribution. 

A NONPARAMETRIC CONTROL CHART FOR JOINT 
MONITORING OF LOCATION AND SCALE ............................................................ 553 

Vijaykumar Ghadage,Vikas Ghute 

Traditional control charts are based on the assumption that the process observations are normally distributed. 
However, in many applications, there is insufficient information to justify this assumption. Thus, 
nonparametric control charts have been designed in literature to monitor location parameter and scale 
parameter of a process. In this paper, a single nonparametric control chart based on modified Lepage test is 
proposed for simultaneously monitoring of location and scale parameters of any continuous process 
distribution. The charting statistic combines two nonparametric test statistics namely Baumgartner test for 
location and Ansari-Bradely test for scale. The performance of the proposed chart is examined through 
simulation studies in terms of the mean, the standard deviation, the median and some percentiles of the run 
length distribution. The average run length (ARL) performance of the proposed chart is compared with that of 
the existing nonparametric Shewhart-Cucconi (SC) and Shewhart-Lepage (SL) charts for joint monitoring of 
location and scale. 

MAINTENANCE POLICY COSTS CONSIDERING IMPERFECT REPAIRS ....... 564 

Allan Jonathan da Silva 

Objective: This paper extends the analysis of imperfect preventive maintenance interspaced with minimal 
repairs. The aim is to find the intervals of future scheduled maintenance actions considering different recovery 
factors and costs. Methods: The optimal preventive maintenance scheduling are obtained by minimizing the 
overall maintenance costs. Minimal repairs interspersed with scheduled imperfect preventive maintenance 
actions are considered. The model parameters of the power law process are estimated using the maximum 
likelihood estimation method and a Differential Evolution algorithm is used to solve the maximization problem. 
Results: The optimal preventive maintenance periods for different levels of maintenance restoration with 
respect to corrective and preventive maintenance costs are found. Graphs are drawn to highlight the effect of 
future maintenance costs and the hazard function paths. It is shown that the preventive maintenance becomes 
more frequent as the equipment ages and the hazard function increases. Also, it is perceived that the scheduled 
maintenance intervals become shorter as the corrective maintenance becomes more expensive. Conclusion: A 
hazard rate model which considers minimal repairs interspersed with scheduled imperfect preventive 
maintenance provides a useful tool for defining the optimal maintenance policy. The results obtained in this 
paper show that maintenance cost varies widely according to the recovery factor of the maintenance action and 
that the optimal interval of two consecutive preventive maintenance actions strongly depends on the costs. 
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CHARACTERIZATIONS, METHODS OF ESTIMATION AND 
APPLICATIONS .................................................................................................................. 575 

A. Mohammed Shabeer, Bindu Krishnan, K. Jayakumar

Lindley distribution is a lifetime model with application in survival analysis and reliability theory problems 
often centred around its increasing hazard rate function and flexibility over exponential distribution. In this 
paper, we introduce a new generalization of the Lindley distribution referred to as Lindley Truncated Negative 
binomial (LTNB) distribution. The LTNB model has increasing, decreasing and upside-down bathtub(UBT) 
shapes for the hazard rate function. Various properties of the LTNB distribution are studied including 
moments, quantiles, and stochastic ordering. Characterizations of the new distribution are obtained. Maximum 
likelihood, Cramer-von-Mises, ordinary and weighted least squares methods of estimation are utilized to obtain 
the estimators of the model parameters. A simulation study is carried out to assess and compare the 
performance of different estimates. An autoregressive time series model with the LTNB as marginal is 
developed. The model is fitted to bladder cancer data set to show how the proposed model works in practice. 

RECOVERY PERIOD OF AIR TRANSPORTATION: A FORECAST WITH 
VECTOR ERROR CORRECTION MODEL ................................................................... 589 

Tüzün Tolga İnan 

Air transport is the primary module of civil aviation and because of its nature, air transport has been 
simultaneously affected by Pandemics and crises. The influence of COVID-19 was more devastating than the 
other Pandemics and crises due to its global effect. This effect has continued a long period that still this effect 
exists now with a slight trend. The aim of this study is to analyse the selected variables that shows the past and 
future trend of air transportation related to operational and financial status. These variables are the primary 
ones that can define the countries' general status in air transport. The forecasting results are examined by 9-
months forecasting with Vector Error Correction Model. It is forecasted that slightly decreasing trend will 
proceed in the following 9-months for passenger transportation due to fall and winter seasons. It is forecasted 
that slightly upward trend will proceed in the following 3-months and slightly decreased in the other 6-months 
for cargo transportation due to potential economic crisis in 2023. The originality of this paper is the first 
research related to analyse passenger and freight transportation together with the operational and financial 
parameters that defined in the sample of data and methodology sections. 
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RELIABILITY MODELING OF TWO-UNIT GAS 
TURBINE SYSTEM CONSIDERING THE EFFECT OF HUMIDITY ...................... 607 

Pinki, Dalip Singh 

Aim. The purpose of this paper is to find the reliability measures and profit of a two-unit gas turbine power 
generating system incorporated with one gas turbine and one steam turbine. Effects of different humidity 
condition (humidity ≤/> 50%) are taken into consideration by fixing the range of temperature (5℃-25℃) for 
developing the model. At initial stage, both units (gas turbine and steam turbine) are in operative mode. If 
steam turbine fails, gas turbine remains in operative mode but if gas turbine fails, system goes to down state 
and when both unit fails, system fails. In this system we assume that failure time distribution is exponentially 
distributed while repair time distribution is arbitrary. Methods. In this paper we use the Laplace transform for 
mathematical analysis, and semimarkov process and regenerative point technique to investigate reliability 
measures and profit of the system. Findings. The system is analysed in steady state and different reliability 
measures such as mean time to system failure, availability for different cycles and for different humidity 
conditions, busy period, down time of the system etc. are calculated and the graphs have been drawn to see the 
effect of different transition rates such as failure rate and repair rate of the units for different humidity 
conditions on reliability measures and the profit for particular case is evaluated using the information/data 
collected from gas turbine power generating system located at Bawana, Delhi, India. Conclusion. Our finding 
shows that mean time to system failure and availability when both turbines are working decreases with increase 
in any one of failure rate while availability when only gas turbine is working increases with increase in steam 
turbine failure rate and profit for plant decreases with increase in failure rates. From this we concluded that 
availability for the fixed range of temperature (5℃-25℃) is higher when humidity is >50% as compared to 
when humidity is ≤50%. Thus, a comprehensive study of gas turbine system may be helpful to those who are 
involved in power generating industry. 
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Abstract 

The article is about Khaim Borisovich Kordonsky (Tula, Russia, 1919 - Boston, USA, 1999) - 
Soviet mathematician, Doctor of Technical Sciences, Professor at the Riga Red Banner Institute 
of Civil Aviation Engineers; specialist in the field of probability and reliability theory, leader of 
the development of the first computer system for making aircraft schedules, Honoured Scientist 
of the Latvian SSR, Laureate of the State Prize of the Latvian SSR. Kordonsky's entire scientific 
and teaching career is connected with RCIIGA. He is one of the founders of reliability theory and 
the author of the first monograph on the application of probability theory to solving real-world 
problems. The book "Applications of Probability Theory in Engineering" was published in 1963 
and was reviewed by Academician Yuri Vladimirovich Linnik, the greatest expert in probability 
theory and mathematical statistics in the USSR. Khaim Borisovich also worked on scientific 
problems in statistics, medicine and technical diagnostics. He conducted joint research with the 
Department of Mathematical Statistics of the Faculty of Informatics and Cybernetics of Moscow 
State University, headed by Academician Yuri Vasilievich Prokhorov, and collaborated with 
Academician A. N. Kolmogorov. 

Keywords: memories, probability theory, reliability theory, mathematics. 

1. Life's journey

Khaim Borisovich Kordonsky was born on March 28, 
1919, in the city of Tula (USSR). In 1941, he graduated from 
the Faculty of Mathematics and Mechanics of Leningrad State 
University as a mechanic. On June 25 the same year he joined 
the militia. After completing accelerated courses at the 
Leningrad Air Force Academy named after Zhukovsky, he 
went to fight in the ranks of the Air Force. He went the way 
from a militia soldier to lieutenant colonel. He was Deputy 
Chief Engineer of the largest 218th Aircraft Repair Plant.  He 
received the following awards: "For Defense of Soviet Polar 
Region", "For the victory over Germany in the Great Patriotic 
War of 1941-1945", "For services in war" and "Order of the Red 
Star". 

From 1947 to 1950, he studied at the Leningrad Air Force 
Academy in the Mathematics Department under academician Yury Linnik, one of the world 
leading experts in mathematical statistics. Friendship bound Yuri Vladimirovich and Khaim 
Borisovich all their lives. Employees of the academician told me. "Usually serious and 
concentrated, Yuri Vladimirovich blossomed when he was expecting Khaim Borisovich's 
arrival from Riga." 
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After finishing his postgraduate studies and defending his doctoral thesis in 1950 he was 

sent to Riga, to Riga Higher Military Aviation School. Here Kordonskiy spent all his working 
life, changing only the name of the university, where for more than 30 years he was the head 
of the department "Aircraft repair and production technologies". The university was 
transformed several times and in 1992 it became Aviation University of Riga.  

The Kordonsky Scientific School of talented and active young people was established in 
the department. His students are now working in various countries - from Canada to Australia, 
most of them in Latvia. They are the corresponding members of the Latvian Academy of 
Sciences N. Salinieks and J. Rudzitis, RTU professors Yu. Paramonov, A. Andronov, Yu. 
Martynov, etc. The total number of doctors and candidates of science trained under 
Kordonsky's supervision exceeded 50.  

Khaim Borisovich treated his students like a father. The following comes to mind. In the 
sixties the buildings of the institute were situated on both sides of a beautiful park. Khaim 
Borisovich's apartment was in the same street, hundreds of metres from the institute. When he 
left the department in the evening, he liked to walk around the green square. He was not alone: 
one of his students was waiting for him, and they walked and talked about their dissertations. 
Often, hiding behind trees, another student would be waiting for his turn. 

In the last years of his stay in Latvia, K. Kordonsky, together with Latvian doctors, led by 
academician J. Anshelevich, was engaged in research on the application of probabilistic-
statistical methods in medicine, especially in cardiac diagnostics. 

The merits of H.B. Kordonsky were highly appreciated: he has the title of Honoured 
Scientist and Technician of the Latvian SSR (1969) and is a laureate of the State Prize of the 
Latvian SSR (1985). 

In 1993, H.B. Kordonsky emigrated to the United States. This was a difficult decision for 
him, and the desire to be reunited with his daughters and grandchildren who already lived 
there permanently prevailed. During his time in the United States, he was twice invited to be a 
visiting professor at Ber-Shev University, where he worked with his beloved student, Ilya 
Boruchovich Herzbach. Chaim Borisovich died in Boston in 1999. 

We are going to talk about two areas of Khaim Borisovich Kordonsky's scientific activity. 
The first is his contribution to the development and implementation of probabilistic-statistical 
methods. The second is his contribution to the application of computer technology in civil 
aviation.  

The Kordonsky Scientific School was created in the department, consisting of talented and 
active young people. His students are now working in various countries - from Canada to 
Australia, most of them in Latvia. They are the corresponding members of the Latvian 
Academy of Sciences N. Salinieks and J. Rudzitis, RTU professors Yu. Paramonov, A. 
Andronov, Yu. Martynov, etc. The total number of doctors and candidates of science trained 
under Kordonsky's supervision exceeds 50. 

Khaim Borisovich treated his students like a father. The following comes to mind. In the 
sixties, the buildings of the institute were situated on either side of a beautiful park. Khaim 
Borisovich's apartment was on the same street, hundreds of metres from the institute. When he 
left the department in the evening, he liked to walk around the green square. He was not alone: 
one of his students was waiting for him, and they walked and talked about their dissertations. 
Often, hiding behind trees, another student would be waiting for his turn. 

In the last years of his stay in Latvia, K. Kordonsky, together with Latvian doctors, led by 
academician J. Anshelevich, was engaged in research on the application of probabilistic-
statistical methods in medicine, especially in cardiac diagnostics. 

The merits of H.B. Kordonsky were highly appreciated: he has the title of Honoured 
Scientist and Technician of the Latvian SSR (1969) and is a laureate of the State Prize of the 
Latvian SSR (1985). 
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In 1993, H.B. Kordonsky emigrated to the United States. This was a difficult decision for 

him, and the desire to be reunited with his daughters and grandchildren who already lived 
there permanently prevailed. During his time in the United States, he was twice invited to be a 
visiting professor at Ber-Shev University, where he worked with his beloved student, Ilya 
Boruchovich Herzbach. Chaim Borisovich died in Boston in 1999. 

We are going to talk about two areas of Khaim Borisovich Kordonsky's scientific activity. 
The first is his contribution to the development and implementation of probabilistic-statistical 
methods. The second is his contribution to the application of computer technology in civil 
aviation. 

2. Probabilistic-Statistical Legacy 
 

The first studies were devoted to the problems of statistical (sampling) control of product 
quality. At that time it was the main direction of application of mathematical statistics, and the 
leading place belonged to Leningrad mathematicians, because the fundamental article by A.N. 
Kolmogorov "Statistical acceptance control" with admissible number of defective products 
equal to zero (1951) was published in Leningrad, in the collection of the Leningrad House of 
Scientific and Technical Propaganda. 

  
Related works: 
  
1953  Kordonsky H.B. Statistical acceptance control on flow and conveyor lines. Vestnik 

Mashinostroenia, 7. 
1955  Kordonsky H.B. Application of Markov chain theory to batch control. Vestnik of 

Leningrad University, 11. 
1956  Kordonsky H.B. The simplest form of product control. Standardization, 5. 
1958  Kutai A.K. and Kordonsky H.B. Analysis of accuracy and quality control in 

mechanical engineering, chapters 3, 4.  Mashgiz, M-L. 
1959  Kordonsky H.B. Probable product quality. Standardization, 10. 
1961  Kordonsky H.B. The distribution of the number of defective units in lots of 

products. Probability theory and its applications, 3. 
  
And today, references to these first works by Khaim Borisovich Kordonsky are frequent. 

Thus, in the proceedings of "The International Symposium on Stochastic Models in Reliability, 
Safety and Logistics", held from 15 to 17 February this year in Israel, in the article Sh. Formanov 
and T.A. Formanova "Optimal plans of statistical acceptance control taking into account 
Sheppard corrections" we read: "We consider the problem of optimal plans of statistical 
acceptance control (SAC) studied by Kh. Kordonsky, S.Kh. Sirajdinov, Van der Varden, K. 
Stang". 

In 1950-1955, under the leadership of Khaim Borisovich Kordonsky, the introduction of 
statistical methods of quality control was carried out at the VEF Plant, he provided scientific 
advice to the reliability services of the Avtoelektropribor Plant, the Wagon Plant and the Diesel 
Plant. 

In 1963 a book by Khaim Borisovich Kordonsky Applications of Probability Theory in 
Engineering was published by the Publishing House of Physical and Mathematical Literature 
(Moscow, Leningrad). It was the first book in Russian on probability theory and mathematical 
statistics aimed at engineers, enabling them to master probability and statistical methods and 
apply them to their work. 

 A characteristic of Khaim Borisovich Kordonsky was a rare combination of knowledge 
of the mechanism of the physical processes under consideration and mathematics capable of 
describing them adequately. As a result, his books and articles (as well as his lectures) were 
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characterised by a striking simplicity and lucidity in the presentation of material that was quite 
complicated in content. For example, in his later book Models of Failure, he writes 

The log-normal distribution describes the life behaviour of objects that have the property 
of "hardening" over time. "Hardening is manifested by a gradual decrease in the rate of wear. 
Therefore, before using the log-normal distribution to describe experimental data, it is 
necessary to determine, on the basis of the physical nature of the wear process and, if possible, 
by analysing the behaviour of wear realisations, whether the objects studied have the property 
of "hardening".  

The Riga Aviation Institute, where Khaim Borisovich Kordonsky worked, trained 
engineers in aircraft operation, not aircraft manufacture. Heim Borisovich Kordonsky 
immediately saw a huge field for the application of probabilistic-statistical methods in 
conditions of the highest requirements for the reliability of aviation technology and flight 
safety. These requirements were ensured by a system of measures such as the use of lead 
aircraft (which had more flight hours than the entire fleet), inspections (to check the technical 
condition of the aircraft's power elements), maintenance and repair of aircraft. Many scientific 
problems arise: how many lead planes are needed and what should be the lead time (so that it 
is possible, with a certain degree of confidence, to assess the entire fleet in the conditions of its 
further operation), when to carry out inspections and how to predict the rate of development 
of the cracks detected, what are the terms and volumes of maintenance and repair work, etc.? 
 

 
 

Khaim Borisovich Kordonsky soon became the undisputed authority in civil aviation on 
these issues. He carried out important research and made recommendations at the request of 
the Ministry of Civil Aviation, GosNII GA, operating and repair companies. At the same time, 
a large scientific team of talented and active young people was created in the department. His 
favourite student Ilya Gertsbach deserves special mention. In 1964 he brilliantly defended his 
doctoral thesis. His scientific supervisor was Khaim Borisovich, and his official opponent was 
Academician Boris Vladimirovich Gnedenko. The defence took place in the auditorium of the 
Academy of Sciences of the Latvian SSR and was a remarkable event in the scientific life of the 
Latvian capital. 
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Heim Borisovich Kordonski solved practical problems on a strictly mathematical level. 

As a result, the models, methods and algorithms he developed were universal and practically 
applicable to many technical systems (not only aviation and transport). 

 
This fact is reflected in subsequent high-level scientific publications: 
  
1964  Kordonsky H.B. Calculations and tests of fatigue durability. Proceedings of the 

4th All-Union Mathematical Congress, Nauka, Moscow. 
1966  Gertsbakh I.B., Kordonsky H.B. Failure Models. Soviet Radio, Moscow. 
1969  Gertsbakh I. and Kordonsky Kh. Models of Failures. Springer, Berlin - Heidelberg 

- New York} 
1967  Kordonsky Kh.B. Probabilistic analysis of stitching processes. Nauka, Moscow.   
1969 Gertsbakh I.B. Models of Prevention. Soviet Radio, Moscow. 
2000  Gertsbakh I.B. Reliability Theory with Applications to Preventive Maintenance, 

Springer, Berlin - Heidelberg - New York. 
  
Let us dwell on two statistical problems posed by the needs of practice. 
 The first concerned methods of statistical processing of data on aircraft failures. In the 

literature on mathematical statistics and in data processing manuals, we have always 
considered the so-called case of complete sampling, where the estimation of the distribution of 
a random variable and its parameters is carried out on the basis of the exact values of the 
random variable recorded. In practice, this would mean that each product or performance 
element of a design would be operated to failure. In reality (to ensure reliability and safety), 
the operating time is limited by specified resources, premature shutdown (even of serviceable 
objects), etc. Khaim Borisovich Kordonsky introduced this class of problems into mathematical 
statistics and proposed the method of partitioning partitions for their solution, using the 
method of maximum likelihood. 

 
Related publications: 
  
1966  Gertsbakh I.B., Kordonsky H.B. Failure Models. Soviet Radio, Moscow. 
1970  Artamanovsky A.V., Kordonsky H.B. Maximum likelihood estimation in simple 

data grouping. Probability Theory and its Applications, 1.   
1985  Kordonski H.B., Rastrigin V.L. Random censoring on trajectories in phase space. 

Izv. of the Academy of Sciences of the USSR, Technical Cybernetics, 6. 
1986  Kordonski Kh.B., Rastrigin V.L., Shulkin Z.A. Estimation of reliability indices 

under the action of several causes. Izv. of the Academy of Sciences of the USSR, 
Technical Cybernetics, 6. 

  
Later, this problem developed into a whole branch of mathematical statistics called 

censored sampling. It is now one of the most important applied branches of mathematical 
statistics, with hundreds of famous mathematicians working on it, and there is a great deal of 
monograph and journal literature. 

The second problem was the theory of unbiased estimation. At that time, when 
probability methods were just beginning to be widely used in practice, the models used were 
very simple. They usually involved one or more uniformly distributed random variables. 

  Therefore, the main effort of mathematicians was to develop methods to obtain the best 
estimates of the parameters of the main distributions of the random variables. The best 
estimates were understood as unbiased estimates with minimum variance. Much progress has 
been made and such estimates (when they exist) have been found (also for the cases of censored 
samples). 
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As experience grew, more complex situations were considered, where the subject of 

statistical analysis was large systems whose models included many random variables. The task 
was to estimate the performance of the system as a whole on the basis of statistical data relating 
to individual elements. This was done "the old-fashioned way": for each random variable 
(system element) we found the best estimate and substituted it for the corresponding unknown 
parameter of the probability model of the system. (In modern literature, this method is called 
the plug-in method). 

This ignores the fact that (in the case of small samples) good properties of individual 
estimates are lost. This is natural, because in selecting these estimates we were not trying to 
optimise the system as a whole, but its individual elements. In order to get the best estimates 
for the system as a whole, it is necessary to keep it in mind at once, and not to consider separate 
problems of estimating individual parameters in isolation. 

In mathematical statistics, fundamental results had already been obtained by S.R. Rao, 
A.N. Kolmogorov and D. Blackwell, but their practical use for the above purpose was out of 
the question. Under the leadership of Khaim Borisovich Kordonsky, the theory of unbiased 
estimation was applied for the first time in our country (and perhaps in the world) to the 
estimation of the performance of complex systems.  

I remember a conversation we had after Khaim Borisovich Kordonsky returned from 
Moscow, a little excited after a business trip and full of energy: Sasha, how are you going to 
estimate, for example, the average waiting time in a unilinear mass service system with Poisson 
input flow and exponential service time? 

Here are the most important publications on unbiased estimation: 
  
1972  Andronov A.M., Kordonsky H.B., Rosenblit P.Y. Application of unbiased 

estimation theory to mass service problems. Izv. AS USSR Technical Cybernetics. 
1976  Kordonsky H.B., Rosenblit P.Y. On unbiased estimation of polynomials from 

moments. Probability theory and its applications, 1. 
1979  Rosenblit P.J. Statistical estimation of reliability and efficiency characteristics of 

complex systems. Zinatne, Riga. 
1982  Larin M.M. Unbiased estimates of variance and some other characteristics of the 

inverse normal distribution. Izv. AS USSR, Technical Cybernetics. 
1989  Voinov V.G., Nikulin M.S. Unbiased estimates and their applications. Nauka, 

Moscow. 
  
In downloading the history of Khaim Borisovich Kordonsky as a scientist and educator 

in probability theory and especially in mathematical statistics, here is a quotation from S. 
Radhakrishn Rao from the preface to his book Linear statistical methods and their applications, 
Nauka, Moscow, 1968 (Linear statistical inference and its applications, John Wiley & Sons, New 
York, 1966): I wish to express my gratitude to Ronald A. Fisher and Professor Mahalanobis, 
under whose influence I have come to appreciate mathematical statistics as the new method of 
our century. 
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In the same words, we express our gratitude to Khaim Borisovich Kordonsky. 
 

3. Computer scheduling of civil aviation aircraft 
 
In 1963, the GA Scientific and Computer Centre was established on the basis of the Riga 

Flight Automation Laboratory, which was part of the RCII GA. After two years of confusion, 
Associate Professor Lev Fedorovich Krasnikov was appointed its director in 1965. He invited 
Khaim Borisovich Kordonsky to form the main scientific directions of the NVC. In 1971, the 
SAA NVC was transformed into the Central Research Institute of Automated Control Systems, 
headed by Gennady Tikhonovich Kalchenko. 

 For almost 35 years, Professor K.B. Kordonsky was the scientific director of the work of 
NVTS GA and the Central Research Institute of ACS GA on computer planning of civil aviation 
aircraft - the largest airline in the world at that time. 

  
Some of the works of this period of great importance:  
1969  Kordonsky H.B., Gerzbach I.B., V. Venyavtsev, Maxim M., Linis V. A heuristic 

method for aircraft scheduling. In Collection of Automation in Mechanical 
Engineering, USSR Academy of Sciences, Moscow. 

1969  Kordonsky H.B., Linis V. et al. Algorithms for scheduling passenger airplanes. In 
Proceedings of the 4th Congress on Automatic Control, Warsaw. 

1970  Kordonski H.B., Venyavtsev V., et al. Central aircraft scheduling as part of air 
traffic control. In Proceedings of the 1st International Symposium on Traffic 
Control, Versailles. 

1999  Kordonsky Kh.B., Gertsbakh I.B.. Using Entropy Criterion for Job-Shop 
Scheduling Algorithm. 

  
Of course, the main result was not the publications, but the central flight plan that civil 

aviation flew.  It was the world's first computerised timetable. Given the state of computer 
technology at the time, one wonders how this was possible: bicast computers that ran 
continuously for more than 24 hours to compile a piece of the timetable; punched tapes with 
the compiled timetable; linotype machines that printed a hard copy of the timetable. It was 
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made possible by the talents of Khaim Borisovich Kordonsky and the dedication of the young 
team who believed in him: Valery Venyavtsev, Ilya Gertsbakh, Misha Maxim, Yuri Paramonov 
and many others. 

  
Ilya Gertsbakh wrote in the introductory article of the Proceedings of the 1999 Aviation 

Reliability-99 conference dedicated to the 80th birthday of Khaim Kordonsky: 
  
Together with Yu. Paramonov, V. Venyavcev, M. Maksim and V. Linis, I worked on this 

project for seven years, which were probably the most productive and interesting years of my 
life. Now I realise that we were all extremely lucky to work under the leadership of such a 
brilliant scientist and outstanding personality as Khaim Borisovich. 

The planning project was a very difficult and complex task. Nobody in the Ministry's top 
management had the slightest idea of how to approach it or what was meant by the term 
"computerised scheduling". In addition, the computers at that time were extremely primitive. 
The "Ural-4", which took up an entire floor of an old church, had less power than a modern 
pocket calculator. Even with modern computer power, it takes a man of exceptional intellectual 
courage to take on the challenge of leading such a project. 

From Prof. Kordonsky we learnt important things for our whole life. The first lesson was: 
before you start doing the computerised schedule, you should be able to do it manually. This 
was wise advice, because it was only after a year of intensive contact with practitioners that we 
began to understand what scheduling was about, what was essential and what was secondary. 

Prof Kordonsky was never a "boss" who gave orders and instructions. He created a 
stimulating atmosphere of intense exchange and discussion, sometimes heated, but always 
efficient. He was open to every suggestion and critical comment. Despite this enormous 
scientific authority, no one was afraid to ask questions or to insist on their opinion. I am 
convinced that the truly democratic nature of our group was a key factor in the success of the 
project.  

 
4. American Period 

 
The most recent works of Chaim Borisovich Kordonsky are devoted to the theory of 

calculating the time of degradation of systems whose operating time is measured in different 
scales (calendar time, number of cycles, hours of operation in different modes, etc.).  

 
Most of these works have been published in leading foreign scientific journals: 
  
1993  Kh.Kordonsky and I.Gertsbakh. Choice of the Best Time Scale for Reliability 

Analysis. Europ. J.Operat. Res., 65. 
1994  Kh.Kordonsky and I.Gertsbakh. Best Time Scale for Age Replacement. Inter. J. of 

Reliab., Quality and Safety Engineering, 1. 
1995  Kh.Kordonsky and I.Gertsbakh. System State Monitoring and Lifetime Scales. I, 

II. Reliab. Engineering and System Safety, 47, 49. 
1997  Kh.Kordonsky and I.Gertsbakh. Multiple Time Scales and the Lifetime Coefficient 

of Variation: Engineering Applications. Lifetime Data Analysis, 3.       
1997  Kh.Kordonsky and I.Gertsbakh. Fatigue Crack Monitoring on Parallel Time 

Scales. Proceedings of ESREL 97, Lisbon, June 17-20, 1997, 2. 
1997  Kh.Kordonsky and I.Gertsbakh. Optimal Preventive Maintenance in 

Heterogeneous Environments. Europ. J.Operat. Res., 98. 
1998  Kh.Kordonsky and I.Gertsbakh. Parallel Time Scales and Two-Dimensional 

Manufacturer and Individual Customer Warranties. IIE Transactions, 30.   
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The bright image of Chaim Borisovich Kordonsky will always remain in the memory of 

his grateful students and followers. 
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Abstract

In the subject of reliability engineering and statistics, a new reliability model is proposed, where survival
analysis or life time data analysis is of major importance in the current scenario. The goal of this study
is to introduce a new model that has applications to real data sets from the field of survival analysis.
Deriving out the new model there are various methods to propose a new model, one of them is by using
the method of transforming a variable to the variable of interest and there are numerous transformation
methods which are in use right now. The newly proposed model is achieved by using the transformation
method known as KM Transformation where it does not require any additional parameters to the baseline
distribution which absolutely is an advantage. The model considered in this paper as baseline model is
Inverse Weibull distribution with two parameters, one is a scale and other is a shape parameter. Inverse
Weibull distribution is a continuous probability distribution which presently has great applications in
real life phenomenon as well as so many modifications and advanced studies are introduced in this
distribution from various fields. A proper study on the newly proposed model is done by deriving out its
various functions and statistical properties such as Probability density function, Cumulative distribution
function, Hazard rate function, Moments, Moment generating function, Characteristic function, Quantile
function, Order statistics, etc. along with its Probability density function plot and Hazard rate function
plot which have both upside-down and decreasing curves. Focusing on the inference procedures, the
estimation of the parameters involved in this model is done by using the method of Maximum likelihood
estimation. A simulation study for valuing the parameter consistency using two parameter combinations
is carried out as well as a data analysis on an actual data set is also conducted. A comparison of the
newly proposed model with other popular well-known models such as Inverse Weibull distribution (IW),
KME distribution and KMW distribution using R programming language yielded that the new model is
a better fit for the real data considered in this paper. The results and conclusions achieved throughout the
paper are also mentioned at the last.

Keywords: KM Transformation, Inverse Weibull distribution, upside-down curve, decreasing
curve

1. Introduction

In the current scenario of model building and real life data analysis there are so many lifetime
distributions that are in use for which [14] and [15] explains the basic ideas and concepts.
Among these well-known distributions, Weibull distribution and its various modified Weibull
distributions plays a great role in fitting real data sets. Inverse Weibull (IW) distribution has great
applications in reliability engineering, where [3] and [4] studies the various inference procedures
in the distribution of consideration. A theoretical analysis of IW distribution is done by [12]
and order statistics with inference is done by [16]. [5] studies the generalized modified weibull
distribution along with applications to two real data sets and [2] applied the IW distribution to
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model the wind speed data. Extended studies are done in this distribution where [13] studies
the Bayesian inference and prediction of the IW distribution for type-II censored data and [10]
produced a new model, generalized IW distribution.

Deriving out a new model with a baseline distribution using a transformation is common in
practice but finding a model that best fits for a real data set than other related models are of great
relavance. There are so many transformations in existance where the transformation named KM
Transformation that studied in [11] is a recent development in the subject in which Exponential
distribution and Weibull distribution are used as baseline models to fit real data sets. In this
paper, we consider two-parameter Inverse Weibull distribution (IW) as baseline distribution to
perform KM Transformation.

This paper is about the KM-IW Model which consists of the introduction to the model
with its probability density function (pdf), cumulative distribution function (cdf) and hazard
function in section 2. The basic properties of a model such as Moments, Moment generating
function, Quantile function and Distribution of order Statistic are studied in Section 3. In section
4, estimation of the model parameters are done by using the method of maximum likelihood
estimation. Section 5 gives the results on the simulation study of the model and section 6 gives the
results on the fitting of KM-IW model to a real data set. And the conclusions achieved throughout
the paper is mentioned in Section 7.

2. KM-IW Distribution

Let X be the random variable of interest. Then using the KM Transformation method the pdf, cdf
and hazard function of X is obtained by the formulae given below respectively.

f (x) =
e

e − 1
g(x) e−G(x)

F(x) =
e

e − 1
[1 − e−G(x)]

and

h(x) =
g(x) e1−G(x)

e1−G(x) − 1
where, g(x) and G(x) are the pdf and cdf of IW distribution which are as given below.

g(x) =
α

β

(
x
β

)−(α+1)
e−

(
x
β

)−α

, x > 0, α, β > 0

and

G(x) = e−
(

x
β

)−α

, x > 0, α, β > 0

Then the following are being the pdf, cdf and hazard function of our new model KM-IW
distribution.

f (x) =
e

e − 1
α

β

(
x
β

)−(α+1)
e−

(
x
β

)−α

e−e
−
(

x
β

)−α

, x > 0, α, β > 0 (1)

F(x) =
e

e − 1

1 − e−e
−
(

x
β

)−α
 , x > 0, α, β > 0 (2)

and

h(x) =
α
β

(
x
β

)−(α+1)
e1−

(
x
β

)−α
−e

−
(

x
β

)−α

e1−e
−
(

x
β

)−α

− 1

, x > 0, α, β > 0 (3)

This newly proposed KM-IW Distribution has the pdf and hazard function plots as given below
which are obtained using the R programming language.

2
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Figure 1: Probability Density Function of KM-IW Distribution

Figure 2: Hazard Rate Function of KM-IW Distribution

As seen in the plots, both pdf and hazard rate function have upside-down and decreasing curves
for different combinations of α and β.

3. Properties of KM-IW Distribution

Here we discuss some statistical properties of the new model. They are Moments of the dis-
tribution, Moment generating function, Characteristic function, Quantile function and Order
Statistic.

3.1. Moments of the Distribution

The rth raw moment about origin of the distribution is obtianed as below.

µ′
r = E (Xr)

=
∫ ∞

0
xr f (x) dx

=
∫ ∞

0
xr e

e − 1
α

β

(
x
β

)−(α+1)
e−

(
x
β

)−α

e−e
−
(

x
β

)−α

dx
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The exponential term is expanded, so we get,

µ′
r =

α βα e
e − 1

∫ ∞

0
xr x−(α+1)e−

(
x
β

)−α ∞

∑
m=0

[
−e−

(
x
β

)−α
]m

m!
dx

On proper substitution and simplification, we get,

µ′
r =

e
e − 1

∞

∑
m=0

(−1)m Γ
(
− r

α + 1
)
(m + 1)

r
α βr

(m + 1)!
(4)

Putting r = 1, we get the 1st raw moment about origin (mean of the distribution) and is given by,

µ′
1 = E (X)

i.e.,

µ′
1 =

e
e − 1

∞

∑
m=0

(−1)m Γ
(
− 1

α + 1
)
(m + 1)

1
α β

(m + 1)!
(5)

3.2. Moment Generating Function

The moment generating function (mgf) of the distribution is obtianed as below.

MX(t) = E
(

etX
)

=
∫ ∞

0
etx f (x) dx

=
∫ ∞

0
etx e

e − 1
α

β

(
x
β

)−(α+1)
e−

(
x
β

)−α

e−e
−
(

x
β

)−α

dx

on expanding the exponential term we get,

MX(t) =
α βα e
e − 1

∫ ∞

0
etx x−(α+1)e−

(
x
β

)−α ∞

∑
m=0

[
−e−

(
x
β

)−α
]m

m!
dx

=
α βα e
e − 1

∞

∑
m=0

(−1)m

m!

∫ ∞

0
x−(α+1)e−(m+1)

(
x
β

)−α ∞

∑
n=0

(tx)n

n!
dx

after simplification, we get,

MX(t) =
e

e − 1

∞

∑
m=0

∞

∑
n=0

(−1)m tn Γ
(
− n

α + 1
)
(m + 1)

n
α βn

(m + 1)!n!
(6)

Differentiating the mgf will yield the moments about origin of the distribution.
Similarly, the characteristic function is obtianed as

ϕX(t) =
e

e − 1

∞

∑
m=0

∞

∑
n=0

(−1)m (it)n Γ
(
− n

α + 1
)
(m + 1)

n
α βn

(m + 1)!n!
(7)

where, i2 = −1

3.3. Quantile Function

For obtaining the pth quantile function (Q(p)) of KM-IW distribution, we solve F(Q(p)) = p,
where 0 < p < 1. And is obtained as,

Q(p) = β

[
− log

[
− log

(
1 − p(e − 1)

e

)]]−1
α

(8)
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3.4. Order statistic

Let the random sample of size n, X1, X2, ..., Xn be from the new distribution. Then X(1), X(2), ..., X(n)

are the order statistics respectively. The pdf and cdf of the rth order statistic fr(x) and Fr(x) are
given by

fr(x) =
n!

(r − 1)!(n − r)!
Fr−1(x) [1 − F(x)]n−r f (x)

and

Fr(x) =
n

∑
j=r

(
n
j

)
Fj(x) [1 − F(x)]n−j

And those of our newly proposed model are,

fr(x) =
n! α βα

(r − 1)!(n − r)!(e − 1)n x−(α+1) e

r−
(

x
β

)−α
−e

−
(

x
β

)−α
1 − e−e

−
(

x
β

)−α
r−1 e1−e

−
(

x
β

)−α

− 1

n−r

(9)

and

Fr(x) =
n

∑
j=r

(
n
j

)
ej

(e − 1)n

1 − e−e
−
(

x
β

)−α
j

e1−e
−
(

x
β

)−α

− 1

n−j

(10)

respectively.

4. Estimation of parameters

This section is about the estimates of the parameters involved in the distribution. Here we are
using the maximum likelihood estimation method.
The likelihood function of KM-IW distribution is found by,

L(x, α, β) =
n

∏
i=1

f (xi, α, β)

i.e., we will have,

L(x) =
(

e
e − 1

)n αn

βn

[
n

∏
i=1

(
xi
β

)−(α+1)
]

e−∑n
i=1

(
xi
β

)−α

e−∑n
i=1 e

−
(

xi
β

)−α

So that the log-likelihood function becomes,

log L = n log e − n log(e − 1) + n log α + nα log β − (α + 1)
n

∑
i=1

log xi

−
n

∑
i=1

(
xi
β

)−α

−
n

∑
i=1

e−
(

xi
β

)−α

(11)

The partial derivatives of log L with respect to the unknown parameters α and β are obtianed.
Equating these non-linear equations to zero gives the MLEs of α and β.

n
α
+ n log β −

n

∑
i=1

log xi +
n

∑
i=1

(
xi
β

)−α

log
(

xi
β

)
−

n

∑
i=1

e−
(

xi
β

)−α ( xi
β

)−α

log
(

xi
β

)
= 0 (12)
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α

β

[
n −

n

∑
i=1

(
xi
β

)−α

+
n

∑
i=1

(
xi
β

)−α

e−
(

xi
β

)−α
]
= 0 (13)

These equations 12 and 13 cannot be solved analytically and by using statistical softwares it can
be possible.

5. Simulation Study

For different combinations of α and β, samples of sizes 25, 50, 100, 500 and 1000 are generated
from the KM-IW model.
We calculate the bias and mean square error (MSE)s of the estimates. Simulation is conducted for
two different combinations of parameter values which are α = 2, β = 0.5 and α = 0.5, β = 1.5. As
the sample size increases, the mse value decreases (see Table 1 and 2). The bias of the estimates
approaches to zero as n increases. And the estimate values approaches to the true parameter
values.

Table 1: Simulation study at α = 2 and β = 0.5

n Estimated value of Parameters Bias MSE
25 α̂ = 2.0849208 0.1165587 0.1566783

β̂ = 0.5670579 0.005577362 0.002953267
50 α̂ = 1.8655174 0.0514391 0.06337958

β̂ = 0.5121194 0.00162314 0.001382758
100 α̂ = 2.000336 0.0207338 0.02929086

β̂ = 0.513538 0.001644057 0.0006789977
500 α̂ = 1.9363471 −0.01219562 0.004949019

β̂ = 0.5115159 0.0007829622 0.0001313705
1000 α̂ = 2.021294 −0.01847309 0.002710569

β̂ = 0.488996 0.0008567411 6.075921 × 10−05

Table 2: Simulation study at α = 0.5 and β = 1.5

n Estimated value of Parameters Bias MSE
25 α̂ = 0.5212292 0.02913895 0.009792336

β̂ = 2.4815462 0.1813135 0.6622222
50 α̂ = 0.4663787 0.01285905 0.003961199

β̂ = 1.6508171 0.07065759 0.2386087
100 α̂ = 0.5000835 0.005182735 0.00183067

β̂ = 1.6691755 0.04467576 0.1099399
500 α̂ = 0.4840861 −0.003049672 0.0003093182

β̂ = 1.6430402 0.01415897 0.01952109
1000 α̂ = 0.5053225 −0.004619055 0.0001694182

β̂ = 1.3722554 0.0124857 0.008962368

6. Real Data Analysis

Here we use KM-IW(α, β) distribution to fit a real data set and compare the results with IW
distribution, KME distribution and KMW distribution. The data-set, considered here, represents
survival times in Days, from a Two-Arm Clinical Trial considered by [8] and [18]. The survival
time in days for the 31 patients from Arm B are:
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Table 3: survival time in days for the 31 patients from Arm B

37 84 92 94 110 112 119 127 130
133 140 146 155 159 173 179 194 195
209 249 281 319 339 432 469 519 633
725 817 1557 1776

The analysis is performed by using R programming language. Table 4 gives the estimates of
the model parameters, AIC (Akaike information criterion) and the BIC (Bayesian information
criterion) values.

AIC = −2l + 2k (14)

BIC = −2l + k log n (15)

where, l denotes the log-likelihood function, k is the number of parameters and n is the sample
size. And Kolmogrov-Simnorov (K-S) test is also performed and the p-value is used for compari-
son.

Table 4: Results of the Data Analysis

Model Estimates AIC BIC KS statistic p-value
KM-IW α̂ = 1.1949 417.3394 420.2074 0.0847 0.9657

β̂ = 190.7256
IW α̂ = 1.3375 417.4484 420.3164 0.0897 0.9452

β̂ = 150.4226
KME λ̂ = 0.0022 426.1304 427.5644 0.2112 0.1085
KMW α̂ = 1.1864 426.3770 429.2450 0.1779 0.2493

β̂ = 464.2267

From the Table 4, we can see that our model KM-IW has better AIC, BIC values, KS statistic value
and p-value than IW, KMW and KME distributions. So we can conclude that the newly proposed
model is a better fit for the data taken than the other models.

7. Conclusions

A new model is introduced by modifying the Inverse Weibull distribution using the KM Transfor-
mation. Its statistical properties are studied along with the estimation of parameters. A simulation
study is carried out for 2 parameter combinations and a data set is fitted by the KM-IW model
which yielded a better AIC, BIC, KS-statistic values and p-value than the models compared in the
study.
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Abstract 

The aim of the present paper is to deal with the analysis of the classical and Bayesian estimation of 

various measures of system effectiveness in a two non-identical unit parallel system. Each unit has 

two possible modes Normal (N) and total failure (F). A single repairman is always available with the 

system and after working for a random period he goes for rest for a random period. After taking 

complete rest he again starts the repair of the failed unit on a pre-emptive repeat basis. The system 

failure occurs when both the units are in (F-mode). The distributions of failure time as well as working 

and rest time of repairman are assumed to be exponential whereas repair time and rest time 

distribution of repairman are taken as general. A simulation study is also conducted for analysing 

the considered system model both in Classical and Bayesian setups. Bayesian estimates of various 

measure of system effectiveness are also obtained by taking different priors. The comparative study is 

made to judge the performance of Maximum likelihood estimation and Bayesian estimation methods. 

A simulation study at the end exhibits the behaviour of such a system. The Monte-Carlo technique is 

employed to draw observations for this simulation study. To obtain various interesting measure of 

system effectiveness technique have used the Regenerative point technique, MCMC technique and 

Gibbs sampler technique. From the graphs and tables we have drawn various important conclusions 

such that a smaller value of failure rate 1 introduces a larger value of Maximum likelihood estimate 

and Bayes estimates for fixed value of the parameter of the repairman rest time distribution  . 

Moreso, when the value of the failure rate 1 increases the mean time to system failure and net 

expected profit are also decreases. To compare the performance of asymptotic confidence interval and 

highest posterior density interval with the maximum likelihood estimates technique, it has been 

observed that width of the highest posterior density interval is less than the width of an asymptotic 

confidence interval. 

Keywords: Transition probabilities, Mean sojourn time, mean time to system 

failure, Pre-emptive repeat repair, Regenerative point, Bayesian estimation, 

highest posterior density intervals, Maximum likelihood estimation, Gibbs 

sampler. 

1. Introduction

In the planning, design, and operation of different stages of complex systems, the evaluation of high 

reliability is an important criterion. A two-component redundant system is frequently used to 
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improve reliability as well as availability with maximum expected revenue. A large number of 

authors have analyzed the two identical and non-identical unit parallel system models in respect of 

their classical estimates of various measures of system effectiveness. Gupta et.al. [6] analyzed a two 

non-identical unit parallel system with two independent repairman-skilled and ordinary. A failed 

unit is first attended to by a skilled repairman to perform first phase repair and then it goes for 

second phase repair by an ordinary repairman. Both types of repair discipline are FCFS. Chaudhary 

et.al. [2] analyzed a two non-identical unit parallel system model assuming that an administrative 

delay occurs in getting the repairman available with the system whenever needed. Chandra et. Al. 

[1] performed the reliability and cost-benefit analysis of the two identical and non-identical unit

parallel system modes by using the Semi-Markov process in the regenerative point technique. A

study of comparison is made between the reliability characteristics for both the system models under

study.

Realistic situations may arise when a repairman can't repair a failed unit continuously for a long 

period due to his tiredness/ fatigue as after some time, the working efficiency of the repairman may 

reduce and he needs to rest for some time. In view of this K. Murari et. al. [9] has analyzed a 2-unit 

parallel system with a single repairman assuming the working as well as rest period of a repairman. 

Gupta et. al. [7] has analyzed a single-server two-unit (priority and ordinary) cold standby system 

with two modes—normal and total failure. The priority unit gets preference both for operation and 

repair. After working for a random amount of time, the operator of the system needs to rest for a 

random amount of time and during the rest period of the operator, the system becomes down but 

not failed. The system failure occurs when both the units are in total failure mode.   

Kishan et. Al. [8] analyzed of reliability characteristics of a two-unit parallel system under 

classical and Bayesian setups. They assumed that the system consists of two non-identical units 

arranged in a parallel configuration. System failure occurs when both the units stop functioning. 

Gupta et.al. [5] Performed the cost-benefit and reliability analysis of a two-unit cold standby system 

assuming that a failed unit enters into the fault detection to identify whether the failed unit needs 

minor or major repair with fixed known probabilities. Keeping the above idea in view, the present 

study deals with the analysis of two non-identical units in a parallel system model assuming that 

the working and rest time of the repairman are uncorrelated random variables. A single repairman 

is always available with the system to repair a failed unit with priority given to one of the units. The 

repairman also goes for rest after some time as he is unable to work continuously for a long time. 

After taking complete rest he again starts the repair of a failed unit assuming that the time already 

spent in the repair of the failed unit goes to waste. For a more concrete study of the system model, a 

simulation study is also carried out: 

The probability density function (PDF) of exponential is given by: 

f(t) = θe−θx;     x ≥ 0 

In addition, it has been seen in practice that lifetime experiments take a long period because the 

ambient circumstances cannot be the same during the trial. As a result, random variables are 

considered for parameters characterizing the system/dependability unit's characteristics. Therefore, 

a simulation study is conducted for analysing the considered system model both in classical and 

Bayesian setups. The Monte Carlo simulation technique has been used in conducting the numerical 

study in a classical setup, the maximum likelihood estimate of the parameters involved in the model 

and reliability characteristics along with their standard errors and width of confidence intervals are 

obtained. In the Bayesian setup, Bayes estimates of the parameters and reliability characteristics 

along with their posterior standard error and width of highest posterior density intervals are 

computed. In the end, the comparative conclusions are drawn to judge the performance of the 

maximum likelihood and Bayes estimates. 

The following economic related measures of system effectiveness are obtained by using regenerative 

point technique: 
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 Transition probabilities and mean sojourn times in various states.

 Reliability and mean time to system failure.

 Point-wise and steady state availability of the system as well as expected up time of

the system during interval (0, t). 

 Expected busy period of the repairman during time interval (0, t).

 Net expected profit earned by the system during a finite and interval and in steady

state. 

2. Model Description and Assumptions

 The system consists of two non-identical units –unit 1 and unit 2. Both the units

work in parallel configuration. 

 Each unit has two possible modes: Normal (N) and total failure (F).

 A single repairman is always available with the system. After working for a random

period, he goes for rest due to his tiredness as after some time, the working efficiency of the 

repairman may reduce and he needs rest for some time. After taking complete rest the repairman 

again starts the repair of the failed unit. 

 The failure time distribution, as well as the working time of the repairman, are

assumed to be exponential whereas the repair time distribution of each unit and rest time of the 

repairman is taken as general. The repair discipline for the repair of units is FCFS. 

 The system failure occurs when both the unit are in total F-mode.

 A repaired unit always works as good as new.

The transition diagram of the system model is shown in Figure [1]. 
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3. Notations and Sates of the system

3.1. Notations

1 2α , α  :  Constant failure rates of first and second type of unit. 

   1 2G ,G   : c.d.f of time to complete repair for first and second unit respectively.

λ  :         Constant rate by which a repairman goes for rest. 

 H •      : General c.d.f rate which a repairman goes to working   position after 

rest. 

3.2. Symbols for the state of the system 

10 20N ,N :            Unit 1 and Unit 2 are N-mode and operative mode. 

1r 2rF ,F      :  Unit 1 and Unit 2 are in F-mode and under repair 

 respectively. 
1w 2wF ,F :            Unit 1 and Unit 2 are waiting for repair respectively.

1 2F ,F :            Unit 1 and Unit 2 are failed respectively. 

Considering the above symbols, we have the following states of the system:- 

Up states:   0 10 20S = N ,N ,   1r 20F , N ,S ₁  10 2, ,rS N F₂  4 1w 20S = F , N ,

 6 10 2wS = N , F

Failed states:  3 1r 2wS = F ,F  ,  5 1w 2rS = F ,F ,  7 1w 2S = F ,F ,  8 1 2wS = F ,F

4. Transition Probabilities and Sojourn times

The non-zero elements of one and more steps steady state transition probabilities from state iS to jS

are as follows- 

 ij ij
t

p lim Q t



     
k k

ij ij
t

p lim Q t
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It can be easily verified that 
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01 02P +P =1,
   3 3

10 14 12 17P +P +P +P =1

   5 5

20 26 21 28P +P +P +P =1,
32 37P +P =1

 7

41 43P +P =1,
51 58P +P =1

 8

62 65P +P =1,
73 85P =P =1

Mean sojourn time iψ  in state iS is defined as the expected time taken by the system in state iS

before transition to any other state. 

   

 
1 2 t

0 0
1 2

1
P T t dt e dt

  
    

  

Similarly, 

   2 t
1 1e G t dt,

 
  

   1 t
2 2e G t dt,

 
  

 t
3 1e G t dt,    2t

4 e H t dt


  

 t
5 2e G t dt  

 

 1t
6 e H t dt


  

 7 8 H t dt m    

5. Methodology for Developing Equations

To obtain various interesting measures of system effectiveness some techniques are available such 

as the semi-Markov process and regenerative-point technique [1-18]. The present study deals with 

the technique of regenerative point as it is easy to handle the problem when the behavior of the 

system at some epochs of entrance into the states is Non-Markovian. We develop the recurrence 

relations for reliability, availability, and busy period of repairman as follows- 

5.1. Reliability of the system 

Here we define  iR t  as the probability that the system does not fail up to t epochs 0,1, 2,…..(t-1) 

when it is initially started from up state Si. To determine it, we regard the failed state S3, S5, S7, S8  as

absorbing states. Now, for the expressions of  iR t ; i=0, 1,2,4,6. By simple probabilistic arguments, 

the value of  0R t in terms of its Laplace Transform (L.T.) is given by,

 (1) 

We have omitted the arguments from  *
ijq s and  *

iZ s for brevity,  *
iZ s ; i=0,1,2,4,6 are the L.T. of 

         

           

     

1 2 2

1 2

1

- α +α t - λ+α t
0 1 1

- λ+α t - α t
2 2 4

- α t
6

Z t =e , Z t =e G t ,

Z t =e G t , Z t =e H t ,

Z t =e H t ,

Taking the inverse Laplace transform of [1], one can get the reliability of the system when system 

initially starts from S₀. The MTSF is given by 
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(1-p p -p p +p p p p )+p p -p p p -p p -p p p

5.2. Availability of the system 

Let  iA t be the probability that the system is up at epoch t, when initially it starts operation from 

state iS E . Using Regenerative point technique and the tools of Laplace Transform, one can obtain 

the value of   in terms of its Laplace Transforms i.e.  *

0A s given as follows:

 
 

 
2*

0
2

N s
A s

D s


The steady state values of equation (44) is given by 
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Where, 
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We observe that 

 2D 0 0

Therefore by using L. Hospital rule, we get 

 

 

 

 
2 2

0
s 0

2 2

N s N 0
A lim

D s D 0
 

 
 

(2) 

Thus we have, 

     2 0 0 1 3 3 2 5 4 6 5 5D 0 =U ψ + U +U ψ +U ψ + U +U m+U ψ

(3) 

Using the relation  2N 0 and  2D 0 in equation [2-3], we get the expression for 0A .

The expected up time of the system in interval (0, t) is given by 

   
t

up 0

0

t A u du  

So that
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0*
up

A s
μ s =

s

5.3. Busy Period analysis 

Let us define Bi(t) be the probability that the repairman is busy in the repair of a failed unit at epoch 

t, when the system starts form state .Here by using the basic probabilistic arguments, we have the 

following relations for Bi (t-1), i=0,1,2,3,4,5,6,7,8. The dichotomous variable δ taken value 0 and 1. 

In the long run, fraction of time for which the system is under repair, starting from state S0 is 

given by, 

   
 

 t s 0 s 0
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 2D 0 0 , therefore by L Hospital rule, we have

 

 

 

 
0

s 0
2

3 3

2

N s N
B lim

D s D 0

0
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And  2D 0  is same as given in section [b]. 

Now by using  3N 0 and  2D 0 , the expression of 0B , can be obtained. The expected busy period 

of the repairman in repairing in time interval (0, t) is given by 

   
t

b 0

0

t B u du  

So that, 

  0
b

B (s)
μ s

s


 

5.4. Profit function analysis 

Let us define 

0K = per-unit up time revenue by the system due to the operation of any unit. 

1K = repair cost per-unit of time when a unit is under repair. 

Here we assume that repair cost of the unit-1 and unit-2 are same. 

Then, the net expected total cost incurred in time interval (0, t) is given by 

     p b1u0P t K μ t K μ t 

The expected total cost incurred in unit interval of time is 

     
0

b
1

upμ tP t μ t
K K

t t t
 

The expected total cost per-unit time in steady state is given by- 
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0 00 1K A K B 

Where
0A and 

0B  have been already defined. 

6. Estimation of Parameters, MTSF and Profit Function

6.1. Classical Estimation 

In this section, we consider the classical estimation of the model parameters. Suppose that the failure, 

repair, repairman rest time and working time distribution are independently distributed as 

Exponential with respective PDF defined in section [1]. Let

      

     
1 2 3

4 5 6

1 11 12 1 2 21 22 2n 3 31 32 3n

4 41 42 4n 5 51 52 5n 6 61 62 6n

, ,....... ,T = t ,t ,.......t ,T = t ,t ,.......t ,

T = t ,t ,.......t ,T = t ,t ,.......t and T = t ,t ,.......t

nT t t t

Be the random samples respectively drawn from their respective PDF. Then the joint likelihood 

function is 

  1 1 1 2 3 5 63 5 61 2
β

1 2 3 4 5 6 1 1 2 1 1 2L=L T ,T ,T ,T ,T ,T α ,λ ,β,α ,θ,λ * *β * * *
x x x x xn n nn ne e e e e

   
    

        

6.2. Maximum Likelihood Estimation 

The log-likelihood function is 

1 1 1 1 2 1 1 2 3 3 4 2 2 4 5 5

6 6

logL=n log α -α x +n log λ -λ x +n log β-β x +n log α - x +n log θ-θ x

+n log λ-λ x

    


 (4) 

By applying the Maximum likelihood approach, the maximum likelihood estimators (MLEs) 

 1 1 2
ˆ ˆ ˆˆˆ ˆα ,λ ,β,α ,θ, λ of the parameters ( 1 1 2α ,λ ,β,α ,θ, λ ) can be obtained as  
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distribution, where I is the Fisher information matrix with diagonal elements as 
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All off- diagonal elements of I are zero. The maximum likelihood estimator M̂  and P̂  of MTSF and 

Profit function can be obtained on using the invariance property of MLE. Also, the asymptotic 

distribution of    -1

6 1 1M̂-M N 0, I  and    -1

6 2 2P̂-P N 0, I   are respectively, 

Where, 

1

1 1 2

M M M M M M
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The Bayesian estimation is used to measure the impact of prior information along with the sample 

information. Therefore, in this section, the Bayesian method of estimation is also considered for 

estimating the model parameter. As discussed above, the Bayesian method of the estimation 

considers the parameters involved in the model as random variable. Here, we estimate the unknown 

parameters considering the prior distribution of gamma with respective PDFs 

 1 1 1 1 1 1α Gamma(a ,b ); α ,a ,b >0, (5) 

 1 2 2 1 2 2λ Gamma(a ,b ); λ ,a ,b >0, (6) 

 3 3 3 3β Gamma(a ,b ); β,a ,b 0,
   (7) 

 2 4 4 2 4 4α Gamma(a ,b ); α ,a ,b >0, (8) 

 5 5 5 5θ Gamma(a ,b ); θ,a ,b >0, (9) 

   6 6 6 6λ Gamma(a ,b ); λ,a ,b >0, (10)

Here 
ia and 

ib (i=1, 2, 3, 4, 5, 6) respectively denote the scale and shape parameters.

Now by using the likelihood in [4] and the priors in [5-10], the posterior distribution of the 

parameters 
1 1 2α ,λ ,β,α ,θ, λ  given data are: 

       1 1 1 1 2 1 1 1 1w α |x ,λ ,β,α ,θ,λ Gamma n +a ,b +x ,  (11)

   2 1 1 1 2 2 2 2 2w λ |x ,α ,β,α ,θ,λ Gamma n +a ,b +x ,          (12)

     3 1 1 1 2 3 3 3 3w β|x ,α ,λ ,α ,θ,λ Gamma n +a ,b +x ,  (13)

       4 2 1 1 1 4 4 4 4w α |x ,α ,λ ,β,θ,λ Gamma n +a ,b +x ,    (14)

   5 1 1 1 2 5 5 5 5w θ|x ,α ,λ ,β,α ,λ Gamma n +a ,b +x ,         (15)

   6 1 1 1 2 6 6 6 6w λ|x ,α ,λ ,β,α ,θ Gamma n +a ,b +x ,        (16)

All the prior parameters (also known as hyper parameters) are assumed to be known. These 

parameters are those whose values are set before the Bayesian learning process start. We utilized the 

Markov Chain Monte Carlo (MCMC) techniques available that can be used to simulate draws from 

the posterior distribution and also use the Gibbs sampler, a well-known MCMC algorithm proposed 

by [1]. It allows us to generate posterior samples for all the parameters using their full conditional 

posterior distributions. 

Now we proceed as follows: 

 Simulate α₁ from  1 1 1 1 2w α |x ,λ ,β,α ,θ,λ , given in equation [11]. 

 Simulate λ₁ from  2 1 1 1 2w λ |x ,α ,β,α ,θ,λ , given in equation [12]. 

 Simulate β from  3 1 1 1 2w β|x ,α ,λ ,α ,θ,λ ,   given in equation [13]. 

 Simulate α₂ from  4 2 1 1 1w α |x ,α ,λ ,β,θ,λ , given in equation [14]. 

 Simulate θ from  5 1 1 1 2w θ|x ,α ,λ ,β,α ,λ , given in equation [15]. 

 Simulate λ from  6 1 1 1 2w λ|x ,α ,λ ,β,α ,θ , given in equation [16]. 

Repeat steps 1-6, N times and record the sequence of 
1 1 2α ,λ ,β,α ,θ, λ after discarding the burn-in-

sampler of size, say N0, from the sample so that  the effect of the initial values is  neutralised. 

Under the squared error loss function, Bayes estimates of 
1 1 2α ,λ ,β,α ,θ, λ are, respectively, the 

means of posterior distribution given in equations [11-16] and as follows: 
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x
5

5

n
θ̂= ,

x
6

6

n
λ̂=

x

RT&A, No 1 (72)
 Volume 18, March 2023

6.3. Bayesian Estimation 

51



Vashali Saxena, Rakesh Gupta, Prof. Bhupendra Singh 
CLASSICAL AND BAYESIAN SOCHASTIC ANALYSIS OF A TWO UNIT……. 

7. Simulation Study

In this section, a simulation study is carried out to investigate the behavior of an assumed system in 

steady state. Estimates for the parameters of interest as well as the reliability measures were obtained 

using both the classical maximum likelihood estimation technique and the Bayesian approach. For 

simulation purposes, random samples of size n were generated for every iteration from the assumed 

distribution after setting n1=n2=n3=n4=30, 50, 100, 150 to obtain the maximum likelihood estimate 

and Bayes estimator of the parameters using an expression in 6.1, 6.2 & 6.3 respectively. Then using 

the asymptotic convergence of maximum likelihood estimate of the standard errors (SE) and the 

confidence intervals for the maximum likelihood estimate of the reliability and profit have been 

obtained. For studying the posterior performance of the MTSF and Profit function, the values of 

hyper-parameters have been so chosen that   1
1

1

a
E α = ,

b   2
1

2

a
E λ = ,

b   3

3

a
E β = ,

b   4
2

4

a
E α = ,

b

  5

5

a
E θ =

b
,   6

6

a
E λ =

b
to generate the samples from posterior distribution of the parameters. Here 

simulated results have been obtained by 10,000 iterations for the priors. These simulated posterior 

values have been used to obtain the posterior estimates of the reliability measures as the means of 

these simulated values and their posterior standard errors (PSEs). Also, highest posterior density 

[HPD] for mean time to system failure MTSF and Profit of the assumed system have been obtained 

using these posterior values.  

The True values, maximum likelihood estimates MLE's, and Bayes estimates of mean time to 

system failure MTSF and Profit function for fixed repair rate 1 and repairman rest time distribution

β respectively, and varying failure rates 1 of mean time to system failure and profit function have

been plotted in fig.[2-3]and [4-5] and also shown in tables [1-4]. The 95% asymptotic confidence 

intervals and highest posterior density [HPD] intervals of mean time to system failure MTSF and 

Profit function are plotted in fig. [6-7] and [8-9]. 

8. Concluding Remarks

From the simulation results in Table [1-4] and various figures [2-9], it is observed that: 

• Table [1] and Table [2] give the maximum likelihood estimates and Bayes estimates

of mean time to system failure MTSF for various values of failure rate fixed repairman rest time β

=0.04 and 0.09, its clear that a smaller value of failure rate 
1α introduces a larger value of maximum 

likelihood estimates and Bayes estimates for the given value of repairman rest time distribution β . 

As the value of the failure rate increases the MTSF decreases which shows in fig [2] and fig [3]. 

• Comparing table [1] and table [2], the value of a parameter of rest time distribution

β increased from 0.04 to 0.09, which results in the decay of mean time to system failure MTSF for the

given value and which shows in fig. [2-3]. 

• Table [3] and Table [4] observed that C and Bayes estimates of Profit function for

the various value of failure rate α₁ and rest time distribution β= 0.04 and 0.09, it observed that the 

value of failure rate α₁ increases so the estimate of the true value of Profit function is decreased 

which shows in fig. [3-4]. 

• Comparing Table [3] and Table [4] shows that an increment in the value of the

parameter of rest time distribution β from 0.04 to 0.09 results in a decay of the Profit function. 

• To compare the performance of asymptotic confidence interval and higher posterior

density [HPD] interval with the maximum likelihood estimates technique, from all the tables [1-4] 

and fig. [6-9] it has been seen that width of the highest posterior density [HPD] interval is less than 

the width of an asymptotic confidence interval. 
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• Fig [6-9] gives the posterior distribution of reliability measure to show the

performance of mean time to system failure MTSF and Profit function at different value of Failure 

rate α₁ and fixed value of rest time distribution β . 

 Comparing fig [6-7] shows that when sample size n=30, 50,100,150 i.e. increases then

highest posterior density [HPD] intervals of mean time to system failure MTSF are less than the 

asymptotic confidence interval of mean time to system failure MTSF. The same trend can see in the 

highest posterior density [HPD] interval and Confidence interval of the Profit function in fig [8-9]. 

Graphs 

 Fig.2: Plot of MTSF for fixed beta=.04  Fig.3: Plot of MTSF for fixed beta=.09 

 Fig.4: Plot of PROFIT for fixed beta=0.04  Fig.5: Plot of PROFIT for fixed beta=0.09 

 Fig.6: Plot of CI for MTSF  Fig.7: Plot of HPD for MTSF 
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   Fig.8: Plot of CI for Profit         Fig.9: Plot of HPD Intervals for Profit 

Tables 

Table 1. Various estimates of MTSF for fixed β=0.04 and varying α₁ 

α₁ 0.01 0.015 0.02 0.025 0.03 

 True Value 71.46 70.29 70.02 69.67 68.26 

ML Estimates 71.58 70.45 70.1 69.74 68.3 

Bayes Estimates 71.69 70.66 70.25 69.98 68.49 

C.I. Width 22.25 21.14 20.24 19.89 17.04 

HPD Width 21.76 20.53 20.07 19.23 16.65 

MSE 0.5427 0.4284 0.3721 0.3486 0.2453 

Table 2. Various estimates of MTSF for fixed β=0.09 and varying α₁ 

α₁ 0.01 0.015 0.02 0.025 0.03 

True Value 51.75 50.64 50.02 49.67 49.26 

ML Estimates 51.89 50.76 50.3 49.74 49.4 

Bayes Estimates 51.95 50.87 50.53 49.8 49.76 

C.I. Width 21.56 21.15 20.47 19.43 18.51 

HPD Width 20.43 19.65 19.54 18.08 17.22 

MSE 0.4329 0.3897 0.3237 0.2983 0.1984 

Table 3. Various estimate of Profit for fixed β=0.04 and varying α₁ 

α₁ 0.002 0.004 0.006 0.008 0.01 

True Value 261.39 260.74 260.19 258.27 256.11 

ML Estimates 261.75 260.82 260.52 258.54 256.54 

Bayes Estimates 261.83 260.95 260.67 258.67 256.35 

C.I. Width 50.05 43.86 42.84 41.34 40.67 

HPD Width 44.85 42.53 41.79 39.05 38.49 

MSE 1.5678 1.5232 1.5137 1.5108 1.5099 
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Table 4. Various estimate of Profit for fixed β=0.09 and varying α₁ 

α₁ 0.002 0.004 0.006 0.008 0.01 

 True Value 161.47 160.74 156.19 152.27 150.11 

ML Estimates 161.8 160.89 156.52 152.23 150.56 

Bayes Estimates 161.93 160.97 156.84 153.56 150.75 

C.I. Width 50.05 43.86 42.84 41.34 40.67 

HPD Width 52.85 51.53 50.27 49.05 48.82 

MSE 1.2784 1.2643 1.262 1.2539 1.2487 

9. Conclusion

  This study report investigates the current work's value in several dimensions. First, this work 

investigates the steady-state reliability measures MTSF and Profit function of the subjected system, 

which are produced under failure time and repairman rest time distribution of the system, making 

the study applicable to a wide range of real-world circumstances. Second, the system's unknown 

parameters and reliability measures were estimated using the ML technique, along with their 

appropriate asymptotic confidence ranges. In addition, the Bayesian technique to estimate allows 

practitioners to use any prior information for better results, which is immediately seen when gamma 

priors are applied. Third, the supposed system's behaviour is evaluated using the Monte Carlo 

simulation approach to gain a better understanding of the system's behaviour. As a result, this study 

proves that the Bayesian method with appropriate prior is extremely utilitarian and simple to 

implement for analysing the redundant repairable system waiting for a repair facility. 
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Abstract 
 

The present paper deals with two identical units, one is operative and the other of which other is 
kept on cold standby. If the operative unit fails, it goes under repair and after repair, it is not 
considered as good as new. If the unit fails after the first repair, it is replaced with a new unit. A 
single repairman is always available with the system to repair a failed unit. Failure time, repair 
time and replacement time distributions are taken as exponential to reduce the complexity of the 
system model. By using the regenerative point technique, the various important measures of system 
effectiveness have been obtained and are shown with the help of graph. 
 
Keywords: Cold standby, replacement policy, MTSF, regenerative point, 
availability, transition probability and mean sojourn time. 
 
 

1. Introduction 
 
Various researchers have widely used the redundancy technique in systems of identical units to 
improve system reliability. Since the demand for improving system reliability is increasing, the 
field of research in reliability theory is becoming more advanced. Many researchers in the field of 
reliability theory, including [2, 5], have analyzed the model of a two-unit cold standby system. The 
performance measure of the model of a two-unit system with repair and replacement policies has 
been studied by various authors [1, 3, 4, 6, 7]. 

The current paper deals with the study of a probabilistic analysis of a two-unit cold standby 
system with repair and replacement policies. One unit is operational, while the other is kept on 
cold standby. Whenever the operative unit fails, it goes into repair. A repaired unit is not 
considered as good as new. If the repaired unit fails after the first repair, a new unit is installed to 
replace it. For the purpose of repairing the failed units, a single repairman is always ready with the 
system. To reduce the complexity of the system, the exponential form of failure time, repair time, 
and replacement time is taken. After using the regenerative point technique, the following 
measures of system effectiveness are obtained:  

• Transition probabilities and mean sojourn times in various states of the system. 
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• Reliability and mean time to system failure (MTSF). 
• Point-wise and steady-state availabilities of the system as well as expected up time 

of the system during time interval (0, t). 
• The expected busy period of repairman during time interval (0, t). 
• Net expected profit earned by the system in time interval (0, t) and in steady-state. 
 

2. Model description and assumptions 
 

• The system consists of two identical units, one operational (o) and the other in 
standby (s). 

• A single repairman is always available with the system to repair and replace a 
failed unit. 

• After repair, it is not considered as good as new. 
• If the unit fails after the first repair, replace it with a new one. 
• The failures of the units are independent and the failure time, repair time and 

replacement time distributions of the units are as taken exponentials. 
 

3. Notations and states of the system 
3.1. Notations 
 

 : Set of regenerative states = . 

  : Constant failure rate of operative unit. 
 : Constant failure rate after one time repair of a unit. 
 : Repair rate of a unit. 

 : Replacement rate of failed unit. 

 : p.d.f. of transition time from regenerative state . 

: p.d.f. of transition time from regenerative state  via non-regenerative state

. 

 : Symbol for Laplace-stieltjes transforms i.e. 
   

* : Symbol for Laplace-transform i.e. 

   

© : Symbol for ordinary convolution i.e.  

   

Here, >  , Also the limits of the integration are not mentioned whenever they are 0 to . 
 
3.2. Symbols for the states of the systems 
 

 : Unit-1 and Unit-2 in operative and in standby mode. 

 : Unit-1 in standby mode and Unit-2 is waiting for repair. 

 : Unit-1 and Unit-2 in operative and standby mode. 

 : Unit-1 in repair mode and Unit-2 is waiting for repair. 
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 : Replaced unit-1 after repair and unit-2 waiting for repair.  

Considering the above symbols and keeping in view the assumptions stated in section-2, the 
possible states of the system model are shown in transition diagram (Figure.1). 

 
 

 

Figure.1: Transition diagram 
 
 

4. Transition probabilities 
 

The direct or one-step steady state transition probabilities can be obtained as follows: 
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5. Mean sojourn times 
 
The mean sojourn time  in state is defined as the expected time taken by the system in state 
before making the transition into any other state. If  denotes the sojourn time in state , then 
mean sojourn time in state  is; 
 

 (4) 

 
Therefore, 
 

          

          

          

          

  
 (5-9) 

 
6. Analysis of characteristics 

6.1 Reliability of the system and MTSF 
 
Let 

 
be the probability that the system is operative during (0, t) given that at t = 0, it starts 

from state .To obtain it, we assume the failed states and  as absorbing. Now using 

simple probabilistic arguments we have the following recurrence relations in ; i =0, 1,2,3. 
 

         

         

         

 
 

(10-13)

  

Where,   

Taking Laplace transforms of relations (10-13) and simplifying the resulting set of algebraic 
equations for   , we get; 
 

           

 
Where, 
 

      

 (14)  

iy iS iS

iT iS

iS

( )P T t dti iy = >ò

t
0 2

1e dt-qy = = = yò
q

( )t
1

1e dt- a+qy = =ò
a + q

( )t
3

1e dt- a+by = =ò
a +b

t
4

1e dt-hy = =ò
h

t
5

1e dt-ay = =ò
a

( )i R t

iS E.Î 4S 5S
( )iR t

R (t) Z (t) q (t) R (t)0 0 01 1= + Ó

R (t) Z (t) q (t) R (t)1 1 12 2= + Ó

R (t) Z (t) q (t) R (t)2 2 23 3= + Ó

R (t) Z (t) q (t) R (t)3 3 32 2= + Ó

( )t ( )tt t
0 1 2 3Z e , Z e , Z e , Z e- a+q - a+b-q -q= = = =

( )*
0R s

( ) ( )
( )
1*

0
1

N s
R s

D s
=

* * * * * * * * * * * * * *N (s) (1 q q )Z q (1 q q )Z q q Z q q q Z1 23 32 0 01 23 32 1 01 12 2 01 12 23 3= - + - + +

* *D (s) 1 q q1 23 32= -

59



 
Alka Chaudhary1, Suman Jaiswal2 and Nidhi Sharma 
PROBABILISTIC ANALYSIS OF A TWO UNIT COLD 

RT&A, No 1 (72) 
Volume 18, March 2023 

  

 

Here, also for brevity we have omitted the argument‘s’ from . 

The expression of mean time to system failure is given by, 
 

          

 
Observing , 

We have, 

 

  (15) 

 
6.2. Availability analysis 
 
Let  be the probability that the system is up (operative) at epoch t, when system initially 

starts from state . Using the basic probabilistic concepts in regenerative point technique as in 
case of reliability, one can obtain the recurrence relations for ; i=0, 1, ---, 5. Taking the Laplace 

Transformations and solving the resulting set of algebraic equations for , we get, 
 

 (16) 

 
Where, 
 

   

  
and 
 

       

 
The steady state availability of the system is given by, 
 

        

 
As , so by using L. Hospitals rule, we get 
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and 
 

 (18) 

 
The expected up time of the system in interval (0, t) are given by;  
 

          

 
So that 
 

 (19) 

 
6.3. Busy period analysis 
 
Let 

 
and be the respective probabilities that the unit is under repair and under 

replacement at time t due to the failure unit, when the system initially starts from regenerative 
states . Using the probabilistic arguments as in case of availability, we develop the recurrence 
relations for 

 
and ; i=0,1,2,3,4,5. Then, taking the Laplace Transforms of these 

recurrence relations and solving the resulting algebraic equations for  
 
and we get; 

 

 and       (20-21) 

 
Where, 
 

 (22) 

  (23) 

 
In the long run, the probabilities that the repairman will be busy are respectively given by:- 
 

 and  (24) 

 

Where, 
         

            

 
The value of is same as given by expression (18). 

The expected busy period of skilled repairman and regular repairman during (0,t) are given by, 
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So that 
 

and
 

(25-26) 

 
7. Profit function analysis 

 
We are now in the position to obtain the net expected profit incurred during time (0, t) by 
considering the characteristics obtained in earlier sections. 
Let us consider, 

K0 = revenue per unit time by the system when it is operative.  

K1 = cost per unit time when repairman is busy in repair of failed unit. 

K2 = cost per unit time when repairman is busy in replacement of failed unit. 
Then, the net expected profit incurred during time (0, t), 
 

    

 
The expected profit per-unit time in steady state is given by, 
 

 
         

 
8. Graphical study of system behaviour 

 
The Behavioral characteristics of MTSF and Profit function for different values of Failure rate 
shown in figures 2 and 3 respectively. 

In figure 2, the graphical analysis of MTSF in relation to failure rate for three different 
values of repair rate i.e. 0.09, 0.35 and 0.85 and for two fixed values of  at 0.05 and 0.09 has 
been plotted. 

The graphical analysis of Profit function in relation to failure rate  for different values of 
repair rate i.e. 0.35, 0.55 and 0.95 and for fixed values of  at 0.32 and 0.45 has been shown in 
figure 3. 

In the analysis at figure 2 and 3, the MTSF and Profit function shows a decline as the value of 
failure rate increases and when the value of repair rate increases, the graph shows the increase in 
the value of MTSF and Profit function. 
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Figure.2: Behavior of MTSF with respect to and  
 
 

 
 

Figure.3: Behavior of Profit with respect to and  
 
 

According to the dotted curves in the MTSF graph in relation to failure rate, in order to achieve 
MTSF for at least 300 units, the failure rate must be less than 0.01, 0.02, and 0.04 for values of 
0.09, 0.35, and 0.85 when  is fixed at 0.09.  
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Similarly, for smooth curves the upper bounds for failure rate ( ) 0.012, 0.031 and 0.081 

corresponding to  i.e., 0.09, 0.35and 0.85 when is fixed at 0.05. 
Figure 3 shows that the system is profitable only when the failure rate is less than 0.045, 

0.058, and 0.078, respectively, for values of  0.35, 0.55, and 0.95 when fixed at 0.45.  
Similarly, we conclude from smooth curves that the system is profitable only when failure 

rate ( ) is less than 0.05, 0.067 and 0.098 respectively for values of repair rate i.e., 0.35, 0.55and 
0.95 when is fixed at 0.032. 
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Abstract

This paper proposes the design and implementation of Inertial delay observer (IDO) based model following
dynamic sliding mode control (DSMC). The Inertial delay observer estimates the states as well as the
uncertainties and disturbances in an integrated manner. The DSMC is provides smooth control signal
with the mechanism of chattering elimination while maintaining the accuracy of control. The efficacy of
the proposed technique is demonstrated with numerical simulation of uncertain second order system. The
observer based model following DSMC technique is also validated through experimentation on Quanser
DC servo motor. Results show the effectiveness of the combination of the controller-observer design for
position control of DC motor against uncertainties and sensor noise. The technique is robust due to
appropriate estimation and follows the model precisely which improves overall life of the system. The
stability of the designed observer based control scheme is provided by Lyapunov theory.

Keywords: Dynamic sliding mode control, Inertial delay observer, DC servo motor, Lyapunov
theory

1. Introduction

The purpose of design of model following control is to generate control such that the controlled
system behaves like a model, which specifies the design objectives. It has the objective to minimize
the error between the states of the model and the controlled plant despite presence of uncertanity,
disturbances and measurement noise. The design guarantees that the error between the states of
the model and the controlled plant goes to zero. Over the past decades many model following
approches are designed, for controlling the output close to the model output and to satisfy the
closed-loop stability as well as regulation. [1, 2, 3, 4, 5].

SMC is a robust control technique to counter the presence of uncertainties and disturbances in
the system. But the main drawback of the SMC is that it uses the discontinuous control to achieve
the control objective. Thus chattering in the SMC restricts it for the real life applications. SMC
requires that, the full state vector to be available for the control to apply effectively. But states
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may not be available always. The range of uncertainty, if it can not be determined or not known
exactly, sliding condition may not be satisfied. Various methods have been proposed to eliminate
the chattering like continuous approximation by boundary layer technique[6], to use higher order
sliding mode control (HOSM) [7]. Dynamic sliding mode control (DSMC) is also designed for
chattering elimination, where the control developed by sliding mode is filtered and then applied
to the actual plant [8].

The DSMC adopts a special control structure, in which a integrator as a filter is placed in front
of the system as depicted in figure(1). A sliding mode control w is designed for the augmented
system consist of system and the filter. Being a sliding mode control, the auxiliary control signal
w has chattering, however the actual control signal u, applied to the system is smooth. Here, a
low pass filter eliminates the chattering along with maintaining the control accuracy. In case of a
system where measurement noise is present DSMC effectively filter out the chattering due to it.
Hence, the mechanism of chattering elimination but with maintaining the accuracy of control,
both are decoupled in the design of DSMC. [9, 10, 11].

In the design of DSMC, the main problem is to form the sliding surface, as we are designing
the SMC for the augmented system, sliding surface should be the function of the states of the
augmented system not the actual system. Since the augmented system is one dimension larger
than the original system, the new sliding variable in DSMC contains an uncertainty term due to
the external disturbance and/or parametric uncertainty. And also from the structure of DSMC one
can observe that the lumped uncertainty involves in the augmented system. Evaluation of the new
sliding variable in DSMC becomes difficult because of this reason. To over come the problem of
bounds of uncertainty, instead of using the bounds of uncertainty in the control one can estimate
the uncertainty and disturbance in the system by using the methods like time delay control(TDC),
inertial delay control(IDC) and can use it in the control design. Hence, there is a need to design an
observer to estimate the lumped uncertainty for the design of sliding surface in DSMC. Different
types of state observers are developed to estimate the states as well as uncertainties in the systems
like uncertanity and disturbance estimator(UDE), supertwisting disturbance observer(STDO),
inertial delay observer(IDO), extended state observer(ESO) etc. [12, 13, 14, 15].

In this paper inertial delay observer (IDO) based model following control is designed. Here
the states estimation is achieved by linear observer while uncertainties are estimated by inertial
delay method. The proposed strategy estimatate the states as well as the lumped uncertainty in
the system. This state and uncertainty observers are more useful for the control design in real time
applications where it is difficult to measure all the states using the sensors. The control strategy
is verified by the practical experimentation on Quanser’s servo plant SRV02 under influence
of sensor measurement noise and uncertanities in terms of unmodeled dynamics. The main
contributions of the work are summarized as follows:

• Design of model following DSMC by state estimation using IDO for achieving smooth
control.

• The effectiveness of the designed controller is verified by simulation of uncertain plant.

• Due to simultaneous estimation of states and uncertainty, IDO based model following
DSMC design reduces the need sensors.

• Experimental results validates the efficacy of robustness of control strategies against the
presence of disturbance, uncertainties in the system parameters and sensor noise.

The paper is organised as follows. Sect. 2 presents the mathematical model of system. Sect. 3
presents the observer based design approach with numerical simulation. Sect. 4 contains stability
analysis. Application of the proposed strategy in Sect. 3 to the system mentioned in Sect. 2 along
with the experimental results and perfomance analysis is presented in Sect. 5. Finally in Sect. 6
paper is concluded.
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Lumped Uncertanity

SystemSMC
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Augmunted SystemDynamic SMC
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Figure 1: Model following DSMC design with measurement noise

2. Mathematical Modelling

Due to excellent speed control characteristics, the DC motors are used in many industrial
applications. The most common device used as an actuator in mechanical control is the DC motor.
In Quanser set up it is a base unit for controlling rotary inverted pendulum, double inverted
pendulum, 2-dof robot etc. As a result, it becomes necessary to control the amount of electric
voltage supplied to the servomotor by continuously detecting the position and speed of shaft.
It has attracted researchers and considerable research has been done and several methods are
proposed and implemented for it.

2.1. Transfer function representation of SRV-02

The dynamic equations and transfer function of SRV-02 servo plant using first principles is
discussed in [16]. The servomotor transfer function is given by ,

θl(s)
Vm(s)

=
K

s(sτ + 1)
(1)

where

• θl(s) is Laplace transform of position of load,

• Vm(s) is Laplace transform of input voltage,

• K is the steady state gain,

• τ is the system time constant.

2.2. State space representation of SRV-02

For implementation of the proposed control strategy to servo plant we convert transfer function
into the state space form. Considering two states for state space model, θ load shaft position as
first state x1 and θ̇ load shaft speed as second state x2.

x =

[
x1
x2

]
=

[
θ(s)
θ̇(s)

]
(2)

The equation (1) is represented in system state variable form as becomes

A =

[
0 1
0 −(1/τ)

]
(3)
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Input matrix is form as

B =

[
0

K/τ

]
(4)

while ouput matrix come as
C =

[
1 0

]
(5)

The output matrix is represented as,

y = C
[

θ(s)
θ̇(s)

]
(6)

We are measuring the position of the load shaft x1 The design specifications and parameters for
the model are considered from [17].

3. Problem formulation

In the design of DSMC, as the lumped uncertainties are included in between the filter and
the system, the sliding surface requires the unknown lumped uncertainty in its design. Hence
design of sliding surface in DSMC is a tedious and requires the unknown parameter called
lumped uncertainty. Therefore it is required to design an observer for estimation of lumped
uncertainty for the design of sliding surface. For the systems where the states are unavailable for
measurement, there is a need to design an observer which estimates the states of the systems.
The main motivation for the simultaneous estimation of states and uncertainty is to reduce the
number of sensors and to robustify the control in the presence disturbance. To overcome the
problem of bounds of uncertainty, instead of using the bounds of uncertainty in the control
one can estimate the uncertainty and disturbance in the system by using IDO and can use it in
the control design. The IDO based model following DSMC is designed for experimentation as
follows.

3.1. Design of inertial delay observer based model following dynamic sliding
mode control

In the real time applications, it is complicated to measure all the states except the output. Here
the design of model following DSMC by estimating the system states is proposed. Since the
design of sliding surface requires the lumped uncertainty in the system, and here in addition to
that system states are also required. Hence, IDO is proposed for estimation of the system states
as well as the uncertainty.
Consider the DSMC design for linear time invariant uncertain system with relative degree two

ẋ = Ax + Bu + Be

y = Cx

The model to be followed is,

ẋm = Amxm + Bmum

ym = Cxm

The objective is to design control u so as force the system to follow the sliding dispite of the
parameter variations. The design of DSMC by estimating the system states where all states other
than output are not available.

ẋ(t) = Ax(t) + Bu(t) + Be(x, u, t)

y(t) = Cx(t) (7)

Where, x ∈ ℜn is the state vector, u ∈ ℜm is the control input and y ∈ ℜp is the output of the
system. e(x, u, t) is lumped uncertainties which includes uncertainty in A matrix, B matrix and
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disturbances. The output and input of the system are measurable (available) for all the time
t = 0. The current state and initial state x(0) are supposed to be non available. d(x, t) is external
unmeasurable disturbances.
Assumption:

• Uncertainties of the system and input matrices are lumped into the e(x, u, t)

• Lumped uncertainty varies slowly ė(x, u, t) ∼= 0.

• The model parameters are completely known and no uncertainty or disturbances in the
model

• The model matrices Am and Bm are stable.

Inertial delay observer for the estimation of states of the system is given as,

˙̂x(t) = Ax̂(t) + Bu(t) + Bê(x, u, t) + L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t) (8)

Where, L is observer gain matrix, ê(x, u, t) is estimation of lumped uncertanity x̂(t), ŷ(t) are states
and output of observer respectively
From eqn.(7), we get,

Be(x, u, t) = ẋ(t)− Ax(t)− Bu(t) (9)

Defining the pseudo inverse of matrix B as,
B+ = (BT B)−1BT , then the equation (7) is,

e(x, u, t) = B+[ẋ(t)− Ax(t)− Bu(t)] (10)

If all the states are available for measurement then one can directly use above eqn (10) for
estmation but, all the states are not available so replacing x(t) with x̂(t) in eqn. (10) which give
us,

ẽ(x, u, t) = B+[ ˙̂x(t)− Ax̂(t)− Bu(t)] (11)

uncertanity can be estimated as,

ê(x, u, t) = G f (s) e(x, u, t) (12)

G f (s) =
1

τs + 1
(13)

where G f (s) is first order filter with high bandwidth. Note that, for sake of simplicity, the laplace
domain notations are used to represent G f (s) in the time domain equations.

ê(x, u, t) = B+[ẋ(t)− Ax(t)− Bu(t)]G f (s) (14)

Using equations (8) and (11) and simplifying

ê(x, u, t) = B+[Ax̂(t) + Bu(t) + Bê(x, u, t) + L(y(t)− ŷ(t))− Ax̂(t)− Bu(t)]G f (s)

= B+LCx̃(t)
G f (s))

1 − G f (s)

=
B+LCx̃(t)

τs
(15)

˙̂e(x, u, t)) = − 1
τ

B+LCx̃(t) (16)
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Observer error dynamics is derived as,

˙̃e(x, u, t)) = − 1
τ

B+LCx̃(t)− ˙̂e(x, u, t) (17)

We assumed that the uncertainties varies slowly,
˙̃e(x, u, t)) ∼= 0, considering it equation(17) becomes,

˙̃e(x, u, t) = − 1
τ

B+Lx̃(t) (18)

In combined form we can write observer dynamics (as matrix form)[ ˙̃x(t)
˙̃e(x, u, t)

]
=

[
A − LC B
− 1

τ B+LC 0

]
.
[

x̃(t)
ẽ(x, u, t)

]
(19)

Converting this matrix form into the form which is similar to the pole placement problem. Using
closed loop poles of overall system at desired location,

H =

[
A B
0 0

]
, G =

[
C 0

]
and Kob =

[
L

1
τ B+L

]
The eigen values of the matrix A − KobG can be made arbitrary by appropriate choice of the

observer gain Kob, when the pair (H, G) is observable.

3.2. Sliding surface

Now in model following, one can consider the sliding surface as the error between the model
and actual system. So that when ever sliding surface becomes zero the system should follow the
model. Taking this idea as a backend sliding surface is chosen as

σ = y
′′
e + λ1y

′
e + λ0ye (20)

Where ye, y′e, y′′e are the errors of outputs and its derivatives between system and model

ye = Cx − Cxm

y′e = CAx − CAmxm

y′′e = CA2x + CABu + CABe − CA2
mxm − CAmBmum (21)

From the inertial delay observer one can get the estimate of the states x̂ and lumped uncertainty
ê. Here SMC is designed for the augmented system, so one can choose the sliding surface for the
model following as,

σ̂ = ŷe
′′ + λ1y′e + λ0ye (22)

The ye, y′e, y′′e can be defined by using estimated states as,

ye = Cx − Cxm

y′e = CAx̂ − CAmxm

y′′e = CA2 x̂ + CABu + CABê − CA2
mxm − CAmBmum (23)

3.3. Control design

The control for the actual plant can be obtained from the auxiliary control as,

u =
∫

w dx (24)
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Sliding surface is designed for the model following DSMC, From the equation (22) and taking it’s
derivative one can get,

˙̂σ = CA3 x̂ + CA2Bu + CABw − CA3
mxm − CA2

mBmum + CAmBmu̇m + ê∗ + λ1ŷe
′′ + λ0y′e (25)

where, ê∗ = CA2Bê + CAB ˙̂e
Assume the auxiliary control w as

w = weq + wn (26)

where weq addresses the known dynamics while wn is for the unknown dynamics. Then, the for
known dynamics weq is selected as,

weq =− (CAB)−1(CA3 x̂ + CA2Bu + CABw − CA3
mxm − CA2

mBmum − CAmBmu̇m + ê∗

+ λ1ŷe
′′ + λ0y′e + Kσ̂) (27)

where k is a small positive constant.
To satsisfy sliding condition the control wn is selected as,

wn = −(CAB)−1K1sign(σ̂) (28)

where, K1 is a positive constant > |ẽ∗|.

3.4. Numerical simulation

To demonstrate the efficacy of the design of IDO based model following DSMC with state estima-
tion, a second order system is considered. The system matrices are as follows,

A =

[
0 1
−3 −4

]
, B =

[
0
1

]
,

The reference model to be followed is

Am =

[
0 1
−4 −2.8

]
, Bm =

[
0
4

]
Initial conditions are

x(0) =
[
1 1

]T , xm(0) =
[
0 0

]T

With the 40% uncertainties in the system parameters and sin(2t) as a external disturbance.
while the low pass filter time constant tau = 0.01, the constant parameters are λ0 = 15, λ1 = 5,
K = 5 and K1 = 10. The observer pols are at

[
−5 −9 − 11

]T . Apart from the disturbance here
uniform measurement noise of absolute magnitude 0.01 is added with the lumped uncertainty.
The reference input um is square wave switching at 10s.

The states of the system are estimated using the IDO and accuracy of the estimation depends
on the observer poles. The observer poles are selected such that, it estimates the states and the
uncertainty precisely. The simulation results in Fig. (2) depicts that, system is following the
model precisely despite the presence of uncertanities, disturbance and noise. The plot of plant
and observer states are as shown in Fig.(2a) and (2b). The Fig. (2c) shows auxiliary control w,
designed for the augmented system, while the actual control u to the system is smooth as shown
in Fig.(2d). Finaly the sliding surface is in Fig.(2e).
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Figure 2: IDO based model following DSMC control of a uncertain plant.

RT&A, No 1 (72)
 Volume 18, March 2023

72



S. S. Nerkar, B. M. Patre
Design of IDO based model following DSMC.

4. Stability analysis

The model is considered to be stable by design so for the designed control, stability of the system
is proved. Consider the Lyapunov function as,

V =
1
2

σ2 (29)

Taking derivative we get,
V̇ = σσ̇ (30)

From the equation(21)

σ̇ =CA3x + CA2Bu + CA2Be + CABw + CABė

+ λ1y′′ + λ0y′ (31)

During sliding motion, the control term weq substituting in the equation(31) we get,

σ̇ =CA3 x̃ + CA2Bẽ + CAB ˙̃e + λ1ỹ′′ + λ0ỹ′ − Kσ̂

+ CABwn (32)

The observer error x̃ in equation (19) converges to zero asymptotically, if Kob is chosen appropriatly.
Then, σ̇ is,

σ̇ = CABwn − Kσ̂ + ẽ∗ (33)

So the equation (30) becomes,

V̇ =σẽ∗ − Kσσ̂ − σCAB(CAB)−1K1sign(σ̂) (34)

V̇ =σẽ∗ − Kσσ̂ − σK1
|σ̂|
σ̂

V̇ ≤ |σ|
(
|ẽ∗| − K |σ̂| − K1

|σ̂|
|σ̂|

)
V̇ ≤ |σ|

(
|ẽ∗| − K |σ̂| − K1

)
As K1 > |ẽ∗|,
K1 and K are both positive constants, V̇ is negative definite.
Thus the sliding manifold is stable.

5. Application of IDO based model following DSMC control for

position control of DC servomotor

The real time implementation of the model following DSMC strategy discussed in Sect. 3 has been
done for position control of the Quanser servomotor SRV02. The block diagram of IDO based
model following DSMC control of the servomotor is as shown in Fig.(3). It has potentiometer,
encoder and tachometer. The potentiometer and encoder sensors measures the angular position
of the load gear and tachometer is used to measure its velocity. The different parameters of DC
servomotor are considered as mentioned in Quanser setup manual [17]. The constant parameters
are λ0 = 15, λ1 = 7, K = 1 and K1 = 20. Here uniform measurement noise as a sensor noise of
absolute magnitude 0.01 is added. The observer poles are selected at 1.5 ∗ [−5 − 9 − 11]. The
inital condition for states are considered as [0 0]T and [1 1]T respectively for the consideration.

Experimentation has done under different considerations like with and without noise for
the observer based model following DSMC strategy. Fig.(4), (5) shows the system and model
states where the initial mismatch is due to the initial conditions of the model and system. The
experimental results have proved the efficacy of proposed design for real time position control of
DC motor.
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Figure 3: IDO based model following dynamic sliding mode control of DC servomotor with measurement noise

The effectiveness of the scheme is assessed through the results shown in Fig. (4) are taken
from the encoder for output without any measuring noise. Fig.(4a) and Fig.(4b) shows the states
of the model, system and observer, where one can observe that the observer has followed the
model dynamics as the estimation is accurate. Fig.(4c) shows the chattering in the auxiliary
control w while the actual control to the system u is smooth control shown in Fig.(4d). The sliding
surface σ is shown in Fig. (4e).

IDO based DSMC design estimates the states and uncertainty simultaneously, It reduces
reduces the need of sensors. In order to demonstrate robustness of the controller, the noisy output
is taken from the potentiometer that is the control is tested for the system with measurement
noise and uncertanity. The results are shown in Fig.(5a). As the output from the potentiometer is
noisy, the second state calculated consists heavy chattering due to the addition of measurement
noise as shown in Fig. (5b), model and the observer states are smooth at the same time. Due to it,
the auxiliary control is affected as shown in Fig.(5c) but the actual control driving the system is
smooth signal as shown in Fig.(5d). The sliding surface σ is shown in Fig. (5e). With the design
of DSMC the actual system is driven by the smooth control though the states are contaminated
with the measurement noise.

6. Conclusion

In this paper, performance analysis of observer based estimation based techniques has been
carried out for position control of DC motor. The effectiveness of the proposed schemes has been
validated in presence of uncertanity due to unmodeled dynamics and disturbance along with
measurement noise. DSMC is made more robust by augmenting a observer. IDO based model
following DSMC estimates the system states as well as the uncertainty. Due to the simultaneous
estimation of states and uncertainty, it reduce the number of sensors and robustify the control
despite unknown disturbance and uncertainties in the system parameters or load changes. The
simulation and experimental results show that the proposed IDO based model following DSMC is
robust and follows the model precisely. The essential boundness of lumped uncertainty estimation
error and sliding manifold is demonstrated by Lyapunov theory.
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Figure 4: IDO based model following DSMC control of DC servomotor without measuring noise.
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Abstract

Fault tree analysis (FTA) is a top down approach that was initially used and developed in Bell laboratories
in the year 1962 by H Watson and A Mearns for the intercontinental ballistic missile (ICBM) system for
the US air force called the Minuteman System. Since then, the technique has been adopted and adapted
by many companies who are interested in reliability engineering and dangerous technology. Today FTA is
widely used in system safety and reliability engineering, aerospace, nuclear power, chemical and process,
pharmaceutical, petrochemical and other high-hazard industries; but is also used in fields as diverse as risk
factor identification relating to social service system failure and in software engineering for debugging
purposes and is closely related to cause-elimination technique used to detect bugs. Now FTA is considered
as one of the most important system reliability and safety analysis techniques. Fault tree analysis has
proved to be a useful analytical tool to analyze the potential for system or machine failure by graphically
and mathematically representing the system itself. It is a top-down approach that reverse-engineers the
root causes of a potential failure through the root cause analysis process. Our main contribution is to
develop a mathematical theory of fault tree analysis using some statistical concepts relating to probability
of series and parallel systems to set up a mathematical model that represent any hierarchical control
system to calculate its reliability for both homogeneous and nonhomogeneous structures. A Fault Tree is
a hierarchical model used to analyze the probability that an event will occur. Fault Tree provides all the
tools needed to build graphic representations of large-scale problems gracefully so we can use it to set up
a mathematical model that represent any hierarchical control system and evaluate its reliability using our
general mathematical formula that represent the structure in its two cases. The graphical representation
(fault tree diagram) for a hierarchical controlled system enabled us to set up a mathematical general
formula that help us to evaluate the reliability of the system in general case (nonhomogeneous structure)
and another derived formula for the special case (homogeneous structure). This analysis may help to
understand how one or more small failure events lead to a catastrophic failure.

Keywords: Reliability, Mathematical Modeling, Analysis of Fault Tree, Serial and Parallel Systems

1. Introduction

Reliability as a state can be a factor of of many parameters; such as, Mean Time To Failure,
Reliability, Availability and few others. These terms have been developing over the last six decade.
Its evident that such a concept will be portrayed in a structure of system or systems, Barlow in
1973 and Fussel in 1974, discussed the fault tree construction and concept respectively [1 and 2].
In some articles it has been observed that many of the quantities computed by fault tree analysis
can also be computed using the concepts and techniques of reliability theory. Henceforth, this
paper aims to build and construct an intuitive rigor of understanding reliability in the realm of
Mathematical Statistics, in form of a fault tree mathematical model, whereas we aim to introduce
the concepts in a matter of detail, building the theory upon prior establishments, and presenting
a a general model by the end, incorporating the aforementioned usage of the prior sections. It
serves, to add, that general assumptions will be accounted for and discussed, also mentioned
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when done otherwise. The Introduction section will serve as a block of terms, dissected into
multi-topics that adds up to the required definition this paper aims to deliver. For in Section
1 we get to understand what reliability as a concept with their basic definitions. In Section 2
we discuss how system connections influence their reliability, and least in Section 3; We present
and elaborate the homogeneity of a system of fault tree representation, giving a derived general
model by the end.

1.1. Basic Definitions and Concepts

In this section we introduce some basic terms as reliability and its components, as well as its rigor
definitions.

1.1.1 Reliability: What we quantify as reliable

Reliability purposefulness can be interpreted as; it serves as a developmental method for Engi-
neering. In which it helps in: cost, effort, and time efficiency. It is essential to grasp that reliability
is not a property, but a characteristic of an item, in which it is expressed by the probability that
the said system will function as expected for a stated time interval [3]. It is usually denoted by R.
One can view reliability in other terms, namely, a quantitative approach, as from said approach,
the one thing we care about the most, is how long a system stays operational with no interruption.
However, this does not imply that redundant parts might not fail, as they can fail and be repaired
without causing an operational interruption at system level. Thus, one may conclude that, the
concept of reliability can be applied to both repairable and non-repairable systems.

Definition 1.1 (Reliability). Given n statistical identical systems, which starts into operations at
t = 0, v̄ < n is to accomplish them successfully, where v̄ ∈ Rn.Then, We can write that the ratio
v̄
n is a mere random variable which converges to the true value of the reliability as n increases.
Namely, limn→∞

v̄
n = R: | v̄

n − R| < ϵ

Definition 1.2 (Reliability). It is the ability of an object (or process or service) to function as
expected to fulfil the demanded tasks under given conditions. In other accurate words reliability
is the probability a component or system will perform as designed. In which the value would
range from [0,1]. reliability is related to failure rate by a simple exponential function: R = e−λt

Where R is the reliability, e is the Euler constant, λ is the failure rate, and t is the time.

1.1.2 Essential Metrics: Basic Definitions

Few Metrics need to be defined in order to be able to calculate the reliability of a system [3, 4,
and 5].

Definition 1.3 (Failure rate (λ)). The frequency of a component failure per unit time, it is an
essential metric that is used to calculating either reliability or availability.

λ = 1
MTBF ≡ 1

MTTF

Definition 1.4 (Repair rate (µ)). The frequency of successful repair operations performed on a
failed component per unit time.

µ = 1
MTTR

Definition 1.5 (Mean time to failure (MTTF)). The average time duration before a non-repairable
system component fails.

MTTF = ∑ Hours o f Operation
∑ Units ≡ 1

λ

Definition 1.6 (Mean time between failure (MTBF)). The average time duration between inherent
failures of a repairable system component.

MTBF = ∑ Hours o f Operation
∑ Failurs ≡ 1

λ ≡ MTTF+ MTTR
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2. System Types: Analysis

What we are concerned about mathematically, when we are assessing the reliability of a system is
its own basic sub-systems. The purpose of this paper, is to detail the explanation to the process,
given a system or a network of systems that are adjoined together. The physical layout or rather
the connection of the system is of a cruciality to both its functioning, and its reliability.

2.1. Series Systems

A network with N systems or blocks in a series link (Figure 1 [3]) where the failure of any one
item causes the entire system to fail [3]. As a result, for a series system to perform properly, all of
its components must function properly within the time range specified t.

Figure 1: Series System

Definition 2.1. (Reliability of a Series System) The reliability of a system in a series connection is
the probability that all N items succeed during its intended interval of time t.

Rs(t) = R1(t) · R2(t) . . . RN(t) =
N

∏
i=1

Ri(t)

A practical conclusion is that the reliability of a series system is always lower than the reliability
of any of its components.

We are also concerned with the instantaneous failure rate, one can conclude such an outcome
by recalling the definition of λ(t):

λs(t) =
−d ln ∏N

i=1 Ri(t)
dt

≡
N

∑
i=1

−d ln Ri(t)
dt

≡
N

∑
i=1

λi(t)

2.2. Parallel Systems

In a parallel arrangement or link, a system failure is caused by the failure of all components, not
just one. As a result, the performance of only one unit will be enough to ensure the system’s
overall success.

Figure 2: Parallel System
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Definition 2.2 (Reliability of a Parallel System). For a set of N independent items connected in
parallel (Figure 2 [3]), their failure rate is be given by:

Fs(t) = F1(t) · F2(t) . . . FN(t) =
N

∏
i=1

Fi(t)

Since Ri(t) = 1 − Fi(t)

Rs(t) = 1 − Fs(t) = 1 −
N

∏
i=1

[1 − Ri(t)]

The instantaneous failure rate is still an essential metric, however in parallel configuration,
it is not as trivial to come up with one. one can start with the definition that the failure rate is
h(t) = −d ln R(t)

dt , yet it will lead to a complicated formula, for instance, let a system of two units
with constant failure rate be connected in parallel, their failure rate can be given by;

λs(t) =
λ1 exp (−λ1t) + λ2 exp (−λ2t)− (λ1 + λ2) exp (−(λ1 + λ2)t)

exp (−λ1t) + exp (−λ2t)− exp (−(λ1 + λ2)t)

For the same instance, or case; of an N identical units in parallel with a constant failure rate, their
reliability can be put to as:

Rs(t) = 1 − [1 − exp (−λt)]N

2.3. General Structure

Consider the K-out-of-N system, which is a more general structure of series and parallel systems
(Figure 3 [3]). If any combination of K units out of N independent units works in this type of
system, the system is guaranteed to succeed. Assume that all units are identical for the sake of
simplicity. The likelihood that the system will work is represented by the binomial distribution
[7]:

Rs(t) =
N

∑
r=K

(
N
r

)
[R(t)]r[1 − R(t)]N−r = 1 −

K−1

∑
r=0

(
N
r

)
[R(t)]r[1 − R(t)]N−r

The majority of practical systems are neither parallel nor series, but rather a blend of the two.
Parallel-series systems are a common name for these systems. A complex system that is neither
series nor parallel alone, nor parallel-series, is another sort of complex system. Which is referred
to as nonparallel-series system (Figure 4 [3]).

Figure 3: A parallel-series system Figure 4: A nonparallel-series system

3. Homogeneity of a System

In this section we discuss the homogeneity of a system in form of a fault tree, where their nodes
branching, and rate of distribution affect their reliability. We start by introducing what a fault
tree is, then how they are analyzed.
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3.0.1 Fault Trees and Reliability Block Diagrams

It is important to understand the essential difference between RBDs and fault tree diagrams;
RBDs work in success space while, FTDs work in failure space; the FTDs addresses the failure
combinations while the RBDs address the success combinations. Also FTDs are traditionally used
in analyzing fixed probabilities, while RBDs may include time-varying distributions for the blocks’
failure or success, in addition to other properties like restoration or repair distributions [5 and 6].

3.0.2 Fault Tree Analysis

Fault Tree Analysis can be explained simply as an analytical technique that describes an undesired
state of the system. normally that is in a critical state from a safety standpoint. The system
is inspected in the environmental context and operation to extract all credible ways for the
undesired event to occur [3,4, and 5]. It is also important to point out that a fault tree is a graphic
model of the different sequential and parallel combinations of faults that will happen in the
investigated model. In fact, using the model of fault tree is more convenient to deal with, because
it is qualitative model that enable us to evaluate it quantitatively and do not change the qualitative
nature of the model itself.

3.1. Homogeneous and Non-homogeneous systems: Analysis

The homogeneity of a system influences the reliability of the whole system [3] and that can be
seen evident in a fault tree, where some demonstrate a homogeneous structure, and some do
not. We represent in Figure 5 the model of general fault tree, and define how said figure can be
interpreted to be homogeneous or non-homogeneous.

Figure 5: Generic Tree

Definition 3.1 (Homogeneity of a tree). A tree is said to be homogeneous if and only if, the
number of its sub nodes is equal to the number of every other sub node on any level from the
root. Mainly, n1k = n2m = nij

Definition 3.2 (Non-Homogeneity of a tree). A tree is said to be non-homogeneous if and only if,
the number of its sub nodes is not equal to at least one other sub node on any level from the root.
Mainly, n1k ̸= n2m ̸= nij
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3.2. General Case

Figure 6: φ − Tree

In Figure 6, let P0 be the reliability of the root; q1, . . . , qm are to be the reliability of the edges, and
r1, . . . , rm be the reliability of the nodes of the first level, where m is the number of nodes of the
first level; qi1 , . . . , qini be the reliability of edges of second level in the i-th subtree; ri1 , . . . , rini
be the reliability of nodes of the second level in the i-th subtree, where ni is the number of
edges (nodes) in the i-th subtree. It goes evident to see that the number of leaves is equal
to N, where; N = n1 + n2 + . . . + nm such that n1 ≤ n2 ≤ . . . ≤ nm . For the purpose of
generality, consider that an arbitrary path from the root to the end is unfailing (successful), if
all nodes and edges on said path is unfailing (successful). Now we find the reliability of the
tree (φ) through V paths, throughout the derivation such reliability is detonated ℘(φ; V); where;
V = 1, 2, . . . , N. N ∈ N-{0}.

Theorem 1.

℘(φ; V) = P0 ×
m

∑
k=0

∑
A,A⊂{1,...,m}

|A|=k

[
∏
i∈A

(
1 − Pi

(
1 −

ni

∏
j=1

(
1 − Pij

)))]
×

 ∑
a1+...+am=V
i∈A =⇒ ai=0

∏
i/∈A

(Pi ×

 ∑
B,B⊂{1,...,ni}

|B|=ai

∏
j∈B

Pij ×

 ∏
j/∈B

1≤j≤ni

(
1 − Pij

)





Where:
Pi = riqi, Pij = rijqij, i = 1, . . . , m i ≤ j ≤ nj

∏
ϕ

= 1, ∑
ϕ

= 0

Proof.
We proof the theorem by showing that the probability of failure throughout all paths from the
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root to the i-th subtree with ni nodes is equal to

1 − Pi

(
1 −

nj

∏
j=1

(
1 − Pij

))
The reliability of the fault tree through exactly a paths (1≤ a ≤ni) from the root to the i-th subtree
is equal to

Pi ×

 ∑
B,B⊂{1,...,ni}

|B|=ai

∏
j∈B

Pij ×

 ∏
j/∈B

1≤j≤ni

(
1 − Pij

)



Further we remark that the event of having exactly V paths to operate successfully is considered
the sum of all mutually exclusive events of the types; there are exactly a1 paths operate simul-
taneously successfully ending in the first subtree, a2 paths operate simultaneously successfully
ending in the second subtree, and am paths operate simultaneously successfully ending in the
m-th subtree; where a1 + a2 + . . . + am = V. From here it follows

℘(φ; V) = P0 ×

 ∑
a1+...+am=V

0≤aj≤nj

m

∏
i=1

Ω(i, ai)


where

Ω(i, ai)=



1 − Pi

(
1 −

nj

∏
j=1

(
1 − Pij

))
ai = 0

Pi ×

 ∑
B,B⊂{1,...,ni}

|B|=ai

∏j∈B Pij ×

 ∏
j/∈B

1≤j≤ni

(
1 − Pij

)

 ai ̸= 0

■

3.3. Special Case

For the special case that the system behaves in a homogeneous matter as per Definition 3.1.
Namely, this implies that: q1 = q2 = . . . = qm = q0, and for the second level operating on the same
type and identical conditions: q11 = . . . = q1n1

= q21 = . . . = q2n2 = . . . = qm1 = . . . = qmnm = q1.
It trivially follows that r11 = . . . = r1n1 = r21 = . . . = r2n2 = . . . = rm1 = . . . = rmnm = r1, and
n1 = n2 = . . . = nm = n.
By transforming the formula of Theorem 1, by change of assertions; namely: P1 = P2 = Pm =
q0r = p1; P11 = P12 = . . . = Pm1 = . . . = Pmnm = q1r = p2.
Let ℘( φ1 ; V) denote the reliability of such case, from Section 2.3 it follows:

Corollary 1.

℘ ( φ1 ; V) = p0 ×
m

∑
k=⌈ V

n ⌉

{(
m
k

)
× pk

1 ×
[
1 − p1 ×

(
1 − (1 − p2)

n)]m−k ×
(

k × n
V

)
× pV

2 × (1 − p2)
(k×n)−V

}

Where; (m
k ) =

m!
k!(m−k)! And

⌈
V
n

⌉
is the smallest integer greater than V

n

4. Conclusion

A theoretical study is introduced for a mathematical model that can describe a hierarchical
control system (homogeneous and non-homogeneous) in order to evaluate its reliability. This
investigation of the reliability is highly suitable for study of many Engineering applications
ranging from industrial process control, through production management to Economic and other
systems.
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Abstract

In this paper, a scheme for constructing software reliability growth model based on Non-Homogeneous
Poisson Process is proposed. Here, we consider the software reliability growth model that incorporates
with imperfect debugging, change point and testing effort. However, most researchers assume a constant
detection rate per fault in deriving their software reliability models. They suppose that all faults have
equal probability of being detected during the software testing process, and the rate remains constant
over the intervals between fault occurrences. In reality, the fault detection rate strongly depends on the
skill of test teams, program size, and software testability. Also in most realistic situations, fault repair
has associated with a fault re-introduction rate due to imperfect debugging phenomenon. In this case,
the fault detection rate and fault introduction rate will be changed during the software development
process. Therefore, here we incorporate both generalized logistic testing-effort function, change-point
parameter into software reliability modelling. The Least Square Estimation approach is used to estimate
the unknown parameters of the new model. So in our new proposed model we collect software testing data
from real application and utilize it to illustrate the proposed model. Experimental results show that the
proposed framework to incorporate both testing-effort and change-point for Imperfect-Debugging SRGM
has a fairly accurate prediction capability.

Keywords: Stochastic software reliability model , Non-homogeneous Poisson process, Imperfect
debugging, Testing effort, Change point.

Acronyms and Notations
NHPP nonhomogeneous Poisson process
LSE least squares estimation
SRGM software reliability growth model
TEF testing effort function
ID imperfect debugging
m(t) mean value function, i.e., the expected number of software failures by time t
a(t) error content function
b(t) error detection rate per error at time t
R(t) reliability function
R(x/t) conditional software reliability
β fault introduction rate
w(t) current testing-effort estimated by a logistic testing effort function
W(t) cumulative testing effort estimated by a logistic testing effort function
τ change point
λ(t) failure density function
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1. Introduction

There are many reasons that a software fails, but usually a software fails because of design issue.
Other failures occur when the code is written, or when changes are introduced to a working
system. For the past several decades, various statistical models have been proposed to assess the
software reliability. So, we have reviewed many previous well known models. The NHPP based
software reliability growth models are proved quite successful in practical software reliability
engineering [1] . The main issue of the NHPP model is to determine an appropriate mean value
function to denote the expected number of failures experienced up to a certain time point. Model
parameters can be estimated by using maximum likelihood or least square estimate. Once the
mean value function is determined the software reliability and the related measurements can be
easily derived.

We have found that most SRGMS use calendar time as a unit to fault detection and removal
[2, 3, 5, 8, 16], but very few use human power, number of test case runs, or CPU time as a unit [12].
Researchers have proposed SRGMs that incorporates the concept of TEF into an NHPP model to
get a better description on the software fault phenomenon [4, 6, 7, 9, 10, 11, 13, 15, 17, 18, 19, 20].
TEF has the advantage of relating the work profile more directly to the natural structure of
software development. Many researchers assume that all faults have equal probability of being
detected during the software testing process, and the rate remains constant over the intervals
between fault occurrences, constant detection rate per fault, but we, in our model, assume that
the rate changes before and after a fixed point. Most authors also assume that the once the fault is
removed there will be no new faults introduced but we assume that even during debugging new
faults will be introduced, and also introduction rate may not be same during overall testing. So
in our model, there will be a imperfect debugging with change point and testing effort scenario.

2. Related work

In this section, we reviewe the well-known NHPP SRGMs and then introduce our new general
model that incorporates both the imperfect debugging, change-point problem and testing effort.
So we first start with some well known SRGMs.

2.1. A general NHPP model

Let N(t) be a counting process representing the cumulative number of software failure by time
t. The counting process is shown to be a NHPP with a mean value function m(t). Mean value
function represents the expected number of failures by time t. Goel and Okumoto [2] assume
that number of software failures is time independent and software failure density is proportional
to residual fault content. Thus m(t) can be solved by solving the following differential equation.

λ(t) =
dm(t)

dt
= b(a − m(t)) (1)

Where a denotes the initial number of faults contained in a program and b represents the fault
detection rate. The result shows that

m(t) = a(1 − e−b t) (2)

The conditional software reliability, R(x|t), is defined as the probability that there is no
failure observed in the time period (t, t + x), given that the last failure occurred at a time point
t(t ≥ 0; x > 0). Given the mean value function m(t), the conditional software reliability can be
shown as

R(x|t) = e−[m(t+x)−m(t)] = exp[−a(e−bt − e−b(t+x)] (3)
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2.2. Imperfect software debugging models

In the general NHPP model, a constant fault content function implies the perfect debugging
assumption,i.e., no new faults are introduced during the debugging process. Pham introduced an
NHPP SRGM in imperfect debugging environment. He assumed if detected faults are removed,
then there is a possibility of introduction of new faults with a constant rate β. Let a(t) be
the number of faults to be eventually detected (denoted by a) plus the number of new faults
introduced to the program by time t, the mean value function m(t) can be given as the solution
of the following system of differential equations:

∂m(t)
∂t

= b[a(t)− m(t)],
∂a(t)

∂t
= β

∂m(t)
∂t

(4)

Solving the above equations, we can obtain the mean value function and conditional software
reliability, respectively, as follows

m(t) =
a

1 − β

[
1 − e−(1−β)bt

]
, R(x|t) = exp

(
−m(x)e−(1−β)bt

)
(5)

2.3. An NHPP model with change-point

Many SRGMs suppose the fault detection rate is a constant, or a monotonically increasing func-
tion. The failure intensity is expected to be a continuous function of time. An increasing fault
detection rate function represents the debugging process with the learning phenomenon. But the
fault detection rate can be affected by many factors such as the testing strategy and resources
allocation. During a software testing process, there is a possibility that the underlying fault
detection rate function is changed at some time moments τ, called as change-point.

Chang [7] considered the change-point problems in the NHPP SRGMs. The parameters of
the NHPP with change-point models are estimated by the weighted least square method. Let
the parameter τ be the change point that is considered unknown and is to be estimated from the
data. The fault detection rate function is defined as :

b(t) =
{

b1 when 0 ≤ t ≤ τ,
b2 when t > τ

On solving for m(t)

m(t) =
{

a(1 − e−b1t) when 0 ≤ t ≤ τ,
a(1 − e−b1τ−b2(t−τ) when t > τ

Reliability function will be

R(x|t) =


exp

{
−a

(
e−b1t − e−b1(t+x)

)}
when t ≤ t + x ≤ τ,

exp
{
−a

(
e−b1t − e−b1τ−b2(t+x−τ)

)}
when t ≤ τ ≤ t + x

exp
{
−a

(
e−b1τ−b2(t−τ) − e−b1(t+x)

)}
when τ < t

2.4. Imperfect software debugging model with change point

To consider the NHPP SRGM that integrates imperfect debugging with change-point problem,
the following assumptions are made:

(a) When detected faults are removed at time t, there is a possibility of introduction new faults
at a rate β(t).

β(t) =
{

β1 when 0 ≤ t ≤ τ,
β2 when t > τ
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(b) The fault detection rate represented as following is a step function

b(t) =
{

b1 when 0 ≤ t ≤ τ,
b2 when t > τ

(c) A NHPP model of fault detection phenomenon in the software system.

The testing strategy and resource allocation can be tracked all the time during the fault detection
process. It may be more reasonable to reconsider that the change-point (τ) is given. According to
these assumptions, one can derive the new set of differential equations to obtain the new mean
value function.

∂m(t)
∂t

= b[a(t)− m(t)],
∂a(t)

∂t
= β

∂m(t)
∂t

, a(0) = a, m(0) = 0 (6)

Solving the differential equation (6)

m(t) =

{ a
1−β1

[1 − e−(1−β1)b1t] when 0 ≤ t ≤ τ,
a

1−β2
[1 − e−(1−β1)b1τ−(1−β2)b2(t−τ)] + m(τ)(β1−β2)

1−β2
when t > τ

λ(t) =
∂m(t)

∂t
=

{
ab1e−(1−β1)b1t when 0 ≤ t ≤ τ,
ab2e−(1−β1)b1τ−(1−β2)b2(t−τ) when t > τ

3. Proposed model

In this section, we propose a new Software Reliability Model that incorporates imperfect debug-
ging with change-point and testing effort. Beginning with the necessity of testing in software
reliability, we will make some assumptions for our model to construct it. In the beginning
of the testing phase, many faults can be discovered by inspection and the fault detection rate
depends on the fault discovery efficiency, the fault density, the testing effort, and the inspection
rate. Later, the fault detection rate depends on some more additional parameters such as the
failure-to-fault relationship, the code expansion factor, the skill of test teams, program size, and
software testability.

Here we use a NHPP model with TEF and The following assumptions are made for the same.

(a) The fault removal process follows the Non-Homogeneous Poisson Process (NHPP).

(b) The software system is subject to failures at random times caused by the manifestation of
remaining faults in the system.

(c) The mean number of faults detected in the time interval (t, t + λt) by the current testing-
effort expenditures is proportional to the mean number of remaining faults in the system.

(d) The consumption curve of testing-effort is modelled by a generalized logistic TEF.

W(t) =
N

1 + A exp[−αt]

where

N = total amount of testing-effort to be eventually consumed,

α = consumption rate of testing-effort expenditures,

A = constant
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(e) When detected faults are removed at time t, it is possible to introduce new faults with
introduction rate β(t).

β(t) =
{

β1 when 0 ≤ t ≤ τ,
β2 when t > τ

(f) The fault detection rate represented as following is a step function.

b(t) =
{

b1 when 0 ≤ t ≤ τ,
b2 when t > τ

We can describe an SRGM based on generalized logistic TEF with fault introduction rate and
change-point as follow:

dm(t)
dt

*
1

w(t)
= b(t) ∗ (a − m(t))

∂a(t)
∂t

= β
∂m(t)

∂t
(7)

a(0) = a, m(0) = 0

W(t) is defined as-

W(t) =
∫ t

0
w(τ) dτ

From the above differential equation, the mean value function will be

m(t) =


a

1−β1

[
1 − e−(1−β1)b1(W(t)−W(0))

]
when 0 ≤ t ≤ τ,

a
1−β2

[
1 − e−(1−β1)b1(W(τ)−W(0))−(1−β2)b2(W(t)−W(τ))

]
+ m(τ)(β1−β2)

1−β2
when t > τ

Failure density function is

λ(t) =
∂m(t)

∂t
=

{
ab1w(t)e−(1−β1)b1(W(t)−w(0)) when 0 ≤ t ≤ τ,
ab2w(t)e−(1−β1)b1(W(τ)−W(0))−(1−β2)b2((W(t)−W(τ)) when t > τ

The results for mean value function and failure intensity function obtained have integrated the
imperfect debugging change point problem and testing effort problem into a single NHPP SRGM.
The unknown parameters for the above equations can be calculated using LSE.

4. Numerical and Data Analysis

4.1. Description of real dataset

To verify the new proposed model and to evaluate the performance of the SRGM, We have taken
a dataset from Ohba [14]. The total testing time, cumulative number of software failures and
cumulative testing consumption of generalized logistic TEF are recorded.
To assume the change point for the given set of data given in Table (1), graph (1a) of the cumulated
number of faults versus time has been considered. It is found that it is not differentiable around
11.2.
During the testing period, 20 Hours of experiments, 47.65 CPU Hours were consumed and about
128 software errors are removed. To find the unknown parameters of the logistic testing effort
function, we have used LSE. Using LSE, the unknown parameters are found to be N = 54.823,
A = 13.033, α = 0.226.
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Figure 1: CF and TEF versus time

Table 1: Ohba data set

time cumulative failure testing effort consumption time cumulative failure testing effort consumption
1.00 27.00 2.45 11.00 97.00 26.23
2.00 43.00 4.90 12.00 104.00 27.67
3.00 54.00 6.86 13.00 106.00 30.93
4.00 64.00 7.84 14.00 111.00 34.77
5.00 75.00 9.52 15.00 116.00 38.61
6.00 83.00 12.89 16.00 122.00 40.91
7.00 84.00 17.10 17.00 122.00 42.67
8.00 89.00 20.47 18.00 127.00 44.66
9.00 92.00 21.45 19.00 128.00 47.65

10.00 93.00 23.35

4.2. Model Comparison

In the paper, we have compared the accuracy with Delayed S-shaped model [3] and Huan-Jyh
Shyur’s imperfect debugging and change point model [1].

No. Model m(t)

1 Delayed S-shaped [3] m(t) = a
(

1 − (1 + bt) e−bt
)

2 Huan-Jyh Shyur’s model [1] m(t) =


a

1−β1

[
1 − e−(1−β1)b1t

]
when 0 ≤ t ≤ τ,

a
1−β2

[
1 − e−(1−β1)b1τ−(1−β2)b2(t−τ)

]
+ m(τ)(β1−β2)

1−β2
when t > τ

3 New model m(t) =


a

1−β1

[
1 − e−(1−β1)b1(W(t)−W(0))

]
when 0 ≤ t ≤ τ,

a
1−β2

[
1 − e−(1−β1)b1(W(τ)−W(0))−(1−β2)b2(W(t)−W(τ))

]
+ m(τ)(β1−β2)

1−β2
when t > τ

4.3. Comparision Criteria

In order to compare the performance of the proposed model with other models, we have used
MSE [17]. MSE is defined as:

MSE =
n

∑
i=1

[m(ti)− mi]
2

D

where m(ti), mi and D represent estimated values, observed values and degrees of freedom
respectively.

5. Results

The unknown parameters in the proposed model are a, b1, b2 and the unknown parameters in the
testing effort function are α, N, A. We have examined the proposed model with the given dataset,
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Figure 2: Mean value functions m(t) of all models for dataset1

and the results from the TEF i.e. N = 54.826, α = 13.033, A = 0.226. The fault introduction
rate before change point β1 is taken as 0.2 and the fault introduction rate after change point β2
is taken as 0.5. Using LSE, the values of a, b1 and b2 are found to be 90.0059 0.1834 and 0.388
respectively.

Table 2: Estimation of parameters for datasets

No. Model Parameter MSE
1 Delayed S-shaped [3] a = 113.9062, b = 0.438 127.0564
2 Huan-Jyh Shyur’s model [1] a = 80.75, b1 = 0.335, b2 = 0.5 195.4614
3 New model a = 90.75, b1 = 0.1834, b2 = 0.3887 101.8713

We have compared the proposed model with previous two well known models and the result
shows that with introduction of testing effort function, performance of the model has increased.

6. Conclusion

In this paper, we present a new change point software reliability model considering the testing
effort function based on NHPP and imperfect debugging environment. A generalized logistic
testing effort function and effect of change point in a imperfect debugging environment are
discussed and the explicit mean value function for the new model is presented. Furthermore,
comparisons of this model with several existing change point, imperfect debugging models have
also been provided in terms of values of MSE on Ohba data set. Numerical results demonstrate
that the proposed model can give a better goodness-of-fit. It seems that this proposed model,
though a little more sophisticated but By means of incorporating both ID, testing effort and the
effect of change point, provides a more powerful property to model the changing fault detection
rate, which describes more realistically actual effects of the real testing process.
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Abstract

A novel method for generating families of continuous distributions is presented by introducing a new
parameter referred as Pi-Exponentiated Transformation (PET). Various properties of the PET method
have been obtained. The method has been specialized on two-parameter Weibull distribution, and a
new distribution called Pi-Exponentiated Weibull (PEW) is attained. A comprehensive mathematical
treatment of the new proposal is provided. Closed-form expressions for the density function, distribution
function, reliability function, hazard rate function have been provided. The PEW distribution is quite
flexible, and it can be used to model data with decreasing, increasing or bathtub shaped hazard rates.
Simulation study has been carried out to assess the behavior of the model parameters. Finally, the
effectiveness of the suggested method is demonstrated by examining two real-life data sets.

Keywords: Pi-Exponentiated Transformation; Quantile Function; Reliability Function; Mean
Waiting Time; Maximum Likelihood Estimation.

1. Introduction

Classical distributions are extensively employed in many applicable domains, including engi-
neering, environmental studies, medical sciences, economics, actuarial, finance, insurance etc.
to represent lifetime data. These distributions have been successfully implemented in all the
fields listed above. However, in many domains, like reliability engineering and medical science,
these conventional distributions do not offer the perfect fit when the data follow non-monotonic
failure rates. As a result, generalized versions of these classical distributions are required to
model reliability engineering and medical science data. Therefore, researchers became inspired to
develop new modifications to theses existing distributions. These modified distributions offer
more flexibility to the baseline model by introducing one or more extra parameters. In recent
advances in distribution theory, researchers have shown a keen interest in proposing new methods
for expanding the family of lifetime distributions. This has been accomplished through a variety
of methods. Some well-known methods are:

• The exponentiated transformation initiated by Mudholkar and Srivastava [16], and is given
by

F(x; α) = (ψ(x))α; α > 0, x ∈ R.

Where ψ(x) is the cumulative distribution function (cdf) of baseline model.
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• The beta-generated technique was proposed by Eugene et al. [7] that makes use of the
beta distribution as the generator with parameters a and b to establish the beta generated
distributions.

F(x) =

ψ(x)∫
0

r(s)ds.

Where r(s) is the probability density function (pdf) of a beta random variable (rv) and ψ(x)
is the cdf of any rv X.

• The quadratic rank transmutation map approach proposed by Shaw and Buckley [19] and
is given as

F(x; ξ) = (1 + ξ)ψ(x)− ξψ(x)2, |ξ| ≤ 1, x ∈ R.

Where ψ(x) is the cdf of an existing distribution.

• Minimum Guarantee distribution proposed by Kumar et al. [9] and is given by

F(x) = e1− 1
ψ(x) , x ∈ R.

Where ψ(x) is the cdf of an existing distribution.

• Log-transformation proposed by Maurya et al. [15] and is given by

F(x) = 1 − log(2 − ψ(x))
log2

, x ∈ R.

Where ψ(x) is the cdf of an existing distribution.

• A new transmuted cumulative distribution function based on the Verhulst logistic function
proposed by Kyurkchiev [10] and is given by

F(x) =
2ψ(x)

1 + ψ(x)
.

Where ψ(x) is the cdf of an existing distribution.

• Marshall and Olkin [14] proposed a general method for generating a new family of life
distributions defined in terms of survival function as:

F̄(x; α) =
αψ̄(x)

1 − ᾱψ̄(x)
=

αψ̄(x)
ψ(x) + αψ̄(x)

; α > 0, x ∈ R.

Where ᾱ = 1 − α and ψ̄(x) = 1 − ψ(x) is the survival function of the random variable X.

• Anwar et al. [8] presented a new method based on trigonometric function called Sine-
Exponentiated-Transformation (SET). The cdf of SET family of distributions for x ∈ R is
defined as

FSET(x, α) = ψ(x) sin
(π

2
ψα(x)

)
; α ≥ 0.

Where ψ(x) is the cdf of a continuous rv X.
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• Lone et al. [11] proposed a new method for generating a family of continuous distributions
called ratio trasformation (RT) method. The cdf of RT method for x ∈ R is defined as

FRT(x; α) =
ψ(x)

1 + α − αψ(x)
; α > 0.

Where ψ(x) is the cdf of a continuous rv X.

• Recently, Lone et al. [12] introduced an innovative method for generating a family of
continuous distributions called the MTI method. They employed MTI method on Weibull
distribution and derived a new three-parameter MTI Weibull (MTIW) distribution. The cdf
of MTI method for x ∈ R is defined as

FMTI(x; α) =
αψ(x)

α − logα ψ̄(x)
; α > 0.

Where ψ̄(x) = 1 − ψ(x) is the survival function of the random variable X.

In this manuscript a novel method for introducing greater flexibility to a family of distribution
functions by bringing in new parameter to the given family has been introduced. This novel
method has been refereed as PET. The proposed PET transformation is very simple and efficient
method for introducing a new parameter to generalize the existing distributions. Some general
properties of this class of distribution functions have been discussed. Then PET method has
been specialized to a two-parameter Weibull distribution and generated a three-parameter PEW
distribution, several statistical and reliability measures of PEW distribution have been obtained.

In section 2, the pdf and the cdf of the novel method have been obtained and various gen-
eral properties of this method have been discussed. In section 3, the method has been specialized
on two-parameter Weibull distribution and its structural properties as well as reliability measures
have been obtained. In section 4, estimates of unknown parameters and simulation study have
been performed. In section 5, two real data sets were analyzed to illustrate the efficacy of the
suggested model. In section 6, the conclusion is stated.

2. General properties of PET method

Let X be a continuous rv, then the cdf of PET for x ∈ R, is defined as

FPET(x) =
π(F(x))α − 1

π − 1
; α > 0. (1)

Obviously, FPET(x) is a valid cdf only if F(x) is a valid cdf. The corresponding pdf of PET for
x ∈ R, is defined as

fPET(x) =
αlogπ

π − 1
π(F(x))α

(F(x))α−1 f (x) ; α > 0. (2)

Clearly, fPET(x) is a weighted version of f (x), the weight function is given by

v(x) = π(F(x))α
(F(x))α−1.

Therefore, fPET(x) can be written as

fPET(x) =
f (x)v(x)

k
.
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Where, k = E[v(X)] is the normalizing constant.

By using the following power series

αu =
∞

∑
j=0

(logα)j

j!
uj, (3)

the linear representation for the cdf and the pdf in (1) and (2) are respectively given by

FPET(x) =
1

π − 1

[
∞

∑
j=0

aj(F(x))αj − 1

]

and

fPET(x) = b
∞

∑
j=0

aj(F(x))α(j+1)−1 f (x).

Where, aj =
(logα)j

j! and b = αlogπ
π−1 .

The reliability function RPET(x) is given by

RPET(x) =
π

π − 1

(
1 − π(F(x))α−1

)
; α > 0. (4)

The hazard rate function hPET(x) is given by

hPET(x) =
αlogπ f (x)(F(x))α−1

π1−(F(x))α − 1
; α > 0. (5)

If h(x) and R(x) are the hazard rate function and reliability function of f then the hazard rate
hPET(x) is given by

hPET(x) = αlogπh(x)R(x)
(F(x))α−1

π1−(F(x))α − 1
; α > 0. (6)

From (6), it is clear that

lim
x→−∞

hPET(x) =


0 ∀ α > 1
logπ
π−1 lim

x→−∞
h(x) ∀ α = 1

∞ ∀ α < 1

and
lim

x→∞
hPET(x) = lim

x→∞
h(x).

If F−1(x) exists, then for α > 0, a random sample from FPET(x) can be obtained as

X = F−1

{(
log(1 + U(π − 1))

logπ

) 1
α

}
where U is a uniform rv, 0 < u < 1.

3. PEW distribution and its properties

A rv X has a three-parameter PEW distribution denoted by PEW(α, β, λ) with parameters
α, β and λ, if the cdf and the pdf of X for x > 0, are respectively, given by

FPEW(x) =
π(1−e−λxβ

)α − 1
π − 1

; α, β, λ > 0 (7)
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and
fPEW(x) =

αλβlogπ

π − 1
xβ−1e−λxβ

π(1−e−λxβ
)α
(1 − e−λxβ

)α−1 ; α, β, λ > 0. (8)

The linear representations for the cdf in (7)is given by (9).

FPEW =
1

π − 1

(
∞

∑
k=0

ame−kλxβ − 1

)
. (9)

Where

am =
∞

∑
j=0

(−1)k
(

jα
k

)
(logπ)j

j!
.

The linear representations for the pdf in (8) is given by (10).

fPEW =
∞

∑
k=0

bmg(x). (10)

Where

bm =
∞

∑
j=0

(−1)kα(logπ)j+1

(π − 1)(k + 1)j!

(
α(j + 1)− 1

k

)
and

g(x) = (k + 1)λβxβ−1e−(k+1)λxβ
.

Clearly, g(x) is the Weibull distribution with scale parameter (k + 1)λ and shape parameter β.

The reliability and the hazard rate of PEW distribution for x > 0 are given by (11) and (12),
respectively

RPEW(x) =
π

π − 1

(
1 − π(1−e−λxβ

)α−1
)

; α, β, λ > 0 (11)

and

hPEW(x) =
αλβlogπxβ−1e−λxβ

(1 − e−λxβ
)α−1

π1−(1−e−λxβ
)α − 1

; α, β, λ > 0. (12)

Figure 1 shows some PEW density graphs for various selected parameter values. Figure 2 depicts
graphs of the hazard rate of the PEW distribution for different parameter values.

3.1. Simulation and Quantile

The PEW distribution can be simulated using inverse cdf method

X =

{
− 1

λ
log

[
1 −

(
log(1 + U(π − 1))

logπ

) 1
α

]} 1
β

.

Where U is a uniform rv, 0 < u < 1. The qth quantile of PEW distribution is given by

xq =

{
− 1

λ
log

[
1 −

(
log(1 + q(π − 1))

logπ

) 1
α

]} 1
β

The median can be obtained as

x0.5 =

− 1
λ

log

1 −
(

log( 1
2 (π + 1))
logπ

) 1
α


1
β
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Figure 1: Density plots of PEW for different combinations of α, β and λ = 1.
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Figure 2: Hazard rate plots of PEW for different combinations of α, β and λ = 1.
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3.2. Moments and generating function

The rth moment of PEW distribution is obtained by using the following series representation.

αx =
∞

∑
k=0

(logα)kxk

k!
(13)

(1 − x)b−1 =
∞

∑
m=0

(−1)m
(

b − 1
m

)
xm ; |x| < 1, b > 0. (14)

The rth moment of X can be obtained as

E(Xr) =

∞∫
0

xr f (x)dx

=
αλβlogπ

π − 1

∞∫
0

xr+β−1e−λxβ
π(1−e−λxβ

)α
(1 − e−λxβ

)α−1dx. (15)

Using (13) and (14) in (15), we have

E(Xr) =
αλβ

π − 1

∞

∑
a,m=0

(logπ)a+1(−1)m

a!

(
α(a + 1)− 1

m

) ∞∫
0

xr+β−1e−λ(m+1)xβ
dx. (16)

By applying the transformation xβ = y in (16), we get the final expression as

E(Xr) =
α

π − 1

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
r
β a!(m + 1)

r
β +1

(
α(a + 1)− 1

m

)
Γ(

r
β
+ 1).

The moment generating function of PEW distribution is obtained as

MX(t) =
∞∫

0

etx f (x)dx.

By using the same procedure as above, we get the final expression for moment generating function
as

MX(t) =
α

π − 1

∞

∑
a,l,m=0

(−1)mtl(logπ)a+1

λ
l
β l!a!(m + 1)

l
β +1

(
α(a + 1)− 1

m

)
Γ(

l
β
+ 1)

3.3. The Mean residual life of PEW distribution

The mean residual life function, say µ(t) of PEW distribution can be obtained as

µ(t) =
1

R(t)

E(t)−
t∫

0

x f (x)dx

− t. (17)

Where

E(t) =
α

π − 1

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
1
β a!(m + 1)

1
β +1

(
α(a + 1)− 1

m

)
Γ(

1
β
+ 1) (18)

and
t∫

0

x f (x)dx =
α

π − 1

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
1
β a!(m + 1)

1
β +1

×
(

α(a + 1)− 1
m

)
γ

(
λ(m + 1)tβ,

1
β
+ 1
)

. (19)
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Substituting (11), (18) and (19) in (17), we have

µ(t) =
α

π − π(1−e−λxβ
)α

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
1
β a!(m + 1)

1
β +1

(
α(a + 1)− 1

m

)

×
[

Γ
(

1
β
+ 1
)
− γ

(
λ(m + 1)tβ,

1
β
+ 1
)]

− t.

Where γ(p, q) =
p∫

0
xq−1e−xdx, is called lower incomplete gamma function.

The mean waiting time µ̄(t) of PEW distribution, can be obtained as

µ̄(t) = t − 1
F(t)

t∫
0

x f (x)dx. (20)

Substituting (7) and (19) in (20), we get

µ̄(t) =t − α

π(1−e−λxβ
)α − 1

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
1
β a!(m + 1)

1
β +1

×
(

α(a + 1)− 1
m

)
γ

(
λ(m + 1)tβ,

1
β
+ 1
)

3.4. Renyi Entropy

Renyi entropy of PEW distribution, sayREX(u) can be obtained as

REX(u) =
1

1 − u
log

 ∞∫
−∞

f (x)udx

 ; u > 0, u ̸= 1.

=
1

1 − u
log

 ∞∫
0

(
αλβlogπ

π − 1

)u
xu(β−1)e−uλxβ

×(1 − e−λxβ
)u(α−1)πu(1−e−λxβ

)α
dx
)

. (21)

Using (13) in (21), we have

REX(u) =
u

1 − u
log
(

αλlogπ

π − 1

)
− log(β) + log

(
∞

∑
a=0

(ulogπ)a

a!

×
∞∫

0

βxu(β−1)e−uλxβ
(1 − e−λxβ

)α(a+u)−udx

 . (22)

Using (14) and applying the transformation y = xβ in (22) , then the final expression for REX(u)
is given by

REX(u) =
u

1 − u
log
(

αλlogπ

π − 1

)
− log(β) + log

(
∞

∑
a,m=0

(−1)m(ulogπ)a

a!

×
(

α(a + u)− u
m

) Γ
(

u + 1−u
β

)
(λ(m + u))u+ 1−u

β
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3.5. Order Statistics

Let X1, X2, ..., Xn be a random sample of size n, and let Xr:n denote the rth order statistic, then,
the pdf of Xr:n, say fr:n(x) is given by

fr:n(x) =
n!

(r − 1)!(n − r)!
F(x)r−1 f (x)(1 − F(x))n−r. (23)

Substituting (7) and (8) in (23) and using(14), we get

fr:n(x) =
αλβlogπ

B(r, n − r + 1)

n−r

∑
a=0

(−1)a(n−r
a )

(π − 1)a+r

(
π(1−e−λxβ

)α − 1
)a+r−1

× xβ−1e−λxβ
π(1−e−λxβ

)α
(1 − e−λxβ

)α−1.

Where B(a, m) is a beta function.

3.6. Stress Strength Reliability

If X1 ∼ PEW(α1, λ1, β) and X2 ∼ PEW(α2, λ2, β), where X1 and X2 are independent strength and
stress rv’s respectively, then, the stress strength reliability P(X1 > X2), say SSR, can be obtained
as

SSR =

∞∫
−∞

f1(x)F2(x)dx. (24)

Using (7) and (8) in (24), we have

SSR =

∞∫
0

(
α1λ1βlogπ

(π − 1)2 xβ−1e−λ1xβ
π(1−e−λ1xβ

)α1

×(1 − e−λ1xβ
)α1−1π(1−e−λ2xβ

)α2
)

dx − 1
π − 1

. (25)

Using (13), (14) and applying the transformation y = xβ in (25), then the final expression for SSR
is given by

SSR =
1

π − 1

(
α1λ1

(π − 1)

∞

∑
a,b=0

∞

∑
m,n=0

(−1)m+n(logπ)a+b+1

a!b!(λ1(1 + m) + nλ2)

(
α1(a + 1)− 1

m

)(
bα2

n

)
− 1

)

4. Estimation

4.1. Maximum Likelihood Estimation

Let x1, x2, ..., xn be a random sample from PEW distribution, then the logarithm of the likelihood
function is

l =nlog(αλβ) + nlog
(

logπ

π − 1

)
+ (β − 1)

n

∑
i=1

xi − λ
n

∑
i=1

xβ
i

+ logπ
n

∑
i=1

(
1 − e−λxβ

i

)
+ (α − 1)

n

∑
i=1

log
(

1 − e−λxβ
i

)
. (26)
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The MLEs of α, λ and β are obtained by partially differentiating (26) with respect to the corre-
sponding parameters and equating to zero, we have

∂l
∂α

=
n
α
+

n

∑
i=1

log
(

1 − e−λxβ
i

)(
logπ(1 − e−λxβ

i )α + 1
)
= 0 (27)

∂l
∂β

=
n
β
+

n

∑
i=1

xi − λ
n

∑
i=1

xβ
i logxi

+
n

∑
i=1

λxβ
i logxi

e−λxβ
i − 1

(
α + αlogπ(1 − e−λxβ

i )α − 1
)
= 0 (28)

∂l
∂λ

=
n
λ
−

n

∑
i=1

xβ
i +

n

∑
i=1

xβ
i

e−λxβ
i − 1

(
α + αlogπ(1 − e−λxβ

i )α − 1
)
= . (29)

Since, the above equations (27), (28) and (29) are not in closed form and are difficult to solve
analytically. As a result, it is difficult to calculate the estimates of the parameters α, β and λ.
However, R software can be used to solve the equations numerically.

4.2. Simulation study

The simulation study has been conducted using R Software to demonstrate the behaviour of the
MLEs in terms of the sample size. Two sets of sample (n=50, n=100) each repeated 1000 times
with different combinations of parameters λ = (1, 2), α = (0.5, 1.5, 3) and β = (0.5, 1.5, 3, 5) were
achieved from PEW. In each setting, the average values of MLEs and the corresponding empirical
mean squared errors (MSEs) were obtained. The simulation results are presented in tables 1 and
2. Tables 1 and 2 show that the estimates are stable and reasonably close to the true parameter
values. As the sample size increases the MSE decreases in all the cases.

5. Applications

In this section, we examine two data sets in order to describe the significance and flexibility of
PEW distribution. The first data set has been taken from (Cordeiro and Brito [6]), consist of 48
rock samples from a petroleum reservoir. The dataset corresponds to twelve core samples from
petroleum reservoirs that were sampled by four cross-sections. Each core sample was measured
for permeability and each cross-section has the following variables: the total area of pores, the
total perimeter of pores and shape. We analyze the shape perimeter by squared (area) variable.
The observations are: 0.0903296, 0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220,
0.1623940, 0.2627270, 0.1794550, 0.3266350, 0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020,
0.1541920, 0.4641250, 0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 0.1224170,
0.2285950, 0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230, 0.2910290, 0.3412730,
0.4387120, 0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530, 0.1641270,
0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470.

The second set of data is taken from (Aydin [2]) representing a random sample of average
daily wind speed data for March, collected in 2015 from the Turkish Meteorological Services for
Sinop, Turkey.The data are recorded as follows
2.8, 1.8, 3.2, 5.0, 2.4, 4.8, 2.9, 2.9, 2.3, 3.2, 2.3, 2.0, 1.9, 3.3, 4.4, 6.7, 4.3, 1.9, 2.2, 3.3, 2.1, 4.0, 2.0, 3.1,
3.8, 3.1, 3.2, 3.4, 2.8, 2.1, 3.1.

We compare the fit of the proposed PEW distribution with its sub-model Weibull (W) (see
[20]) and a number of other competing models, namely Alpha Power Weibull (APW) (see [13]),
Alpha Power Inverse Weibull (APIW) (see [3]), Modified Weibull (MW) (see [18]), Transmuted
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Table 1: mean values of ML estimates and their corresponding mean square errors(n=50).

Parameter MLE MSE

λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 0.5 1.10179 0.50379 0.50421 0.33514 0.01926 0.01998
1.5 1.09164 0.50369 1.48989 0.29139 0.02022 0.07911
3 1.09261 0.50384 2.96632 0.29186 0.01920 0.27951
5 1.10208 0.50390 4.93128 0.33049 0.01722 0.77969

1.5 0.5 1.10144 1.48760 0.50812 0.34598 0.06202 0.02153
1.5 1.10143 1.48689 1.49968 0.34594 0.05021 0.05021
3 1.10492 1.47913 3.07588 0.35744 0.07182 0.30989
5 1.09812 1.48823 4.97413 0.34323 0.06181 0.92916

3 0.5 1.06841 2.92528 0.51901 0.34669 0.26838 0.02320
1.5 1.06708 2.92446 1.53312 0.35017 0.26879 0.11011
3 1.05536 2.92289 3.06026 0.27696 0.26986 0.39581
5 1.06038 2.92293 5.08217 0.27756 0.26961 1.06087

2 0.5 0.5 2.05707 0.50408 0.50614 0.58601 0.01735 0.01989
1.5 2.0553 0.50405 1.49456 0.58328 0.02217 0.07999
3 2.05262 0.50411 2.97686 0.58133 0.01935 0.28283
5 2.06155 0.50419 4.94529 0.58885 0.01855 0.76788

1.5 0.5 2.07548 1.48263 0.51078 0.47035 0.06455 0.02193
1.5 2.07572 1.48192 1.52755 0.47079 0.06453 0.09875
3 2.07602 1.48205 3.10344 0.46824 0.06445 0.35757
5 2.06563 1.48288 5.190317 0.39804 0.06414 0.93515

3 0.5 2.08168 2.92146 0.51719 0.50571 0.27205 0.02432
1.5 2.08232 2.92217 1.5266 0.50634 0.27417 0.12172
3 2.06791 2.92024 3.04978 0.44313 0.27343 0.43695
5 2.06542 2.92144 5.07546 0.44743 0.27186 1.19552

Table 2: mean values of ML estimates and their corresponding mean square errors(n=100).

Parameter MLE MSE

λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 0.5 1.0506 0.50247 0.50289 0.23614 0.01735 0.01694
1.5 1.05062 0.50287 1.49297 0.21722 0.01631 0.05371
3 1.04942 0.50287 2.97447 0.20015 0.01601 0.17807
5 1.04802 0.50289 4.96282 0.19792 0.01496 0.47121

1.5 0.5 1.08086 1.49116 0.50075 0.28492 0.05099 0.01989
1.5 1.09562 1.49818 1.501702 0.26724 0.04504 0.08107
3 1.08072 1.48961 3.06019 0.27247 0.06647 0.30124
5 1.09101 1.49015 4.98213 0.28726 0.05136 0.76879

3 0.5 1.06714 2.95807 0.51053 0.23006 0.19014 0.02037
1.5 1.06075 2.95628 1.50918 0.19142 0.19102 0.08285
3 1.04935 2.95675 3.00808 0.19031 0.19078 0.29455
5 1.04988 2.95522 5.01794 0.14934 0.19213 0.77231

2 0.5 0.5 2.01161 0.50271 0.50106 0.46357 0.01587 0.01686
1.5 2.01208 0.50251 1.49633 0.46451 0.01733 0.05311
3 2.01008 0.50253 2.98083 0.46424 0.01524 0.17549
5 2.01285 0.50246 4.96023 0.45973 0.01634 0.46167

1.5 0.5 2.01167 1.48439 0.49989 0.39586 0.05389 0.01959
1.5 2.01133 1.48356 1.49515 0.39526 0.05386 0.07749
3 2.01735 1.48402 2.98175 0.36287 0.05382 0.27414
5 2.01093 1.48444 4.92742 0.36888 0.05417 0.72391

3 0.5 2.06175 2.95508 0.51010 0.31644 0.19261 0.02031
1.5 2.05964 2.95508 1.50872 0.31542 0.19263 0.08399
3 2.06125 2.95504 3.00326 0.31317 0.19257 0.29708
5 2.05041 2.95512 5.00925 0.28678 0.19251 0.77898

Weibull (TW) (see [1]), Odd Weibull (OW) (see [4]), Lindley Weibull (LW) (see [5]), Alpha Power
Within Weibull Quantile (APWQ) (see [17]), Marshall Olkin Weibull (MOW) (see [14]) and Alpha
Power exponential (APE) ([13]). The corresponding density functions for x > 0 are presented in
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Figure 3: (i) Fitted PEW density & relative histogram. (ii) Fitted PEW reliability & empirical reliability for first data
set.
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Figure 4: (i) Fitted PEW density & relative histogram. (ii) Fitted PEW reliability & empirical reliability for second
data set.

the Appendix.

Tables 3, 4, 5 and 6 show that the PEW distribution has the minimum −2l(β̂), AIC, AICC,
BIC and K-S values, as well as the greatest p-value, of all the competing models. As a result,
the suggested model fits both the data sets better than the other competitive models. Also the
Figures 3, 4, 5 and 6 definitely confirm the conclusions presented in Tables 3, 4, 5,& 6.

6. Conclusion

In this manuscript, a novel method known as PET has been presented. The PET approach
has been applied to the Weibull distribution, and a new three-parameter PEW distribution is
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Figure 5: q-q plot for first and second data set.
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Figure 6: p-p plot for first and second data set.

established. Various structural properties as well as reliability measures of the PEW distribution
have been highlighted. The reason for adopting this method is that its cdf has a closed form and
can represent data with monotone and non-monotone failure rates. It has been revealed that the
three-parameter PEW distribution offers more flexibility in respect of hazard rate function and
the density function. The suggested model is fitted to two distinct real-life data sets, and the
figures demonstrate that it fits both data sets better than any other competing models.
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Table 3: Estimates (standard errors) and kolmogorov smirnov test statistic for the first data set.

Model
Estimates Statistics

α̂ β̂ λ̂ K-S p-value

PEW
358.7757 0.5380 15.8364 0.08433 0.8844
(24.4872) (0.3304) (2.0124)

APW
0.0320 3.4096 4.4898 0.12804 0.4108

(0.0508) (0.3606) (2.4429)

APIW
4.5086 3.0823 0.0029 0.10264 0.6927

(2.2779) (0.4720) (0.0017)

MW
0.0010 2.7475 47.5555 0.14985 0.2313

( 2.0711) (0.3700) (7.9292)

TW
0.6464 3.0077 0.2796 0.14075 0.2976

(0.2711) (0.3111) (0.0213)

OW
27.13668 0.1312 3.2941 0.08862 0.8452
(15.5796) (0.0737) (5.1657)

LW
17.0146 2.7406 1.4788 0.15011 0.2296

(22.4843) (0.2854) (1.4712)

APWQ
64.6499 6.8937 65.4380 0.17289 0.1134
(9.0106) (0.2609) (0.7298)

MOW
0.0224 4.8044 2.2389 0.09189 0.8124

(0.0362) (0.6295) (9.9652)

APE
100.4597 - 15.4005 0.10423 0.6741
(16.7779) (0.8223)

W
- 2.7475 47.5560 0.14990 0.2310

(0.2844) (17.9142)

Table 4: Information measures for the first data set.

Model −2l(β̂) AIC AICC BIC

PEW -116.4881 -110.4881 -109.9427 -104.8745

APW -110.56961 -104.56961 -104.02416 -98.95601

APIW -113.1797 -107.1797 -106.6342 -101.5661

MW -105.4775 -99.4775 -98.9321 -93.8639

TW -107.8930 -101.8930 -101.3476 -96.2794

OW -114.7898 -108.7898 -108.2443 -103.1762

LW -105.42378 -99.42378 -98.87832 -93.81017

APWQ -111.7091 -105.7091 -105.1636 -100.0955

MOW -115.3954 -109.3954 -108.8500 -103.7818

APE -111.3370 -107.3370 -106.7915 -103.5946

W -105.48441 -101.48441 -101.21774 -97.74201

Appendix

APW f (x) =
logα

α − 1
λβα1−e−λxβ

xβ−1e−λxβ

APIW f (x) =
logα

α − 1
λβx−(β+α)e−λx−β

αe−λx−β

MW f (x) = (α + λβxβ−1)e−αx−λxβ

TW f (x) =
β

λ

( x
λ

)β−1
e−(

x
λ )

β
(

1 − α + 2αe−(
x
λ )

β
)

OW f (x) =
αβ

x

( x
λ

)β
e(

x
λ )

β
(

e(
x
λ )

β

− 1
)α−1 [

1 +
(

e(
x
λ )

β

− 1
)α]−2

LW f (x) =
βα2

α + 1
λβxβ−1 + λ2βx2β−1e−α(λx)β
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Table 5: Estimates (standard errors) and kolmogorov smirnov test statistic for the second data set.

Model
Estimates Statistics

α̂ β̂ λ̂ K-S p-value

PEW
48.9866 0.8570 1.8620 0.10299 0.8974

(71.8227) (0.2715) (1.1181)

APW
0.5344 1.2214 7.8545 0.10759 0.8655

(2.3730) (1.5742) (0.1492)

APIW
2.6751 4.0481 32.1024 0.13443 0.6297

(4.6311) (0.7247) (16.6057)

MW
0.0010 2.9427 0.0255 0.16492 0.3680

( 0.2108) (0.4632) (0.0249)

TW
0.7341 3.2334 4.0055 0.14982 0.4897

(0.2973) (0.4079) (0.3343)

OW
56.6837 6.9111 5.8591 0.10573 0.8789
(34.145) (4.0662) (1.8199)

LW
0.0146 2.1105 3.0945 0.15024 0.4860

(0.0189) (0.2638) (2.1745)

APWQ
7.9249 3.7269 0.0047 0.16588 0.3611

(7.7298) (0.3934) (0.0034)

MOW
0.0139 5.3051 0.1529 0.10472 0.8859

(0.0249) (0.8008) (0.0459)

APE
183.6176 - 1.0341 0.12275 0.7385
(22.3726) (0.7071)

W
- 2.9413 0.0256 0.16544 0.3642

(0.3668) (0.0140)

Table 6: Information measures for the second data set.

Model −2l(β̂) AIC AICC BIC

PEW 83.70147 89.70147 90.59036 94.00343

APW 84.90786 90.90786 91.79675 95.20982

APIW 85.51669 91.51669 92.40557 95.81865

MW 92.26848 98.26848 99.15737 102.57044

TW 90.26095 96.26095 97.14984 100.56291

OW 85.10416 91.10416 91.99305 95.40612

LW 89.30294 95.30294 96.19183 99.60490

APWQ 90.44442 96.44442 97.33331 100.74638

MOW 84.89439 90.89439 91.78328 95.19636

APE 88.34464 92.34464 93.23353 95.21262

W 92.19582 96.19582 96.62439 99.06379

APWQ f (x) =
(α − 1)λβxβ−1e−λxβ

logα
(

1 + (α − 1)(1 − e−λxβ
)
)

MW f (x) =
αλβ(λx)β−1e−(λx)β

1 − (1 − α)e−(λx)β

APE f (x) =
logα

α − 1
λe−λxα1−e−λx

where α,β,λ > 0 and Γ(α) =
∞∫
0

xα−1e−xdx is the gamma function.
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Abstract 
 

Designers may introduce a system with multiple technologies in series to improve system efficiency. 
The configuration can be applied to k out of n systems if each technology contains k out of n factors. 
The k out of n configuration method is successful until every component of the system is successful. 
The efficiency of the entire system is more in amount than that of a single system factor in a k out of 
n shape. An Integrated Reliability Model (IRM) for the k out of n, here, an additional system is 
suggested to account for both the efficiencies of the factors and the number of factors in every phase 
and the different constraints to optimize the efficiency of the system. To enhance system efficiency, 
the authors employed the numerous methods of Lagrangean approach to determine the numbers and 
efficiency of the factors as well as the reliabilities of the phase under different parameters namely 
load, size, and cost. The dynamic programming approach and simulation method have been adapted 
to attain an integer result as well as to see the values real. 
 
Keywords: Reliability Theory,  IRM, Lagrangean Approach, Stage Efficiency, D P 
Approach, System Efficiency 

 
1. Introduction 

 
The structure’s reliability [1] can be improved by either placing superfluous units, applying the 
element of greater reliability or by adopting the two methods at a time and both of them use extra 
resources. Optimizing structure reliability, and conditions to resource availability viz. size, value, 
load, are examined.  In general, reliability is tested as an element of value; But, when tested with 
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real-world problems, the invisible effect of other restraints such as load, size [4], etc. has a special 
effect on improving structural reliability. The specific functionality of the over-reliability model 
with several limitations to optimize the recommended setup was examined to maximize the 
recommended setup. The problem examines the unknowns that is, various elements (𝑿𝒆𝒋), the 
element reliability (𝑟#$), and the stage reliability (𝑅%$) at a specific point for disposing of multiple 
restraints to magnify the structure reliability that is described as a [14] United Reliability Model 
(URM). In literature, United Reliability Models [8] are enhanced by applying value restraints 
where there is a fixed association between value and reliability. A unique pattern of planned work 
is a deliberation of the load and size as supplementary restraints along with value to form and 
improve the superfluous reliability system for [15] k out of n structure composition [6, 7]. 

2. Methods 

2.1. Assumptions and Notations: 

• Each stage's elements are believed to be identical, i.e., all elements have the same level of 
reliability. 

• All elements are supposed to be statistically independent, meaning that their failure has no 
bearing on the performance of other elements in the structure. 

𝑅&' = Structure Efficiency 

𝑅%$  = Efficiency of phase ′𝑠𝑗′, 0 < 𝑅%$	< 1 

𝑟#$ = Efficiency of each component in phase  ′𝑒𝑗′; 0 <	𝑟#$ 	  < 1 

𝑋#$ =  Number of components in phase ′𝑒𝑗′ 

𝐶#$ =  Worth coefficient of each component in phase  ′𝑒𝑗′ 

𝐿#$ =  Load coefficient of each component in phase  ′𝑒𝑗′ 

𝑆#$ =  Size coefficient of each component in phase  ′𝑒𝑗′ 

𝐶#) =  Greatest allowable structure - Value 

𝐿#) =  Greatest allowable structure - Load 

𝑆#) =  Greatest allowable structure – Size 

LMM  Lagrangean Multiplier Method 

DPA  Dynamic Programming Approach 

IRRM  Integrated Redundant Reliability Model 

𝑐$, 𝑑$, 𝑖$, 𝑘$, 𝑚$, 𝑛$ are Constants. 

 

2.2 Mathematical Analysis: 

The efficiency of the system to the provided worth function 

𝑅&' =	∑ 𝐵	(𝑚, 𝑖)𝑝*	(1 − 	𝑝)+,*-
*./                            (1) 

The following relationship between worth and efficiency is used to calculate the worth coefficient 
of each unit in phase  ′𝑒𝑗′. 

𝑟#$ =		 𝑠𝑖𝑛ℎ
,/ =

0!"
1"
>
#
$"

                                                              (2)                                                    
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Therefore   𝐶#$ =	𝑓$ sinh 	[𝑟#$]	2"       (2a) 

Similarly, 𝐿#$ =	𝑝$ sinh 	[𝑟#$]	3"       (2b) 

𝑆#$ =	𝑞$ sinh 	[𝑟#$]	-"       (2c) 

Since value-components are linear in 𝑒𝑗,  

  ∑ 𝑐#$ .		𝑋#$-
$	.	/ 	≤ 	𝐶#)       (3a) 

Similarly load-components and size-components are also linear in 𝑒𝑗, 

∑ 𝑙#$ .		𝑋#$-
$	.	/ 	≤ 	 𝐿#)       (3b) 

∑ 𝑠#$ .		𝑋#$-
$	.	/ 	≤ 	 𝑆#)       (3c) 

Substituting (2) in (3) 

∑ 𝑓$ sinh 	[𝑟#$]	2" 	.		𝑋#$ −	𝐶#) 	≤ 0	-
$./      (4a) 

∑ 𝑝$ sinh 	[𝑟#$]	3" 	.		𝑋#$ −	𝐿#) 	≤ 0	-
$./      (4b) 

∑ 𝑞$ sinh 	[𝑟#$]	-" 	.		𝑋#$ −	𝑆#) 	≤ 0	-
$./      (4c) 

 The transformed equation through the relation 𝑋#$ =	
45 '%&
45 6!"

   (5) 

Where  𝑅%$ =	∑ 𝐵	(𝑒𝑗, 𝑘)(𝑟#$)3-
3.7 (1 − 𝑟#$)#$,3     (6) 

Subject to the constraints 

∑ 𝑓$ sinh 	[𝑟#$]	2" 	 .
45 ''"
45 6!"

−	𝐶#) 	≤ 0	-
$./      (7a) 

∑ 𝑝$ sinh 	[𝑟#$]	3" 	 .
45 ''"
45 6!"

−	𝐿#) 	≤ 0	-
$./      (7b) 

∑ 𝑞$ sinh 	[𝑟#$]	-" 	 .
45 ''"
45 6!"

−	𝑆#) 	≤ 0	-
$./      (7c) 

Positivity restrictions 𝑒𝑗	 ≥ 0 

A Lagrangean function is defined as  

𝐿8 =	𝑅&' +	δ/ =∑ 𝑓$ sinh 	[𝑟#$]	2" 	 .
45 ''"
45 6!"

−	𝐶#)-
$./ > + δ7 =∑ 𝑝$ sinh 	[𝑟#$]	3" 	 .

45 ''"
45 6!"

−	𝐿#)-
$./ > 	+

δ9 =∑ 𝑞$ sinh 	[𝑟#$]	-" 	 .
45 ''"
45 6!"

−	𝑆#)-
$./ >       (8) 

The Lagrangean function can be used to find the ideal point and separating it by 𝑅%$, 𝑟#$, δ1, δ2 and 
δ3. 

:;(
:'%)

 =1+	δ/[∑ 𝑓$ sinh 	[𝑟#$]	2" 	 .
/

45 6!"

/
''"

-
$./ ] + δ7 =∑ 𝑝$ sinh 	[𝑟#$]	3" 	 .

/
45 6!"

/
''"

-
$./ > 	+

δ9 =∑ 𝑞$ sinh 	[𝑟#$]	-" 	 .
/
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:;(
:	δ+

=	∑ 𝑞$ sinh 	[𝑟#$]	-" 	 .
45 ''"
45 6!"

−	𝑆#)-
$./      (13) 

Where δ/, δ7	𝑎𝑛𝑑	δ9	are Lagrangean multipliers. 

The number of elements in each phase (𝑋#$), the best element reliability (𝑟#$), the phase reliability 
(𝑅%$) and the structure reliability (𝑅&')are derived by using the Lagrangean method [12]. This 
method provides a real (valued) solution concerning worth, load, and size. 

2.3 Case Problem 

To derive the multiple parameters of a given mechanical system using optimization techniques [9], 
where all the assumptions like value, weight, and volume are directly proportional to system 
reliability has been considered in this research work. The same logic may not be true in the case of 
electronic systems. Hence, the optimal element accuracy (𝑟#$), phase reliability (𝑅%$), Number of 
elements in each phase (𝑋#$), and structure accuracy (𝑅&') can be evaluated in any given 
mechanical system [10]. In this work, an attempt has been made to evaluate the Structure accuracy 
[13] of a special purpose machine that is used for single phase industrial power generators 
assembly. 

The machine is used for the assembly of 3 or 4 components on the base of the power generator. The 
machine's approximate worth was $3000, which is considered a structure value, the load of the 
machine is 120 pounds which is the load of the structure, and the space occupied by the machine is 
100 𝑐𝑚9, which is the volume or size of the structure. To attract the authors from different cross 
sections, the authors attempted to use hypothetical numbers, which can be changed according to 
the environment.   

2.4 Constants 

The data required for the constants for the case problem are provided in Table 1. 

Table1: Worth, Load and Size Pre-fixed Constant Values 

Phase 
Worth Constants Load Constants Size Constants 

𝑓$ 𝑑$ 𝑝$ 𝑘$ 𝑞$ 𝑛$ 

1 2200 0.85 100 0.92 100 0.94 

2 2400 0.88 80 0.88 90 0.89 

3 2600 0.91 60 0.91 80 0.86 
 

The efficiency of each factor, phase, and number of factors in each stage, as well as the structural 
efficiency [2, 3], are shown in the tables below. 

2.4.1 The Details of Component-Worth Constraint by using Lagrangean Multiplier 
Method without Rounding-Off 

The value-related efficiency design is described in the Table 2. 

Table2: Worth Constraint Analysis by using Lagrangean Multiplier Method 

Phase 𝑓$ 𝑑$ 𝑟#$ 𝐿𝑜𝑔	𝑟#$ 𝑅%$ 𝐿𝑜𝑔	𝑅%$ 𝑋#$ 𝐶#$ 𝐶#$ 	. 𝑋#$ 

01 2200 0.85 0.8741 -0.0584 0.6777 -0.1690 2.89 2233 6456 
02 2400 0.88 0.8445 -0.0734 0.6487 -0.1880 2.56 2334 5977 
03 2600 0.91 0.8456 -0.0728 0.5461 -0.2627 3.61 2516 9077 

Final Worth 21510 
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2.4.2 The Details of Component-Load Constraint by using Lagrangean Multiplier 
Method without Rounding-Off 

The equivalent results for the load are shown in the Table 3. 

Table3: Load Constraint Analysis by using Lagrangean Multiplier Method 

Phase 𝑝$ 𝑘$ 𝑟#$ 𝐿𝑜𝑔	𝑟#$ 𝑅%$ 𝐿𝑜𝑔	𝑅%$ 𝑋#$ 𝐿#$ 𝐿#$ 	. 𝑋#$ 

01 100 0.92 0.8741 -0.0584 0.6777 -0.1690 2.89 100 290 

02 80 0.88 0.8445 -0.0734 0.6487 -0.1880 2.56 78 199 

03 60 0.91 0.8456 -0.0728 0.5461 -0.2627 3.61 58 209 

Final Load 698 

 

2.4.3 The Details of Component-Size Constraint by using Lagrangean Multiplier 
Method without Rounding-Off 

Equivalent results for size are described in the Table 4. 

Table4: Size Constraint Analysis by using Lagrangean Multiplier Method 

Phase 𝑞$ 𝑛$ 𝑟#$ 𝐿𝑜𝑔	𝑟#$ 𝑅%$ 𝐿𝑜𝑔	𝑅%$ 𝑋#$ 𝑆#$ 𝑆#$ 	. 𝑋#$ 

01 100 0.94 0.8741 -0.0584 0.6777 -0.1690 2.89 100 289 

02 90 0.89 0.8445 -0.0734 0.6487 -0.1880 2.56 87 224 

03 80 0.86 0.8456 -0.0728 0.5461 -0.2627 3.61 78 282 

Final Size 795 

 

3. Efficiency Design by using Lagrangean Multiplier Method 

The efficiency design [11] summarizes the 𝑒$values as integers (rounding the value of 𝑒$ to the 
nearest integer), and the acceptable outcomes for the worth, load, and size are listed in the tables. 
Calculate variance due to worth, load, size, and construction capacity (before and after rounding 
off 𝑒$ to the nearest integer) to obtain information. 

3.1 Efficiency Design by using Lagrangean Multiplier Method Concerning Worth, 
Load and Size with Rounding-Off 

 

Table5: Efficiency design relating to Worth, Load and Size Constraint Analysis by using Lagrangean  

Multiplier Method with Rounding Off is shown in the following table  

Phase 𝑟#$ 𝑅%$ 𝑋#$ 𝐶#$ 𝐶#$ 	. 𝑋#$ 𝐿#$ 𝐿#$ 	. 𝑋#$ 𝑆#$𝑆#$ 𝑆#$ 	. 𝑋#$ 

01 0.8741 0.6777 3 2233 6699 100 300 100 300 
02 0.8445 0.6487 3 2334 7002 78 234 87 261 
03 0.8456 0.5461 4 2516 10066 58 232 78 312 

Total Worth, Load and Size 23767 766 873 

Structure Efficiency (𝑅&') 0.9987 
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Variation in Worth  = Total	Worth	with	rounding	off,Total	Worth		without	rounding	off

Total	Value	without	rounding	off
  = 10.49% 

       
Variation in Load  = Total	Load	with	rounding	off,Total	Load	without	rounding	off

Total	Load	without	rounding	off
   = 09.72%  

           
Variation in Size   =		Total	Size	with	rounding	off,Total	Size	without	rounding	off

Total	Size	without	rounding	off
   = 05.00%  

           
Variation in Efficiency = Effciency	with	rounding	off,Efficiency	without	rounding	off

Structure	Efficiency	without	rounding	off
   = 10.06%.  

           
4. Dynamic Programming Approach 

Using the Lagrangean technique [5], which has a number of drawbacks, such as having to provide 
the amount of components needed at each stage (𝑋#$(′𝑒𝑗′))  in real numbers, which may be difficult 
to apply. The generally used approach of rounding down the value of results in changes in worth, 
load, and size, affecting system reliability and having a significant impact on the model's efficiency 
design. This flaw could be considered, for which the author suggests a substitute empirical 
implementation that uses the dynamic programming method to obtain an integer solution by 
using the solutions produced from the Lagrangean approach as parameters for the proposed 
dynamic programming method. 

Table6: Phase I of the Dynamic Programming 

Phase–I(′𝑒𝑗′)	
 

Phase - I - Reliability (𝑹𝒔𝒋) 

01 0.5789 
02 0.7183 
03 0.8577 
04 0.9265 
05 0.9605 
06 0.9945 

 
Table7: Phase II of the Dynamic Programming 

Phase – II (′𝑒𝑗′)	
 

Phase - II - Reliability (𝑹𝒔𝒋) 

04 0.4370 0.4490 0.4540      
05 0.4666 0.4916 0.4978 0.5238     
06 0.4962 0.5342 0.5416 0.6125 0.3991    
07 0.5258 0.5768 0.5854 0.7012 0.5496 0.4285   
08 0.5406 0.5981 0.6073 0.7899 0.7571 0.6614 0.6734 0.4523 
09 0.5554 0.6194 0.6292 0.8786 0.8936 0.7258 0.7254 0.4835 
10 0.5628 0.6407 0.6511 0.9229 0.9187 0.9021 0.8852 0.7264 

 
Table8: Phase III of the Dynamic Programming 

Phase – III (′𝑒𝑗′)	
 

Phase - III - Reliability (𝑹𝒔𝒋) 

09 0.4932 0.6235 0.6461 0.5938 0.5814 0.4235 0.2824 - 
10 0.5383 0.7045 0.7044 0.6451 0.6287 0.4516 0.3125 0.1818 
11 0.5824 0.7436 0.7654 0.6821 0.7345 0.5216 0.4514 0.2345 
12 0.6265 0.7874 0.7952 0.7514 0.7841 0.6834 0.5387 0.3678 
13 0.6706 0.7951 0.8164 0.8354 0.8547 0.7893 0.6868 0.4864 
14 0.7147 0.8356 0.8573 0.9125 0.9571 0.8514 0.7256 0.6454 
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5. Results 
  
The application of the Lagrangean multiplier technique yielded a real-valued solution for the 
suggested Integrated Redundant Reliability Systems for the k-out-of-n configuration 
mathematical models under investigation, as well as the much-required integer solution. The 
author obtained new phase reliability (𝑹𝒔𝒋) by using a dynamic programming approach. The new 
values for stage reliability (𝑹𝒔𝒋) are (0.9445, 0.9229, and 0.9571). The Dynamic Programming 
Approach is utilised, and the results for the given mathematical function are outlined in tables 9, 
10, and 11 that follow in order to derive the required conclusions. 

 
5.1 The Details of Component-Worth Constraint by using Dynamic Programming 
Approach 

The value-related efficiency design is described in the Table 9. 

Table9: The Details of Component-Worth constraint by using Dynamic Programming Approach 

Phase 𝑓$ 𝑑$ 𝑟#$ 𝐿𝑜𝑔	𝑟#$ 𝑅%$ 𝐿𝑜𝑔	𝑅%$ 𝑋#$ 𝐶#$ 𝐶#$ 	. 𝑋#$ 

01 2200 0.85 0.9982 -0.0008 0.9945 -0.0024 3 2580 7740 

02 2400 0.88 0.9736 -0.0116 0.9229 -0.0348 3 2735 8205 

03 2600 0.91 0.9891 -0.0048 0.9571 -0.0190 4 3016 12064 

Final Worth 28009 
 

Mutation in Worth -Component  = 30.21% 
Mutation in Structure Efficiecy     = 01.23% 
 
5.2 The Details of Component-Load Constraint by using Dynamic Programming 
Approach 

The equivalent results for the load are shown in the Table 10. 

Table10: The Details of Component-Load constraint by using Dynamic Programming Approach 

Phase 𝑝$ 𝑘$ 𝑟#$ 𝐿𝑜𝑔	𝑟#$ 𝑅%$ 𝐿𝑜𝑔	𝑅%$ 𝑋#$ 𝐿#$ 𝐿#$ 	. 𝑋#$ 

01 100 0.92 0.9982 -0.0008 0.9945 -0.0024 3 117 351 

02 80 0.88 0.9736 -0.0116 0.9229 -0.0348 3 91 273 

03 60 0.91 0.9891 -0.0048 0.9571 -0.0190 4 70 280 

Final Load 904 
 

Mutation in Load-Component   = 29.32% 
Mutation in Structure Efficiecy     = 01.23% 
 
5.3 The Details of Component-Size Constrain by using Dynamic Programming 
Approach 

The equivalent results for size are described in the Table 11. 
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Table11: The Details of Component-Size constraint by using Dynamic Programming Approach 

Phase 𝑞$ 𝑛$ 𝑟#$ 𝐿𝑜𝑔	𝑟#$ 𝑅%$ 𝐿𝑜𝑔	𝑅%$ 𝑋#$ 𝑆#$ 𝑆#$ 	. 𝑋#$ 

01 100 0.94 0.9982 -0.0008 0.9945 -0.0024 3 117 351 

02 90 0.89 0.9736 -0.0116 0.9229 -0.0348 3 103 309 

03 80 0.86 0.9891 -0.0048 0.9571 -0.0190 4 93 372 

Final Size 1032 

Structure Efficiency (𝑅&') 0.9864 
 

Mutation in Size-Component    = 29.81% 
Mutation in Structure Efficiecy     = 01.23%  
 
5.4 Comparison of Optimization of Integrated Redundant Reliability k out of n 
systems – LMM with rounding-off and Dynamic Programming approach for 
Worth 
 

Table12: Results Correlated LMM with rounding off approach and Dynamic programming approach for Worth 

 With Rounding Off  Dynamic Programming 

Phase 𝑋#$ 𝑟#$ 𝑅%$ 𝐶#$ 𝐶#$ 	. 𝑋#$ 𝑟#$ 𝑅%$ 𝐶#$ 𝐶#$ 	. 𝑋#$ 

01 3 0.8741 0.6777 2233 6699 0.9982 0.9945 2580 7740 

02 3 0.8445 0.6487 2334 7002 0.9736 0.9229 2735 8205 

03 4 0.8456 0.5461 2516 10066 0.9891 0.9571 3016 12064 

Total Worth 23767 28009 

Structure 
Efficiency 

Using With LMM Approach 
(𝑅&') 0.9987 

Using DP  Approach 
(𝑅&') 

0.9999 

 

5.5 Comparison of Optimization of Integrated Redundant Reliability k out of n 
systems – LMM with rounding-off and Dynamic Programming approach for Load 

 

Table13: Results Correlated with LMM rounding off approach and Dynamic programming approach for Load 

 With Rounding Off  Dynamic Programming 
Phase 𝑋#$ 𝑟#$ 𝑅%$ 𝐿#$ 𝐿#$ 	. 𝑋#$ 𝑟#$ 𝑅%$ 𝐿#$ 𝐿#$ 	. 𝑋#$ 

01 3 0.8741 0.6777 100 300 0.9982 0.9945 117 352 
02 3 0.8445 0.6487 78 234 0.9736 0.9229 91 273 
03 4 0.8456 0.5461 58 232 0.9891 0.9571 70 278 
Total Load 767 904 
Structure 
Efficiency 

Using With LMM 
Approach (𝑅&') 

0.9987 Using DP  Approach (𝑅&') 0.9999 

 
5.6 Comparison of Optimization of Integrated Redundant Reliability k out of n 
systems – LMM with rounding-off and Dynamic Programming approach for Size 
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Table14: Results Correlated LMM with rounding off approach and Dynamic programming approach for Size 

 With Rounding Off  Dynamic Programming 

Phase 𝑋#$ 𝑟#$ 𝑅%$ 𝑆#$ 𝑆#$ 	. 𝑋#$ 𝑟#$ 𝑅%$ 𝑆#$ 𝑆#$ 	. 𝑋#$ 

01 3 0.8741 0.6777 100 300 0.9982 0.9945 117 352 
02 3 0.8445 0.6487 87 261 0.9736 0.9229 103 307 
03 4 0.8456 0.5461 78 312 0.9891 0.9571 93 372 

Total Size 873 1031 

Structure 
Efficiency 

Using With LMM 
Approach (𝑅&') 

0.9987 Using DP  Approach (𝑅&') 0.9999 

 

6. Discussion 
This work proposes an integrated reliability model for a k out of n configuration system with 
many efficiency criteria. When the data are discovered to be in reals, the Lagrangean multiplier 
approach is used to compute the number of components (𝑋#$), component efficiencies (𝑟#$), phase 
efficiencies (𝑅%$), and system efficiency (𝑅&'). To obtain practical applicability, the dynamic way of 
programming approach is employed to construct an integer solution using the inputs from the 
Lagrangean method. 

This work proposes an integrated reliability model for a k out of n configuration system with 
many efficiency criteria, when the data are discovered to be in real solution. The Lagrangean 
multiplier approach is used to compute the number of components (𝑋#$) and the respective 
component efficiencies (𝑟#$)	 are 0.8741, 0.8445 & 0.8456, stage reliabilities (𝑅%$) are 0.6777, 0.6487 & 
0.5461, and structure reliability (𝑅&') is 0.9987. To obtain practical applicability, Dynamic 
programming approach is employed to construct an integer solution whereas component 
reliabilities (𝑟#$)	 are 0.9982, 0.9736 & 0.9891, stage reliabilities (𝑅&>) are 0.9945, 0.9229 & 0.9571, and 
the system reliability (𝑅&' ) is 0.9999, Using the inputs from the Lagrangean method. Finally, we 
observed that the worth, load and size components changed slightly, but compare with stage 
reliability, resulting in increased system reliability.  

The IRM generated in this manner is quite valuable, particularly in real-world settings when a k 
from n configuration IRM with reliability engineer redundancy is required. In circumstances 
where the system value is low, the proposed model is especially valuable for the dependability 
design engineer to build high-quality and efficient materials. 

In future study, the authors recommend utilizing a unique approach that limits the minimum and 
maximum component reliability values while maximizing system dependability using any of the 
current heuristic processes to build similar IRMs with redundancy. 
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Abstract 
 

As a continuous probability distribution, the Weibull distribution is widely used in the study 
of reliability, availability and other life data. In this research, we propose the RAMD analysis 
to estimate the three-parameter Weibull distribution. The estimation of the distribution 
parameters is an important problem that has received a lot of attention from researchers because 
of their effects in several measurements. The real data results indicate that our proposed 
estimation method is significantly consistent in estimation compared to the RAMD analysis 
method. The numerical values of filtration system reliability and availability were calculated 
using Maple software. The system of first-order differential equations is formulated using a 
mnemonic approach and solved recursively. Several scenarios were examined to determine the 
impact of the models under consideration. The calculations were done with Maple 13 software. 
Other reliability measures such as mean time to failure (MTTF), mean time to repair (MTTR), 
and dependability ratio was estimated. The comparative analysis was conducted using a reverse 
osmosis (RO) filtration system.  
 
Keywords: Availability, life data, Weibull-distribution, Maple, Reliability,  
         Reverse Osmosis 
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1.  Introduction 
 
A reliability study's main goal is to provide information that can be used to make decisions. 
Performance Analysis of K out of N Reverse Osmosis (RO) system in the treatment of wastewater 
using RAMD analysis was carried out by Ibrahim et al. [19]. Based on the analyses, Jun et al.[9] 
Concluded The key to the life model is the estimating parameters; it can accurately predict the life 
of a product in terms of reliability. Because obtaining the estimated parameters is difficult, the 
process of estimating 3-parameter Weibull distribution is important. Iterative methods are required 
for the estimation process using the maximum likelihood function, which takes a long time and 
effort. RAMD analysis is the proposed method for the estimation of the 3- parameter weibull 
distribution. In comparison to the maximum likelihood method, the real data results show that our 
proposed estimation method is significantly more consistent in estimation. Maihulla A. S. et al. [10] 
investigated the Reliability, Availability, Maintainability, and Dependability Analysis of a Complex 
Reverse Osmosis Machine System in Water Purification. The swedish physicist Weibull proposed 
the Weibull distribution (Walooddi weibull, 1939). He used it to determine the tensile strength of 
various materials. Since then, it's been widely used in reliability and life testing problems, such as 
determining a component's time to failure or life length, which is measured from a specified time 
until it fails as stated by [14].  
                 Jukić and Marković, [8] and Walpole et al., [18] studied the Reliability Estimation of Three 
Parameters Weibull Distribution based on Particle Swarm Optimization. Basheer et al. [5] 
demonstrated how to treat the pollutants found in olive mill wastewater (total organic carbon (TOC), 
dissolved organic carbon (DOC), total phosphorus (TP), total nitrogen (TN), and total polyphenols), 
a sequential Direct Contact Membrane Distillation (DCMD) and a Reverse Osmosis (RO) hybrid 
membrane system were used. Similar study was also conducted by Teresa [3] but with recoveries of 
some economical merits. The influence of permeate flow and pressure on pollutant parameter 
removals was also included in his study. One of the biggest challenges that humanity must address 
in the twenty-first century is the scarcity of freshwater. That is why  Biniaz et al. [17] investigated 
potential development of an environmentally friendly, economical, and energy-efficient membrane 
distillation process. Industrial and household wastes can lessen pollution than to the membrane 
distillation (MD) method. The Gumbel–Hougaard family copula was used to model the reliability 
and performance of a solar photovoltaic system was analyzed by Maihulla A. S. et al. [12]. Failure of 
the purification filter is a serious issue that the water purification industries are facing. Modern 
technical challenges include removing human-caused contaminants from drinking water. After a 
brief discussion of the treatment stages that municipal water through before it reaches your tap, 
you'll learn about the detectable contamination of drinking water caused by anthropogenic (human-
made) toxins that is still present. These were all examined by Maihulla et al. [11]. The issue 
surrounding the comparison of the RAMD analysis and the 3-parameter Weibull was not covered 
in any of the aforementioned publications. 
                    Our motivation for using a reverse osmosis filtration system as a test bed for the two 
methods was to see how well they worked together (3-parameter Weibull and RAMD analysis) 
stems from a serious problem that the water purification industry is facing due to purification filter 
failure. As a result, there has been a slow advancement in technological advancement in water 
purification, as well as its importance in the lives of people all over the world. The filtration industry 
is working hard to keep up with the increasing complexity of the systems. RAMD analysis was used 
to examine the filtration system's strength, efficiency, and performance improvement, according to 
the findings of the paper. If the strength, efficiency, and performance of the filtration system are 
evaluated, users will be able to save money on medical care due to contaminated water. Protect 
yourself from pollution in the water. The study is divided into five parts, one of which is the current 
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introduction. Modeling of filtration is discussed in the section. Materials and methods are 
 
 Covered in Section 2. Section 3 discussed the proposed RAMD analysis method, which was 
compared to the 3-parameter Weibull, as well as an analytical analysis of the system. Section 4 
presented the result. Section 5 included a discussion and explanation of the findings, as well as a 
conclusion. 
 

1.1. Filtration 

One of the most common methods for removing these materials is gravity filtration. This procedure 
involves passing water containing solid impurities (for example, precipitates after water softening) 
through a porous material, usually sand and gravel layers. The force of gravity pushes the water 
through the medium. The gaps between the sand and gravel grains allow small water molecules to 
flow through. Precipitation-derived solids, on the other hand, become trapped in the pores and thus 
remain in the porous medium. The solid contaminants have been removed from the water that 
passes through the bottom of the filter. 

 
                                             

Figure 1: RO Filtration System’s Block diagram 
 
 

1.2. RAMD indices for subsystem 1 (sand filter) Sand Filter: George et al. [6] stated 
that, Sand filters are widely used in water purification and work on a completely different 
mechanism to remove suspended matter. Rather than passing through small orifices 
through which particles cannot pass, the water passes through a 750 mm deep bed of filter 
medium, typically 0.75 mm sand.  

 
1.3. RAMD indices for subsystem 2. (Precision filter) The cylinder shell is usually 

made of stainless steel, and the internal filter elements are made of PP melt-blown, wire 
burning, folding, titanium filter, activated carbon filter, and other tubular filter elements, 
which are chosen based on the different filter media and design process to meet the effluent 
quality requirements.  

 
1.4. RAMD indices for subsystem 3 (activated carbon filter) 

Activated carbon filters are used to purify water without leaving any harmful chemicals behind 
according to Y. K. Siong et al. [21]. For water treatment, a prototype is being created using activated  
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carbon and an ultraviolet radiation system. Analysis of surface area and porosity. For comparison 
of surface morphology, scanning electron microscopy (SEM) was used to obtain magnified images 
of GAC-A and GAC-B.  

 
2.  Methods 

With the probability density function, let T be a random variable that represents time to failure. 
f(t), where f(t) is the 3-parameter Weibull distribution's probability density function, which can be 
written in (1) below, as analyzed by: Jukić and Marković, [8] and Jun et al., [9]. 
 

𝑓(𝑡; 𝛼, 𝛽, 𝛶) = {!
"
,#$%
"
-
!$&

	exp	[− ,#$%
"
-
!
]}                          t≥ 0                            (1) 

                          0                                                                        t≤ 0 
Where 𝛼 > 0 denotes the shape parameter, β > 0 denotes the scale parameter, and 𝛶≤ 𝑡 denotes the 
location parameter. 
Integrating the probability density function yields the cumulative distribution function for the 3-
parameter Weibull distribution in (2). 
                          

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑡; 𝛼, 𝛽, 𝛶)𝑑𝑡 = 1 − 𝑒$'
!"#
$ (

%
#
)                 (2) 

 
The three-parameter Weibull distribution's mean and variance are (3) and (4) below, as in 
(Muraleedharan, [14])  
                                              
𝝁	= 𝛶+ βΓ(!*&

!
)                   (3) 

 
Where 𝝁= E(t) = MTTF  (Mean time to failure) 
                              
𝜎+ = 𝛽+[𝛤 ,!*+

!
- − 𝛤+(!*&

!
)]                  (4) 

 
2.1. List of notations and definitions 

 
 
 :        Represent the system in working state        
  
 
 :              Represent the system in failed state 
  
P) :                          Represent the initial state of the system working in full        
             capacity state. 
𝑃& :                          Represent the state in which one parallel unit is failed   
𝑃+ :                          Represent the state in which two parallel unit is failed   
𝑃, :                          Represent the state in which three parallel unit is failed   
α-			-/-,+,,                  Represent the failure rates subsystems  
	𝛽1			1/&,+,,                 Represent the repair rates subsystems 
𝑃2(𝑡)                       Probability to remain at xth state at time t 
3
3#
𝑃2(𝑡), x= 0,1,2,3. Represent the derivative with respect to time t 
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2.2. Reliability 

 
The chance that a device will run without failure for a particular period of time is referred to as 
reliability under the operational conditions indicated. 
 
𝑅(𝑡) = 	∫ 𝑓(𝑥)𝑑𝑥4

#      Reliability function                                                 (5) 
 

2.3. MTBF 
 

Mean Time between Failures (MTBF): The mean time between failures refers to the average period 
of good system functioning. The MTBF is the reciprocal of the constant failure rate or the ratio of the 
test time to the number of failures when the failure rate is reasonably consistent over the operating 
period. It is given by (6), as in Ashish K. and Monika S. [13]. 
 
 
MTBF = ∫ 𝑅(𝑡)𝑑𝑡4

)  = ∫ 𝑒$5#4
) = &

5
      Mean Time between Failure                                                         (6) 

 
2.4. MTTR 

 
Mean Time between repairs (MTTR): is the reciprocal of the system repair rate, as in (7) below: 
 
MTTR = &

𝜷
                              Mean Time to Repair                                         (7)  

 
2.5. Availability 

 
Availability: For repairable systems, availability is a performance criterion that considers both the 
system's dependability and maintainability. It's defined as the probability that the system will work 
correctly when it's needed. JG Wohl [20]. That is the ratio of life time to total time, as in (8) below. 
 
Availability = 7-89	#-:9	

;<#=>	#-:9	
	= 	 7-89	#-:9	

7-89	#-:9*?9@=-A	#-:9	
=	 B;;C

B;;C*B;;?
                                                                    (8) 

 
2.6. Maintainability 

 
Maintainability: When maintenance is necessary, is a design, installation, and operation feature that 
is often stated as the possibility that a machine can be kept in, or returned to, a particular operational 
condition within a specified time frame, according to Wohl, JG [20]. It is given by (9) below. 
 

𝑀(𝑡) = 1 − 𝑒($
"!

&''()              Maintainability function                                                         (9) 
 

2.7.  Dependability A. Ebeling [4] defined dependability as a measure of a system's 
availability, reliability, maintainability. The advantage of dependability is that it allows for 
cost, reliability, and maintainability comparisons. For random variables with exponential 
distribution, the dependability ratio is as follows:  

 
𝛽 = 𝑅𝑒𝑝𝑎𝑖𝑟	𝑟𝑎𝑡𝑒	,                                                    𝛼 = Failure rate  
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𝑑 =	!

F
  = B;GC

B;;?
 

 
The importance of maintenance is reflected in the high value of the dependability ratio. The 
dependability value increases if availability is greater than 0.9 and decreases if availability is less 
than 0.1, according to C. Li, S. Besarati, and colleagues [2]. The following formula in (10) calculates 
the minimum value of dependability: 
 

𝐷:-H = 1 − ( &
3$&

)(𝑒$
)*+
+", −	𝑒$

+	)*	+
+", )                               (10) 

 
2.8. Functions of reliability and failure rate 

 
𝑅(𝑡) Is the reliability function (also known as the survival function). The probability that the device 
will operate without failure for a given period of time under the specified operating conditions is 
known as reliability. This included in the study carried out by Haldar and Mahadevan, [7] and  
 
Walpole et al., [18]. The R(t) in (11) below is in terms of the failure and repair rates of the three 
parameter weibull distribution, unlike that of (5).  
 

𝑅(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑡; 𝛼, 𝛽, 𝛶)𝑑𝑡 = 1 − 𝐹(𝑡) = 𝑒$'
!"#
$ (

%
#
)                                            (11) 

 
 Represents the failure rate (also known as the hazard rate). The failure rate is expressed in 

terms of failures per unit time. It is computed as the ratio of number of failures of the items 
undergoing the test time. From 𝑇 = 𝑡 to 𝑇 = 	𝑡 + ∆𝑡, given that it survived to time t, this was 
investigated by   Nachlas, [15] and Walpole et al.,[18].  
 

𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡|𝑇 > 𝑡) = I(#J;J#*∆#)
I(;L#)

= C(#*∆#)$C(#)
?(#)

=	 ∆C(#)
?(#)

                                         (12) 

 
We get the failure rate by dividing this ratio by ∆𝑡 and finding the limit as ∆t→0: in the three 
parameter weibull distribution, as below in (13). The computation of availability, MTTF, MTTR, 
MTBF as well as dependability analyses for RAMD against three parameter weibull distribution 
were presented in table 2. 
                            

ℎ(𝑡) = 	 lim
∆#→)

IN𝑡 < 𝑇 < 𝑡 + ∆𝑡O𝑇 > 𝑡P
∆#

= lim
∆#→)

	∆C(#)
∆?(#)

=	 C(#)
?(#)

                                                      (13) 

 
And for each correspondent subsystem: by substituting h(t) as failure rate, we got (14) below: 
 

𝑀𝑇𝑇𝐹 =	 &
C=->QA9	A=#9

=	 &
R(#)

      (Mean time between failures)                        (14)                              

And                               
𝑀𝑇𝑇𝑅 =	 &

	?9@=-A	A=#9
    (Mean time to repair)                                                           (15) 

And therefore the Availability of the system can be calculated using the relation below as in Monika 
et al. [16]. Availability, also using three parameter weibull distribution can be computed as (16) 
below: 
 
Availability = 	 B;GC

B;GC*B;;?
                                                           (16) 

 
 

)(th
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3. The proposed RAMD Analysis method 

 

 
Figure 2: Transition diagram for subsystem 1 

 
3
3#
𝑃)(𝑡) = 	−3𝛼&𝑃) +	 	𝛽𝟏𝑃&              (17) 

3
3#
𝑃&(𝑡)	= −(2𝛼& + 	𝛽𝟏)	𝑃& +	3𝛼&𝑃) + 	𝛽𝟏𝑃+	              (18) 

3
3#
𝑃+(𝑡)	= −(𝛼& + 	𝛽𝟏)	𝑃+ +	2𝛼&𝑃& + 	𝛽𝟏𝑃,                                                                                (19) 

3
3#
𝑃+(𝑡) = 	−	𝛽𝟏𝑃+ + 𝛼&𝑃&	                         (20) 

 
The steady-state probabilities of the system are obtained by imposing the following restrictions: 
3
3#
→ 0, as 𝑡 → ∞. see Arora and Kumar [1]. 

 
Under steady state, equation (17) - (20) reduces to 
 

𝑃&	=  !,
	"𝟏

 𝑃)                (21) 

 
Substituting (21) into (18) 
 

𝑃+ =
!,/

",/
 𝑃)                 (22) 

 
Substituting (22) into (19)  
 

𝑃, =
!,
0

",0
	𝑃)                     (23) 

 
Using normalization condition  
 

𝑃) + 𝑃& + 𝑃+ + 𝑃,= 1                 (24) 
              
Substituting (21) and (22) and (23) into (24) we have: 
 
𝑃) + =  !,

	"𝟏
 𝑃) + !,

/

",/
 𝑃) +

!,
0

",0
	𝑃) 	= 1 

𝑃) =
",
0

",0*T!,0*,",/!,*T	"𝟏!,/
		                                             (25)  

 
Table 2 contains important device output metrics that have been extracted 
 

                            a3 1
 a2 1

  a1
  

                                                                          

                           b 1
                                 b 1

  b 1
 

P0  P1  P3  P2  
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Figure 3: Transition diagram for subsystem 2 

3
3#
𝑃)(𝑡) = 	−2αU𝑃) +	 	𝛽𝟒𝑃&                  (26) 

       3
	3#
𝑃&(𝑡)	= 	2αU𝑃) − 	𝛽𝟒𝑃&	                           (27)

    
Under steady state, equation (20) and (21) reduces to: 
 
−2αU𝑃) +	 	𝛽𝟒𝑃& = 2αU𝑃) − 	𝛽𝟒𝑃&		  
 
And 
 

𝑃&	=  +W1
	"𝟒

 𝑃)                    (28) 

 
Using normalization condition  
 
𝑃) + 𝑃&= 1                                         (29) 

               
Substituting (22) into (23) we have: 
 
𝑃) +	

+W1
	"𝟒

 𝑃) 	= 1 

P) =	
	"𝟒

	"𝟒*+W1	
                                                      (30)  

 
Table 2 contains important device output metrics that have been extracted. 

Figure 4: Transition diagram for subsystem 3 
 

3
3#
	𝑃)(𝑡) = −𝛼,𝑃) +	𝛽,𝑃&               (31) 

3
3#
	𝑃&(𝑡) = −(𝛽, + 𝛼,)𝑃& +	𝛼,𝑃) + 𝛽,𝑃+              (32) 

3
3#
	𝑃+(𝑡) = 	−𝛽,𝑃+ + 𝛼,𝑃&	               (33) 

 
Under steady state, equation (25)- (27) yield 
 
𝑃& =	

!0
"0
	𝑃)	                 (34) 

 
Substituting (28) into (26) under steady state we have: 

 

                                    a2 2
     

 

  b 2
 

P0  P1  

 
                               a 3                                 a 3  

 

                               b 3
                                b 3

 

P0  P1  P2  
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𝑃+ =	

!0/

"0/
𝑃)	                 (35) 

 
Using normalization condition 
 
P) +	P& +	P+ = 1                 (36) 

 
It follows that: 
 
P) =	

F0/

F0/*!0/	*F0!0	
                             (37) 

 
 

3.1. System Reliability 
 

𝑅XYX(𝑡) = 	𝑅X&(𝑡) × 𝑅X+(𝑡) × 𝑅X,(𝑡)             (38) 
 

𝑅XYX(𝑡) = 𝑒$	𝜶𝟏(#) × 𝑒$	𝜶𝟐(#) × 𝑒$	𝜶𝟑(#)              (39) 
𝑅XYX(𝑡)=  𝑒$(𝜶,*𝜶/*𝜶0)#                                          (40) 

 
3.2. System Availability 

 
Arranged in series, failure of one cause the complete failure of the system.  
 
𝐴XYX =	𝐴X& × 𝐴X+ × 𝐴X,                               (41) 

𝐴XYX = ( ",
0

",0*T!,0*,",/!,*T	"𝟏!,/
) × (	 	"𝟒

	"𝟒*+W1	
) × ( F0/

F0/*!0/	*F0!0	
	)                         (42) 

𝐴XYX = , ).)\
).)]))^

- × ,).)_
).&&

- × , ).)&+&
).)&^]^

-             (43) 
𝐴XYX =  0.87445 × 0.81818 × 0.76341              (44) 
𝐴XYX =  0.18249                (45) 

 
Table 2 contains important device output metrics that have been extracted. 

 
4.  Results 

 
The numerical outcomes from RAMD and Weibull analysis performed using Maple software are 
presented in this section. The discussion of the comparative analysis in this section is found in the 
part that follows. The tables' contents are translated into graphs. Table 1 below shows the failure and 
repair rates for the corresponding subsystems. The comparison findings for the two aforementioned 
methodologies were shown in Tables 2, 3, and 4. 
 

Table 1: Failure and repair rates for subsystems 
Subsystem Failure Rate (𝛼) Repair Rate (𝛽) 

𝑆& 𝛼&= 0.004 𝛽& = 0.54 

𝑆+ 𝛼+= 0.006 𝛽+ = 0.67 
𝑆, 𝛼,= 0.008 𝛽, = 0.90 
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Table 2: RAMD/Weibull indices for the RO filtration system 

RAMD indices of  
Subsystems 

Subsystem  
𝑆& 

Subsystem  
𝑆+ 

Subsystem  
𝑆, 

System  
 

Reliability 𝑒$).))_# 𝑒$).))^# 𝑒$).)&U# 𝑒$).)+]# 

Availability 
(Weibull) 

0.96755 0.77853 0.89706 0.67573 

Availability 
(RAMD) 

0.84556 
 

0.69453 
 

0.77453 
 

0.45486 
 

MTBF (Weibull) 104.34 198.92 88.06 391.32 
MTBF(RAMD) 83.33 

21.01 
166.67 
32.25 

62.50 
25.56 

312.50 
78.82 

MTTR (Weibull) 4.77 3.21 1.96 9.94 
MTTR(RAMD) 1.85 1.49 1.11 4.45 
Dependability 
(Weibull)  

0.99302 0.99746 0.99753 0.98805 

Dependability 
(RAMD) 

0.97497 0.94301 0.92891 0.85405 

Dependability 
ratio (Weibull) 

21.87 61.97 44.93  

Dependability 
ratio (RAMD) 

45.04 111.86 56.31  

 
Table 3: Availability of a system 

Subsystems 3-Parameter weibull distribution RAMD (Exponential distribution) 
1 0.96755 0.84556 
2 0.77853 0.69453 
3 0.89706 0.77453 

 
 

 
 

Figure 5: Variation of Availability with time 
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Table 4: Reliability of a system 

Time(in days) 3-Parameter weibull distribution RAMD (Exponential distribution) 
0 1.00000 0.99999 
10 0.79918 0.79384 
20 0.71540 0.70030 
30 0.66808 0.64285 
40 0.63288 0.59827 
50 0.60240 0.55945 
60 0.57436 0.52410 
70 0.54801 0.49140 
80 0.52308 0.46100 
90 0.49942 0.43268 
100 0.47695 0.40628 

 
 

 
 

Figure 6: Variation of Reliability with time 
. 

 
5.  Discussion 

 
Figures 2, 3, and 4 show the transition diagrams for the three reverse osmosis filtering 
units/subsystems, namely the sand filters, precision filters, and carbonated filters. A comparison of 
the efficiency of two methods (RAMD analysis and 3-parameter Weibull) was conducted. Table 2 
lists all of the additional RAMD-Weibull metrics. It demonstrated how effective the Weibull is when 
compared to the RAMD. The variation in the system's availability is 0.22087, which is due to the fact 
that subsystem 3 has a larger variation than subsystems 1 and 2. When the MTBF of the entire system 
is considered, it is found that the weibull is more efficient in terms of the average operating time 
from the time a failed device is restored to the time it becomes failed again than RAMD analysis, 
with a variation of nearly 78.82. When compared to 1 and 3, the same subsystem 2, contributed 
significantly. Despite the fact that it had fewer units than 1 and 3, it was still a good choice. Using 
the RAMD analysis, the system's reliability after 50 days of operation is only 0.55945. The reliability 
of the same system using a 3-parameter Weibull distribution after the same period is 0.60240. 
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Figure 5 depicted the availability of the two methods as a function of time (3-parameter Weibull and 
RAMD analysis). The efficiency of 3-parameter Weibull over RAMD analysis is clearly observed.  
According to the numerical analysis in Table 4 and the corresponding values in Figure 6.  
 

6.  Conclusion  
 

For desalinating saltwater to produce drinking water, reverse osmosis (RO) filtration system is an 
important technology. The performance of a desalination system is determined by the failure 
behavior of its components. Because the RO filtration system was designed to be low-power, the 
subsystems' dependability must be maintained through proper design and material selection in 
order for the plant to operate continuously. Furthermore, the estimation of the system's strength in 
terms of reliability characteristics using the 3-parameter Weibull distribution is more efficient than 
the RAMD analysis method. As a result, the study investigated the system's availability and 
reliability, as well as other features such as MTBF, MTTR, and dependability analysis. To address 
the issue of precision filter redundancy, more research can be done. 
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Abstract

In this work, we propose a novel trigonometric-based generator entitled the "New Cosine-Generator"
to acquire elevated distribution adaptability. This generator is formed without the insertion of extra
parameters. Adopting the Weibull distribution as the baseline distribution, and this distribution is referred
to as the New Cosine-Weibull Distribution. Several statistical features of the investigated distribution
were studied, including moments, moment generating functions, order statistics, and reliability measures.
For different parameter values, a graphical representation of the probability density function (pdf) and the
cumulative distribution function (cdf) is provided. The distribution’s parameters are determined using
the well-known maximum likelihood estimation approach. Finally, simulation analysis and an application
is used to evaluate the effectiveness of the distribution.

Keywords: Cosine function, moments, maximum likelihood estimation, reliability indicators,
simulation.

1. Introduction

In applied sciences such as biological sciences, medical sciences, environmental sciences, engi-
neering, finance, and actuarial science, among others, statistical evaluation of lifetime data is
unpredictable, and statistical modelling is the finest and most effective technique to examine the
ambiguity of any occurrence. Because of the complex nature and distinctive characteristics of
data, life time data serves a critical function in sectors such as insurance and finance. Thus, there
is an apparent need for expansion and modification of current traditional statistical distributions.
Indeed, various initiatives have been made to develop additional classes of lifetime distributions
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in order to extend various families of distributions and offer more adaptability to the novel
model. Numerous investigators have added new classes of life time distributions throughout
the last few years, which are now available in the statistical literature. The implementation of
trigonometric functions to construct new statistical distributions is becoming a prevalent approach,
and employing these trigonometric distributions for data interpretation demonstrates greater
versatility. Looking back over the literature, we can see that numerous authors employed many
generators or transformations. For instance, Eugene et al. [16], the gamma-G family by Zagrofos
and Balakrishana [20], the transformedtransformer(T-X) by Alzaatrah et al [1], the Weibull-G
by Bourguignon et al. [6], Morad Alizadeh et al. [17] constructed the Gompertz-G distribution
family, Brito et al. [7], formulated the Topp-Leone odd log-Logistic family of distributions and
Aijaz et al. [4] a noval aproach for constructing distributions with an example of Rayleigh
distribution, SS-transformation based on trigonometric functions is proposed by kumar et al. [2],
Chesneau et al.[10], Mahmood. Z and Chesneau. C [18], Souza.l et al.[13], Jammal.F et al. [11],
M.A.Lone et al.[19],I.H. Dar et al [5] and Aijaz Ahmad et al. [3]. This work aims to present the
cosine-generator distributions, a novel family of trigonometric function-based generator. The
benefit of this generator is that flexibility is achieved without the insertion of further parameters.

Let us suppose F(x; ζ) be cdf of a random variable X, then the cumulative distribution function
of new cosine-generator family of distributions is described as.

F(x; ζ) =−
∫ π(2−2Ḡ(x;ζ))

2

0
sinxdx

=1 − cos

(
π(2 − 2Ḡ(x;ζ))

2

)
; x ∈ R, ζ > 0 (1)

The related probability density function of equation (1) is stated as

f (x; ζ) =
π

2
log(2)2Ḡ(x;ζ)g(x; ζ)sin

(
π(2 − 2Ḡ(x;ζ))

2

)
; x ∈ R, ζ > 0 (2)

Where Ḡ(x; ζ)) = 1 − G(x; ζ) and dG(x;ζ)
dx = g(x; ζ).

Futhermore, the reliability function represented as R(x; ζ), hazard rate function represented as
H(x; ζ) and reverse hazard rate function represented as h(x; ζ) are respectively stated in general
form by

R(x; ζ) =1 − F(x; ζ) = cos

(
π(2 − 2Ḡ(x;ζ))

2

)

H(x; ζ) =
f (x; ζ)

R(x; ζ)
=

π

2
log(2)2Ḡ(x;ζ)g(x; ζ)tan

(
π(2 − 2Ḡ(x;ζ))

2

)

h(x; ζ) =
f (x; ζ)

F(x; ζ)
=

π
2 log(2)2Ḡ(x;ζ)g(x; ζ)sin

(
π(2−2Ḡ(x;ζ))

2

)
1 − cos

(
π(2−2Ḡ(x;ζ))

2

)
The Weibull distribution has been employed in a wide range of domains and applications. The
hazard function of the Weibull distribution can only be monotone. As a consequence, it cannot
be used to replicate lifespan data with a bathtub-shaped hazard function. We adopt the Weibull
distribution as the baseline distribution for the newly formed generator and exhibit its numerous
characteristics.
Suppose X denotes a random variable that follows the Weibull distribution, then its cumulative
distribution function is stated as

G(x; α, β) = 1 − e−αxβ
; x > 0, α, β > 0 (3)
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The related probability density function is given as

g(x; α, β) = αβxβ−1e−αxβ
; x > 0, α, β > 0 (4)

1.1. Usefull expansion

We apply Taylor’s series of sinx = ∑∞
p=0(−1)p x2p+1

(2p+1)! in equation (2) to get its mixture form

f (x; ζ) =
∞

∑
p=0

(−1)p

(2p + 1)!
π

2
log(2)g(x; ζ)2Ḡ(x;ζ)22p+1

(
1 − 2−G(x;ζ)

)2p+1
(5)

Now, we apply (1 − u)a = ∑∞
q=0(−1)q(a

q)u
q in equation (5), we obtain

f (x; ζ) =
∞

∑
p=0

∞

∑
q=0

(−1)p+q

(2p + 1)!
log(2)

(
2p + 1

q

)
π2p+2g(x; ζ)2−(q+1)G(x;ζ) (6)

Again we apply Taylor’s series of ay = ∑∞
r=0

(log(a))r

r! yrin equation (6), we have

f (x; ζ) =
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

(−1)p+q+r

(2p + 1)!
(log(2))r+1

r!

(
2p + 1

q

)
π2(p+1)(q + 1)rg(x; ζ) (G(x; ζ))r (7)

Equations (3) and (4) in equation (7) enable us to construct the baseline model’s probability density
function in mixture form, which has been employed as an illustration for the established generator.

f (x; α, β) =
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrsαβxβ−1e−α(r+1)xβ
(8)

Ψpqrs =
(−1)p+q+r+s

(2p + 1)!
(log(2))r+1

r!

(
2p + 1

q

)(
r
s

)
π2(p+1)(q + 1)r

2. New Cosine-Weibull Distribution and its Mathematical properties

By applying the new cosine-generator, we exhibit the probability density function (pdf) and
cumulative distribution function (cdf) of a newly formed distribution called new Cosine-Weibull
distribution (NCWD) in this part and strengthen certain of its mathematical features. Using
equation (3) in equation(4), we obtain the cdf of desired distribution as

F(x; α, β) =1 − cos

π(2 − 2e−αxβ

)

2

 ; x > 0, α, β > 0 (9)
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Figure 1: cdf plot of NCWD for different choise of parameters

The related probability density function is stated as

f (x; α, β) =
πlog(2)

2
αβxβ−1e−αxβ

sin

π(2 − 2e−αxβ

)

2

 ; x > 0, α, β > 0 (10)
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Figure 2: pdf plot of NCWD for different choise of parameters

2.1. Moments of new cosine-Weibull distribution

Let x denotes a random variable, then the kth moment of NCWD is denoted as µ
′
k and is given by

µ
′
k =E(xk) =

∫ ∞

0
xk f (x; α, β)dx (11)

Using equation (8) in equation (11), it yields

µ
′
k =

∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrsαβ
∫ ∞

0
xk+β−1e−α(r+1)xβ

dx
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Making substitution α(r + 1)xβ = z, sothat 0 < z < ∞, we have

µ
′
k =

∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrs
α

(α(r + 1))
k+β

β

∫ ∞

0
z

k
β e−zdz

After solving the integral, we obtain

µ
′
k =

∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrs
α

(α(r + 1))
k+β

β

Γ
(

k + β

β

)

Where Γ(.) denotes the gamma function.

2.2. Moment generating function of new cosine-Weibull distribution

Suppose x denotes a random variable follows NCWD. Then the moment generating function of
the distribution denoted by MX(t)is given

MX(t) = E(etx) =
∫ ∞

0
etx f (x; α, β)dx

=
∫ ∞

0

(
1 + tx +

(tx)2

2!
+

(tx)3

3!
+ ....

)
f (x; α, β)dx

=
∞

∑
k=0

tk

k!

∫ ∞

0
xk f (x; α, β)dx

=
∞

∑
k=0

tk

k!
E(xk)

=
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

∞

∑
k=0

Ψpqrs
αtk

k! (α(r + 1))
k+β

β

Γ
(

k + β

β

)

2.3. Incomplete moments of new cosine-Weibull distribution

The vth incomplete moment for density function in general is stated as

I(v) =
∫ v

0
xk f (x; αβ)dx

Using the equation (8), we have

I(v) =
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrsαβ
∫ v

0
xk+β−1e−α(r+1)xβ

dx

Making substitution α(r + 1)xβ = z, sothat 0 < z < α(r + 1)vβ, we have

I(v) =
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrs
α

(α(r + 1))
k+β

β

∫ α(r+1)vβ

0
z

k
β e−zdz

After solving the integral, we obtain

I(v) =
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrs
α

(α(r + 1))
k+β

β

γ

(
k + β

β
, α(r + 1)vβ

)

Where γ(a, x) =
∫ x

0 ua−1e−udu denotes lower incomplete gamma function
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2.4. Quantile function of new cosine-Weibull distribution

The quantile function of any distribution may be described as follows:

Q(u) = Xq = F−1(u)

Where Q(u) denotes the quantile function of F(x) for u ∈ (0, 1).
Let us suppose

F(x) = 1 − cos

π(2 − 2e−αxβ

)

2

 = u (12)

After simplifying equation (12), we obtain quantile function of NCWD distribution as

Q(u) = Xq =

{
−1
α

log
[

1
log(2)

log
(

2π − 2 arccos(1 − u)
π

)]} 1
β

3. Reliability Measures of new cosine-Weibull distribution

This section is focused on researching and developing distinct ageing indicators for the formulated
distribution.

3.1. Survival function

Suppose X be a continuous random variable with cdf F(x).Then its Survival function which is
also called reliability function is defined as

S(x) = pr(X > x) =
∫ ∞

x
f (x)dy = 1 − F(x)

Therefore, the survival function for NCWD is given as

S(x; α, β) =1 − F(x; α, β)

=cos

π(2 − 2e−αxβ

)

2

 (13)

3.2. Hazard rate function

The hazard rate function of a random variable x is denoted as

H(x; α, β) =
f (x; α, β)

S(x; α, β)
(14)

Using equation (10) and (13) in equation (14), then the hazard rate function of NCWD is given as

H(x; α, β) =
πlog(2)

2
αβxβ−1e−αxβ

2e−αxβ

tan
(

π

2

(
2 − 2e−αxβ

))
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Figure 3: HRF plot of NCWD for different choise of parameters

3.3. Reverse hazard rate function

The reverse hazard rate function of a random variable x is given as

h(x; α, β) =
f (x; αβ)

F(x; αβ)
(15)

using equations (9) and (10) in equation (15), then we obtain reverse hazard rate function as

h(x; α, β) =

πlog(2)
2 αβxβ−1e−αxβ

sin

(
π(2−2e−αxβ

)
2

)

1 − cos
(

π(2−2e−αxβ
)

2

)

3.4. Mean residual function

The mean residual lifetime is the predicted residual life or the average completion period of the
constituent after it has exceeded a certain duration x. It is extremely significant in reliability
investigations.
Mean residual function of random x variable can be obtained as

m(x; α, β) =
1

S(x; α, β)

∫ ∞

x
t f (t, α, β)dt − x

=
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrsαβ sec
(
(π/2)(2 − 2e−αxβ

)

) ∫ ∞

x
tβe−α(r+1)tβ

dt − x

Making substitution α(r + 1)tβ = z, sothat α(r + 1)xβ < z < ∞, we have

m(x; α, β) =
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrsα sec
(
(π/2)(2 − 2e−αxβ

)

)
(α(r + 1))

1+β
β

∫ ∞

α(r+1)xβ
z

1
β e−zdz − x

After solving the integral, we get

m(x; α, β) =
∞

∑
p=0

∞

∑
q=0

∞

∑
r=0

∞

∑
s=0

Ψpqrsα sec
(
(π/2)(2 − 2e−αxβ

)

)
(α(r + 1))

1+β
β

Γ
(

β + 1
β

, α(r + 1)xβ

)
− x

Where Γ(a, x) =
∫ ∞

x ua−1e−udu denotes the upper incomplete gamma function
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4. Order Statistics and Maximum likelihood Estimation of New

cosine-Weibull distribution

Let us suppose X1, X2, ..., Xn be random samples of size n from NCWD with pdf f (x) and cdf
F(x). Then the probability density function of the kth order statistics is given as

fX(k) =
n!

(k − 1)!(n − 1)!
f (x) [F(x)]k−1 [1 − F(x)]n−1 (16)

Using equation (3) and (4) in equation (10), we have

fX(k) =
n!

(k − 1)!(n − 1)!
πlog(2)

2
αβxβ−1e−αxβ

sin

π(2 − 2e−αxβ

)

2

cos

π(2 − 2e−αxβ

)

2

k−1

1 − cos

π(2 − 2e−αxβ

)

2

n−1

The pdf of the first order X1 and nth order Xn statistics of new cosine-Weibull distribution are
respectively given as

fX(1) =
nπlog(2)

2
αβxβ−1e−αxβ

sin

π(2 − 2e−αxβ

)

2

1 − cos

π(2 − 2e−αxβ

)

2

n−1

And

fX(n) =
nπlog(2)

2
αβxβ−1e−αxβ

sin

π(2 − 2e−αxβ

)

2

cos

π(2 − 2e−αxβ

)

2

n−1

Let the random samples x1, x2, x3, ..., xn are drawn from new cosine-Weibull distribution. The
likelihood function of n observations is given as

L =
n

∏
i=1

πlog(2)
2

αβxβ−1e−αxβ
sin

π(2 − 2e−αxβ

)

2


The log-likelihood function is given as

l =nlog(log(2)) + nlog(α) + nlog(β)− α
n

∑
i=1

xβ
i + (β − 1)

n

∑
i=1

log(xi) + log(2)
n

∑
i=1

e−αxβ
i

+
n

∑
i=1

log

sin

π(2 − 2e−αxβ

)

2

 (17)

The partial derivatives of the log-likelihood function with respect to α and β are given as

∂l
∂α

=
n
α
−

n

∑
i=1

xβ
i − log(2)

n

∑
i=1

xβ
i e−αxβ

i + (
π

2
)log(2)

n

∑
i=1

xβ
i 2e−αxβ

i cot

π(2 − 2e−αxβ

)

2

 (18)

∂l
∂β

=
n
β
− αβ

n

∑
i=1

xβ−1
i +

n

∑
i=1

log(xi) + log(2)− α
n

∑
i=1

xβ
i log(xi)e−αxβ

+ (
απ

2
)log(2)

n

∑
i=1

xβ
i 2e−αxβ

i e−αxβ
i cot

π(2 − 2e−αxβ

)

2

 log(xi) (19)
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For interval estimation and hypothesis tests on the model parameters, an information matrix is
required. The 2 by 2 observed matrix is

I(ξ) =
−1
n

 E
(

∂2logl
∂α2

)
E
(

∂2logl
∂α∂β

)
E
(

∂2logl
∂β∂α

)
E
(

∂2logl
∂β2

) 
The elements of above information matrix can be obtain by differentiating equations (18) and
(19) again partially. Under standard regularity conditions when n → ∞ the distribution of ζ̂ can
be approximated by a multivariate normal N(0, I(ζ̂)−1) distribution to construct approximate
confidence interval for the parameters. Hence the approximate 100(1 − ψ)% confidence interval
for α and β are respectively given by

α̂ ± Z ψ
2

√
I−1
αα (ζ̂) and β̂ ± Z ψ

2

√
I−1
ββ (ζ̂)

5. Simulation Analysis

The bias, variance and MSE were all addressed to simulation analysis. From NCWD taking
N=500 with samples of size n=50,150,150,250,350,450 and 500. The following expression has been
used to produce random numbers.

X =

{
−1
α

log
[

1
log(2)

log
(

2π − 2 arccos(1 − u)
π

)]} 1
β

Where u is uniform random numbers with u ∈ (0, 1). For various parameter combinations,
simulation results have been achieved. The bias, variance and MSE values are calculated and
presented in table 1 and 2. As the sample size increases, this becomes apparent that these
estimates are relatively consistent and approximate the actual values of parameters. Interestingly,
with all parameter combinations, the bias and MSE reduce as the sample size increases.

Table 1: Bias, variance and their corresponding MSE’s for different parameter values α = 1.2, β = 0.5

Sample size Parameters Bias Variance MSE

50 α 0.01450 0.02467 0.02488
β 0.01371 0.00268 0.00287

150 α 0.00415 0.00614 0.00616
β 0.00213 0.00091 0.00091

250 α -0.00031 0.00411 0.00411
β 0.00406 0.00049 0.00051

350 α -0.00411 0.00276 0.00277
β 0.00248 0.00037 0.00038

450 α 0.00223 0.00218 0.00219
β 0.00255 0.00025 0.00026

500 α 0.00388 0.00214 0.00216
β 0.00096 0.00024 0.00024

6. Data Aanalysis

This subsection evaluates a real-world data set to demonstrate the new cosine-Weibull distribu-
tion’s applicability and effectiveness. The new cosine-Weibull distribution (NCWD) adaptability
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Table 2: Bias, variance and their corresponding MSE’s for different parameter values α = 1.5, β = 1.2

Sample size Parameters Bias Variance MSE

50 α 0.01450 0.03773 0.03794
β 0.03003 0.01942 0.02032

150 α 0.01324 0.01125 0.01143
β 0.01132 0.00508 0.00521

250 α 0.00982 0.00698 0.00708
β 0.00446 0.00324 0.00326

350 α 0.00286 0.00517 0.00518
β 0.01186 0.00243 0.00257

450 α 0.00248 0.00370 0.00371
β 0.00319 0.00165 0.00166

500 α 0.00160 0.00311 0.00311
β 0.00073 0.00140 0.00140

is determined by comparing its efficacy to that of other analogous distributions such as Weibull
distribution (BD), Frechet distribution (FD), Inverse Burr distribution (IBD), Nadrajah Haghigi
distribution (NHD),Rayleigh distribution (RD) and Exponential distribution (ED).
To compare the versatility of the explored distribution, we consider the criteria like AIC (Akaike
information criterion), CAIC (Consistent Akaike information criterion), BIC (Bayesian informa-
tion criterion), HQIC (Hannan-Quinn information criterion), Kolmogorov-Smirnov tes (K.S), the
Cramer-Van Mises criteria (W*) and the Anderson-Darling test (A*). Distribution having lesser
AIC, CAIC, BIC,HQIC, K.S, W* and A* values is considered better.
Data set: The data set given below represents the waiting times (in minutes) before service of 100
bank customers, information provided by Ghitany et al.[10].
0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2,4.3, 4.3, 4.4, 4.4,
4.6, 4.7, 4.7, 4.8, 4.9, 4.9,5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2,6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6,
7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5,
11.9,12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9,
19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5
The ML estimates with corresponding standard errors in parenthesis of the unknown param-
eters are presented in Table 3 and the comparison statistics, AIC, BIC, CAIC, HQIC and the
goodness-of-fit statistic for the data set are displayed in Table 4.

Table 3: Descriptive statistics for data set

Min. Max. Ist Qu. Med. Mean 3rd Qu. kurt. Skew.
0.800 38.500 4.675 8.100 9.877 13.025 5.5402 1.4727
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Table 4: The ML Estimates (standard error in parenthesis) for data set

Model α̂ β̂

NCWD 0.0803 1.1474
(0.0174) (0.0830)

WD 0.0304 1.4585
(0.0094) (0.1087)

FD 6.535 1.1629
(0.8918) (0.0799)

IBD 8.8661 1.2900
(1.2087) (0.0827)

NHD 0.0212 3.3292
(0.0138) (1.8244)

ED 0.1012 ....
(0.0101) ....

RD 0.0066 ....
(0.00065) ....

Table 5: Comparison criterion and goodness-of-fit statistics for data set

Model -l AIC CAIC BIC HQIC K.S statistic W* A* p-value
NCWD 316.98 637.96 638.09 643.17 640.07 0.0353 0.0168 0.1243 0.9996

WD 318.73 641.46 641.58 646.67 643.57 0.0577 0.0629 0.3962 0.8922
FD 334.38 672.76 672.88 677.97 674.87 0.1167 0.3832 2.505 0.1312
IBD 330.42 664.85 664.97 670.06 666.96 0.1026 0.2922 1.9478 0.2425

NHD 323.44 650.89 651.02 656.10 653.00 0.1076 0.1111 0.6958 0.197
ED 329.02 660.04 660.08 662.64 661.09 0.1730 0.0270 0.1790 0.0050
RD 329.24 660.48 660.52 663.08 661.53 0.1734 0.1268 0.7877 0.0048
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Figure 4: Estimated pdf of the fitted model and Empirical versus fitted reliability function for data set.
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Figure 5: PP and QQ plot for NCWD.

It is observed from table 4 that NCWD provides best fit than other competative models based
on the measures of statistics, AIC, BIC, CAIC, HQIC, K-S statistic W* and A*. Along with p-values
of each model.

7. Conclusion

There is a growing concern among both statisticians and applied researchers in constructing
versatile lifetime models to enhance the modelling of survival data. In this research, we es-
tablished a two-parameter new cosine-Weibull distribution, which is created by employing the
weibull distribution as the baseline. Several structural properties of the proposed distribution
including moments, moment generating function, order statistics and reliability measures has
been discussed. The parameters of the distribution are estimated by famous method of maximum
likelihood estimation. Finally the efficiency of the distribution is examined through an application.
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Abstract 
 

The study of probability distribution has expanded the field of statistical modelling of real life data. 
It has also provided solution to the problems of skewed data which often violate the normality. This 
research work introduces a new T - Half-Lapalace{Exponential} family with a novel Half-Laplace 
distribution as baseline distribution with specific interest in three-parameter lifetime model called 
the Weibull-Half-Lapalace{Exponential} (W-HLa{E}) distribution. The W-HLa{E} model is capable 
of modeling various shapes of aging events. The W-HLa{E} distribution is derived by combining 
Half-Laplace and Weibull distribution using the quartile function of Exponential distribution. 
Some of its statistical properties such as the mean, mode, quantile function, median, variance, 
standard deviation, skewness, and kurtosis are derived. Other statistical properties such as survival 
function, hazard rate, moments, asymptotic limit, order statistics, and entropy which is the measure 
of uncertainty of a random variable are derived and studied. The parameter estimation method 
adopted in this study is the maximum likelihood method. The graphs of W-HLa{E} at different 
values of shape and scale parameters show that the distribution is unimodal hence the mode is given 

as 𝑚𝑜𝑑𝑒 = 𝜃 + (!"#
!
)
!
" and it is positively skewed with a steep peak. A simulation study is carried 

on the new proposed distribution using maximum likelihood estimation. The simulation also 
supported the theoretical expression of the statistical properties of the proposed distribution such as 
the location parameter does not affect the variance, skewness, and kurtosis of the new distribution. 
The importance and the flexibility of the proposed distribution in modeling some real life data sets is 
demostrated inn the research. The results of the sudy shows that the proposed W-HLa{E} 
distribution perform better than other disribbutions in the literature.  
 
Keywords: Laplace distribution; Half-Laplace distribution; Weibull Half-Laplace 
distribution; Censored data; Lifetime data; Maximum likelihood estimation 
 
 

1. INTRODUCTION 
 
Numerous classical distributions have been extensively used over the past decades for modeling 
data in several areas such as engineering, actuarial, environmental and medical sciences, biological 
studies, demography, economics, finance, and insurance. However, there is a clear need for 
extended forms of these classical distributions. Due to that reason, researchers have developed and 
studied several methods for generating new families of distributions. The most outstanding 
characteristics of this distribution are that it is unimodal and symmetric. Laplace distribution is a 
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mixture of normal laws (see Kotz [10]), as a possible explanation of the wide applicability of this 
distribution for modeling growth rates. Let 𝑓(𝑥, 𝜃, 𝛽) be the probability density function of Laplace 
distribution.  

𝑓(𝑥, 𝜃, 𝛽) = !
"#
𝑒(%|'%(|/#), 𝑥 ∈ (−∞,∞)                     (1) 

 and CDF, F(x) is given as:  

𝐹(𝑥; 𝜃, 𝛽) = /
!
"
𝑒+%

!"#
$ ,,										𝑖𝑓	𝑥 < 𝜃

1 − !
"
𝑒+%

!"#
$ ,						𝑖𝑓	𝑥 ≥ 𝜃

                        (2) 

 The expected value of a Laplace distribution is given as 𝐸(𝑥) = 𝜃. The expected value of a Laplace 
distribution is the same as the location parameter and a symmetric situation means that the mean 
is the same as mode and median. Laplace distribution can be compared with other symmetric 
distributions like Normal, Logistic, etc. except that Laplace has a higher spike and slightly thicker 
tails.  
In recent years, Asymmetric Laplace distribution of [10] has received much attention in modeling 
currency exchange rates, interests, stock price changes which is a modification of Laplace 
distribution but not for survival data. Many researchers have developed compound distributions 
using different methods to fit survival data. In this research work, we shall reduce the classical 
Laplace distribution to a non-negative function. Most real-life quantities to be measured are non-
negative values. With the assumption that the data is non-negative, therefore, it is necessary to 
reduce the Laplace distribution to one-sided (positively skewed distribution). Thus, the one-sided 
Laplace distribution, otherwise called the half-Laplace distribution is the positive side of the 
Laplace distribution.  
Let 𝑋 be a random variable on 𝑅. = (0,∞) given by the density function of Laplace distribution 
equation (1), where 𝑥 ≥ 𝜃 ≥ 0𝑎𝑛𝑑	𝛽 > 0, then x is said to have a half Laplace distribution, denoted 
by 𝐻𝐿(𝜃, 𝛽)  

𝑓(𝑥, 𝜃, 𝛽) = !
#
𝑒(%

!"#
$ ), 𝑥 > 𝜃 ≥ 0; 𝛽 > 0                              (3) 

 and the CDF of the half-Laplace distribution is  

𝐹(𝑥, 𝜃, 𝛽) = 1 − !
#
𝑒(%

!"#
$ ), 𝑥 > 𝜃 ≥ 0; 𝛽 > 0           (4) 

  
 Where 𝜃 is the location parameter and 𝛽 is the shape parameter The half-Laplace distribution 
reduces to the exponential distribution when 𝜃 = 0, we have the exponential distribution. 
Recently, many researchers have developed and studied compound distributions using T-X which 
was introduced by Alzaatreh [5] and T-X{Y} by Aljarrah [3]. This was later modified by Alzaatreh 
[6] as  T-gamma family, Alzaatreh [7] also constructed T-normal families. Almheidat [4] studied 
the T-Weibull family. Amalare [8] derived Lomax-Cauchy {Uniform}. Ogunsanya [13] developed 
and studied the extension of Cauchy distribution named Rayleigh Cauchy distribution, 
Ogunsanya [14] studied Weibull-Inverse Rayleigh distribution: Classical/ Bayesian approach and 
Job [11] applied Weibull Loglogistic{Exponential} distribution on some survival data. 
In Section 2, we derive the new Weibull Half Laplace distribution, with statistical properties such 
as hazard function, survival function, Moments, skewness, kurtosis, order statistics, and Shannon 
entropy are determined.  Section 3 shows the simulation study. Estimation of the parameters of W-
HLa{E} distribution by maximum likelihood is performed in Section 4. In Section 5, the 
performance of the new W-HLa{E} distribution is demonstrated on two real data sets and the 
conclusion and summary of the work are expressed in Section 6. 
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2. DERIVATION OF WEIBULL-HALFLAPLACE {EXPONENTIAL} 

DISTRIBUTION 
 
In this section, we investigate in details the properties, parameters estimation, and applications of a 
new distribution of the T-Half Laplace {𝑌} family called Weibull- Half Laplace {𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙} (W-
HLa{E}) distribution.  
Let t be a random variable that follows a two-parameter Weibull distribution, then PDF is given as  

𝑓/(𝑡; 𝜆, 𝑘) = H
𝑘
𝜆 I
𝑡
𝜆J

0%!
𝑒%+

1
2,
%

K ; 𝑡 ⩾ 0, 𝜆, 𝑘 ⩾ 0 

 And the CDF is  

𝐹/(𝑡; 𝜆, 𝑘) = 1 − 𝑒%+
&
',
%

; 𝑡 ⩾ 0, 𝜆, 𝑘 ⩾ 0                                      (5) 
 Recall Equation (4), and given the quantile function of exponential distribution as -blog[1-x] 

𝐹3(𝑥) = 𝐹/{−𝑏𝑙𝑜𝑔[1 − (𝐹4(𝑥))]} 
then the CDF of proposed W-HLa{E} distribution is  

𝐹3(𝑥) = 𝐹/ Q−𝑏𝑙𝑜𝑔 R1 − I1 − 𝑒
+%!"#$ ,JST                                   (6) 

 Substituting the CDF of Weibull distribution in equation (6) 

𝐹3(𝑥) = 1 − 𝑒%+
(
'$,

%
('%()%                                                                (7) 

 Let 5
2#
= 𝛾 in (7), then we have  

𝐹3(𝑥) = 1 − 𝑒%(6)%('%()%                                                                (8) 
 Hence the corresponding PDF using equation (8)  

𝑓3(𝑥) = 𝑘 V 5
2#
W
0
(𝑥 − 𝜃)0%!𝑒+

(
'$,

%
('%()%                                     (9) 

Let 5
2#
= 𝛾 in (9) or differentiate equation (8) with respect to x, then we have  

𝑓3(𝑥) = 𝑘𝛾0(𝑥 − 𝜃)0%!𝑒6%('%()%                                                           (10) 
 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  

 
3. STATISTICAL PROPERTIES OF W-HLA{E} DISTRIBUTION 

 
The statistical properties of the W-HLa{E} distribution including quantile function, ordinary 
moments, and Shannon entropy are provided in this section 
Proposition 1 (Quantile Function) If 𝑋 is a random variable that has W-HLa{E} distribution 
(𝑥; 𝑘, 𝜃, 𝛾) and let 𝑄3(𝑝), such that 0 ≤ 𝑝 ≤ 1 denote the quantile function for the W-HLa{E} 
distribution. Then 𝑄3(𝑝) is given by  

𝑄3(𝑝) = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 𝑝)}

)
%                                                              (11) 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  
Proof: 

From Equation (8) replace 𝐹3(𝑥) with 𝑝 and solve for 𝑥, we obtain (11), the quantile 
function of W-HLa{E} distribution.  
Setting𝑝 = 0.25,0.50, 𝑎𝑛𝑑0.75 in (30)he quartiles of the W-HLa{E} distribution can be obtained. 
Lower Quartile  

                     𝑄3(0.25) = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 0.25)}

)
% 

Median  

                 𝑄3(0.5) = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 0.5)}

)
% 

Upper Quartile  
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                 𝑄3(0.75) = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 0.75)}

)
% 

Proposition 2 (Modal Function) If 𝑋 is a random variable that has W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) and 
let 𝑋789:(𝑥), such that 0 ≤ 𝑝 ≤ 1 denote the mode function for the W-HLa{E} distribution. Then 𝑄3(𝑝) is 
given by  

𝑋;89:(𝑥) = 𝜃 + !
6
_0%!
0
`
)
%                                             (12) 

 where 𝑘, 𝜃, 𝛾 > 0 are parameters of W-HLa{E} distribution  
Proof: 
Differentiate (10) and equate to zero  

𝑑
𝑑𝑥 𝑓(𝑥) = 0 

𝑑
𝑑𝑥 _𝑘𝛾

0(𝑥 − 𝜃)0%!𝑒%6%('%()%")` = 0 

 
𝑘(𝑘 − 1)𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%")

(𝑥 − 𝜃) −
𝑘"𝛾"0(𝑥 − 𝜃)"0%!𝑒%6%('%()%")

(𝑥 − 𝜃) = 0 

 
𝑘(𝑘 − 1)𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%")

(𝑥 − 𝜃) =
𝑘"𝛾"0(𝑥 − 𝜃)"0%!𝑒%6%('%()%")

(𝑥 − 𝜃)  

 Solving for x, we have  

𝑋;89:(𝑥) = 𝜃 +
1
𝛾 R
𝑘 − 1
𝑘 S

!
0
 

 
3.1. Shape Properties of W-HLa{E} Distribution 

 
Cumulative Distribution Function (CDF) of W-HLa{E} Distribution. 
 Equation (9) is now the CDF of the new probability distribution called W-HLa{E}   
Distribution. 
 

3.2   Hazard Function 
The hazard function of the W-HLa{E} distribution is derived from this definition  

ℎ3(𝑥) = 𝑓3(𝑥)/1 − 𝐹3(𝑥) 
where 𝑓3(𝑥) and 𝐹3(𝑥) are the PDF and CDF of W-HLa{E} distribution given in (9) and (10) 
respectively. The hazard function h(x) can be written as  

ℎ3(𝑥) =
06%('%()%"):"*

%(!"#)%

!%{!%:"*%(!"#)%}
                                                  (13) 

Simplifying (13), we have  
ℎ3(𝑥) = 𝑘𝛾0(𝑥 − 𝜃)0%!                                                          (14) 

 
The log hazard of W-HLa{E}D, which is frequently used in modeling is given by  

𝜆3(𝑡) = 𝑙𝑜𝑔(ℎ3(𝑥)) 
𝜆3(𝑡) = 𝑙𝑜𝑔(𝑘𝛾0(𝑥 − 𝜃)0%!)                                                 (15) 

Expanding equation (15)  
𝜆3(𝑡) = 𝑙𝑜𝑔(𝑘𝛾0) + 𝑙𝑜𝑔(𝑥 − 𝜃)0%! 
𝜆3(𝑡) = 𝑙𝑜𝑔(𝑘𝛾0) + (𝑘 − 1)𝑙𝑜𝑔(𝑥 − 𝜃)                                  (16) 
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 Figure 1: (a) Density plot and (b) CDF plot of WLE distribution for sample size = 1000 and for various values of 𝑘, 𝜃 
and 𝛾. 
Figure 1(a) ahows that the PDF is positively skewed. Figure 1(b) shows that the CDF of W-
HLa{E}D increases as x increases and remains constant as it approaches 1.  

 
 

3.3   Survival Function 
The survival function of the W-HLa{E} distribution is derived from this definition  

𝑆3(𝑥) = 1 − 𝐹3(𝑥) 
where F(x) is the CDF of the W-HLa{E} distribution as defined in equation(9) The survival function 
𝑆' can be written as  𝑆3(𝑥) = 1 − {1 − 𝑒%6%('%()%} 

𝑆3(𝑥) = 𝑒%6%('%()%                                                                (17) 
For 𝑥 > 0, 𝑘, 𝜃𝑎𝑛𝑑𝛾 > 0	𝑎𝑛𝑑	𝑡 > 0, the probability that a system having age x units of time will 
survive up to 𝑥 + 𝑡 units of time is given by  

𝑆3(𝑥) =
𝑒%6%('.1%()%

𝑒%6%('%()%
 

 
3.4 Cumulative Hazard Function 

 
The cumulative hazard function, of the W-HLa{E} distribution, is given as 

𝐻3(𝑥) = −𝑙𝑜𝑔:{𝑒%6
%('%()%}                                                  (18) 

Simplifying (18) we have  
𝐻3(𝑥) = 𝛾0(𝑥 − 𝜃)0                                                             (19) 

 
3.5 Asymptotic Behavior of W-HLa{E} Distribution 

 
To investigate the asymptotic behavior of the proposed distribution model W-HLa{E}, we find the 
limit as 𝑥 ⟶ 𝜃 and as 𝑥 ⟶ ∞ of the W-HLa{E} distribution  

𝑙𝑖𝑚'→(𝑓(𝑥) = 𝑙𝑖𝑚'→(𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6
%('%()% = 0 

 Proof: Since 𝑙𝑖𝑚'→((𝑥 − 𝜃) = 0, then  
 𝑙𝑖𝑚'→(𝑓(𝑥) = 0  
 Hence as 𝑥 tend to a minimum value of the distribution, W-HLa{E} distribution becomes zero 
Similarly,  

𝑙𝑖𝑚'→?𝑓(𝑥) = 𝑙𝑖𝑚'→(𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6
%('%()% = 0 

Proof: Since 𝑙𝑖𝑚'→? = V𝑒%6%('%()%W = 0, then  
 𝑙𝑖𝑚'→?𝑓(𝑥) = 0 
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As x tends to infinity the W-HLa{E} distribution becomes zero 
 

3.6 Moments and Variance 
 
 In this subsection, we shall determine 𝑟1@ moment of about the origin and 𝑛1@ moment about the 
mean. Given   

𝐸(𝑋) = ∫?( 𝑥𝑓3(𝑥)𝑑𝑥                                      (20) 
  
Proposition 3 (First Moment about Origin) If 𝑋 is a random variable that has W-HLa{E} 
distribution(𝑥; 𝑘, 𝜃, 𝛾) and let 𝑋7 denote the first moment about the origin of the W-HLa{E} distribution. 
Then 𝜇!`  is given by 

𝑋7 = 𝜇!` = 𝜃 +
1
𝛾 ΓI1 +

1
𝑘J 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  
 Proof: Substituting (10) in (20)  

𝐸(𝑋) = ∫?( 𝑥𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%𝑑𝑥                             (21) 
 Let  

𝑧 = 𝛾0(𝑥 − 𝜃)0                                                         (22) 
 then differentiate Equation (22) with respect to x  

𝑑𝑥 = 9B
06%('%()%")

                                                              (23) 

 Substitute (23 ) in (21), we have  
𝐸(𝑋) = ∫?( 𝑥𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()% 9B

06%('%()%")
                 (24) 

 𝐸(𝑋) = ∫?( 𝑥𝑒%6%('%()%𝑑𝑧                                              (25) 
 From (22), we make x the subject,  

𝑥 = 𝜃 + B)/%

6
                                                           (26) 

 0 ≤ 𝑧 ≤ ∞ Substitute (22) and (26) in Eqn. (25), we have  

𝐸(𝑋) = ∫?C V𝜃 + B)/%

6
W 𝑒%B𝑑𝑧                                                    (27) 

  

𝐸(𝑋) = ∫?C 𝜃𝑒%B𝑑𝑧 + ∫?C
B)/%

6
𝑒%B𝑑𝑧                                       (28) 

 By evaluating the limits, we have  
𝐸(𝑋) = −𝜃𝑒%6%('%()%|(? +

!
6
Γ V1 + !

0
W                                    (29) 

 Hence equation (29) becomes  
𝐸(𝑋) = 𝜃 + !

6
Γ V1 + !

0
W                                                              (30) 

  
Proposition 4 (Second Moment about Origin) If 𝑋 is a random variable that has W-HLa{E} 
distribution(𝑥; 𝑘, 𝜃, 𝛾) and let 𝜇"`  denote the second moment about the origin of the W-HLa{E} distribution. 
Then 𝜇"`  is given by 

𝜇"` = 𝜃 + 2
1
𝛾 Γ I1 +

1
𝑘J +

1
𝛾" Γ I1 +

2
𝑘J 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  
 Proof: Given  

𝐸(𝑋") = 𝜇"` = ∫?( 𝑥"𝑓3(𝑥)𝑑𝑥                                                          (31) 
 Substitute equation (10) in equation (31)  

𝜇"` = ∫?( 𝑥"𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%𝑑𝑥                                  (32) 
 Using the above method adopted in proposition 4.4, we have,  

𝜇"` = 𝜃" + 2 (
6
ΓV1 + !

0
W + !

6.
ΓV1 + "

0
W                                            (33) 
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Corollary 1 (rth moment) Let 𝑋 be a random variable that follows W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) and let 
𝜇D`  denote the rth moment about the origin of the W-HLa{E} distribution. Then 𝜇D`  is given by  

𝜇D` = 𝜃D +∑DEF! V
𝑟
𝑖 W

(/")

60
Γ V1 + E

0
W                                                  (34) 

 Where i=1,2,3,…,r  
 Proof: By Mathematical induction, it follows from equations (30) and (33) of propositions 3 and 4. 
respectively 
Hence the first four moments of the proposed distribution are given  

𝜇!` = 𝜃 +
1
𝛾 Γ I1 +

1
𝑘J 

𝜇"` = 𝜃" + 2
𝜃
𝛾 ΓI1 +

1
𝑘J +

1
𝛾" Γ I1 +

2
𝑘J 

𝜇G` = 𝜃G + 3
𝜃"

𝛾 ΓI1 +
1
𝑘J + 3

𝜃
𝛾" ΓI1 +

2
𝑘J +

1
𝛾G ΓI1 +

3
𝑘J 

𝜇H` = 𝜃H + 4
𝜃G

𝛾 ΓI1 +
1
𝑘J + 6

𝜃"

𝛾" Γ I1 +
2
𝑘J + 4

𝜃
𝛾G ΓI1 +

3
𝑘J +

1
𝛾H ΓI1 +

4
𝑘J 

 Again using the relationship between moments about mean and moments about the origin, the 
moments about the mean of W-HLa{E} distribution are obtained as  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜇") = 𝐸(𝑋") − [𝐸(𝑋)]" 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜇") = 𝜃" + 2
𝜃
𝛾 Γ I1 +

1
𝑘J +

1
𝛾" Γ I1 +

2
𝑘J − R𝜃 +

1
𝛾 Γ I1 +

1
𝑘JS

"

 

  = !
6.
Γ V1 + "

0
W − _!

6
Γ V1 + !

0
W`
"
 

  = !
6.
QΓ V1 + "

0
W − _Γ V1 + !

0
W`
"
T 

 Therefore the standard deviation is given as  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑋) = t
1
𝛾" HΓ I1 +

2
𝑘J − RΓ I1 +

1
𝑘JS

"

K 

 

=
1
𝛾
tHΓ I1 +

2
𝑘J − RΓ I1 +

1
𝑘JS

"

K 

 

𝐶𝑜 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	of	𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝐶. 𝑉) =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐸(𝑋)  

𝐶. 𝑉 =

1
𝛾"tQΓV1 +

2
𝑘W − _Γ V1 +

1
𝑘W`

"
T

𝜃 + 1𝛾 ΓV1 +
1
𝑘W

 

 Again using the relationship between moments about mean and moments about origin where 
𝜇G = 𝜇G` − 3𝜇!` 𝜇"` + 2𝜇!`G and 𝜇H = 𝜇H` − 4𝜇!` 𝜇G` + 6𝜇!`"𝜇"` + 3𝜇!`H are third and fourth moments about 
the mean respectively. The moments about the mean of W-HLa{E} distribution are obtained as  

 𝜇G = 𝜃G + 3 (
.

6
Γ V1 + !

0
W + 3 (

6.
Γ V1 + "

0
W + !

61
Γ V1 + G

0
W − 

 3 _𝜃 + !
6
ΓV1 + !

0
W` _𝜃" + 2 (

6
Γ V1 + !

0
W + !

6.
Γ V1 + "

0
W` + 2 _𝜃 + !

6
Γ V1 + !

0
W`
G
 

  𝜇H = 𝜃H + 4 (
1

6
Γ V1 + !

0
W + 6 (

.

6.
Γ V1 + "

0
W + 4 (

61
Γ V1 + G

0
W + !

62
Γ V1 + H

0
W 

 −4 _𝜃 + !
6
ΓV1 + !

0
W` _𝜃G + 3 (

.

6
Γ V1 + !

0
W + 3 (

6.
ΓV1 + "

0
W + !

61
ΓV1 + G

0
W` 

 +6 _𝜃 + !
6
ΓV1 + !

0
W`
"
_𝜃" + 2 (

6
Γ V1 + !

0
W + !

6.
Γ V1 + "

0
W` + 3 _𝜃 + !

6
Γ V1 + !

0
W`
H
 

 Hence, the skewness and kurtosis are determined as follows;  
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 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = I('%J)1

K.
= J1

K.
 

 	𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠	 = !
)
*.
LM+!..%,%NM+!.

)
%,O

.
P
𝜃G + 3 (

.

6
Γ V1 + !

0
W + 3 (

6.
Γ V1 + "

0
W + !

61
Γ V1 + G

0
W − 

3 R𝜃 +
1
𝛾 ΓI1 +

1
𝑘JS R𝜃

" + 2
𝜃
𝛾 Γ I1 +

1
𝑘J +

1
𝛾" Γ I1 +

2
𝑘JS + 2 R𝜃 +

1
𝛾 Γ I1 +

1
𝑘JS

G

 

 Further simplification of above we have  

=

2Γ V1 + 1𝑘W
"
− 3ΓV1 + 1𝑘W Γ V1 +

2
𝑘W + Γ V1 +

3
𝑘W

𝛾"

1
𝛾" Γ V1 +

2
𝑘W − _

1
𝛾 Γ V1 +

1
𝑘W`

"  

=
2Γ V1 + 1𝑘W

"
− 3ΓV1 + 1𝑘W Γ V1 +

2
𝑘W + Γ V1 +

3
𝑘W

Γ V1 + 2𝑘W − _
1
𝛾 Γ V1 +

1
𝑘W`

"  

Kurtosis =
µH
σH 

 	𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠	 = � !

)
*2
LM+!..%,%NM+!.

)
%,O

.
P
.� Q𝜃H + 4

(1

6
ΓV1 + !

0
W + 6 (

.

6.
Γ V1 + "

0
W +

4 (
61
ΓV1 + G

0
W + !

62
ΓV1 + H

0
W − 4 _𝜃 + !

6
Γ V1 + !

0
W` _𝜃G + 3 (

.

6
Γ V1 + !

0
W + 3 (

6.
Γ V1 + "

0
W + !

61
Γ V1 + G

0
W` +

6 _𝜃 + !
6
Γ V1 + !

0
W`
"
_𝜃" + 2 (

6
Γ V1 + !

0
W + !

6.
Γ V1 + "

0
W` + 3 _𝜃 + !

6
Γ V1 + !

0
W`
H
T 

  
3.7 Order Statistics 

 
Order statistics is an important concept in probability theory. Let a random sample 𝑋!, 𝑋", . . . 𝑋Q, 
from the distribution function F(x) and corresponding pdf f(x), therefore the pdf of ith order 
statistic is given as  
Proposition 5 If 𝑋 is a random variable that has W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) and let 𝑓(𝑥E) denote the 
pdf of ith order statistic which is given as  

𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑘𝜃S𝛾0 ∑?S,TFC I

𝑘 − 1
𝑝 JI𝑖 − 1𝑞 J (−1)S.T V𝑒%6%('%()%W

!.T.Q%E
(35) 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  
Proof: Given  

𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑓(𝑥)𝐹(𝑥)E%![1 − 𝐹(𝑥)]Q%!                                  (36) 

 hence the pdf of ith order statistic of W-HLa{E} distribution is determined by substituting 
equation (7) and (10) in equation (35) we have  

𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()% _1 − 𝑒%6%('%()%`

E%!
_𝑒%6%('%()%`

Q%!
(37) 

 

𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑘𝛾0 ∑?SFC I

𝑘 − 1
𝑝 J (−1)U𝜃S𝑒%6%('%()% ∑?TFC I

𝑖 − 1
𝑞 J (−1)T V𝑒%6%('%()%W

T
(38) 

  𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑘𝜃S𝛾0 ∑?S,TFC I

𝑘 − 1
𝑝 J I𝑖 − 1𝑞 J (−1)S.T V𝑒%6%('%()%W

!.T.Q%E
 

 Therefore the first and nth order statistics for W-HLa{E} distribution can be determined as thus  
Corollary 2 (nth Order Statistic) Let 𝑋 be a random variable that follows W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) 
and let 𝑓(𝑥!) denote the first (1st) order statistic of the W-HLa{E} distribution. Then 𝑓(𝑥!) is given by  

𝑓(𝑋!) =
Q

(T)!(%T)!
𝑘𝜃S𝛾0 ∑?S,TFC I

𝑘 − 1
𝑝 J (−1)S.T V𝑒%6%('%()%W

V.T
)          (39) 

 Where i=1,2,3,…,n  
Proof: From equation (35), replace i with 1 we have equation (39)  
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Corollary 3 (nth Order Statistic) Let 𝑋 be a random variable that follows W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) 
and let 𝑓(𝑥Q) denote the last (nth) order statistic of the W-HLa{E} distribution. Then 𝑓(𝑥Q) is given by 

𝑓(𝑋E) =
Q

(Q%!%T)!(T)!
𝑘𝜃S𝛾0 ∑?S,TFC I

𝑘 − 1
𝑝 J (−1)S.T V𝑒%6%('%()%W

!.T
)          (40) 

 Where i=1,2,3,…,n  
Proof: From equation (35), replace i with n we have equation (40)  
 

3.8 Entropy 
 
In information theory, entropy is an important concept and can be defined as a measure of the 
randomness or uncertainty associated with a random variable. However, the Shannon entropy for 
a random variable X with pdf 𝑓3(𝑥) is defined as 𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))}  
Proposition 6 If 𝑋 is a random variable that has W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) then Shannon’s entropy 
is given as  

𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 − (𝑘 − 1) I
0.57722

𝑘 J − 𝑙𝑜𝑔(𝛾) − 𝑙𝑜𝑔(𝑘) 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution and Φ = −∫?C 𝑙𝑜𝑔𝑧𝑒%B𝑑𝑧 ≈ 0.57722 is 
the Euler gamma constant  
 Proof: Substitute equation (10) in the definition of entropy we have  

𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝐸 �−𝑙𝑜𝑔 V𝑘𝛾0(𝑥 − 𝜃)0%!𝑒6%('%()%W�                                           (41) 
𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝐸{−[𝑙𝑜𝑔(𝑘) + 𝑘𝑙𝑜𝑔(𝛾) + (𝑘 − 1)𝑙𝑜𝑔(𝑥 − 𝜃) − 𝛾0(𝑥 − 𝜃)0]} 

= 𝐸{𝛾0(𝑥 − 𝜃)0 − [𝑙𝑜𝑔(𝑘) + 𝑘𝑙𝑜𝑔(𝛾) + (𝑘 − 1)𝑙𝑜𝑔(𝑥 − 𝜃)]}               (42) 
Finding the expectation of (𝑥 − 𝜃) with the proposed distribution W-HLa{E}, we have,  

𝐸((𝑥 − 𝜃)0) = ∫?( (𝑥 − 𝜃)0𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%𝑑𝑥                                  (43) 
 Recall Equation (22) and (23)and substitute them in equation (43)  

𝐸((𝑥 − 𝜃)0) = ∫?( (𝑥 − 𝜃)0𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()% × 9B
06%('%()%")

                    (44) 

 𝐸((𝑥 − 𝜃)0) = ∫?C (𝑥 − 𝜃)0𝑒%6%('%()%𝑑𝑧                                                           (45) 
 Substituting Equation (26) in Equation (45) and integrating the expression  

𝐸((𝑥 − 𝜃)0) = ∫?C 𝑧𝑒B𝑑𝑧 = [−𝑧𝑒B − 𝑒B]C? = 1                                                  (46) 
 Hence  

𝐸(𝛾0(𝑥 − 𝜃)0) = 𝛾0𝐸((𝑥 − 𝜃)0) = 𝛾0                                                      (47) 
 Also  

𝐸((𝑥 − 𝜃)0) = ∫?( 𝑙𝑜𝑔(𝑥 − 𝜃)0𝑓3(𝑥)𝑑𝑥                                                (48) 
 Therefore  

𝐸(𝑙𝑜𝑔(𝑥 − 𝜃)0) = ∫?( 𝑙𝑜𝑔(𝑥 − 𝜃)0𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%𝑑𝑥                 (49) 
 Substitute Equation (22) and (23)and substitute them in equation (49)  

𝐸(𝑙𝑜𝑔(𝑥 − 𝜃)0) = ∫?( 𝑙𝑜𝑔(𝑥 − 𝜃)0𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()% × 9B
06%('%()%")

   (50) 

 Then equation (50) becomes  
= ∫?( 𝑙𝑜𝑔(𝑥 − 𝜃)0𝑒%B𝑑𝑧                                             (51) 

= ∫?( 𝑙𝑜𝑔 �B
)
%

6
� 𝑒%B𝑑𝑧                                   (52) 

= �
?

C
𝑙𝑜𝑔 I𝑧

!
0J 𝑒%B𝑑𝑧 +�

?

C
𝑙𝑜𝑔 I

1
𝛾J 𝑒

%B𝑑𝑧 

= ∫?C 𝑙𝑜𝑔 V𝑧
)
%W 𝑒%B𝑑𝑧 − ∫?C 𝑙𝑜𝑔(𝛾)𝑒%B𝑑𝑧                         (53) 

= ∫?C 𝑙𝑜𝑔 V𝑧
)
%W 𝑒%B𝑑𝑧 − 𝑙𝑜𝑔(𝛾) ∫?C 𝑒%B𝑑𝑧                        (54) 

= !
0 ∫

?
C 𝑙𝑜𝑔(𝑧)𝑒%B𝑑𝑧 − 𝑙𝑜𝑔(𝛾)∫?C 𝑒%B𝑑𝑧                         (55) 

 Let Φ = −∫?C 𝑙𝑜𝑔(𝑧)𝑒%B𝑑𝑧 then equation (55) becomes  
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𝐸(𝑙𝑜𝑔(𝑥 − 𝜃)0) = −W
0
− 𝑙𝑜𝑔(𝛾)                                                                      (56) 

 Substitute Equations (47) and (56) in Equation (42), we have  

𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 − (𝑘 − 1) I−W
0
− 𝑙𝑜𝑔(𝛾)J − �𝑙𝑜𝑔(𝑘) + 𝑘𝑙𝑜𝑔(𝛾)�        (57) 

                         𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 + (𝑘 − 1) IW
0
+ 𝑙𝑜𝑔(𝛾)J − 𝑙𝑜𝑔(𝑘) − 𝑘𝑙𝑜𝑔(𝛾) 

          𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 + (𝑘 − 1) VW
0
W − 𝑙𝑜𝑔(𝛾) − 𝑙𝑜𝑔(𝑘) 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution and Φ = −∫?C 𝑙𝑜𝑔𝑧𝑒%B𝑑𝑧 ≈ 0.57722 is 
the Euler gamma constant from Abramowitz [1] 

𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 + (𝑘 − 1) VC.YZZ""
0

W − 𝑙𝑜𝑔(𝛾) − 𝑙𝑜𝑔(𝑘)                          (58) 
 

3.9   Mean Residual life 
 

The Mean Residual Life (MRL) at a given time t measures the expected remaining life of an 
individual of age t. it otherwise called the life expectancy. 
 
Proposition 7: Let  𝑇 be a random variable that follows W-HLa{E} distribution(𝑡, 𝑘, 𝛾, 𝜃) and let MRL 
represents mean residual life at a given time t W-HLa{E} distribution. Then MRL is given by 
 	

MRL =
1

𝑒%(6)%(1%()%
Q
1
𝛾 Γ I1 +

1
𝑘J + 𝜃𝑒

%1 −
1
𝛾 ΓI1 +

1
𝑘 , 𝑡J	T − t 

 
 where 𝑘, 𝛾, 𝜃 ≥ 0 are parameters of t W-HLa{E} distribution  

 
Proof: Given  

MRL = !
!%[(1)

�𝐸(𝑥) −	∫1C t𝑓3(𝑡)𝑑𝑡� − t                                                      (59) 

And             𝑆3(𝑥) = 1 − F(x) 
 
From  equation (8) and (34) 

 𝐹3(𝑡) = 1 − 𝑒%(6)%(1%()%,   𝐸(𝑋) = 𝜃 + !
6
Γ V1 + !

0
W 

MRL = !

:"(*)%(!"#)%
�𝜃 + !

6
Γ V1 + !

0
W −	∫1C t𝑓3(𝑡)𝑑𝑡� − t                      (60) 

∫1C t𝑓3(𝑡)𝑑𝑡 = ∫1C V𝜃 +
B)/%

6
W 𝑒%1𝑑𝑡    

 

= �
1

C
𝜃𝑒%1𝑑𝑡 + �

1

C

𝑡!/0

𝛾 𝑒%1𝑑𝑡 

= −𝜃𝑒%1C
1 +

1
𝛾 𝛾 I1 +

1
𝑘 , 𝑡J 

∫1C t𝑓3(𝑡)𝑑𝑡 = 𝜃 − 𝜃𝑒%1 + !
6
Γ V1 + !

0
, 𝑡W                                                          (61) 

Substituting equations (61) in equation (60) 
 

MRL =
1

𝑒%(6)%('%()%
H𝜃 +

1
𝛾 Γ I1 +

1
𝑘J −	�𝜃 − 𝜃𝑒

%1 +
1
𝛾 Γ I1 +

1
𝑘 , 𝑡J�K − t 

 
 
Where Γ V1 + !

0
, 𝑡W is an incomplete gamma function of variable t. 

 

MRL =
1

𝑒%(6)%(1%()%
Q
1
𝛾 Γ I1 +

1
𝑘J + 𝜃𝑒

%1 −
1
𝛾 ΓI1 +

1
𝑘 , 𝑡J	T − t 
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4. SIMULATION STUDY 

 
The simulation was done using equation (11) which is the quantile function of W-HLa{E}. Let p be a 

uniform random variable on (0,1), then 𝑋 = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 𝑝)}

)
%, the descriptive summaries were 

obtained through Statistical software R3.4.4.version. 
 
Table 1: Descriptive summaries of simulation of W-HLa{E} distribution with various parameters 

Model Parameters Mean Median Max. Variance skewness kurtosis Cv 
𝑦! k=0.5; γ=0.5; θ=5 6.801 5.453 21.337 14.239 3.115 12.309 0.554 
𝑦" k=0.5; =0.5;θ=10 11.8 10.45 26.34 14.239 3.115 12.309 0.320 
𝑦G k=1; γ=3; θ=5 10.22 10.16 10.95 0.055 1.748 5.827 0.023 
𝑦H k=1.5; γ=1; θ=5  5.67 5.609 7.014 0.251 1.040 3.751 0.088 
𝑦Y k=2; γ=2; θ=10 10.35 10.34 10.85 0.042 0.612 3.008 0.036 
𝑦\ k=2; γ=2; θ=5 5.352 5.345 5.845 0.042 0.612 3.008 0.036 
𝑦Z k=3; γ=1; θ=5 5.76 5.781 6.419 0.097 0.127 2.625 0.054 

 	
𝑦] k=3; γ=1; θ=10 10.76 10.78 11.42 0.097 0.127 2.625 0.029 

 
From table 1 it is observed that as parameter k increases the variance, skewness, and kurtosis 
function decreases for different values of the scale and location parameters of W-HLa{E} 
distribution hence, the skewness and kurtosis are decreasing functions of k.  
When k=2 and γ=2, the mean is approximately equal to the median hence, the distribution tends to 
be symmetric. Table 1 also shows that the coefficient of variation is deeply affected by γ. 
When the γ increases positively the value of the coefficient of variation decreases 

 
5. ESTIMATION OF PARAMETERS FOR THE W-HLA{E} DISTRIBUTION 

 
The Maximum Likelihood estimates of W-HLa{E} distribution will be obtained in this section  
Definition: Let 𝑥!, 𝑥", . . . , 𝑥Q denote a random sample drawn from W-HLa{E} distribution with 
parameters 𝑘, 𝛾, 𝜃. The likelihood function l (𝑥, 𝑘, 𝛾, 𝜃) of W-HLa{E} distribution is defined to be the 
joint density of the random variables 𝑥!, 𝑥", . . . , 𝑥Q  

𝑙(𝑥, 𝑘, 𝛾, 𝜃) = ∏ 𝑘𝛾0(𝑥 − 𝜃)0%!𝑒6%('%()%                                                 (62) 
= 𝑘Q𝛾Q0∏ (𝑥 − 𝜃)0%!𝑒%6%('%()%                                          (63) 

 finding the loglikelihood function of equation (63), we have  
𝑙𝑜𝑔𝑙(𝑥, 𝑘, 𝛾, 𝜃) = log𝑘Q + log𝛾Q0 +∑QE log(𝑥 − 𝜃)0%! +∑QE − 𝛾0((𝑥 − 𝜃)0)             (64) 

 where L=logl(𝑥, 𝑘, 𝛾, 𝜃)  
𝐿 = 𝑛log𝑘 + 𝑛𝑘log𝛾 + (𝑘 − 1)∑QE log(𝑥 − 𝜃) − 𝛾0 ∑QE ((𝑥 − 𝜃)0)                 (66)  
𝐿 = 𝑛log𝑘 + 𝑛𝑘log𝛾 + (𝑘 − 1)∑QE log(𝑥 − 𝜃) − 𝛾0 ∑QE ((𝑥 − 𝜃)0)                (66) 

 Differentiating the log-likelihood function in (66) with respect to the parameters𝐾, 𝛾, 𝜃 we have  
9^
96
= Q0

6
− 𝑘𝛾0%!∑QE (𝑥E − 𝜃)0                                                  (67) 

9^
90
= Q

0
+ 𝑛log𝛾 ∑QE (𝑥E − 𝜃)0 − 𝛾0 ∑QE (𝑥E − 𝜃)0log(𝑥E − 𝜃)                       (68) 

9^
9(
= 𝑘𝛾0 ∑QE (𝑥E − 𝜃)0%! − (𝑘 − 1)∑QE

!
('0%()

                         (69) 

 The maximum likelihood estimates (MLE), 𝑘�, 𝛾�, 𝜃� for the parameters 𝑘, 𝛾, 𝜃 respectively, are 
obtained by setting (67) - (69) to zero and solving them simultaneously.  
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6   APPLICATIONS 
 In this section, we shall be investing the importance of the new distribution W-HLa{E} distribution 
and apply it to three real-life data. In these applications, the maximum likelihood estimation 
method is used in these two applications to estimate the parameters of fitted distributions. The 
maximized log-likelihood, the Kolmogorov-Smirnov test (K-S) along with the corresponding p-
value, the Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) are 
reported to compare the W-HLa{E} distribution with the other distributions.  
 
DATA SET I: Remission times of bladder cancer patients  
Remission Time is the time taken for the signs and symptoms of a particular disease, in this case, 
cancer, to decrease or disappear after treatment. Though cancer may be considered in remission, 
cancer cells may remain in the body.  
 Table 2: Remission times (in months) of bladder cancer patients’ data 

0.080 0.200 0.400 0.500 0.510 0.810 0.900 1.050 1.190 1.260 1.350 1.400 1.460 1.760 2.020 
2.020 2.070 2.090 2.230 2.260 2.460 2.540 2.620 2.640 2.690 2.690 2.750 2.830 2.870 3.020  
3.250 3.310 3.360 3.360 3.480 3.520 3.570 3.640 3.700 3.820 3.880 4.180 4.230 4.260 4.330  
4.340 4.400 4.500 4.510 4.870 4.980 5.060 5.090 5.170 5.320 5.320 5.340 5.410 5.410 5.490  
5.620 5.710 5.850 6.250 6.540 6.760 6.930 6.940 6.970 7.090 7.260 7.280 7.320 7.390 7.590  
7.620 7.630 7.660 7.870 7.930 8.260 8.370 8.530 8.650 8.660 9.020 9.220 9.470 9.740 10.06  
10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07 12.63 13.11 13.29 13.80 14.24  
14.76 14.77 14.83 15.96 16.62 17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74  
25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05 

 
Table 2 shows data of remission times(in month) of 128 bladder cancer patients selected at random 
as reported by Lee, et al [12], which was studied by Zea [16] to compare the fits of a different 
family of beta-Pareto(BP) and beta exponentiated Pareto (BEP) distributions. Almheidat [4] also 
applied to four parameters Cauchy-Weibull {𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐} (𝐶 −𝑊{𝐿}) distribution in fitting this same 
data and just of recent Aldeni [2] applied uniform-exponential{𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑𝑙𝑎𝑚𝑏𝑑𝑎} distribution 
(𝑈 − 𝐸{𝐺𝐿}) distribution to fit the same data 
 
Table 3: Descriptive Statistics of remission times of bladder cancer patients distributions 

Min. Max. Mean 1st Qu. Median 3rd Qu. Skewness Kurtosis SD 

0.080 79.050 9.366 3.348 6.395 11.838 3.287 18.483 10.508 

 
Table 4: Performance of the distributions remission times of bladder cancer patients distributions Parameter estimates: 
Log-likelihood, AIC, and p-value (Standard errors in parentheses) 
 Distributions   𝑊𝐻𝐿𝑎{𝐸}   𝑈 − 𝐸{𝐺𝐿}   𝐶 −𝑊{𝐿}   BEP   BP  
  k = 0.4847  𝜃=0.2757   𝑎=2.3040   𝑎 = 0.348  𝑎 = 4.805  
 (0.0267)  (0.0665)  (1.0937)   (0.0970)   (0.0550)  
  𝛾 = 0.4850   𝜆G = 2.504   𝛽 = 2.0205   b =159831   b = 100.502  
  (0.0651)  (0.9285)   (0.4585)   (183.7501)   (0.2510)  
  𝜇 = 0.0785   𝜆H = 0.2894   k=3.0673   k= 0.051   k = 0.011  
  (-)   (0.0858)   (0.7319)   (0.0190)   (0.0010)  
      𝜆 = 12.663   𝛽 = 0.080   𝛽 = 0.080  
      (2.6326)   (2.0930)    
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Table 5: Performance of the distributions remission times of bladder cancer patients distributions Parameter estimates: 
Log-likelihood, AIC, and p-value 
 Distributions   𝑊𝐻𝐿𝑎{𝐸}   𝑈 − 𝐸{𝐺𝐿}   𝐶 −𝑊{𝐿}   BEP   BP  
-Loglikelihood   271.3276   409.45   416.0965  432.41   480.446  
𝐴𝐼𝐶   548.6552   824.9   840.2   874.819   968.893  
K-S   0.0078125   0.02876   0.06672   0.142   0.217  
P-value   0.9922   0.9999   0.6189   0.0121   1.11E-05  
 
  Table 3 shows the summary of the dataset I and table 4 displaces the parameters estimates of  W-
HLa{𝐸}	and four other distributios. Table 5 shows the values of parameter estimates, log-
likelihood, AIC, K-S, and its p-value at 95%. Based on the above test statistics, W-HLa{𝐸} has the 
least AIC with 548.6552 and K-S Statistic (0.0078125) hence W-HLa{E} performed best among the 
five distribution models applied to remission time of bladder cancer. This implies that the new 
distribution can fit skewed data with long-tail better than any distribution. After an appropriate 
distribution has been identified and parameters estimated, we can estimate the probability of 
having a given duration of remission and other probabilities. For example, the probability of 
having a remission time longer than 10 months can be predicted as 𝑃(𝑋 > 𝑥) = 𝑒%6%('%()% When 
𝑘 = 0.4847, 𝛾 = 0.4850, 𝜃 = 0.0785 

𝑃(𝑋 > 𝑥) = 𝑒%C.H]YC3.2526(!C%C.CZ]Y)3.2526 
𝑃(𝑋 > 10) = 0.117 

 
 Data Set II: 72 pigs infected by virulent tubercle Bacilli (Bjerkedal, T, 1960) 
The data in Table 6 are survival times (in days) of seventy-two pigs infected by virulent tubercle 
bacilli [9] The data in Table 6 are survival times (in days) of seventy-two pigs infected by virulent 
tubercle bacilli reported by Tahir [15] The Tables 4.4 shows the performance of W-HLa{E} and 
three other models (Logistic Frechet (LFr), Marshall-Olkin Frechet (MOFr), exponentiated-Frechet 
(EFr) and Frechet (Fr). 
Table  6: Infected Pigs data (in day) 

10    33    44   56   59   72   74   77    92   93    96  100   100  102  105 107  107  108  108  108  109  112  
113  115   116   120  121   122   122    124  130  134  136  139 144  146  153  159  160  163   163  168   
171    172    176 183   195  196   197  202  213 215  216  222  230   231  240  245    251    253 254   254  
278  293   327  342  347 361  402   432  458  555 

   
Table 7: Descriptive Statistics of Infected Pigs data 

Min.  Max. Mean 1st Qu. Median 3rd Qu. Skewness Kurtosis     SD 

 43.00  598.00 141.85 82.75 102.50 149.25 2.5153 9.332 109.209 

 
In this application, we obtain the descriptive statistics, maximum likelihood estimates of the 
parameters of the fitted distributions, and the values of the following statistics: AIC (Akaike 
Information Criterion), BIC (Bayesian Information Criterion), and HQIC (Hanna Quinn 
Information Criterion).  
In addition, we compute some goodness of fit statistics to verify which distribution provides the 
best fit to the data sets. We apply Kolmogorov-Smirnov (K-S) statistics. These statistics are 
described in detail in Tables 8 and 9. In general, the smaller the value of these statistics, the better 
the fit of the data by the distribution.  
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Table  8: Parameter Estimates and Standard errors in parentheses for W-HLa{E} Distribution 
 Distributions  𝑊𝐻𝐿𝑎{𝐸} 𝐿𝐹𝑟 𝑀𝑂𝐹𝑟 𝐸𝐹𝑟 

 𝜃 = 42.99956 𝜆=32.5054 𝑎=212.7251 𝑎= 155.680 
 (16.8814) (0.0665) (115.7064) (5.7063) 

Parameter  𝛾 = 0.4850 𝜆G = 2.504 𝛽 = 2.0205 𝑏 = 159831 
Estimates  (0.0651) (0.9285) (0.4585) (183.7501) 
 𝜇 = 0.0785 𝜆H = 0.2894 k=3.0673 k= 0.051 
 (-) (0.0858) (0.7319) (0.0190) 
   𝜆 = 12.663 𝛽 = 0.080 
   (2.6326) (2.0930) 
  𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 1.841076 and 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 7.49277  
 

Table 9: Log-likelihood, AIC, BIC, HQIC, KS Statistic and p-value of 72 pigs infected by virulent tubercle Bacilli of 
different distributions   
  Distributions   𝑊𝐻𝐿𝑎{𝐸}   𝐿𝐹𝑟   𝑀𝑂𝐹𝑟   𝐸𝐹𝑟  
-Loglikelihood   410.3371   426.2306   426.6764   449.7452  
𝐴𝐼𝐶   826.6741   858.4612   859.3527   903.4903  
𝐵𝐼𝐶   833.5041   865.2912   866.1827   908.0437  
𝐻𝑄𝐼𝐶   829.3932   861.1803   866.1827   905.3030  
K-S   0.027778   0.0695   0.1213   0.0923  
P-value   0.9460   0.8773   0.2403   0.5710  
 
From table 9, the new proposed W-HLa{E} model corresponds to the lowest values of the 
loglikelihood, AIC, BIC, HQIC, and K-S statistics among the fitted LFr, MOFr, and EFr models and 
therefore the W-HLa{E} model can be chosen as the best for the data set above. The distribution 
with the lowest Akaike Information Criteria (AIC) or BIC and the lowest Log-likelihood value is 
declared as ˜” best fit” distribution. In this case, W-HLa{E} distribution has the lowest  Log-
likelihood of -410.3371 with the lowest corresponding lowest AIC value of 826.6741. Hence, W-
HLa{E}D is regarded as a best-fit model for this particular data used.  
 
 

7.  CONCLUSION 
 

The research work introduced a new probability distribution called Weibull Half Laplace 
exponential distribution. Expressions for the probability density function, cumulative distribution 
function, survival function, and hazard function, and cumulative hazard function of the proposed 
distribution are derived. Some properties of the proposed distribution such as moments, order of 
statistics, and Shannon entropy have been studied. The simulation also supported the theoretical 
expression of the statistical properties of the proposed distribution such as the location parameter 
does not affect the variance, skewness, and kurtosis of the new distribution. From table 1, when 
k=2 and γ=2, the mean is approximately equal to the median hence, the distribution tends to be 
symmetric. The maximum likelihood method is adopted to estimate the parameters of the 
distribution. Coefficient of variation is deeply affected by γ. When the γ increases positively, the 
value of the coefficient of variation decreases It is shown, by means of two real data sets.  
Two life data were applied to the new distribution and others established distributions by 
researchers in the field of probability distribution and we found out that W-HLa{E} distribution 
has the lowest log-likelihood and the smallest AIC, BIC, and HQIC for the two data sets in tables 6 
and 9. W-HLa{E} distribution is a better fit for the two data sets.  
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Abstract 

 
Ranked set sampling is an approach to data collection originally combines simple random sampling with 
the field investigator's professional knowledge and judgment to pick places to collect samples. 
Alternatively, field screening measurements can replace professional judgment when appropriate and 
analysis that continues to stimulate substantial methodological research. The use of ranked set sampling 
increases the chance that the collected samples will yield representative measurements. This results in better 
estimates of the mean as well as improved performance of many statistical procedures. Moreover, ranked set 
sampling can be more cost-efficient than simple random sampling because fewer samples need to be 
collected and measured. The use of professional judgment in the process of selecting sampling locations is a 
powerful incentive to use ranked set sampling. Optimum stratification is the method of choosing the best 
boundaries that make strata internally homogeneous, given some sample allocation. In order to make the 
strata internally homogenous, the strata should be constructed in such a way that the strata variances for 
the characteristic under study be as small as possible. This could be achieved effectively by having the 
distribution of the study variable known and create strata by cutting the range of the distribution at 
suitable points. If the frequency distribution of the study variable is unknown, it may be approximated from 
the past experience or some prior knowledge (auxiliary information) obtained at a recent study.  The present 
investigation deals with paper the problem of optimum stratification on an auxiliary variable   for 
proportional allocation under ranked set sampling (RSS), when the form of the regression of the estimation 
variable   on the stratification variable   given the variance function   is known. A cum  rule of finding 
approximately optimum strata boundaries has been developed. Further, empirical study has been made and 
presented along with relative efficiency which showed remarkable gain in efficiency as compared to 
unstratified RSS. 

 
Keywords: Ranked set Sampling, approximately optimum strata boundaries, auxiliary variable 
optimum strata width 

1. Introduction 
 

The main aim of stratification is to produce estimators with more precision when a 
population characteristic   is under study. The problem of obtaining optimum strata boundaries 
(OSB) taking study variable itself as stratification variable was first considered [1]. The study 
showed that for a given method of allocation, the variance is clearly a function of the strata 
boundaries. By minimizing the variance of the estimate of population mean sets of equations were 
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obtained, solutions to which gave optimum strata boundaries. Due to the implicit nature of the 
minimal equations, their exact solutions could not be obtained. Subsequently, various authors gave 
methods of obtaining approximations to the exact solutions of the minimal equations. However, 
the ideal situation is that the distribution of such a study variable is known and the OSB can be 
determined by placing boundaries on the range of this distribution at suitable cut points. For an 
excellent account of these investigations reference may be made [2]. When the information about 
the study variables are not known, the utilization of auxiliary variable as stratification variable 
may be considered and obtained approximate OSB under simple random sampling (SRS) studied 
[3]. The problem of optimum stratification for two characters under study using auxiliary 
information [4]. A methodology developed for obtaining AOSB using auxiliary information under 
compromise method of allocation [5]. The problem of obtaining OSB under proportional allocation 
with varying cost of each unit studied [6].  A technique proposed under Neyman allocation when 
the stratification is done on the two auxiliary variables under consideration [7]. Recently, the 
problem considered of optimum stratification for a model-based allocation under a super 
population model [8]. Situation considered of optimum stratification of heteroscedastic 
populations in stratified selection for a known allocation under SRS strategy [9]. Estimator for the 
population Mean under Ranked Set Sampling [10] and [11]. Situation of optimum stratification 
under RSS considered by [12] and [13]. Further, the selection of sample from each stratum could be 
taken by utilizing any sampling technique. Therefore, in the present investigation we have taken 
the procedure of ranked set sampling (RSS) as a method of selection of units from each stratum, 
which is more efficient as compared to SRS. A stratified ranked set sample (SRSS) is a sampling 
plan in which a population is divided into   mutually exclusive strata and a RSS of n elements is 
quantified within each stratum. The sampling is performed independently across the strata. 
Therefore, one can think of an SRSS scheme as a collection of L separate ranked set samples. 
Originally, RSS was first suggested to estimate mean pasture and forage yields [14]. The necessary 
mathematical theory provided [15].  

Let the population under consideration be divided into L strata and a sample  

units which is selected from  stratum is drawn using RSS, where  is the number of cycles 

and  is sample size of each cycle. Each sample element is measured with respect to some 
variable Y, and estimator of the population mean is given by   

                                                                                         (1.1) 

where  is the weight of the  stratum and 
 
is the sample mean based on  units 

drawn from the  stratum.  
If the finite correction is ignored, the variance of the estimate will be: 
 

                                                                                          (1.2) 

denotes the variance of  order statistics in  stratum of the 

random sample of size . 

In most of these investigations related to optimum stratification, both the estimation and 
stratification variables are taken to be the same. Since the distribution of the estimation variable 

 is rarely known in practice, it is desirable to stratify on the basis of some suitably chosen 
concomitant variable . An investigation has considered the general problem of optimum 
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stratification based on auxiliary variables for the case of proportional allocation [16]. We consider 
the problem of optimum stratification on the auxiliary variable , assuming knowledge about 
the form of the regression of  on  and the variance function , minimal equations 

giving optimum strata boundaries have been obtained for proportional allocations under ranked 
set sampling. Since these equations cannot be solved easily, various methods of finding 
approximations to the exact solutions have been given.  

In this paper, the problem of construction of strata boundaries will be dealt using classical 
approach when the sample is selected from the strata using RSS. 

MINIMAL EQUATIONS UNDER PROPORTIONAL ALLOCATION 
If the regression of the estimation variable  on the stratification variable , in the infinite 
super population is given by 

                                                                               (2.1) 
Where  is a function of auxiliary variable,  is the error term such that  and 

 with . Let  and  be the joint density 
function and marginal density function of  and respectively. Then, we have      

  ,     and    ,           ( 2.2) 

where  are lower and upper boundaries of the  stratum with  and , 

 is the expected value of  and  is the variance of  in the  stratum.  

Using these relations, the variance expression (1.2), under proportional allocation 

                                                                              (2.3) 

Let denote the set of optimum points of stratification on the range , for which the 

 is minimum. These points  are the solutions of the minimal equations which are 

obtained by equating to zero the partial derivatives of  with respect to .  
Minimization of the variance expression given in (2.3), is equivalent to the minimization of the 

expression , since  is a population parameter and is a constant. On 

equating to zero the partial derivative of this expression with respect to , we get 

 

 
Therefore, using these results we get the minimal equations on simplification as 
 

                                                            (2.4) 

These equations are implicit functions of the strata boundaries  and their exact solutions are 
somewhat difficult to find. Therefore, we proceed to find the method of solving these minimal 
equations by conducting approximations. 
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APPROXIMATE EXPRESSIONS FOR CONDITIONAL MEAN AND VARIANCE  
Let the functions ,  and  are bounded away from zero and possess first two 
derivatives continuous . Then, we have the following identities due to [17].  

                                              (3.1) 

where  is the  derivative of  at  and   

                                              (3.2) 

 is the higher order terms with power 
 

Let  denote the conditional expectation of function in the interval , so that    

                                                                                        (3.3) 

we have from the definition of  

 

therefore, we have 

 

Using the Taylor series expansions for  and  from (3.2) and simplifying the result 
at point , we have 

   (3.4) 

Proceeding in the same fashion using Taylor series expansions about the point , the expression 
for  is obtained as  

    (3.5)       

Let  denotes the conditional variance of the function  in the interval , we 
have 
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substituting values, we get 

                                               (3.6) 

Using the above results, several other approximations can be obtained. Multiplying the series 
expansions for 

 
about the points  ,  and taking the square root, we obtain 

                  
                                                               (3.7)

 

From (3.3), we have 

 

Taking and using (3.7), we get 

                                                                                  (3.8) 

Similarly expanding about the point t=y, we have 

                                                                          (3.9)  

APPROXIMATE SOLUTIONS OF THE MINIMAL EQUATIONS 
To find approximate solutions to the minimal equation (2.4), we shall obtain the series expansions 

of system of equations about the point , the common boundary of  and strata. The 

expansions for the two sides of the equation (2.4) are obtained by using various results proved in 

the preceding section. For the expansion of the right hand side about the point ,  is 

replaced by  while for the left hand side we replace  by . 

we have 

 

 
We have from (2.13) after replacing  and  by  and  respectively. 

 

The derivatives of and  are evaluated at . Therefore, we get 
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Similarly, we get  

                                                            (4.2) 

Therefore from (4.1) and (4.2), we have 

 

 
Now let us consider an expansion of the function 

 

           (Using Taylors expansion) 

multiplying it by 
 
and taking cube root both sides, we get

 

                                                                (4.3) 

similarly, we have  

                                                                (4.4) 

From the equations (4.3) and (4.4), we have 

                                                                                                    

(4.5) 
 

Or 
 

= constant                                                                                                          (4.6) 

In case it is possible to find a function  such that 

 

                                                                                             (4.7) 
Thus the system of equations (4.6) to the same degree of accuracy can be put as 

Constant  

the above results can be put in the form of theorem as follows. 
THEOREM :- 

If the regression of the estimation variable  on the stratification variable , in the infinite 
super population is given by 

 

[ ] ( )
ú
û

ù
ê
ë

é
+

+
+=- )(

6
''2

2
)( 2

''
'

)( ii
i

hrhc kOk
f
fcfcc

k
xcµ

( ) ( )
ú
û

ù
ê
ë

é
+

+
+=ú

û

ù
ê
ë

é
+

+
+ )(

6
''2

2
)(

6
''2

2
2

''
'2

''
'

ii
i

ii
i kOk

f
fcfcckkOk

f
fcfcck

ò
-

=
h

h

x

x
ih dttfcB

1

)(2'

( )
ú
û

ù
ê
ë

é
+

+
-=\ )(

2
''21 2

'

''
2'

h
h

hh kO
k

fc
fcfcfkcB

÷÷
ø

ö
çç
è

æ
f
ckh
'2

8

( )
ú
û

ù
ê
ë

é
+

+
-=ú

û

ù
ê
ë

é
)(

6
''21

28
2

'

'''3
1

'2

hh
hhh kOk

fc
fcfckc

f
cBk

( )
ú
û

ù
ê
ë

é
+

+
-=ú

û

ù
ê
ë

é
)(

6
''21

28
2

'

'''3
1

'2

ii
iii kOk

fc
fcfckc

f
cBk

3
1

'23
1

'2

88 ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é
f
cBk

f
cBk iihh

hh Bk
2

( )hh xxQ ,12 -

ò
-

=
h

h

x

x
ihhh dttfckBk

1

)(2'22

( )[ ]212 )(1, hhh kOxxQ += -

''Y ''X

excy += )(

( ) =- hh xxQ ,12

166



 
Khalid Ul Islam Rather, S.E.H Rizvi, M. Sharma, M. Iqbal Jeelani, F. Danish 
APPROXIMATE OPTIMUM STRATA BOUNDARIES … 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

where  is a function of auxiliary variable,  is the error term such that  and 

 with , and further if the function  : 

then the system of equations (2.4) give strata boundaries  which correspond to the minimum 

of 
 
can be written as  

 

Neglecting the terms of order  can be neglected; these equations can be replaced 

by the approximate system of equations  

= constant 

Or equivalently by  

= constant   ,    

    

,  

The similar results can also be obtained by minimizing the function  

 

Thus we find that if the function  belongs to , the minimum value of  and 

therefore , exists and the solutions of the system of equations (2.4) or equivalently of 

(4.5). These equations as such are very difficult to solve and therefore it is essential to find some 
way out of this difficulty. It is done by replacing these systems of equations by other systems of 
equations which are comparatively easier to solve but are only asymptotically equivalent to the 
exact minimal equations. The error factor is introduced because we neglect the terms of higher 
powers of strata widths which is of course justifiable if the number of strata is large. We have 

obtained these systems of equations after neglecting the terms of order  

where , on both sides of the equation (4.5). If the number of strata is large and 

therefore terms of order  are quite small, the error involved in the approximate systems of 

equations is expected to be quite small and the set of points  obtained from them shall be quite 

near the optimum values. 
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Now we proceed to develop the approximate systems of equations given in (4.6) and (4.7). Here, in 
finding various forms of the function , we shall keep in mind that the function 

 is such that  

 

If in (2.4) we retain only the first term on both sides of the equation and neglect the others, the two 
sides are equalized if 

= constant,   ,        for                                                                  (4.8) 

and therefore  , with  and  

This set of solutions cannot be expected to yield very good results as we have neglected terms of 
order  on both sides of the exact minimal equations. This solution holds for all  
provided they belong to Ω and all density functions with finite range. Due to its universality of 
application it can be recommended in case of less information about  and . Apart from 
this, it gives the strata boundaries at once without any difficulty that may arise even in solving the 
approximate systems of equations. This approximate method fails if the range of  is infinite, but 
one can resort to truncation of the density function to any suitable probability level before using 
this approximation. 

We obtain next approximate systems of equations, the optimum points of stratification are such 
that   

 ,                                                             (4.9) 

The solutions obtained from this approximation are expected to be quite close to the optimum 
points as only terms of  have been neglected. All the approximate systems that will now 
follow also give the points of stratification to the same degree of accuracy. 

From (3.8) and equation (4.9) is obtained the following class of approximate equations. The 
approximations to optimum  are obtained from 

= constant,      

For = 1/2 and 1/3 we have  

= constant,                                                                (4.10) 

For =1/3, we have the system of equation as  
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 ,                                                                                       (4.11) 

In all these systems of equations,  are constants to be determined and in some cases, the few 
equations may be meaningless such as for ,  i,e . 

Cum!𝐾!(𝑥)
!  Rule  

If the  is bounded and its first two derivative exists , then for 

given value of L taking equal intervals on the cumulative cube root of  will give AOSB. 

EMPIRICAL STUDY: 
We shall consider following distributions of auxiliary variable for evaluating the efficiency of the 
proposed method for obtaining optimum points of stratification. 
Let us assume the auxiliary variable ‘x’ follows certain distributions as follows: 

I. Rectangular                  ,         

II. Right-triangular           ,           

III. Exponential                ,                           

IV. Standard normal      
                  

 

If the stratification variable follows the uniform distribution with pdf  , 

utilizing the cum  rule, we get the stratification points as given in table I. 
 

Table I: AOSB and Variance for uniformly distributed auxiliary variable 

L AOSB 
Total variance

 R.E.% 

2 1.4967 0.75521 102.069 
3 1.3257, 1.6624 0.75232 102.461 
4 1.2483, 1.4959, 1.7466 0.75151 102.572 
5 1.1983, 1.3965, 1.5898, 1.7967 0.75084 102.663 

6 1.1631, 1.3289, 1.4922, 1.6543, 1.8236 0.75058 102.698 
If the stratification variable follows the right triangular distribution with pdf 

, utilizing the cum  rule, we get the stratification points as given in table II. 
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Table II: AOSB and Variance for Right-triangular distributed auxiliary variable 

L AOSB 
Total Variance

 R.E.% 

2 2.9662 1.01136 111.979 

3 2.2935, 3.6419 0.97727 115.886 

4 2.0325, 3.0001, 3.9986 0.96505 117.353 

5 1.7954, 2.5879,3.4289, 4.2247 0.95773 118.250 

6 1.6565, 2.3143, 2.4771, 3.6057, 4.2593 0.95589 118.477 
 
If the stratification variable follows the Exponential distribution with pdf , 

utilizing the cum  rule, we get the stratification points as given in table III. 
Table III: AOSB and Variance when the auxiliary variable is exponentially distributed: 

L AOSB 
Total Variance

 R.E.% 

2 1.4949 0.67123 101.389 

3 1.3257, 1.6558 0.66879 101.760 

4 1.2589, 1.5173, 1.7814 0.66801 101.878 

5 1.1981, 1.3971, 1.6452, 1.8494 0.66758 101.944 

6 1.1638, 1.3277, 1.4911, 1.6562, 1.8217 0.66722 101.999 

If the stratification variable follows the standard Normal distribution with pdf 

, utilizing the  rule, we get the stratification points as given in table IV. 
Table IV: AOSB and Variance for Standard normally distributed 

L AOSB 
Total Variance

 R.E.% 

2 0.4939 0.08024 121.102 

3 0.3282, 0.6531 0.07927 122.584 

4 0.2448, 0.4947, 0.7509 0.07893 123.111 

5 0.1973, 0.3943, 0.5993, 0.7986 0.07877 123.360 

6 0.1687, 0.3286, 0.4944, 0.6596, 0.8269 0.07868 123.496 
 

 
CONCLUSION 

 
The AOSB are determined for this distribution by using cum method. For each L = 2, 

3, 4, 5 and 6 the variance 
 
is calculated, which is used for the efficiency of the 

stratification. The results of this investigation are given in Table I-IV. When the auxiliary variable 
follows uniform, right triangular, exponential and standard normal distributions the stratification 
points obtained has been presented in Table I-IV and percent RE as compared unstratified RSS 
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have been worked out. The standard normal distribution shows highest % R.E. Overall results 
show that the increase in the number of strata is directly proportional to the decrease in total 
variance. From the last column of tables it can be seen that the AOSB obtained by the proposed 

method are more efficient for all L =  2,3,...,6. Thus, the proposed method of cum  shows 
increases gain in precision in obtaining AOSB while selecting samples using RSS. 
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Abstract

High-altitude platform (HAP) are stations on an object at an altitude of around 15-50 km at a specified
nominal fixed point relative to Earth. Tethered high-altitude platform (tHAP) are unmanned aerial vehicle
that are connected to the ground via a tether with a lift height of 100 − 150 meters, and a multi-copter as
high altitude mode. The reliability of the tHAP can be assessed with a focus on the tether that connects it
to the ground. This article proposes a Markov model which obtain the reliability of the tHAP. The tether is
considered to be made up of multiple wires in such a way that the tether still operates for a given number
of functioning wires. The failure rates of the wires are dependent on the number of failed wires. Through
the reliability analysis of the proposed Markov model, the key performance measures such as reliability of
the system, mean time between failures and the probability of the system being reliable are computed. The
optimal number of wires is also obtained via the numerical computation of the performance measures.

Keywords: Markov chain, reliability, tethered high-altitude platform, unmanned aerial vehicle

1. Introduction

Autonomous unmanned aerial vehicles (UAVs) are currently in widespread use. The biggest
disadvantage of UAVs is their limited operational period due to a limited energy resource of
batteries or fuel-carrying capacity. High-altitude platform (HAP)s are stations on an object at an
altitude of around 15-50 km at a specified nominal fixed point relative to Earth. The long-term
operation can be provided by a tethered high-altitude platform (tHAP), with a lift height of
100-150 meters, in which power supply of engines and payload equipment are provided from
ground-based power sources via copper cables [1].

tHAPs have several advantages when compared to terrestrial stations or satellite stations ([2]
[3]). tHAPs have an intermediate geographical range between that of terrestrial stations and a
satellite stations. tHAPs can be deployed in a matter of hours. They can be operated for long
duration and can return to ground easily. Furthermore they have a secure and efficient back-haul,
since tHAPs are connected to the core network via wire. tHAPs are also extensively used in the
case of disaster situation in the concerned region due to the easy deployment.

Components of a tHAP are shown in Fig. 1. tHAPs consists of a flying platform connected
to the Ground Control Station (GCS) via a tether. The GCS houses a system for diagnostics and
control of the tHAP from the ground. The tether also includes power transmission cable and
data transmission cable. The navigation and stabilization system comprises of on-board sensors,
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on-ground anchor points, etc., that measures various parameters for navigation, and the circuits
that stabilize the platform based on these parameters. The main power source is located on the
ground. The intelligent wench is responsible for controlling the length of the tether.

Figure 1: Components of a tHAP

Figure 2: UAV Failure Causes

Fig. 2 shows the contribution of various factors in the failure of an ordinary UAV. Most of
the failures can be attributed to the power system. These failures should be less frequent in
the case of tHAP, since the power source is stationed on the ground and more reliable. The
failures of navigation system should also be fewer since the tHAP is mostly stationary. The
failure rate of GCS, electric system, mainframe and payload should not differ much. This data
does not include the failures of the components in the tether [5]. The tether will be around
15-50km long. It will also have a total mass around a few hundred kg. There is a need to focus on
improving the reliability of the tether that connects the tHAP to the ground as well as the power
and communication cables. Vishnevsky et al. [7] studied the reliability of the functioning of a
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flight module of a tethered high-altitude telecommunication platform, utilizing the k-out-of-n : F
model. The authors of [9] proposed an analytical model of the k-out-of-n:G system under two
system failure scenarios. Ivanova [10] presented a hot standby repairable k-out-of-n system.

This study proposes a Markov model setup for the prediction of reliability of the tether. It
has been assumed that the tether is constructed of multiple wires. The functioning of the tether
depends on the number of working wires. If the number is below some level, the tether will stop
working. To this end, numerical examples have been carried out. The obtained results have been
found to be very close to the existing results of [6] which uses a different criterion - minimizing
the weight of the cable.

The paper is divided into four parts. Section 2 provides a general overview and a broad
description of the approach taken. Section 3 comprises of the analysis of the given approach using
Markov model. Section 4 shows the various numerical results obtained based on the analysis.
Section 5 provides the conclusions and future work.

2. Model description

Figure 3: Diagram of the proposed model

Consider the cable be made of multiple parallel wires, such that the cable still operates
provided a given number of these wires are still functioning. As seen in Fig. 3, the cable consists
of n wires running parallel to each other. The wires have current flowing through them with
different phases. Their phases will be symmetrically distributed such that the total current is zero.
Whenever a wire has a fault, the phases of the currents in the remaining wires will be adjusted
such that the total current is still zero.

Assume that a cable made up of n wires will still function reasonably provided k wires are
still working. Whenever a wire fails there is, in general, a higher probability for the next wire to
fail. In this work, take this into consideration by assuming that the failure rates of the wires are
dependant on the number of wires already failed. Furthermore, assume that the failure rates of
the remaining wires are the same. Let λi be failure rate of each wire after i wires have failed.

Figure 4: State transition diagram for the proposed Markov model

The system can be assessed using a Markov model [8]. The Markov model of the system after
applying state aggregation is shown in Fig. 4. Here Si (0 ≤ i ≤ n − k) is the state in which exactly
i wires failed and n − i wires are working. Sn−k+1 is the state in which more than k wires have
faulted, i.e., the whole system fails.
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3. Reliability Analysis

Let Pn(t) be the probability that the system in the state Sn at time t. The governing equations are
given by

dP0(t)
dt

= −nλ0P0(t) (1)

dPi(t)
dt

= (n − i + 1)λi−1Pi−1(t)− (n − i)λiPi(t), 1 ≤ i ≤ n − k (2)

dPn−k+1(t)
dt

= kλn−kPn−k(t). (3)

Initial condition is given by P0(0) = 1, Pi(0) = 0, 1 ≤ i ≤ n − k + 1. Solving the above Equations
(1- 3) with the initial condition, we get,

P0(t) = e−nλ0t (4)

Pi(t) =
i

∑
j=0

Aije
−(n−j)λjt, 0 < i ≤ n − k (5)

Pn−k+1(t) = 1 −
n−k

∑
i=0

Pi(t) (6)

where

Aij =
∏i−1

h=0(n − h)λh

∏i
h=0,h ̸=j(n − h)λh − (n − j)λj

.

3.1. Measures

1. Reliability of the system is computed by using Equations (4) - (5) and is given by,

Rn(t) =
n−k

∑
i=0

Pi(t)

=
n−k

∑
j=0

∏n−k
h=0(n − h)λh

∏n−k
h=0,h ̸=j(n − h)λh − (n − j)λj

e−(n−j)λjt. (7)

2. Mean time between failures (MTBFn) is computed using Equation (7) and is given by,

MTBFn =
∫ ∞

0
Rn(t)dt.

3. Let Tcon f be the largest value of t for which probability of system being reliable for time t is
greater than or equal to pcon f .

Tcon f = max(t|Rn(t) ≥ pcon f ).

3.2. Special Case

Suppose λi are equal to λ, Equations (4) - (6) become

Pi(t) = nCie−nλt(eλt + 1)i

Pn−k+1(t) = 1 −
n−k

∑
i=0

Pi(t).

Rn(t) =
n−k

∑
i=0

i

∑
j=0

nCi
iCje−(n−j)λt.
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Further,

MTBFn =
1
λ

n−k

∑
i=0

i

∑
j=0

nCi
iCj

n − j
.

4. Numerical Results

In this section, numerical illustration is presented for the proposed model. In order to plot
the graphs, the parameters’ values are considered depending on the stability conditions of the
proposed model. The graphs have been plotted considering λ = 0.1year−1 for various values of ρ.

Fig. 6 shows the plot of the reliability function for various n taking λ = 0.1year−1 for the
special case λi = λ. It can be observed from the figure that the value of Rn(t) decreases with
respect to the time as there will be more chances for the system to fail due to the circumstances.
As the value of n increases, the reliability can be seen to increase. After n = 6, the reliability starts
to decrease which provides the optimal value of n.

The similar behaviour can be observed from Fig. 5(b) for ρ = 1.5. Here, it can be observed that
Rn(t) is exhibiting the decreasing behaviour with respect to t. Also, Rn(t) starts decreasing after
n = 6 which shows that n = 6 is the optimal value. On the similar track, Fig. 5(a) demonstrates
the similar behaviour of Rn(t) with respect to t for ρ = 0.8. Here also the obtained optimal value
of n is 6. Similarly, Table 1 gives the values of MTBFn for various n. The values of Tcon f for
various values of n and pcon f taking λ = 0.1year−1 is shown in Table 2.
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(a) Reliability function for various n for ρ = 0.8
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(b) Reliability function for various n for ρ = 1.5

Figure 5: Reliability function for various n.

n
ρ

1 1.5 2 2.5

4 5.8333 4.7222 4.1667 3.8333
5 6.7193 5.0724 5.3225 4.4667
6 6.9698 5.4921 5.8811 4.5921
7 4.4421 3.7880 3.5552 3.2986
8 1.3850 1.4006 1.3080 1.7920
9 1.1108 1.3276 1.2102 1.3677

Table 1: MTBFn vs n taking λ = 0.1 year−1, for various ρ
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Figure 6: Reliability function for various n for λi = λ.

n
pcon f 0.9 0.95 0.99 0.995 0.999

4 0.334 0.221 0.189 0.096 0.024
5 1.221 0.967 0.746 0.544 0.100
6 1.975 1.464 1.002 0.866 0.377
7 1.556 1.115 0.988 0.545 0.323
8 1.215 0.966 0.766 0.432 0.307
9 0.977 0.851 0.676 0.402 0.211

Table 2: Values of Tcon f (years) for ρ = 1.5 and k = 3 for various n and pcon f .

5. Conclusions and Future Work

Based on the reliability graphs, Table 1 and Table 2, the reliability improves as increase the
number of wires n until n = 6, after which the reliability decreases. Thus, a 6- core wire will be
the best configuration for the chosen parameters. Vishnevsky et al. [6] obtained in their study of
tether HAP system, by a different criterion, i.e., minimizing the weight of the cable. The obtained
results are very close to the results obtained by [6].

In this study, all distributions in the proposed model are considered as independent exponen-
tial distributions. Hence, the underlying stochastic process is a Markov process. By extension of
the above consideration, for future work, this research work can be considered with non Markov
processes. As a future work, the non Markov model can be simulated to test whether Markov
process is a good approximation for more complex non Markov processes.
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Abstract 
 

In this paper, truncated Pranav distribution has been proposed. The behavior of truncated Pranav 
distribution has been presented graphically. Moment based measures including coefficient of 
variation, skewness, kurtosis, and Index of dispersion have been derived and presented graphically. 
Nature of survival and hazard rate functions are presented graphically. Maximum likelihood method 
has been used to estimate the parameter of proposed model. Simulation based study of proposed 
distribution has also been discussed.  It has been applied on two data sets and its superiority has been 
compare and checked using goodness of fit (AIC and  K. S. test) over other truncated distributions as 
well as one parameter distribution, such as exponential, Lindley, Pranav, Ishita, truncated Akash, 
truncated Lindley, and truncated Akash distribution. It was found good fit over above-mentioned 
distributions. It can be considered as good lifetime distribution especially for non-skewed data. 
 

Keywords: Akash distribution, Lindley distribution, Moments, Right Truncated, Left Truncated 
 
 
 

1. Introduction 

In the recent past decades, lifetime modeling has been becoming popular in distribution theory, 
where many statisticians are involved in introducing new models. Some of the life time models are 
very popular and applied in biological, engineering and agricultural areas, such as Lindley 
distribution of Lindley [1], weighted Lindley distribution introduced by [2], Akash distribution 
suggested by  Shanker[3], Ishita distribution proposed by Shanker and Shukla [4], Pranav 
distribution introduced by Shukla [5], are some among others and extension of above mentioned 
distribution has also been becoming popular in different areas of statistics.  

 
Shukla [5] proposed Pranav distribution convex combination of exponential and gamma 

distributions which is defined by its pdf and cdf  

                     𝑓!(𝑦; 𝜃) =
"!

"!#$
(𝜃 + 𝑦%)𝑒&"'; 𝑦 > 0, 𝜃 > 0                                          (1) 
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                      𝐹((𝑦; 𝜃) = 1 − 01 + "')""'"#%"'#$*
"!#$

1 𝑒&"'; 𝑦 > 0, 𝜃 > 0                       (2) 
The 𝑟th moment about origin 𝜇+′of Pranav distribution given as 

                                    

       𝜇+′ =
+!-"!#(+#!)(+#()(+#%0

"#("!#$)
; 𝑟 = 1,2,3, . ..             (3) 

Shukla [5] has discussed in detailed about its mathematical and statistical properties, estimation of 
parameters and applications to model lifetime data from engineering and biomedical engineering. 
Truncated type of distribution is more effective for modeling lifetime data because its limits used as 
bound either upper or lower or both according to the given data.  Truncated normal distribution is 
proposed by Johnson et al. [6]. It has wide application in economics and statistics. Many researchers 
have been proposed truncated type of distribution and applied in different areas of statistics, 
especially in censor data such as truncated Weibull distribution of Zange and Xie [7], truncated 
Lomax distribution of Aryuyuen and Bodhisuwan [8], truncated Pareto distribution of Janinetti and 
Ferraro [9], truncated Lindley distribution of Singh et al. [10]. Some researchers have proposed 
distribution such as Sindhu and Hussai [11] proposed a Mixture of two generalized inverted 
exponential distributions with censored sample model and applied on cancered data, and Shukla 
[12] proposed Inverse Ishita distribution and applied on using the data sets of bladder cancer patient 
and failure times of the air conditioning system. Recently truncated version of Akash distribution 
introduced by Shukla and Shanker [13] and truncated version of two parameter Pranav distribution 
has been proposed by Shukla [14] and its superiority has been shown in their paper over other 
truncated distribution. Some distributions and their introducer names have been listed in the table1. 
 

Table1: Pdf of some selected distribution and their introducer’s name 
Distribution 
name 

Pdf (probability density function) Introducer’ 
name 

Truncated 
Lindley (TLD) 

𝑓(𝑥; 𝜃) =
𝜃((𝑥 + 1)𝑒&"1

(𝑎𝜃 + 1)𝑒&"2 − (𝑏𝜃 + 1)𝑒&"3 + (𝜃 + 1)(𝑒&"2 − 𝑒&"3) 
Singh et al. 
[10] 

Truncated 
Akash (TAD) 

𝑓(𝑥; 𝜃) 		

=
𝜃%(𝑥( + 1)𝑒&"1

𝑎𝜃(𝑎𝜃 + 2)𝑒&"2 − 𝑏𝜃(𝑏𝜃 + 2)𝑒&"3 + (𝜃( + 2)(𝑒&"2 − 𝑒&"3) 

Shukla & 
Shanker 
[13] 

Akash 𝑓(𝑥; 𝜃) =
𝜃%

𝜃( + 2
(1 + 𝑥()𝑒&"; 𝑥 > 0, 𝜃 > 0 Shanker [3] 

Ishita 𝑓(𝑥; 𝜃) =
𝜃%

𝜃% + 2
(𝜃 + 𝑥()𝑒&"; 𝑦 > 0, 𝜃 > 0 Shanker& 

Shukla [4] 
Lindley 𝑓(𝑥; 𝜃) =

𝜃(

𝜃 + 1
(1 + 𝑥)𝑒&"1; 𝑥 > 0, 𝜃 > 0 Lindley [1] 

Exponential 𝑓(𝑥; 𝜃) = 𝜃𝑒&"1; 𝑥 > 0, 𝜃 > 0  
 
Truncated version of a continuous distribution can be defined as: 
Definition1. Let 𝑋 be a random variable distributed according to some pdf 𝑔(𝑥; 𝜃) and cdf 𝐺(𝑥; 𝜃), 
where 𝜃 is a parameter vector of 𝑋. Let  lies within the interval , where
, then 𝑋, conditional on  is distributed as truncated distribution. The pdf of truncated 
distribution as reported by Singh et al (2014) defined by:   

             𝑓(𝑥; 𝜃) = 𝑔(𝑥/𝑎 ≤ 𝑥 ≤ 𝑏; 𝜃) = 4(1;")
6(3;")&6(2;")

                                               (4) 

where 𝑓(𝑥; 𝜃) = 𝑔(𝑥; 𝜃) for all 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑓(𝑥; 𝜃) = 0 elsewhere. Note that 𝑓(𝑥; 𝜃) in fact is a pdf 
of X on interval   [𝑎, 𝑏]. We have  

X [ , ]a b a x b-¥ < £ £ < ¥
a x b£ £
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                       𝑓(𝑥; 𝜃) = ∫ 𝑓(𝑥; 𝜃)3
2 𝑑𝑥 = !

6(3;")&6(2;")∫ 𝑔(𝑥; 𝜃)3
2 𝑑𝑥	

 
                           = !

6(3;")&6(2;")
𝐺(𝑏; 𝜃) − 𝐺(𝑎; 𝜃) = 1                                   (5) 

The cdf of truncated distribution is given by  
                    𝐹(𝑥; 𝜃) = ∫ 𝑓(𝑥; 𝜃)𝑑𝑥 =1

2
6(1;")&6(2;")
6(3;")&6(2;")

             (6) 

The main objective of this paper is to propose new truncated distribution using Pranav distribution 
which is called as truncated Pranav distribution, and to know the behavior and properties of 
proposed distribution over other truncated as well as parent distributions. Present paper has been 
divided into eight sections. Introduction about the paper is described in the first section. In the 
second section, truncated Pranav distribution has been derived. Behavior of hazard rate has been 
presented in third section Statistical properties including its moment have been discussed in the 
fourth section. Estimation of parameters of the proposed distribution has been discussed in the fifth 
section. Simulation study of proposed distribution has been discussed in the sixth section.  Its 
application and comparative study with one parameter lifetime distribution have been illustrated in 
the section seven. Finally, the conclusion of the paper has been given in the eighth section.   
 

2. Truncated Pranav Distribution 

In this section, pdf and cdf of new truncated distribution is proposed and named Truncated Pranav 
distribution, using (5) & (6)  of definition1 and from (1) & (2) , which is defined as : 
Definition 2: Let X be random variable which is distributed as Truncated Pranav distribution (TPD) 
with scale parameter   and location parameters 𝑎 &𝑏, and denoted by TPD(𝑎, 𝑏, 𝜃). The pdf and 

cdf of X are derived respectively as: 
𝑓(𝑥; 𝜃) = 𝑔(𝑥/𝑎 ≤ 𝑥 ≤ 𝑏; 𝜃) = 4(1;")

6(3;")&6(2;")
 

𝐹(𝑥; 𝜃) =
𝐺(𝑥; 𝜃) − 𝐺(𝑎; 𝜃)
𝐺(𝑏; 𝜃) − 𝐺(𝑎; 𝜃) 

Where 𝑔(𝑥; 𝜃) = "!

"!#$
(𝜃 + 𝑥%)𝑒&"1 

𝐺(𝑏; 𝜃) = 1 − D1 +
𝜃𝑏(𝜃(𝑏( + 3𝜃𝑏 + 6)

𝜃7 + 6 F 𝑒&"3 

𝐺(𝑎; 𝜃) = 1 − D1 +
𝜃𝑎(𝜃(𝑎( + 3𝜃𝑎 + 6)

𝜃7 + 6 F 𝑒&"2 

𝑓(𝑥; 𝜃) = "!(1$#")8%&'

(2$"$#%2"""#"!#$2"#$)8%&(&(3$"$#%3"""#"!#$3"#$)8%&)
         (7) 

   

𝐹(𝑥; 𝜃) = (2$"$#%2"""#"!#$2"#$)8%&(&(1$"$#%1"""#"!#$1"#$)8%&'

(2$"$#%2"""#"!#$2"#$)8%&(&(3$"$#%3"""#"!#$3"#$)8%&)
             

(8) 

where −∞ < 𝑎 ≤ 𝑥 ≤ 𝑏 < ∞, and 𝜃 > 0 
Three cases can be considered of proposed doubly truncated distribution as: 

a) When 𝑎 = 0and 𝑏 = ∞, it reduced to parent model (Pranav distribution).,  
b) When 𝑎 = 0, it is known as right (upper) truncated distribution of the parental model (Right 

truncated Pranav distribution) 
c) When 𝑏 = ∞, it is known as left (lower) truncated distribution of the parent model (left 

truncated Pranav distribution. 

Properties of TPD are explained as follows: 
i. TPD has three parameters, where two parameters a and b were considered lowest and 

largest value from the data. 

q
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ii.  Parameter 𝜃 is  considered as scale parameter, for the fixed value of a and b , TPD is observed 
decreasing and increasing as increased value of 𝜃  for 𝜃 < 1 and 𝜃 > 1 respectively.   

Performance of pdf of TPD for varying values of parameters has been illustrated in the figure 1.  

  

 

  
Figure 1: pdf plots of TPD for varying values of parameters 
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3. Survival and Hazard function 

The survival function 𝑆(𝑥) and the hazard function ℎ(𝑥) of TPD are defined as  
 
 

𝑆(𝑥) = 1 − 𝐹(𝑥) =
(𝑥%𝜃% + 3𝑥(𝜃( + 𝜃7 + 6𝑥𝜃 + 6)𝑒&"1 − (𝑏%𝜃% + 3𝑏(𝜃( + 𝜃7 + 6𝑏𝜃 + 6)𝑒&"3

(𝑎%𝜃% + 3𝑎(𝜃( + 𝜃7 + 6𝑎𝜃 + 6)𝑒&"2 − (𝑏%𝜃% + 3𝑏(𝜃( + 𝜃7 + 6𝑏𝜃 + 6)𝑒&"3 

 

ℎ(𝑥) =
𝑓(𝑥)
𝑆(𝑥) =

𝜃7(𝑥% + 𝜃)𝑒&"1

(𝑥%𝜃% + 3𝑥(𝜃( + 𝜃7 + 6𝑥𝜃 + 6)𝑒&"1 − (𝑏%𝜃% + 3𝑏(𝜃( + 𝜃7 + 6𝑏𝜃 + 6)𝑒&"3 

 
It is obvious that ℎ(𝑥) is independent from parameter 𝑎. Behavior of Survival and hazard function 
of TPD for varying values of parameter are presented in figures 2&3. It was observed from the figure 
3 that value of hazard rate is increasing as increased value of parameter of  𝜃   when value of rest of 
the parameters  (a, b )fixed. 
 

  

  

Figure 2: S(x) plots of TPD for varying values of parameter 
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Figure3: h(x) plots of TPD for varying values of parameter 

 
4. Moments and mathematical properties 

Moments of a distribution are used to study the most important characteristics of the distribution 
including mean, variance, skewness, kurtosis, etc. The 𝑟th   moment of origin𝜇! ʹ of TPD can be 
expressed in explicit expression in terms of incomplete gamma functions. 
Theorem1: Suppose 𝑋9(𝑎 > 0, 𝑏~∞) follows left (lower) truncated TPD (𝜃, 𝑎,∞). Then the 𝑟th   
moment about origin 𝜇+′ of TPD is  
 

     𝜇+′ =
"!:(+#!,"2)#:(+#7,"2)

"#<(2$"$#%2"""#$2"#"!#$)8%&(&("!#$)=
; 𝑟 = 1,2,3, . .. 

 
Proof: Considering 𝐾 = K(𝑎%𝜃% + 3𝑎(𝜃( + 6𝑎𝜃 + 𝜃7 + 6)𝑒&"2 − (𝜃7 + 6)L 
in (7), we have 

                            𝜇+′ =
"!

> ∫ 𝑥+(𝜃 + 𝑥%)∞
2 𝑒&"1𝑑𝑥 

                            = "!

>
M∫ 𝜃𝑒&"1𝑥+𝑑𝑥 + ∫ 𝑒&"1𝑥+#%𝑑𝑥∞

2
∞
2 N 

                                       Taking  𝑢 = 𝜃𝑥, 𝑥 = ?
"
 

                                 

   =  "
!

>
0 "
"#*+

P∫ 𝑒&?𝑥+𝑑𝑢"2
@ Q + !

"#*!
P∫ 𝑒&?𝑥+#%𝑑𝑢"2
@ Q1 

                     Where 𝛾(𝛼, 𝑧) = ∫ 𝑒&1𝑥A&!𝑑𝑥∞
B , 𝛼 > 0, 𝑥 > 0 is the upper incomplete gamma function 

                                       ="
!

>
0:(+#!,"2)

"#
+ :(+#7,"2)

"#*!
1 

184



 
Shukla Kamlesh Kumar 
TRUNCATED PRANAV DISTRIBUTION: PROPERTIES AND APPLICATIONS 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

                                      =!
>
0"

!:(+#!,"2)#:(+#7,"2)
"#

1 
                                 

   𝜇+′ =
"!:(+#!,"2)#:(+#7,"2)

"#<(2$"$#%2"""#$2"#"!#$)8%&(&("!#$)=
       

 Now taking		𝑟 = 1,2, mean and variance can be obtained as 
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 Variance 𝜇( = 𝜇(′ − (𝜇!′ )( 
 
Theorem2. Suppose 𝑋9(𝑏 > 0, 𝑎~0) follows upper (right) truncated TPD(𝜃, 0, 𝑏). Then the 𝑟th   
moment about origin𝜇+′ of TPD is  

𝜇+′ =
𝜃7{𝛾(𝑟 + 1, 𝜃𝑏)} + 𝛾(𝑟 + 4, 𝜃𝑏)
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   Variance 𝜇( = 𝜇(′ − (𝜇!′ )( 
 
Theorem3: Suppose 𝑋 follows doubly TPD (𝜃, 𝑎, 𝑏). Then the 𝑟th   moment about origin 𝜇+′ of TPD 
is  
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Now taking𝑟 = 1,2, mean and variance can be obtained as 
 

                                𝜇!′ =
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                      Variance     𝜇( = 𝜇(′ − (𝜇!′ )( 
 
Similarly rest two moments of origin as well as coefficient of variation, coefficient of skewness, 
coefficient of kurtosis and Index of dispersion can be obtained, substituting 𝑟 = 3,4 in the equation 
(9), which are as follows: 
 

𝜇%′ =
𝜃7{𝛾(4, 𝜃𝑏) − 𝛾(4, 𝜃𝑎)} + {𝛾(7, 𝜃𝑏) − 𝛾(7, 𝜃𝑎)}

𝜃% ](𝑎
%𝜃% + 3𝑎(𝜃( + 6𝑎𝜃 + 𝜃7 + 6)𝑒&"2 −

(𝑏%𝜃% + 3𝑏(𝜃( + 6𝑏𝜃 + 𝜃7 + 6)𝑒&"3 ^
 

 

𝜇7′ =
𝜃7{𝛾(5, 𝜃𝑏) − 𝛾(5, 𝜃𝑎)} + {𝛾(8, 𝜃𝑏) − 𝛾(8, 𝜃𝑎)}

𝜃7 ](𝑎
%𝜃% + 3𝑎(𝜃( + 6𝑎𝜃 + 𝜃7 + 6)𝑒&"2 −

(𝑏%𝜃% + 3𝑏(𝜃( + 6𝑏𝜃 + 𝜃7 + 6)𝑒&"3 ^
 

 

Coefficient of Variation=
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+/"

I+
′ , Coefficient of Skweness=
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′ &(I+

′ )"J
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 , Coefficient of 

Kurtosis= 
HI!
′ &7I$

′ I+
′ #$I"

′ (I+
′ )"&%(I+

′ )!J

(I"
′ &(I+′ )")"

 , 

 Index of dispersion= 
HI"
′ &(I+

′ )"J

I+
′ , graph of above measures is presented in figures 4 to 9. From the 

figure 4 &5, it was observed that mean and variance are decreasing with increased value of 𝜃  and 
slightly increasing with b while parameter a is kept constant. 
 
 Coefficient of variation of TPD was found deceasing with increased value of 𝜃   and b.  
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Figure 4: Mean of TPD (doubly truncated) for varying value of parameter 

 
Figure5: Variance of TPD for varying value of parameter 

 

 
Figure 6: Coefficient of variation of TPD (Doubly truncated) for varying value of parameter 
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Figure 7: Coefficient of skewness of TPD (Doubly truncated) for varying value of parameter 

 
Figure 8: Coefficient of kurtosis of TPD (Doubly truncated) for varying value of parameter 

 
Figure9: Index of dispersion of TPD (doubly truncated) for varying value of parameter 

 
5. Maximum likelihood Method Estimation 

Let (𝑥!, 𝑥(, 𝑥%, . . . , 𝑥K) be a random sample of size  from (7).  
The likelihood function, of TPD is given by 

𝐿 = b "!

(2$"$#%2"""#"!#$2"#$)8%&(&(3$"$#%3"""#"!#$3"#$)8%&)
c
K
∏ (𝜃 + 𝑥9%)K
9L! 𝑒&K"1̄

                         
 

 
The   log likelihood function is thus obtained as 

  𝑙𝑛 𝐿 = 𝑛 𝑙𝑛 b "!

(2$"$#%2"""#"!#$2"#$)8%&(&(3$"$#%3"""#"!#$3"#$)8%&)
c + ∑ 𝑙𝑛(𝜃 + 𝑥9%)K

9L! − 𝑛𝜃�̄�  

 
Taking  𝑎i = 𝑚𝑖𝑛(𝑥!, 𝑥(, 𝑥%, . . . , 𝑥K), 𝑏l = 𝑚𝑎𝑥(𝑥!, 𝑥(, 𝑥%, . . . , 𝑥K), the maximum likelihood estimate 𝜃lof 
parameter 𝜃 is the solution of the log-likelihood equation N OP4 Q

N"
= 0.  

It is obvious that N OP4 Q
N"

= 0 will not be in closed form and hence some numerical optimization 
technique can be used e the equation for𝜃. In this paper the nonlinear method available in R software 
has been used to find the MLE of the parameter𝜃.  
 
  

n
L
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6. Simulation study 

In this section, simulation study has been carried out using R-software. Acceptance and rejection 
method is used to generate random number, where sample size,𝑛 = 20,40,60,80,100, value of 𝜃 =
0.1,0.5,1.0,1.5&	(𝑎 = 10, 𝑏 = 100) have been used for calculating Bias error and MSE (Mean square 
error) of parameter , which is presented in table2. 
General algorithm for generating the data which was given by Robert and Casella [15] are as follows: 
The constraints we impose on this candidate density 𝑓R	are that:  

(i) Y be simulate-able (the data simulation from Y be actually possible). 
(ii)  There is a constant c with S-(1)

S.(1)
≤ 𝑐  for all  𝑥 ∈ 𝑆1 = {𝑥: 𝑓T(𝑥) > 0}  

(iii) 𝑓T(𝑥) and 𝑓R(𝑥) have compatible supports (i.e., 𝑆T ⊆ 𝑆R ).  
In this case, X can be simulated as follows by Accept-Reject method. First, we generate y from 𝑌~𝑓R 
and, independently, we generate u from 𝑈~𝑈(0,1).  
If 𝑢 ≤ S-(')

US/(')
 then we set x = y. If the inequality is not satisfied, we then discard/reject y and u and start 

again. 
 

Table2: Average Bias (AB) and Average MSE (AM) of the simulated MLEs of 𝜃   at fixed value of𝑎 = 10, 𝑏 = 100 
Sample   A B  AM AB AM 
20 0.1 

0.5 
1.0 
1.5 

0.0606620 
0.0509281 
0.02592813 
0.00092813 

0.07359774 
0.05187350 
0.01344536 
0.000017228 

0.04834145 
0.05092813 
0.02592813 
0.00092813 

0.04673793 
0.00518735 
0.01344536 
0.00001722 

40 0.1 
0.5 
1.0 
1.5 

0.02391497 
0.02546406 
0.01296406 
0.00046406 

0.02287705 
0.02593675 
0.006722681 
0.0000086143 

0.02420517 
0.02546406 
0.01296406 
0.00046406 

0.02343561 
0.0259367 
0.00672268 
0.00008614 

60 0.1 
0.5 
1.0 
1.5 

0.01535922 
0.016976044 
0.008642711 
0.000309377 

0.01415435 
0.01729117 
0.004481787 
0.0000057428 

0.01619160 
0.01697604 
0.00864271 
0.00030937 

0.01573008 
0.00172911 
0.00044817 
0.00005742 

80 0.1 
0.5 
1.0 
1.5 

0.010465770 
0.012732033 
0.006482033 
0.00023203 

0.008762596 
0.01296837 
0.003361341 
0.000004.307 

0.01131883 
0.01273203 
0.00648203 
0.00023204 

0.01024928 
0.01296837 
0.00336134 
0.00000430 

100 0.1 
0.5 
1.0 
1.5 

0.00882808 
0.010185626 
0.005185626 
0.000185626 

0.007793502 
0.01037470 
0.002689072 
0.0000034457 

0.00890854 
0.01018562 
0.00518562 
0.00018562 

0.07936211 
0.01037470 
0.00268907 
0.00000344 

 From the above table, it is observed that Bias and Mean square error are decreasing as increased 
value of sample size. 

 

7. Applications on lifetime data 

In this section, TPD has been applied to two datasets using maximum likelihood estimates. 
Parameter estimated whereas another parameters a, and b are considered as lowest and highest 
values of data, i.e.  

 𝑎i = 𝑚𝑖𝑛(𝑥!, 𝑥(, 𝑥%, . . . , 𝑥K)& 𝑏l = 𝑚𝑎𝑥(𝑥!, 𝑥(, 𝑥%, . . . , 𝑥K). Goodness of fit has been decided using 
Akaike information criteria (AIC), Bayesian Information criteria (BIC) and Kolmogorov Simonov 

q

q

q
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test (KS) values respectively, which are calculated for each distribution and compared with p-value. 
As we know that best goodness of fit of the distribution can be decided based on minimum value of 
KS, AIC and BIC.   
Data Set 1: The data is given by Birnbaum and Saunders [16] on the fatigue life of 6061 – T6 
aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. 
Data Set 2: This data set is the strength data of glass of the aircraft window reported by Fuller et al. 
[17]: 
18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.8 26.69 26.77    
26.78 27.05 27.67 29.9 31.11 33.2 33.73 33.76 33.89 34.76 35.75 35.91    
36.98 37.08 37.09 39.58 44.045 45.29 45.381  

 
Table 3: MLE’s, Standard Errors, - 2ln L, AIC, K-S and p-values of the fitted distributions for data set-1 

Distributions ML Estimates Standard 
Errors 

−𝟐 𝒍𝒏𝑳 AIC BIC K-S p-
value 

TPD 𝜽y
= 𝟎. 𝟎𝟓𝟓𝟐𝟕𝟖 

0.00330 927.37 929.37 928.76 0.136 0.048 

TAD 𝜃l = 0.03917 0.00303 939.13 941.13 942.05 0.153 0.017 

TLD 𝜃l = 0.02199 0.00273 958.88 960.88 962.31 0.186 0.001 

Pranav 𝜃l = 0.04387 0.00253 950.97 952.97 954.40 0.194 0.001 

Ishita 𝜃l = 0.04390 0.002533 950.92 9952.92 954.35 0.194 0.001 

Lindley 𝜃l = 0.02886 0.002038 983.10 985.10 986.54 0.252 0.000 

Exponential 𝜽y = 𝟎. 𝟎𝟏𝟒𝟔𝟑 0.001457 1044.87 1046.87 1048.30 0.336 0.000 

 
Table 4: MLE’s, Standard Errors, - 2ln L, AIC, K-S and p-values of the fitted distributions for data set-2 

Distributions ML Estimates Standard 
Errors 

−𝟐 𝒍𝒏𝑳 AIC BIC K-S p-
value 

TPD 0.12067 0.02455 201.80 203.80 203.19 0.107 0.829 

TAD 𝜃l = 0.08776 0.024241 201.96 203.96 205.58 0.112 0.786 

TLD 𝜃l = 0.05392 0.023917 202.18 204.18 205.61 0.117 0.738 

Pranav 𝜃l = 0.09706 0.01004 240.68 242.68 242.67 0.298 0.005 

Ishita 𝜃l = 0.097328 0.01008 240.48 242.48 243.48 0.297 0.006 

Lindley 𝜃l = 0.06299 0.00800 253.98 255.98 256.98 0.365 0.000 

Exponential 𝜽y
= 𝟎. 𝟎𝟑𝟐𝟒𝟓𝟐 

0.00582 274.52 276.52 277.52 0.458 0.000 
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From the above tables 3&4 , it was observed that TPD gives good fit over other selected distributions. 
Fitted plots of the considered distributions are presented in figure 10 and 11 respectively.  
                   

   
Figure10: Fitted plots of distributions for the dataset 1 

  
 

Figure11: Fitted plot of distributions for dataset 2 
 

              
7. Conclusions 

In this paper, truncated Pranav distribution (TPD) has been proposed. Its statistical and 
mathematical properties have been discussed. Maximum likelihood method has been used for 
estimation of its parameter. Simulation study has also been conducted to know behavior of proposed 
distribution. Goodness of fit of TPD has been discussed with two lifetime datasets and superiority 
has been checked with truncated Akash, truncated Lindley, Pranav, Ishita, Lindley, and exponential 
distributions. It has been observed that TPD gives good fit on both the data sets. In the first data set, 
value of AIC 929.37 and KS value- 0.136, p-value =0.048 <0.01, and for the second data set, value of 
AIC-203.80 and KS value- 0.107 (p-value =0.829 >0.05) were observed which were compared over 
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two parameter TAD (truncated Akash Distribution), TLD (truncated Lindley Distribution) and one 
parameter  Pranav, Ishita, Lindley and exponential distribution. Therefore, it may be considered 
good distribution for the lifetime data specially on fixed values (lower limit, upper limit).  
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Abstract 
 

Efforts have been made to analyze reliability and availability of a repairable system using Markov 
approach. The system has four non-identical units which work simultaneously. The system is 
assumed as completely non-functional at the failure of all the units. The failure and repair times as 
usual follow negative exponential distribution. The reliability measures of the system have been 
obtained by solving the Chapman-Kolmogorov equations using Laplace transform technique. The 
values of availability, reliability and mean time to system failure have been evaluated for particular 
values of the parameters considering all the units identical in nature. The effect of failure rate, 
repair rate and operating time on reliability, MTSF and availability has been studied. The 
application of the work has also been discussed with a real life example. 
Keywords: Repairable System, Non-Identical Units, Markov Approach, 
Reliability Measures, Chapman-Kolmogorov Equations, Laplace Transform 
Technique 
 

I. Introduction 
 

In the era of fast-growing technology, everyone is interested to buy such a system which 
has a smaller number of design defectives and works as per the expectations. Therefore, the prime 
responsibility of the manufacturers is to produce the reliable products in order to stay for long in 
the competitive market. Today, the purpose of the system designers and reliability engineers is not 
only to develop a reliable system but also to identify the techniques that can be used to improve 
the system reliability. Over the years, several reliability improvement techniques have been 
evolved including provision of spare units, proper structure of the components, appropriate 
repair-maintenance policies and use of high-quality components.  As a result of which researchers 
have also been succeeded in pointing out the guidelines for enhancing availability of the systems. 
It has been revealed that the availability of systems can be improved using the concept of 
redundancy in cold standby or in parallel mode. 

There exist many systems in which functioning of the components (or units) are required 
in parallel mode not only to share the working stress but also minimize the failure risk of the 
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systems. It has been observed that the use of some important methodologies including semi-
Markov process and regenerative point technique has been made extensively by the researchers to 
analyze the well known reliability measures such as reliability, MTSF and availability of the 
repairable and non- repairable systems. The use of Markov approach has also been made by the 
researchers to assess reliability of systems with different structural designs of components. 
However, not much attention has been given by the researchers for analyzing reliability and 
availability of repairable systems using Markov approach. Chao et al. [1] carried out the reliability 
of large series system using Markov structure.  El-Damcese et al. [2] analyzed a parallel repairable 
system with different failure modes. Umamaheshwari et al. [9] discussed a Markov model with 
human error and common cause. Li [4] obtained the reliability of a redundant system. Kalaiarasi et 
al. [3] analyzed system reliability using Markov Technique. Nandal and Bhardwaj [5] analyzed the 
profit of a parallel cold standby system using Lindley distribution. Saritha et al. [8] considered the 
reliability and availability for non-repairable & repairable systems using Markov modeling.  Wang 
et al. [10] evaluated the reliability for multi state Markov repairable system. Reni et al. [7] studied 
the reliability of Markov models. Rathi et al. [6] discussed the reliability characteristics of a parallel 
system with priority concept. In that paper, authors considered that at least two, three and four 
modules must operate for the successful operation of the system. But they have not considered the 
case of repairable system and also when at least one module must work as we know that parallel 
system will work until it’s all units fail. 

 
Here we describe reliability and availability of a repairable system using Markov 

approach. The system has four non-identical units which work simultaneously. The system is 
assumed as completely non-functional at the failure of all the units. The failure and repair times as 
usual follow negative exponential distribution. The reliability measures of the system have been 
obtained by solving the Chapman-Kolmogorov equations using Laplace transform technique. The 
values of availability, reliability and mean time to system failure have been evaluated for 
particular values of the parameters considering all the units identical in nature. The effect of failure 
rate, repair rate and operating time on reliability, MTSF and availability has been studied. The 
application of the work has also been discussed with a real life example. 

 
II. Assumptions and State Descriptions 

 
1. The transition rates of the units follow negative exponential distribution 
2. The repair of the failed unit is done immediately at the availability of the repair facility. 
3. The system is declared failed at the failure of all units. 
4. All the units are operative at time ‘t’ in state ‘0’ of the system. 
5. The system is in state ‘1’ at time ‘t’ upon the failure of one unit, the repair is made 

immediately and other units are still in operation. 
6. The system is in state ‘2’ at time ‘t’ upon the failure of two units and one of the failed 

units went into repair immediately and third unit is still operating. 
7. The system is in state ‘3’ at time ‘t’ upon the failure of three units and one of the failed 

units went into repair immediately and fourth unit is still operating 
8. All the units are failed at time ‘t’ in state ‘4’ of the system. 
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Figure 1: State Transition Diagram 

a) Notations and Abbreviations  
 

𝝀𝒙 Failure rate of the system at state where x units have failed (x=0,1,2,3) 
𝝁𝒚 Repair rate of the system at state where y units have failed (y=1,2,3,4) 
𝑺𝒙          States (x=0,1,2,3,4) 
t             Time  
𝑷𝒙(𝒕)					Probability that the system is in state x at time t (x=0,1,2,3,4) 
𝑨(∞) Steady State Availability of the system 
R(t) Reliability of the system 
MTSF    Mean Time to System Failure 
 

III. Reliability Measures of the System 
 

a) Reliability  
 
In passing from state i at time s to state j at time t (s<t), we must pass through some intermediate 
state k at some intermediate time u. When the continuous-time Markov chain is homogeneous, the 
Chapman-Kolmogorov equation may be written as: 

                                           𝑃#$(𝑡 + ∆𝑡) = ∑ 𝑃#%(𝑡)𝑃%$(∆𝑡)&''	%	 																																𝑓𝑜𝑟	𝑡, 𝑡 ≥ 0 

    = ∑ 𝑃#%(𝑡)𝑃%$(∆𝑡) + 𝑃#%(𝑡)𝑃%$(∆𝑡)%)$                                         (1) 
 
The Chapman- Kolmogorov equations of the system can also be obtained from expression (1) as 

𝑃*(𝑡 + Δ𝑡) = 𝑃*(𝑡)(1 − 𝜆*Δ𝑡) + 𝑃+(𝑡)𝜇+Δ𝑡 
𝑃+(𝑡 + Δ𝑡) = 𝑃*(𝑡)𝜆*Δ𝑡 + 𝑃+(𝑡):1 − (𝜇+Δ𝑡 +	𝜆+Δ𝑡); + 𝑃,(𝑡)𝜇,Δ𝑡 
𝑃,(𝑡 + Δ𝑡) = 𝑃+(𝑡)𝜆+Δ𝑡 + 𝑃,(𝑡):1 − (𝜇,Δ𝑡 +	𝜆,Δ𝑡); + 𝑃,(𝑡)𝜇-Δ𝑡 

𝑃-(𝑡 + Δ𝑡) = 𝑃,(𝑡)𝜆,Δ𝑡 + 𝑃-(𝑡):1 − (𝜇-Δ𝑡 +	𝜆-Δ𝑡); 
                                  𝑃.(𝑡 + Δ𝑡) = 𝑃-(𝑡)𝜆-Δ𝑡 + 𝑃.(𝑡)           (2-6) 

These Markov equations are being developed by taking the probability of each state at time 𝑡 + Δ𝑡. 
Above equations (2-6) can be rewritten as 

𝑃*(𝑡 + Δ𝑡) − 𝑃*(𝑡)
Δ𝑡 = 𝑃*(𝑡)(−𝜆*) + 𝑃+(𝑡)𝜇+ 

𝑃+(𝑡 + Δ𝑡) − 𝑃+(𝑡)
Δ𝑡 = 𝑃*(𝑡)𝜆* + 𝑃+(𝑡):−(𝜇+ +	𝜆+); + 𝑃,(𝑡)𝜇, 

𝑃,(𝑡 + Δ𝑡) − 𝑃,(𝑡)
Δ𝑡 = 𝑃+(𝑡)𝜆+ + 𝑃,(𝑡):−(𝜇, +	𝜆,); + 𝑃,(𝑡)𝜇- 
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𝑃-(𝑡 + Δ𝑡) − 𝑃-(𝑡)
Δ𝑡 = 𝑃,(𝑡)𝜆, + 𝑃-(𝑡):−(𝜇- +	𝜆-); 

                                                      /!(12Δ1)4/!(1)
Δ1

= 𝑃-(𝑡)𝜆-                                            (7-11) 
Converting these equations (7-11) to a differential equation and taking Lim Δ𝑡	 → 0 , we get 

𝑃*′(t) = 𝑃*(𝑡)(−𝜆*) + 𝑃+(𝑡)𝜇+ 
𝑃+′(t) = 𝑃*(𝑡)𝜆* + 𝑃+(𝑡):−(𝜇+ +	𝜆+); + 𝑃,(𝑡)𝜇, 
𝑃,′(t) = 𝑃+(𝑡)𝜆+ + 𝑃,(𝑡):−(𝜇, +	𝜆,); + 𝑃-(𝑡)𝜇- 

𝑃-′(t) = 𝑃,(𝑡)𝜆, + 𝑃-(𝑡):−(𝜇- +	𝜆-); 
                                                       𝑃.′(t) = 𝑃-(𝑡)𝜆-                          (12-16) 

 
Above equations (12-16) can be solved by using LT method. 

𝑠𝑝*(s) − 𝑃*(0) = 𝑝*(𝑠)(−𝜆*) + 𝑝+(𝑠)𝜇+ 
𝑠𝑝+(s) − 𝑃+(0) = 𝑝*(𝑠)𝜆* + 𝑝+(𝑠):−(𝜇+ +	𝜆+); + 𝑝,(𝑠)𝜇, 
𝑠𝑝,(s) − 𝑃,(0) = 𝑝+(𝑠)𝜆+ + 𝑝,(𝑠):−(𝜇, +	𝜆,); + 𝑝-(𝑠)𝜇- 

𝑠𝑝-(s) − 𝑃-(0) = 𝑝,(𝑠)𝜆, + 𝑝-(𝑠):−(𝜇- +	𝜆-); 
                                               𝑠𝑝.(s) − 𝑃.(0) = 𝑝-(𝑠)𝜆-                             (17-21) 

Boundary conditions are 
𝑃*(0) = 1, 𝑃+(0) =0,𝑃,(0) = 0, 𝑃-(0) = 0, 𝑃.(0) = 0 

So, the system of equations will be 
(𝑠 + 𝜆*)𝑝*(s) − 𝑝+(𝑠)𝜇+ = 1 

−𝜆*𝑝*(𝑠) + (𝑠+	𝜇+ + 𝜆+)𝑝+(s) − 𝜇,𝑝,(𝑠) = 0 
−𝜆+𝑝+(𝑠) + (𝑠+	𝜇, +	𝜆,)𝑝,(s) − 𝜇-𝑝-(𝑠) = 0 

−𝜆,𝑝,(𝑠) + (𝑠+	𝜇- +	𝜆-)𝑝-(s) = 0 
−𝜆-𝑝-(𝑠) + (𝑠)𝑝.(s) = 0 

It can be written as 

⎣
⎢
⎢
⎢
⎡
𝑠 + 𝜆* −𝜇+ 0 0 0
−𝜆* 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- 0
0 0 0 −𝜆- 𝑠⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡𝑝*
(s)

𝑝+(s)
𝑝,(s)
𝑝-(s)
𝑝.(s)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1
0
0
0
0⎦
⎥
⎥
⎥
⎤
 

Now, solving for 𝑝*(s), 𝑝+(s), 𝑝,(s), 𝑝-(s)𝑎𝑛𝑑	𝑝.(s)using Cramer’s Rule, we have 

Δ5 = K
K

𝑠 + 𝜆* −𝜇+ 0 0 0
−𝜆* 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- 0
0 0 0 −𝜆- 𝑠

K
K 

= 𝑠(𝑠. + s-:λ* + λ+ + λ, + λ- + µ+ + µ, + µ-; + s
,:λ*λ+ + λ*λ, + λ*λ- + λ*µ, + λ*µ- + λ+λ, +

λ+λ- + λ+µ- + λ,λ- + λ,µ+ + λ-µ+ + λ-µ, + µ+µ, +		µ+µ- + µ,µ-; + s Lλ*λ+λ, + λ*λ+λ- +

λ*λ,λ- + λ*λ-µ, + 	λ*λ+µ- + λ*µ,µ- + λ+λ,λ- + λ,λ-µ+ + 			λ-µ+µ, + µ+µ
,
µ-M + λ*λ+λ,λ-) 

=	𝑠(𝑠 − 𝑚)(𝑠 − 𝑛)(𝑠 − 𝑜)(𝑠 − 𝑝) 
Here m, n ,o and p are roots of Δ5 . 

Δ5" = K
K

1 −𝜇+ 0 0 0
0 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- 0
0 0 0 −𝜆- 𝑠

K
K 

Δ5" = 𝑠(𝑠. + s-:λ+ + λ, + λ- + µ+ + µ, + µ-; + s
,:λ+λ, + λ+λ- + λ+µ- + λ,λ- + λ,µ+ + 		λ-µ+ +

λ-µ, + µ+µ, +		µ+µ- + µ,µ-; + 	s Lλ+λ,λ- + λ,λ-µ+ + 	λ-µ+µ, + µ+µ
,
µ-M) 

Δ5# = K
K

𝑠 + 𝜆* 1 0 0 0
−𝜆* 0 −𝜇, 0 0
0 0 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- 0
0 0 0 −𝜆- 𝑠

K
K 
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Δ5# = λ*𝑠- + λ*𝑠,(λ, + λ- + µ, + µ-) + λ*𝑠(λ,λ- + λ-µ, + µ,µ-) 

Δ5$ = K
K

𝑠 + 𝜆* −𝜇+ 1 0 0
−𝜆* 𝑠 + 𝜆+ + 𝜇+ 0 0 0
0 −𝜆+ 0 −𝜇- 0
0 0 0 𝑠 + 𝜆- + 𝜇- 0
0 0 0 −𝜆- 𝑠

K
K 

Δ5$ = λ*λ+𝑠, + 𝑠(λ*λ+λ- + λ*λ+µ-) 

Δ5! = K
K

𝑠 + 𝜆* −𝜇+ 0 1 0
−𝜆* 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, 0 0
0 0 −𝜆, 0 0
0 0 0 0 𝑠

K
K 

Δ5! = 𝜆*𝜆+𝜆,𝑠 

Δ5% = K
K

𝑠 + 𝜆* −𝜇+ 0 0 1
−𝜆* 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- 0
0 0 0 −𝜆- 0

K
K 

Δ5% = 𝜆*𝜆+𝜆,𝜆- 
Now, 

𝑝*(s) =
Δ5"
Δ5

 

					=

[𝑠(𝑠. + s-:λ+ + λ, + λ- + µ+ + µ, + µ-;
+s,(λ+λ, + λ+λ- + λ+µ- + λ,λ- + λ,µ+ + λ-µ++λ-µ, + µ+µ, + µ

+
µ- + µ,µ-)

+	s Lλ+λ,λ- + λ,λ-µ+ + 	λ-µ+µ, + µ+µ
,
µ-M)]

Δ5
 

𝑝+(s) =
Δ5#
Δ5

 

												=
λ*𝑠- + λ*𝑠,(λ, + λ- + µ, + µ-) + λ*𝑠(λ,λ- + λ-µ, + µ,µ-)

Δ5
 

𝑝,(s) =
Δ5$
Δ5

 

												=
λ*𝑠- + λ*𝑠,(λ, + λ- + µ, + µ-) + λ*𝑠(λ,λ- + λ-µ- + µ,µ-)

Δ5
 

𝑝-(s) =
Δ5!
Δ5

 

												=
λ*λ+𝑠, + 𝑠(λ*λ+λ- + λ*λ+µ-)

Δ5
 

𝑝.(s) =
Δ5%
Δ5

 

												=
𝜆*𝜆+𝜆,𝜆-

Δ5
 

Taking Laplace Inverse of 𝑝*(s), 𝑝+(s)	, 𝑝,(s) and 𝑝-(s), we get 

𝑝*(t) = 𝑒61

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ m- +m,:λ+ + λ, + λ- + µ+ + µ, + µ-;
+m:µ+µ, +	µ+µ- + µ,µ- + λ+λ, + λ+λ- + λ+µ- + λ,λ- + λ,µ+ + λ-µ+ + λ-µ,;

+Lλ+λ,λ- + λ,λ-µ+ + 	λ-µ+µ, + µ+µ
,
µ-M

(𝑚 − 𝑛)(𝑚 − 𝑜)(𝑚 − 𝑝)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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																																			+𝑒71

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ n- + n,:λ+ + λ, + λ- + µ+ + µ, + µ-;
+n:µ+µ, +	µ+µ- + µ,µ- + λ+λ, + λ+λ- + λ+µ- + λ,λ- + λ,µ+ + λ-µ+ + λ-µ,;

+Lλ+λ,λ- + λ,λ-µ+ + 	λ-µ+µ, + µ+µ
,
µ-M

(𝑛 −𝑚)(𝑛 − 𝑜)(𝑛 − 𝑝)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

		+𝑒81

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ o- + o,:λ+ + λ, + λ- + µ+ + µ, + µ-;
+o:µ+µ, +	µ+µ- + µ,µ- + λ+λ, + λ+λ- + λ+µ- + λ,λ- + λ,µ+ + λ-µ+ + λ-µ,;

+	(λ+λ,λ- + λ,λ-µ+ + 	λ-µ+µ, + µ+µ
,
µ-)

(𝑜 −𝑚)(𝑜 − 𝑛)(𝑜 − 𝑝)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

																																		+𝑒91

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ p- + p,:λ+ + λ, + λ- + µ+ + µ, + µ-;
+p:µ+µ, +	µ+µ- + µ,µ- + λ+λ, + λ+λ- + λ+µ- + λ,λ- + λ,µ+ + λ-µ+ + λ-µ,;

+	(λ+λ,λ- + λ,λ-µ+ + 	λ-µ+µ, + µ+µ
,
µ-)

(𝑝 −𝑚)(𝑝 − 𝑛)(𝑝 − 𝑜)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑝+(t) = 𝑒61[
λ*𝑚, + λ*𝑚+:λ, + λ- + µ, + µ-; + λ*:λ,λ- + λ-µ- + µ,µ-;

(𝑚 − 𝑛)(𝑚 − 𝑜)(𝑚 − 𝑝)  

												+𝑒71
λ*𝑛, + λ*𝑛+:λ, + λ- + µ, + µ-; + λ*:λ,λ- + λ-µ- + µ,µ-;

(𝑛 −𝑚)(𝑛 − 𝑜)(𝑛 − 𝑝)  

											+𝑒81
λ*𝑜, + λ*𝑜+:λ, + λ- + µ, + µ-; + λ*:λ,λ- + λ-µ- + µ,µ-;

(𝑜 −𝑚)(𝑜 − 𝑛)(𝑜 − 𝑝) 	

											+𝑒91
λ*𝑝- + λ*𝑝,(λ, + λ- + µ, + µ-) + λ*(λ,λ- + λ-µ- + µ,µ-)

(𝑝 −𝑚)(𝑝 − 𝑛)(𝑝 − 𝑜) ] 

𝑝,(t) = 𝜆*𝜆+[
𝑒61	(µ- + λ- +𝑚)

(𝑚 − 𝑛)(𝑚 − 𝑜)(𝑚 − 𝑝) +
𝑒71(µ- + λ- + 𝑛)

(𝑛 −𝑚)(𝑛 − 𝑜)(𝑛 − 𝑝) +
𝑒81(µ- + λ- + 𝑜)

(𝑜 −𝑚)(𝑜 − 𝑛)(𝑜 − 𝑝) 

														+
𝑒71(µ- + λ- + 𝑝)

(𝑝 −𝑚)(𝑝 − 𝑛)(𝑝 − 𝑜)] 

𝑝-(t) = 𝜆*𝜆+𝜆,[
𝑒61

(𝑚 − 𝑛)(𝑚 − 𝑜)(𝑚 − 𝑝) +
𝑒71

(𝑛 −𝑚)(𝑛 − 𝑜)(𝑛 − 𝑝) 

											+
𝑒81

(𝑜 −𝑚)(𝑜 − 𝑛)(𝑜 − 𝑝) +
𝑒71

(𝑝 −𝑚)(𝑝 − 𝑛)(𝑝 − 𝑜)] 

𝑝.(t) = 𝜆*𝜆+𝜆,𝜆-[
𝑒61

(𝑚 − 𝑛)(𝑚 − 𝑜)(𝑚 − 𝑝) +
𝑒71

(𝑛 −𝑚)(𝑛 − 𝑜)(𝑛 − 𝑝) 

											+
𝑒81

(𝑜 −𝑚)(𝑜 − 𝑛)(𝑜 − 𝑝) +
𝑒71

(𝑝 −𝑚)(𝑝 − 𝑛)(𝑝 − 𝑜) +
1

𝑚𝑛𝑜𝑝	] 

Thus, Reliability of the system is 
R(t) = 𝑝*(𝑡) + 𝑝+(𝑡) + 𝑝,(𝑡) + 𝑝-(𝑡) = 1 − 𝑝.(𝑡) 

						= 1 − 𝜆*𝜆+𝜆,𝜆-[
:&'

(647)(648)(649)
+ :('

(746)(748)(749)
	+ :)'

(846)(847)(849)
+ :('

(946)(947)(948)
+ +

6789
	]    (22) 

 
 
b) Mean Time to System Failure (MTSF) 
 
On integrating equation (22), we get the expression for MTSF as 
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𝑀𝑇𝑆𝐹 = [ 𝑅(𝑡)𝑑𝑡
∞

*
 

𝑀𝑇𝑆𝐹 =
𝜆+𝜆,𝜆- + 𝜇+(𝜆-(𝜆, + 𝜇,) + 𝜇,𝜇-) + 𝜆*(𝜆-(𝜆, + 𝜇,) + 𝜇,𝜇- + 𝜆+(𝜆, + 𝜆- + 𝜇-))

𝑚𝑛𝑜𝑝  

c) Availability  
 
Now, using equation (1), we get the Chapman- Kolmogorov equations for the system to derive the 
expression for availability as  

𝑃*(𝑡 + Δ𝑡) = 𝑃*(𝑡)(1 − 𝜆*Δ𝑡) + 𝑃+(𝑡)𝜇+Δ𝑡 
𝑃+(𝑡 + Δ𝑡) = 𝑃*(𝑡)𝜆*Δ𝑡 + 𝑃+(𝑡):1 − (𝜇+Δ𝑡 +	𝜆+Δ𝑡); + 𝑃,(𝑡)𝜇,Δ𝑡 
𝑃,(𝑡 + Δ𝑡) = 𝑃+(𝑡)𝜆+Δ𝑡 + 𝑃,(𝑡):1 − (𝜇,Δ𝑡 +	𝜆,Δ𝑡); + 𝑃,(𝑡)𝜇-Δ𝑡 
𝑃-(𝑡 + Δ𝑡) = 𝑃,(𝑡)𝜆,Δ𝑡 + 𝑃-(𝑡):1 − (𝜇-Δ𝑡 +	𝜆-Δ𝑡); + 𝑃-(𝑡)𝜇.Δ𝑡 

                               𝑃.(𝑡 + Δ𝑡) = 𝑃-(𝑡)𝜆-Δ𝑡 + 𝑃.(𝑡)(1 − 𝜇.Δ𝑡)                                 (23-27) 
These Markov equations are being developed by taking the probability of each state at time 𝑡 + Δ𝑡. 
Above equations (23-27) can be rewritten as 

𝑃*(𝑡 + Δ𝑡) − 𝑃*(𝑡)
Δ𝑡 = 𝑃*(𝑡)(−𝜆*) + 𝑃+(𝑡)𝜇+ 

𝑃+(𝑡 + Δ𝑡) − 𝑃+(𝑡)
Δ𝑡 = 𝑃*(𝑡)𝜆* + 𝑃+(𝑡):−(𝜇+ +	𝜆+); + 𝑃,(𝑡)𝜇, 

𝑃,(𝑡 + Δ𝑡) − 𝑃,(𝑡)
Δ𝑡 = 𝑃+(𝑡)𝜆+ + 𝑃,(𝑡):−(𝜇, +	𝜆,); + 𝑃,(𝑡)𝜇- 

𝑃-(𝑡 + Δ𝑡) − 𝑃-(𝑡)
Δ𝑡 = 𝑃,(𝑡)𝜆, + 𝑃-(𝑡):−(𝜇- +	𝜆-); + 𝑃.(𝑡)𝜇. 

                                             	/!(12Δ1)4/!(1)
Δ1

= 𝑃-(𝑡)𝜆- + 𝑃.(𝑡)(−𝜇.)                               (28-32) 
Converting equations (28-32) to a differential equation and taking Lim Δ𝑡	 → 0 , we get 

𝑃*′(t) = 𝑃*(𝑡)(−𝜆*) + 𝑃+(𝑡)𝜇+ 
𝑃+′(t) = 𝑃*(𝑡)𝜆* + 𝑃+(𝑡):−(𝜇+ +	𝜆+); + 𝑃,(𝑡)𝜇, 
𝑃,′(t) = 𝑃+(𝑡)𝜆+ + 𝑃,(𝑡):−(𝜇, +	𝜆,); + 𝑃-(𝑡)𝜇- 
𝑃-′(t) = 𝑃,(𝑡)𝜆, + 𝑃-(𝑡):−(𝜇- +	𝜆-); + 𝑃.(𝑡)𝜇. 

                       𝑃.′ (t) = 𝑃-(𝑡)𝜆- + 𝑃.(𝑡)(−𝜇.)                                      (33-37) 
Above equations (33-37) can be solved by using LT method. 

𝑠𝑝*(s) − 𝑃*(0) = 𝑝*(𝑠)(−𝜆*) + 𝑝+(𝑠)𝜇+ 
𝑠𝑝+(s) − 𝑃+(0) = 𝑝*(𝑠)𝜆* + 𝑝+(𝑠):−(𝜇+ +	𝜆+); + 𝑝,(𝑠)𝜇, 
𝑠𝑝,(s) − 𝑃,(0) = 𝑝+(𝑠)𝜆+ + 𝑝,(𝑠):−(𝜇, +	𝜆,); + 𝑝-(𝑠)𝜇- 
𝑠𝑝-(s) − 𝑃-(0) = 𝑝,(𝑠)𝜆, + 𝑝-(𝑠):−(𝜇- +	𝜆-); + 𝑝.(𝑠)𝜇. 

                    𝑠𝑝.(s) − 𝑃.(0) = 𝑝-(𝑠)𝜆- + 𝑝.(𝑠)(−𝜇.)                              (38-42) 
Boundary conditions are 

𝑃*(0) = 1, 𝑃+(0) =0,𝑃,(0) = 0, 𝑃-(0) = 0, 𝑃.(0) = 0 
So, the system of equations will be 

(𝑠 + 𝜆*)𝑝*(s) − 𝑝+(𝑠)𝜇+ = 1 
−𝜆*𝑝*(𝑠) + (𝑠+	𝜇+ + 𝜆+)𝑝+(s) − 𝜇,𝑝,(𝑠) = 0 
−𝜆+𝑝+(𝑠) + (𝑠+	𝜇, +	𝜆,)𝑝,(s) − 𝜇-𝑝-(𝑠) = 0 
−𝜆,𝑝,(𝑠) + (𝑠+	𝜇- +	𝜆-)𝑝-(s) − 𝜇.𝑝.(𝑠) = 0 

−𝜆-𝑝-(𝑠) + (𝑠 + 𝜇.)𝑝.(s) = 0 
It can be written as 

⎣
⎢
⎢
⎢
⎡
𝑠 + 𝜆* −𝜇+ 0 0 0
−𝜆* 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- −𝜇.
0 0 0 −𝜆- 𝑠 + 𝜇.⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡𝑝*
(s)

𝑝+(s)
𝑝,(s)
𝑝-(s)
𝑝.(s)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1
0
0
0
0⎦
⎥
⎥
⎥
⎤
 

Now, solving for 𝑝*(s), 𝑝+(s), 𝑝,(s)	𝑎𝑛𝑑	𝑝-(s)using Cramer’s Rule, we have 
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Δ; = K
K

𝑠 + 𝜆* −𝜇+ 0 0 0
−𝜆* 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- −𝜇.
0 0 0 −𝜆- 𝑠 + 𝜇.

K
K 

Δ; = 𝑠(𝑠. + s-:λ* + λ+ + λ, + λ- + µ+ + µ, + µ- + µ.; + s
,:λ*λ+ + λ*λ, + λ*µ- + λ*µ- + 	λ*µ. +

λ+λ- + λ+λ, + λ+µ- + λ+µ. + λ,λ- + λ,µ+ + λ,µ. + λ-µ+ + λ-µ, + µ+µ, +		µ+µ- + µ+µ. + µ,µ- +

µ,µ. + µ-µ.; + s Lλ*λ+λ, + λ*λ+λ- + λ*λ,λ- + λ*λ-µ, + 		λ*λ+µ- + λ*µ,µ- + λ*λ+µ. + λ*λ,µ. +
λ*µ,µ. + λ*µ-µ. + λ+λ,µ- + λ+λ,µ. + λ+µ-µ. +	λ,λ-µ+ + λ,µ+µ. + λ-µ+µ, + µ+µ

,
µ- +

µ+µ
,
µ. + µ,µ

-
µ.M + (µ+µ

,
µ-µ. + λ*µ

,
µ-µ. +		λ*λ+µ-µ. + 	λ*λ+λ,µ. + λ*λ+λ,λ-) ) 

			= 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)(𝑠 − 𝑑) 
Here, a ,b ,c and d are the roots of Δ;. 

Δ;" = K
K

1 −𝜇+ 0 0 0
0 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- −𝜇.
0 0 0 −𝜆- 𝑠 + 𝜇.

K
K 

Δ;" = 𝑠. + 𝑠-(𝜆+ + 𝜆, + 𝜆- + 𝜇+ + 𝜇, + 𝜇- + 𝜇.) + 𝑠,:λ+λ- + λ+λ, + λ+µ- + λ+µ. + λ,λ- + λ,µ+ +

λ,µ. + λ-µ+ + λ-µ, + µ+µ, + µ+µ- + µ+µ. + µ,µ- + µ,µ. + µ-µ.; + 	s Lλ+λ,µ- + λ+λ,µ. +

λ+µ-µ. + λ,λ-µ+ + λ,µ+µ. + λ-µ+µ, + µ+µ
,
µ- + µ+µ

,
µ. + µ,µ

-
µ.M + µ+µ

,
µ-µ.  

Δ;# = K
K

𝑠 + 𝜆* 1 0 0 0
−𝜆* 0 −𝜇, 0 0
0 0 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- −𝜇.
0 0 0 −𝜆- 𝑠 + 𝜇.

K
K 

Δ;# = 𝑎𝑠- + 𝑎𝑠,(𝜆, + 𝜆- + 𝜇, + 𝜇- + 𝜇.) + 𝑎𝑠(𝜆,𝜆- + 𝜆,𝜇. + 𝜆-𝜇, + 𝜇,𝜇- + 𝜇,𝜇. + 𝜇-𝜇.) + 𝜆*𝜇,𝜇-𝜇. 

Δ;$ = K
K

𝑠 + 𝜆* −𝜇+ 1 0 0
−𝜆* 𝑠 + 𝜆+ + 𝜇+ 0 0 0
0 −𝜆+ 0 −𝜇- 0
0 0 0 𝑠 + 𝜆- + 𝜇- −𝜇.
0 0 0 −𝜆- 𝑠 + 𝜇.

K
K 

Δ;$ = 𝜆*𝜆+𝑠, + 𝑠(𝜆*𝜆+𝜆- + 𝜆*𝜆+𝜇- + 𝜆*𝜆+𝜇.) + 𝜆*𝜆+𝜇-𝜇. 

Δ;! = K
K

𝑠 + 𝜆* −𝜇+ 0 1 0
−𝜆* 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, 0 0
0 0 −𝜆, 0 −𝜇.
0 0 0 0 𝑠 + 𝜇.

K
K 

Δ;! = 𝜆*𝜆+𝜆,𝜇. + 𝜆*𝜆+𝜆,𝑠 

Δ;% = K
K

𝑠 + 𝜆* −𝜇+ 0 0 1
−𝜆* 𝑠 + 𝜆+ + 𝜇+ −𝜇, 0 0
0 −𝜆+ 𝑠 + 𝜆, + 𝜇, −𝜇- 0
0 0 −𝜆, 𝑠 + 𝜆- + 𝜇- 0
0 0 0 −𝜆- 0

K
K 

Δ;% = 𝜆*𝜆+𝜆,𝜆- 
Now, 

𝑝*(s) =
Δ;"
Δ;

 

 
= [𝑠. + 𝑠-(𝜆+ + 𝜆, + 𝜆- + 𝜇+ + 𝜇, + 𝜇- + 𝜇.) + 𝑠,(λ+λ- + λ+λ, + λ+µ- + λ+µ. + λ,λ- + λ,µ+ 
					+λ,µ. + λ-µ+ + λ-µ, + µ+µ, + µ+µ- + µ+µ. + µ,µ- + µ,µ. + µ-µ.) + 	s	(λ+λ,µ- + λ+λ,µ. 
					+λ+µ-µ. + λ,λ-µ+ + λ,µ+µ. + λ-µ+µ, + µ+µ

,
µ- + µ+µ

,
µ.+	µ,µ

-
µ.) + µ+µ

,
µ-µ.]/Δ; 

𝑝+(s) =
Δ;#
Δ;
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=
[λ*𝑠- + 	λ*𝑠,(𝜆, + 𝜆- + 𝜇, + 𝜇- + 𝜇.) + 	λ*𝑠(𝜆,𝜆- + 𝜆,𝜇. + 𝜆-𝜇, + 𝜇,𝜇- + 𝜇,𝜇. + 𝜇-𝜇.) + 	𝜆*𝜇,𝜇-𝜇.]

Δ;
 

𝑝,(s) =
Δ;$
Δ;

		=
[𝜆*𝜆+𝑠, + 𝑠(𝜆*𝜆+𝜆- + 𝜆*𝜆+𝜇- + 𝜆*𝜆+𝜇.) + 𝜆*𝜆+𝜇-𝜇.]

Δ;
 

𝑝-(s) =
Δ;!
Δ;

			=
[𝜆*𝜆+𝜆,𝜇. + 𝜆*𝜆+𝜆,𝑠]

Δ;
 

𝑝.(s) =
Δ;%
Δ;

		=
𝜆*𝜆+𝜆,𝜆-

Δ;
 

Taking Laplace Inverse of 𝑝*(s), 𝑝+(s)	, 𝑝,(s), 𝑝-(s) and 𝑝.(s), we get 

𝑝*(t) =

𝑒&1(𝑎𝜆+(𝑎𝜆- + (𝑎 + 𝜇-)(𝑎 + 𝜇.) + 𝜆,(𝑎 + 𝜆- + 𝜇.))
+(𝑎 + 𝜇+)(𝑎𝜆,(𝑎 + 𝜆- + 𝜇.)) + (𝑎 + 𝜇,)(𝑎𝜆- + (𝑎 + 𝜇-)(𝑎 + 𝜇.)))

𝑎(𝑎 − 𝑏)(𝑎 − 𝑐)(𝑎 − 𝑑)  

																														+

𝑒<1(𝑏𝜆+(𝑏𝜆- + (𝑏 + 𝜇-)(𝑏 + 𝜇.) + 𝜆,(𝑏 + 𝜆- + 𝜇.))
+(𝑏 + 𝜇+)(𝑏𝜆,(𝑏 + 𝜆- + 𝜇.) + (𝑏 + 𝜇,)(𝑏𝜆- + (𝑏 + 𝜇-)(𝑏 + 𝜇.))))

𝑏(𝑏 − 𝑎)(𝑏 − 𝑐)(𝑏 − 𝑑)  

																														+

𝑒=1(𝑐𝜆+(𝑐𝜆- + (𝑐 + 𝜇-)(𝑐 + 𝜇.) + 𝜆,(𝑐 + 𝜆- + 𝜇.))
+(𝑐 + 𝜇+)(𝑐𝜆,(𝑐 + 𝜆- + 𝜇.) + (𝑐 + 𝜇,)(𝑐𝜆- + (𝑐 + 𝜇-)(𝑐 + 𝜇.))))

𝑐(𝑐 − 𝑎)(𝑐 − 𝑏)(𝑐 − 𝑑)  

																															+

𝑒>1(𝑑𝜆+(𝑑𝜆- + (𝑑 + 𝜇-)(𝑑 + 𝜇.)+𝜆,(𝑑 + 𝜆- + 𝜇.))
+(𝑑 + 𝜇+)(𝑑𝜆,(𝑑 + 𝜆- + 𝜇.) + (𝑑 + 𝜇,)(𝑑𝜆- + (𝑑 + 𝜇-)(𝑑 + 𝜇.))))

𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐)  

 
			+

𝜇+𝜇,𝜇-𝜇.
𝑎𝑏𝑐𝑑  

 

𝑝+(t) = 𝜆*(
𝜇,𝜇-𝜇.
𝑎𝑏𝑐𝑑 +

𝑒&1(𝑎𝜆,(𝑎 + 𝜆- + 𝜇.) + (𝑎 + 𝜇,)(𝑎𝜆- + (𝑎 + 𝜇-)(𝑎 + 𝜇.)))
𝑎(𝑎 − 𝑏)(𝑎 − 𝑐)(𝑎 − 𝑑)  

																+
𝑒<1(𝑏𝜆,(𝑏 + 𝜆- + 𝜇.) + (𝑏 + 𝜇,)(𝑏𝜆- + (𝑏 + 𝜇-)(𝑏 + 𝜇.)))

𝑏(𝑏 − 𝑎)(𝑏 − 𝑐)(𝑏 − 𝑑)  

																	+
𝑒=1(𝑐𝜆,(𝑐 + 𝜆- + 𝜇.) + (𝑐 + 𝜇,)(𝑐𝜆- + (𝑐 + 𝜇-)(𝑐 + 𝜇.)))

𝑐(𝑐 − 𝑎)(𝑐 − 𝑏)(𝑐 − 𝑑)  

																	+
𝑒>1(𝑑𝜆,(𝑑 + 𝜆- + 𝜇.) + (𝑑 + 𝜇,)(𝑑𝜆- + (𝑑 + 𝜇-)(𝑑 + 𝜇.)))

𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐) ) 

 

𝑝,(t) = 𝜆*𝜆+(
𝜇-𝜇.
𝑎𝑏𝑐𝑑 +

𝑒&1(𝑎𝜆- + (𝑎 + 𝜇-)(𝑎 + 𝜇.))
𝑎(𝑎 − 𝑏)(𝑎 − 𝑐)(𝑎 − 𝑑) +

𝑒<1(𝑏𝜆- + (𝑏 + 𝜇-)(𝑏 + 𝜇.))
𝑏(𝑏 − 𝑎)(𝑏 − 𝑐)(𝑏 − 𝑑)  

+
𝑒=1(𝑐𝜆- + (𝑐 + 𝜇-)(𝑐 + 𝜇.))
𝑐(𝑐 − 𝑎)(𝑐 − 𝑏)(𝑐 − 𝑑) +

𝑒>1(𝑑𝜆- + (𝑑 + 𝜇-)(𝑑 + 𝜇.))
𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐) ) 

 

𝑝-(t) = 𝜆*𝜆+𝜆,(
𝜇.
𝑎𝑏𝑐𝑑 +

𝑒&1(𝑎 + 𝜇.)
𝑎(𝑎 − 𝑏)(𝑎 − 𝑐)(𝑎 − 𝑑) −

𝑒<1(𝑏 + 𝜇.)
𝑏(𝑏 − 𝑎)(𝑏 − 𝑐)(𝑏 − 𝑑) 

−
𝑒=1(𝑐 + 𝜇.)

𝑐(𝑐 − 𝑎)(𝑐 − 𝑏)(𝑐 − 𝑑) −
𝑒>1(𝑑 + 𝜇.)

𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐)) 

𝑝.(t) = 𝜆*𝜆+𝜆,𝜆-(
1

𝑎𝑏𝑐𝑑 +
𝑒&1

𝑎(𝑎 − 𝑏)(𝑎 − 𝑐)(𝑎 − 𝑑) +
𝑒<1

𝑏(𝑏 − 𝑎)(𝑏 − 𝑐)(𝑏 − 𝑑) 

															+
𝑒=1

𝑐(𝑐 − 𝑎)(𝑐 − 𝑏)(𝑐 − 𝑑) +
𝑒>1

𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐)) 

The availability is given by 
𝐴(𝑡) = 𝑝*(t) + 𝑝+(t) + 𝑝,(t) + 𝑝-(t) = 1 − 𝑝.(𝑡) 

= 1 − 𝜆*𝜆+𝜆,𝜆-(
1

𝑎𝑏𝑐𝑑 +
𝑒&1

𝑎(𝑎 − 𝑏)(𝑎 − 𝑐)(𝑎 − 𝑑) +
𝑒<1

𝑏(𝑏 − 𝑎)(𝑏 − 𝑐)(𝑏 − 𝑑) 

															+
𝑒=1

𝑐(𝑐 − 𝑎)(𝑐 − 𝑏)(𝑐 − 𝑑) +
𝑒>1

𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐)) 

 

201



 
A.D. Yadav, N. Nandal & S.C. Malik  
MARKOV APPROACH FOR RELIABILITY AND AVAILABILITY 
ANALYSIS OF A FOUR UNIT REPAIRABLE SYSTEM 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

The steady state availability is given by 
𝐴(∞) = lim

?→*
𝑠(𝑝*(s) + 𝑝+(s) + 𝑝,(s) + 𝑝-(s)) 

= lim 	[ s[
?→*

𝑠. + 𝑠-(𝜆+ + 𝜆, + 𝜆- + 𝜇+ + 𝜇, + 𝜇- + 𝜇.) + 𝑠,(λ+λ- + λ+λ, + λ+µ- + λ+µ. + λ,λ- 

+λ,µ+ + λ,µ. + λ-µ+ + λ-µ, + µ+µ, + µ+µ- + µ+µ. + µ,µ- + µ,µ. + µ-µ.) + 	s	(λ+λ,µ- 
+λ+λ,µ. + λ+µ-µ. + λ,λ-µ+ + λ,µ+µ. + λ-µ+µ, + µ+µ

,
µ- + µ+µ

,
µ.+	µ,µ

-
µ.) + µ+µ

,
µ-µ.] 

[λ*𝑠- + 	λ*𝑠,(𝜆, + 𝜆- + 𝜇, + 𝜇- + 𝜇.) + 	λ*𝑠(𝜆,𝜆- + 𝜆,𝜇. + 𝜆-𝜇, + 𝜇,𝜇- + 𝜇,𝜇. + 𝜇-𝜇.) 
+	𝜆*𝜇,𝜇-𝜇.] 	+ [𝜆*𝜆+𝑠, + 𝑠(𝜆*𝜆+𝜆- + 𝜆*𝜆+𝜇- + 𝜆*𝜆+𝜇.) + 𝜆*𝜆+𝜇-𝜇.]+𝜆*𝜆+𝜆,𝜇. + 𝜆*𝜆+𝜆,𝑠]/Δ; 

 

=
𝜇+𝜇,𝜇-𝜇. + 𝜆*(𝜇,𝜇-𝜇. + 𝜆+(𝜆,𝜇. + 𝜇-𝜇.))

𝑎𝑏𝑐𝑑  

Or it can also be expressed in the form of  

=
µ+µ

,
µ-µ. + 	𝜆*𝜇,𝜇-𝜇. + 𝜆*𝜆+𝜇-𝜇. + 𝜆*𝜆+𝜆,𝜇.

µ+µ
,
µ-µ.+λ*µ,µ-µ. + λ*λ+µ-µ. + 	λ*λ+λ,µ. + λ*λ+λ,λ-

 

 
b) Particular Case  
 
Now, if all the components are taken as identical units 
For Availability we have, 

𝜆* = 4𝜆, 𝜆+ = 3𝜆, 𝜆, = 2𝜆, 𝜆- = 𝜆, 𝜇. = 4𝜇, 𝜇- = 3𝜇, 𝜇, = 2𝜇	𝑎𝑛𝑑	𝜇+ = 𝜇 

𝐴(𝑡) = 1 − 24𝜆.(
1

𝑎𝑏𝑐𝑑 +
𝑒&1

𝑎(𝑎 − 𝑏)(𝑎 − 𝑐)(𝑎 − 𝑑) +
𝑒<1

𝑏(𝑏 − 𝑎)(𝑏 − 𝑐)(𝑏 − 𝑑) 

															+
𝑒=1

𝑐(𝑐 − 𝑎)(𝑐 − 𝑏)(𝑐 − 𝑑) +
𝑒>1

𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐)) 

 

𝐴(∞) =
48𝜆-𝜇 + 144𝜆,𝜇, + 96𝜆𝜇- + 24𝜇.

12𝜆. + 48𝜆-𝜇 + 144𝜆,𝜇, + 96𝜆𝜇- + 24𝜇. 

For Reliability we have 
𝜆* = 4𝜆, 𝜆+ = 3𝜆, 𝜆, = 2𝜆, 𝜆, = 𝜆, 𝜇. = 0, 𝜇- = 3𝜇, 𝜇, = 2𝜇	𝑎𝑛𝑑	𝜇+ = 𝜇 

𝑅(𝑡) 		= 1 − 24𝜆.[
𝑒61

(𝑚 − 𝑛)(𝑚 − 𝑜)(𝑚 − 𝑝) +
𝑒71

(𝑛 −𝑚)(𝑛 − 𝑜)(𝑛 − 𝑝) 

+
𝑒81

(𝑜 −𝑚)(𝑜 − 𝑛)(𝑜 − 𝑝) +
𝑒71

(𝑝 −𝑚)(𝑝 − 𝑛)(𝑝 − 𝑜) +
1

𝑚𝑛𝑜𝑝	] 

For MTSF we have 
 

𝑀𝑇𝑆𝐹 =
6𝜆- + 𝜇(6𝜇, + 𝜆(2𝜆 + 2𝜇)) + 4𝜆(6𝜇, + 𝜆(2𝜆 + 2𝜇) + 3𝜆(3𝜆 + 3𝜇))

𝑚𝑛𝑜𝑝  

 
VI. Numerical and Graphical Presentation 

 
Here, we evaluate the reliability, availability and MTSF for the arbitrary values of repair rate (µ) 
and failure rate (λ) with operating time (t) of the components. The numerical and graphical 
representation of the results is given below: 
From Figure 2, it is observed that the reliability of the system declines with the increase of failure 
rate and operating time. Also, the reliability of the system is increases with an increase in repair 
rate of the units.  
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Figure 2: Reliability V/s Repair Rate (µ) and Failure Rate(λ) with Operating Time(t) 

 
From Figure 3, it is observed that the MTSF of the system declines with the increase of failure rate. 
Also, the MTSF of the system is increases with an increase in repair rate of the units.  

 
Figure 3: MTSF V/s Repair Rate (µ) and Failure Rate(λ)  

 
From Figure 4, it is observed that the availability (A(t)) of the system declines with the increase of 
failure rate and operating time. Also, the availability of the system is increases with an increase in 
repair rate of the units.  
 

 
Figure 4: Availability V/s Repair Rate (µ) and Failure Rate(λ) with Operating Time(t)  

 
From Figure 5, it is observed that the availability (A(∞)) of the system declines with the increase of 
failure rate. Also, the availability of the system is increases with an increase in repair rate of the 
units. 
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Figure 5: Availability V/s Repair Rate (µ) and Failure Rate (λ) 

 

VII. Application 
 
The real-life application of this study can be visualized at toll plaza. On a toll plaza, vehicles enter 
and exit the mainline roadway from certain locations along the highway. All vehicles must stop 
and pay the toll at any of the tollbooths that work simultaneously to reduce the gathering of traffic 
vehicles. The drivers prefer a tollbooth that has a shorter lane rather than a longer lane to minimize 
their own travel time. .  
 
It is a common fact that delivery of services at the tollbooths plays an important role at the toll 
plaza. Nowadays, at some toll plazas traffic delay has become a common problem because of 
failure of the timely services at the tollbooths. And, therefore to improve the working efficiency of 
the toll plaza it becomes necessary to use more than one tollbooth at a time simultaneously. Here, 
we have considered a system in which four tollbooths are connected in parallel which works 
simultaneously as shown in the figure 6. 
 

 
 

Figure 6: Toll Plaza   
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VIII. Conclusion 
 

Reliability, MTSF, availability and steady state availability have been evaluated for a four-unit 
repairable parallel redundant system by using Markov approach. The values for these measures 
have been obtained for particular values of repair rate, failure rate and operating time. The study 
reveals that the availability and mean time to system failure keeps on increasing with the increase 
of the repair rate while they decline sharply when failure rate increases. The reliability and 
availability of the system is declines with the increase of failure rate and operating time. On the 
other hand, it is also analyzed that these measures keep on increasing with the increase of repair 
rate. Hence, it is observed that system is more reliable and available to use by increasing the repair 
rate of the units. 
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Abstract

Statististical distributions with support on the set of non-negative real numbers are important in
modelling and describing the behaviour of lifetime data. Ailamujia distribution is one of the non-negative
continuous distribution that has an application in lifetime data. In this paper, a new three-parameter
non-negative continuous distribution which is an extension of the Ailamujia Inverted Weibull distribution
is introduced. This extended distribution is labeled as the Cubic Transmuted Ailamujia Inverted Weibull
distribution. The proposed distribution is derived from the cubic transmuted family of distributions by
specifying Ailamujia Inverted Weibull distribution as a baseline distribution. The probability density
function of the proposed distribution is derived and some of its plots are presented. It can be observed
that the proposed distribution can model the data which are exponentially and skewed unimodal right
tailed data. In addition, survival and hazard functions of the proposed distribution are derived. It reveals
that the hazard function of the proposed distribution can model both monotonic and non-monotonic
decreasing failure rate behaviour of the data. Some properties of the proposed distribution such as its
moments, moment generating function, mean, variance are derived. The Maximum Likelihood approach
is used to estimate the proposed distribution parameters. Furthermore, parameter estimates as well as the
performance of the proposed distribution is investigated by utilizing two sets of lifetime data. For point of
comparison, this paper uses the following criteria: Akaike Information Criterion, Bayesian Information
Criterion, Kolmogorov - Smirnov statistics, Anderson-Darling and Cramer-von Mises. Results show that
for both sets of data, the proposed distribution produce better estimate as compared to the Quasi Suja and
the Weibull-Lindley distributions. So, the proposed distribution consider as the best model for modelling
the given two real datasets.

Keywords: Ailamujia distribution, Ailamujia Inverted Weibull distribution, Cubic transmuted
family of distributions

1. Introduction

Ailamujia distribution is one of the newly lifetime distributions that has many application in
engineering [5] . Due to its flexibility in modelling lifetime data then it becomes an area of interest
for some researchers.

Different extensions were considered in literature. Uzma [11] introduced the weighted
analogue of Ailamujia distribution and derived some of its properties. Other identified extensions
such as the area biased distribution [3] , the size biased Ailamujia distribution [8] and the inverse
analogue of Ailamujia distribution [1].

Moreover, Smadi [10] proposed an extended version of the Ailamujia distribution called
as Ailamujia inverted Weibull distribution (AIWD) and various properties such as reliability
function, hazard function, moments, moment generating function, order statistics, mean residual
function and Shannon’s entropy were studied.
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In this paper, a novel extension of the Ailamujia Inverted Weibull distribution called Cubic
Transmuted Ailamujia Inverted Weibull distribution (CTAIWD) is derived. Some of its properties
such as moments, moment generating function, mean and variance are studied. Maximum
Likelihood approach is also discussed to estimate the proposed distribution parameters. Two real
data sets are analyzed to evaluate the performance of the proposed distribution.

The rest of paper is organized as follows: The Cubic Transmuted Ailamujia Inverted Weibull
(CTAIW) distribution is introduced in section 2. In section 3, some statistical properties of CTAIW
distribution are presented. Maximum Likelihood Estimation of the proposed distribution is
discussed in section 4. In section 5, the application of proposed distribution is illustrated. Some
concluding remarks is presented in section 6.

2. Cubic Transmuted Ailamujia Inverted Weibull distribution

This section presents the derivation of Cubic Transmuted Ailamujia Inverted Weibull (CTAIW)
distribution. The cumulative distribution function of the Ailamujia Inverted Weibull distribution
is given by

F(x, θ, α) = (1 + 2θx−α)e−2θx−α
, x > 0, α > 0, θ > 0 (1)

with corresponding probability density function

f (x, θ, α) = 4αθ2x−2α−1e−2θx−α
.

Rahman [7] proposed a cubic transmuted family of distributions for extending any continuous
distribution. The cumulative distribution function of the cubic transmuted family of distributions
is given by

F(x) = (1− λ)G(x) + 3λG2(x)− 2λG3(x), x ∈ R (2)

where λ ∈ [−1, 1]. The cumulative distribution function of the Cubic Transmuted Ailamujia
Inverted Weibull distribution is obtain by inserting (1) into (2) then, we have

F(x, θ, α, λ) = (1− λ)ze−2θx−α
+ 3λz2e−4θx−α − 2λz3e−6θx−α

, (3)

where z = 1 + 2θx−α. The corresponding probability density function is

f (x, θ, α, λ) = 4αθ2x−2α−1e−2θx−α
(1− λ + 6λze−2θx−α − 6λz2e−4θx−α

). (4)

Note that if λ = 0 then Cubic Transmuted Ailamujia Inverted Weibull distribution reduces to
Ailamujia Inverted Weibull distribution.

Figure 1: pdf plots of CTAIW distribution for α = 1.5, θ = 1.5 and for varying values of λ
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Figure 2: pdf plots of CTAIW distribution for α = 0.2, θ = 0.5 and for varying values of λ

Figures 1 and 2 present some possible shapes of the pdf of CTAIW distribution. It can be
observed that the pdf of proposed distribution can generate a skewed unimodal and exponential
shapes which are important in modelling lifetime data.

3. Statistical Properties

In this section, some statistical properties of the Cubic Transmuted Ailamujia Inverted Weibull
distribution (CTAIW) such as moments, moment generating function, mean, variance, survival
function and hazard function are derived.

3.1. Moments

Theorem 1. The rth moment of CTAIW distribution with density (4) is

µ′r = λ(2θ)
r
α [(1− 2

r
α−13 + 3

r
α−12− 1

λ
)Γ(− r

α
+ 2)− (2

r
α−23− 3

r
α−24)Γ(

r
α
+ 3) + 3

r
α−32Γ(

r
α
+ 4)]

(5)
The mean and variance are respectively, given by

µ = λ(2θ)
1
α [(1− 2

1
α 3−1 + 3

1
α 2−1 − 1

λ )Γ(−
1
α + 2)− (2

1
α−23− 3

1
α−24)Γ( 1

α + 3) + 3
1
α 2−3Γ( 1

α + 4)]

σ2 =λ(2θ)
2
α [(1− 2

2
α−13 + 3

2
α−12− 1

λ
)Γ(− 2

α
+ 2)− (2

2
α−23− 3

2
α−24)Γ(

2
α
+ 3) + 3

2
α−32Γ(

2
α
+ 4)]

− (λ(2θ)
1
α [(1− 2

1
α−13 + 3

1
α−12− 1

λ
)Γ(− 1

α
+ 2)− (2

1
α−23− 3

1
α−24)Γ(

1
α
+ 3)

+ 3
1
α−32Γ(

1
α
+ 4)])2.

Proof. The rth moment is defined by

µ′r = E[Xr]

=
∫ ∞

−∞
xr f (x)dx

=
∫ ∞

0
xr4αθ2x−2α−1e−2θx−α

(1− λ + 6λ(1 + 2θx−α)e−2θx−α − 6λ(1 + 2θx−α)2e−4θx−α
)dx
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= 4(1− λ)θ2α
∫ ∞

0
xrx−2α−1e−2θx−α

dx + 24λθ2α
∫ ∞

0
xrx−2α−1(1 + 2θx−α)e−4θx−α

dx

− 24λθ2α
∫ ∞

0
xrx−2α−1(1 + 2θx−α)2e−6θx−α

dx

= (1− λ)[−(2θ)
r
α Γ(− r

α
+ 2)]− 6λ[

(4θ)
r
α

4
(Γ(− r

α
+ 2) +

1
2

Γ(− r
α
+ 3))]

+ 6λ[−1
9
(6θ)

r
α (Γ(− r

α
+ 2) +

2
3

Γ(− r
α
+ 3) +

1
9

Γ(− r
α
+ 4))]

= λ(2θ)
1
α [(1− 2

1
α 3−1 + 3

1
α 2−1 − 1

λ
)Γ(− 1

α
+ 2)− (2

1
α−23− 3

1
α−24)Γ(

1
α
+ 3) + 3

1
α 2−3Γ(

1
α
+ 4)]

The mean of CTAIW distribution is obtained by using r = 1 in (5) and is

µ = λ(2θ)
1
α [(1− 2

1
α 3−1 + 3

1
α 2−1 − 1

λ )Γ(−
1
α + 2)− (2

1
α−23− 3

1
α−24)Γ( 1

α + 3) + 3
1
α 2−3Γ( 1

α + 4)]

The 2nd raw moment of CTAIW distribution is obtained by using r = 2 in (5) and is

µ′2 = λ(2θ)
2
α [(1− 2

2
α−13 + 3

2
α−12− 1

λ )Γ(−
2
α + 2)− (2

2
α−23− 3

2
α−24)Γ( 2

α + 3) + 3
2
α−32Γ( 2

α + 4)]

The variance σ2 of CTAIW distribution obtained as

σ2 = µ′2 − (µ′1)
2

= λ(2θ)
2
α [(1− 2

2
α−13 + 3

2
α−12− 1

λ
)Γ(− 2

α
+ 2)− (2

2
α−23− 3

2
α−24)Γ(

2
α
+ 3) + 3

2
α−32Γ(

2
α
+ 4)]

− (λ(2θ)
1
α [(1− 2

1
α−13 + 3

1
α−12− 1

λ
)Γ(− 1

α
+ 2)− (2

1
α−23− 3

1
α−24)Γ(

1
α
+ 3)

+ 3
1
α−32Γ(

1
α
+ 4)])2.

�

3.2. Moment Generating Function

Theorem 2. Let X follows the CTAIW distribution then the moment generating function MX(t)
is given by

Mx(t) =
∞

∑
r=0

trλ(2θ)
r
α

r!
[aΓ(− r

α
+ 2)− bΓ(

r
α
+ 3) + cΓ(

r
α
+ 4)]

where a = 1− 2
r
α−13 + 3

r
α−12− 1

λ , b = 2
r
α−23− 3

r
α−24, c = 3

r
α−32 and t ∈ R.

Proof. By definition of moment generating function and equation (5), we have

MX(t) = E(etX) =
∫ ∞

0
etx f (x, θ, α, λ)dx.

Recall that etx = ∑∞
r=0

tr

r! xr then we have

MX(t) =
∫ ∞

0

∞

∑
r=0

tr

r!
xr f (x, θ, α, λ)dx =

∞

∑
r=0

tr

r!
xr

∫ ∞

0
f (x, θ, α, λ)dx =

∞

∑
r=0

tr

r!
µ′r.

Thus,

Mx(t) =
∞

∑
r=0

trλ(2θ)
r
α

r!
[aΓ(− r

α
+ 2)− bΓ(

r
α
+ 3) + cΓ(

r
α
+ 4)]

where a = 1− 2
r
α−13 + 3

r
α−12− 1

λ , b = 2
r
α−23− 3

r
α−24 and c = 3

r
α−32. �
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3.3. Reliability Analysis

Let X be a random variable with cd f (3) and pd f (4) then the survival S(x) and hazard h(x)
functions of CTAIW distribution are respectively, given as follows:

S(x, θ, α, λ) = 1− (1− λ)ze−2θx−α − 3λz2e−4θx−α
+ 2λz3e−6θx−α

;

h(x, θ, α, λ) =
4αθ2x−2α−1e−2θx−α

(1− λ + 6λze−2θx−α − 6λz2e−4θx−α
)

1− (1− λ)ze−2θx−α − 3λz2e−4θx−α + 2λz3e−6θx−α ,

where z = 1 + 2θx−α, x > 0,α, θ > 0 and λ ∈ [−1, 1].

Figure 3: hf plots of CTAIW distribution for α = 1.5, θ = 1.5 and for varying values of λ

Figure 4: hf plots of CTAIW distribution for α = 0.2, θ = 0.5 and for varying values of λ

Figures 3 and 4 present some possible shapes of hazard rate function of CTAIW distribution. It
reveals that the hazard rate function of the proposed distribution can model both monotonic and
non-monotonic decreasing failure rate behavior of the data which are common in the reliability
data.

4. Maximum Likelihood Estimation

In this section, the maximum likelihood approach is used to estimate the CTAIW distribution
parameters.

Let X1, X2,..., Xn be a random sample of size n from CTAIW distribution, then the likelihood
function is

L =
n

∏
i=1

[4αθ2x−2α−1
i e−2θx−α

i (1− λ + 6λze−2θx−α
i − 6λz2e−4θx−α

i )]
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where z = 1 + 2θx−α
i . The log-likelihood function is

l =
n

∑
i=1

log[4αθ2x−2α−1
i e−2θx−α

i (1− λ + 6λze−2θx−α
i − 6λz2e−4θx−α

i )]. (6)

Taking the deivative of (6) with respect to the parameters α, θ and λ then, we have the following:

∂l
∂α

=
n
α
− 2

n

∑
i=1

log(xi) + 2θ
n

∑
i=1

x−α
i log(xi) + 24λθ2

n

∑
i=1

log(xi)x−2αe−2θx−α
i (1− 2ze−2θx−α

i )

1− λ− 6λze−2θx−α
i − 6λz2e−4θx−α

i
(7)

∂l
∂θ

=
2n
θ
− 2

n

∑
i=1

x−α
i − 24λθ

n

∑
i=1

x−2α
i e−2θx−α

i (1− 2ze−2θx−α
i )

1− λ− 6λze−2θx−α
i − 6λz2e−4θx−α

i
(8)

∂l
∂λ

= −
n

∑
i=1

1− 6ze−2θx−α
i + 6z2e−4θx−α

i

1− λ− 6λze−2θx−α
i − 6λz2e−4θx−α

i
(9)

Equating equations (7), (8) and (9) to 0, respectively, one can get numerical maximum
likelihood estimates of the CTAIW distribution parameters.

5. Application

In this section, the proposed distribution is applied to two real data sets and compared with the
following distributions:

- Quasi Suja (QS) distribution [9]

f (x, α, θ) =
θ4

αθ3 + 24
(α + θx4)e−θx, x > 0, θ > 0, α > 0.

- Weibull-Lindley (WL) distribution [2]

f (x, α, β) = α(βxβ−1(1 + x)exβ
)e−α((1+x)exβ−1), x > 0, α, β > 0.

A data analysis is performed using a package "fitdistrplus" in R. Moreover, AKaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (K-S), Anderson-
Darling (A) and Cramer-von Mises (W*) statistics are used for comparison in this analysis. In
addition, the two sets of data used in the analysis are given as follows:

Data Set 1. This data set is from Murthy [6]. It is a set of failure times of 50 electronic components.
The data set is given as follows: 0.036, 0.058, 0.061, 0.074, 0.078, 0.086, 0.102, 1.103, 0.114, 0.116,
0.148, 0.183, 0.192, 0.254, 0.262, 0.379, 0.381, 0.538, 0.570, 0.574, 0.590, 0.618, 0.645, 0.961, 1.228,
1.600, 2.006, 2.054, 2.804, 3.058, 3.076, 3.147, 3.625, 3.704, 3.931, 4.073, 4.393, 4.534, 4.893, 6.274,
6.816, 7.896, 7.904, 8.022, 9.337, 10.940, 11.020, 13.880, 14.730 and 15.080.

Data Set 2. This dataset is from Khan [4] and it is an ICU data set which assess the inten-
sive care unit (ICU) patients agitation-sedation (A-S) status. The data set is given as follows: 9,
3, 27, 8, 4, 3, 4, 3, 23, 3, 3, 4, 28, 18, 19, 6, 3, 26, 3, 12, 6, 9, 43, 4, 4, 3, 5, 12, 4, 36, 6, 8, 6, 5, 3, 3 and 33.

Tables 1 and 3 list the MLEs of the CTAIW, QS and WL distributions fitted to first and second
sets of data. Tables 2 and 4 indicate that the proposed distribution has a lower values of the
AIC, BIC, K-S, A and W* compared to the QS and WL distributions for both sets of data. So,
the propsed distribution fit well the said datasets. Furthermore, the estimated pdf of the fitted
models to both sets of data are presented in figure 5 and 6, respectively.
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Table 1: MLEs of the fitted models for first set of data.

Distribution α̂ β̂ θ̂ λ̂

CTAIW 0.5116727 0.6782907 −0.9999998
WL 0.07258343 0.12084431
QS 211.8090902 0.6493223

Table 2: Numerical values of AIC, BIC, K-S, A and W* of the fitted models for first set of data.

Distribution AIC BIC K− S A W∗
CTAIW 209.0186 214.7547 0.1531139 1.3078260 0.2494361

WL 228.7096 232.5337 0.2500551 3.3786131 0.5503281
QS 213.2069 217.031 0.2179699 3.6483026 0.4827523

Table 3: MLEs of the fitted models for second set of data.

Distribution α̂ β̂ θ̂ λ̂

CTAIW 1.1988356 8.5119091 −0.9999997
WL 0.02157018 0.11712539
QS 20023.91 0.1678021

Table 4: Numerical values of AIC, BIC, K-S, A and W* of the fitted models for second set of data.

Distribution AIC BIC K− S A W∗
CTAIW 232.7614 237.5941 0.1724946 1.4724752 0.2293943

WL 256.3175 259.5393 0.2192403 2.3094837 0.4026443
QS 253.2686 256.4904 0.3155350 2.5730059 0.4309077

Figure 5: Estimated pdf of the fitted models for the first set of data.
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Figure 6: Estimated pdf of the fitted models for the second set of data.

6. Concluding Remarks

In this study, an extended version of the Ailamujia Inverted Weibull distribution called Cubic
Transmuted Ailamujia Inverted Weibull distribution has been introduced. Some properties of
the proposed distribution such as moment, moment generating function, mean and variance
were derived. The maximum likelihood approach was used to estimate the proposed distribution
parameters. Two real datasets were used to examine the flexibility of proposed distribution and
compared to Quasi Suja and Weibull - Lindley distributions. It was found that the proposed
distribution fit well the given data sets compared to said distributions.
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Abstract 

Aim. The objective of this paper is to describe a particular case of the k-out-of-n: G system for k=2 and 
n=3 with different repair policies and to discuss the application of the proposed in a toxic waste 
incinerator. Methods. The system has all the three units identical in nature. The system model is 
developed using semi-Markov process and regenerative point technique. The preventive maintenance 
and repair activities of the units are carried out immediately by a single service facility whenever 
desires. The service facility is subjected to failure during repair of the units while it does preventive 
maintenance of the units without any problem. The failed service facility undergoes for treatment to 
restore its efficiency to perform the remaining jobs with full capacity. The provision of priority to 
preventive maintenance of the units has been made over the repair in order to avoid the earlier failure 
of the system. Findings. The measures that can affect and enhance the performance of the system have 
been discussed for arbitrary values of the rates which follow some arbitrary distributions including 
the negative exponential. The system is analysed in steady state and the graphs have been drawn to 
see the effect of different transition rates such as failure rate, preventive maintenance rate, treatment 
rate, and repair rate of the units on reliability measures and the profit. The study reveals that there 
is a decline in these measures with the increase of the rate by which unit undergoes for preventive 
maintenance, failure rates of the units and service facility. However, the values of reliability measures 
MTSF, availability and profit function keep on increasing with the increase of treatment rate, repair 
rate of the unit and preventive maintenance completion rate. The profit increases if the rate with 
which a unit completes its preventive maintenance. Hence, implementing the preventive 
maintenance repair policy for a 2-out-of-3 system is beneficial as it increases the availability and 
hence the profit of the system.  

Keywords: 2-out-of-3 System, Preventive Maintenance, Treatment Rate, Priority, 
Failure of Service Facility and Reliability Measures 

1. Introduction

Now a day, complex systems are used in almost all the areas of science and technology specially in 
the field of industries. Complex systems are made of multiple dependent and independent 
components. This kind of formulation may affect the efficient and accurate evaluation of reliability 
measures. So, for the accurate analysis of the system performance, it is obligatory to understand the 
nature of components, their failure rates, preventive maintenance rates and their interactions. The k 
-out-of-n: G system is one such type of complex system defined as the system which has ‘n’ identical
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units, all are working initially and at least k are required to be good to make the system work. k-out-
of-n system is one of the most useful partial redundancy types in complex systems, which is often 
used in various areas including software and hardware engineering for the purpose of providing a 
proper level of redundancy during the operation of a system to increase the availability and hence 
the profit. There are many systems in our day-to-day life which are based upon k-out-of-n 
configuration for example multi engine system of an airplane, multi pump system in a hydraulic 
control system, networking and communication systems, toxic waste incinerator etc. 
 
Several studies have been conducted so far for arbitrary k-out-of-n systems by assuming that system 
can perform nonstop work without requiring any maintenance. But in real life this assumption 
seems hard to believe as continuous operation deteriorates the performance and hence reliability of 
the system. To avoid such problems preventive maintenance can be considered as an alternative 
solution conducted after a specific operation time. Preventive maintenance also helps in slow down 
the deterioration rate of the process. Malik and Bhardwaj [1] have analysed 2-out-of-3 redundant 
system with general repair and waiting time distribution. They have also studied the same system 
with feasibility to repair. Malik and Singh [2] have studied a 2-out-of-3 redundant system with a 
single service facility for inspection and repair of the units by using the concept of degradation of 
unit after repair. Kishan and Kumar [3] studied a parallel system with preventive maintenance. Jain 
et al. [4] have analysed a Load Sharing m-out-of-n: G System with Non -Identical Components 
Subject to Common Cause Failure. Further, the concept of priority in repair policies has also been 
suggested by the researchers to make the system more profitable. Yang et al. [5] have discussed the 
reliability analysis of load-sharing k-out-of-n system considering component degradation. Poonia et 
al. [6] has performed the cost analysis of a repairable warm standby k-out-of-n: G and 2-out-of-4: G 
systems in series configuration under catastrophic failure using copula repair. Anuradha et al. [7] 
have analysed the profit of a 1-out-of-2: G system with the concept of server failure and priority to 
repair.  Singh et al. [8] have done the performance assessment of the complex repairable system with 
n-identical units under (k-out-of-n: G) scheme and copula linguistic repair approach.  Abdullahi et. 
al [9] have performed the cost analysis of 2-out-of-4 system connected to two units parallel 
supporting device for operation However, the idea of priority to preventive maintenance over repair 
along with the failure of service facility (all the three repair policies together) has not been introduced 
while analysing system reliability models of three or more identical units. 
 
So, here a particular case of k-out-of-n: G system for k=2 and n=3 has been considered. Initially all 
the three units are operative out of which two units are required to be good for the proper 
functioning of the system. The system undergoes for preventive maintenance with an arbitrary rate 
in order to restore the efficiency of the working units. A single service facility performs the 
preventive maintenance and repair of the units whenever desires. The service facility may fail and 
therefore, undergoes for treatment to restore the efficiency to carry out the remaining repair 
activities. Preventive maintenance of the units is kept as priority over repair in order to avoid the 
earlier failure of the system. The well-known semi-Markov process and regenerative point technique 
are used to develop the system model under certain assumptions. The measures that can affect and 
enhance the performance of the system have been discussed for arbitrary values of the rates which 
follow some arbitrary distributions including the negative exponential. The system is analysed in 
steady state and the graphs have been drawn to see the effect of different transition rates such as 
failure rate, preventive maintenance rate, treatment rate, and repair rate of the units on reliability 
measures and the profit. Thus, the focus of the present paper is to analyse reliability measures and 
profit of a 2-out-of-3 system. 

 
 
 
 

215



 
Anuradha, S.C. Malik 
RELIABILITY MEASURES OF 2-OUT-OF-3:G SYSTEM  

RT&A, No 1 (72) 
Volume 18, March 2023  

 

2. System description and Notations 
2.1) Notations  

Table 1: Symbol Description 

 
2.2) The state transition diagram of the system model 

         
Figure 1: State Transition Diagram 

Symbol Description 
O Unit is operative 
λ Failure Rate of the Unit 
µ 
WO 

Failure Rate of the Server 
Unit is Waiting for Operation 

p(t)/P(t) pdf/cdf of the preventive maintenance time of the unit 

pm (t)/Pm(t) pdf/cdf of the preventive maintenance completion time of the unit 

rs(t)/Rs(t) pdf/cdf of the treatment time of the server 
r(t)/R(t) pdf/cdf of the repair time of the unit 
Fur/FUR Unit is failed and under repair/under repair continuously from previous state 
FWr /FWR Unit is failed and waiting for repair/waiting for repair continuously from previous state 
UPm /UPM Unit is failed and under preventive maintenance/under preventive maintenance 

continuously from previous state 
SFut Server failed under treatment 
qij(t)/Qij(t) pdf/cdf of first passage time from regenerative state Si to a regenerative state 𝑆!or to a 

failed state 𝑆"without visiting anyother regenerative state in (0, t] 
qij.k(t)/Qij.k(t) pdf/cdf of direct transition time from regenerative state 𝑆! to a regenerative state 𝑆"or to 

a failed state 𝑆"visiting state 𝑆#once in (0, t] 
Mi(t) Probability that the system up initially in state Si and is up at time t without visiting any 

regenerative state 
Wi(t) Probability that the server is busy in the state Si up to time ‘t’ without making any 

transition to any other regenerative state or returning to the same state via one or more 
non-regenerative states 

µi The mean sojourn time in state Si given by: µi=E(t)=∫ P(T>t)dt∞
0 =∑ mijj  , where T is the 

time to system failure 
 

mij Contribution to mean sojourn time(µi) in state Si when the system directly transits to 
state Sj so that µi=∑ mijj  and mij=∫ tdQij(t)dt=-qij

*' (0) 

Ⓢ/© Symbols for Laplace Stieltjes convolution/Laplace convolution 
*/** Symbols for Laplace transformation/Laplace Stieltjes transformation 
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3. State Transition Probabilities and Mean Sojourn Time 

Table 1: Transition State Description 
 

Transition state Description 
S0(O,O,O) All three units are in operation 
S1 (Fur	,O,O) Two units are in operation and one unit is under repair 
S2 (O	,O	,UPm) Two units are in operation and one unit is under preventive 

maintenance 
S3 (WO	,FUR	,Fwr) One unit is waiting for operation. One unit is waiting for repair and 

one failed unit is under repair continuously from previous state. 
S4(WO	,Fwr	,FWR	,SFut) One unit is waiting for operation. One unit is waiting for repair and 

third unit is waiting for repair from previous state. Server is under 
treatment. 

S5(WO	,Fwr	,	UPm) One unit is waiting for operation, one is waiting for repair and one 
unit is under preventive maintenance. 

S6(WO	,Fwr	,UPM) One unit is waiting for operation, one is waiting for repair and one 
unit is under preventive maintenance from previous state. 

S7 (WO,	UPM,	WPm) One unit is waiting for operation, one unit is under preventive 
maintenance from its previous state and one unit is waiting for 
preventive maintenance for first time. 

S8 (WO,	Fur,	FWR) One unit is waiting for operation, failed unit is under repair and one 
unit   is waiting for repair from previous state. 

S9 ( O,O, Fwr,	SFut) Two units are in operation. Failed unit is waiting for repair and 
failed server is under rectification. 

S10(WO,	FWR	,Fwr	,SFUT) Failed unit is waiting for repair from previous state another one is 
waiting for repair for the first time. Server is under rectification from 
previous state and one unit is waiting for operation. 

S11(WO	,WPm	,FWR,SFUT) Failed unit is waiting for repair from previous state. One unit is 
waiting for preventive maintenance. Server is under treatment. 

S12 (WO, FWR,	UPm) One unit is waiting for operation, failed unit is waiting for repair 
and one unit is under preventive maintenance. 

 
 

4. Reliability Measures 
4.1) Transition Probabilities 
Using the formula given below transition probabilities from any state i to j are obtained as follows:                                                                                                                                      
pij= Qij(∞)= ∫ qij(t)dt∞

0  

p01= λ
λ+α

 , p02= α
λ+α

 ,p10= b
2(λ+α)+µ+b

 , p15= 2α
2(λ+α)+µ+b

 , p13= 2λ
2(λ+α)+µ+b

 , p19= µ
2(λ+α)+µ+b

 

p20= η
2(λ+α)+η

 , p27= 2α
2(λ+α)+η

 , p26= 2λ
2(λ+α)+η

 ,p31=p81= b
µ+b

 , p3,8=p84= µ
µ+b

 

p4,8=p51=p61= p72= p10,12=p11.12=p12,1=1,p91= a
2(λ+α)+a

 , p9,10= 2λ
2(λ+α)+a

 , p9,11= 2α
2(λ+α)+a

 

It is verified that:                                                                                                                       
p01+p02=1,p10+p15+p19+p13=1,p20+p22.7+p21.6=1,p31+p3,8=1,p81+p84=1,p91+p9,10+p9,11=1,p4,8=p51=p61=p72=
p10,12=p11.12=p12,1=1 
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4.2) Mean Sojourn Time                 
µi in state Si are given as:                               
µ0= 1

3(λ+α)
 , µ1= 1

(2λ+2α+µ+b)
 ,µ2= 1

&2λ+2α+η'
, µ3=µ8= 1

µ+b
,µ9= 1

2λ+2α+a
,  µ4=µ10=µ11= 1

a
 ,µ5=µ6=µ7=µ12= 1

η
 

µ1
' =m10+m15+m19+m11.3+m11.3(4,8)n, µ2

' =m20 + m22.7 +m21.6,µ(
' =m91 + m91.(11,12)+m91.(10,8)+m91.10(8,4)n 

4.3) Mean Time to System Failure                  
Let Φi(t)- cdf of first passage time from regenerative state Si to a failed state.                                
Φ0(t)= Q01(t)ⓈΦ1(t) + Q02(t)ⓈΦ2(t)                                     (1)   
Φ1(t) =Q10(t)ⓈΦ0(t) +Q19(t)ⓈΦ9(t)+ Q15(t)+Q13(t)                           (2)                       
Φ2(t)=Q20(t)ⓈΦ0(t) +Q26(t) + Q27(t)                                                                       (3)                                        
Φ9(t)=Q91(t)ⓈΦ1(t)+Q9,10(t) + Q9,11(t)                                                                       (4) 
Solving the above equations for Φ0

**(s) by taking Laplace Stieltjes Transformation, We get,                                                 

R*(s)=1-Φ0
**(s)
s

                                                                                                                                          

MTSF= lim
n→∞

1-Φ0
**(s)
s

 = N1
D1

                                                                                                                    

Where N1=(1-p19p91)(µ0+p02µ2)+ p01(µ1 +p19µ9) and D1= (1-p02p20)( 1-p19p91)-p01p10 
 
4.4) Long Run Availability of the System                                                                  
Define, Ai(t)- Probability that the system is available at any instant time t given that it has entered 
regenerative state SI at time t =0                      
Mi(t)- Probability that the system is up initially as well as at time t in state 𝑆! without making any 
transition to regenerative state            
The following expressions are obtained:                                                         
A0(t)= M0(t)+q01(t)©A1(t) + q02(t)©A2(t)                                (6)         
A1(t)= M1(t)+q10(t)©A0(t) + (q11.3+q11.3(4,8)n)©A1(t)+q15(t)©A5(t)+q19©A9(t)                                 (7)      
A2(t)= M2(t)+q20(t)©A0(t) + q22.7©A2(t) +q21.6©A1(t)                                            (8) 
A9(t)= M9(t)+(q91(t) + q91.(11,12)+q91.10(8,4)n+q91.(10,8)©A1(t)                              (9)      
A5(t)= q51©A1(t)                                               (10)     
Where,  M0(t)=e-3λtP(t)''''' ,M1(t)=e-(2λ+µ)tP(t)'''''R(t)''''' , M2(t)=e-2λtPm(t)'''''''P(t)''''', M9(t)=e-2λtP(t)'''''Rs(t)''''''              
Solving for A*∗∗(𝑠) using LST              
We have,                     
A0(∞)= lim

n→∞
sA0

**(s)=N2
D2

                                                                                                                                  (11)                         
N2=p10*1-p27+µ0+µ2p02p10+*p01p20+p26+(p19µ9+µ1)                                                                        
D2=p10*1-p27+µ0+µ'2p02p10+*p01p20+p26)(µ1

' +µ5p15+p19µ9
' + 

4.4) Busy Period of the Server Due to Repair          
BPi

r(t)- Probability that the server is busy in repairing at an instant ‘t’.       
The recursive expressions for BPi

r(t) are given below:                             
BP0

r (t)= q01(t)©BP1
r (t)+ q02(t)©BP2

r (t)                 (12) 
BP1

r (t)= W1
r (t)+q10(t)©BP0

r (t) + (q11.3+q11.3(4,8)n)©BP1
r (t)+q15©BP5

r (t)+q19©BP9
r (t)                          (13)    

BP2
r (t)= q20(t)©BP0

r (t) + q22.7©BP2
r (t)+q21.6©BP1

r (t)                              (14) 
BP9

r (t)= (q91(t) + q91.(11,12)+q91.10(8,4)n+q91.(10,8))©BP1
r (t)                            (15)   

BP5
r (t)= q51©BP1

r (t)                   (16)                                  
W1

r(t)=e-(2λ+µ)tP(t)'''''R(t)'''''                                    
Solving for BP0

r**(s), We have:                          
BP0

r(∞)= lim
n→∞

sBP0
r**(s)=N5

D2
 ,N5=W1

* (0)(p20p01+p26) and D2 is already specified. 
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4.5) Busy Period of the Server due to Preventive Maintenance                 
BPi

pm(t)- Probability that the server is busy in preventive maintenance at an instant ‘t’ Expressions 
for BPi

pm(t) are given below:                 
BP0

pm(t)= q01(t)©BP1
pm(t)+ q02(t)©BP2

pm(t)                              (17)   
BP1

pm(t)=q10(t)©BP0
pm(t) + (q11.3+q11.3(4,8)n)©BP1

pm(t)+q15©BP5
pm(t)+q19©BP9

pm(t)                         (18)     
BP2

pm(t)= W2
pm(t)+q20(t)©BP0

r (t) + q22.7©BP2
r (t)+q21.6©BP1

r (t)              (19) 
BP9

pm(t)= (q91(t) + q91.(11,12)+q91.10(8,4)n+q91.(10,8))©BP1
pm(t)                            (20) 

BP5
pm(t)=W5

pm(t)+q51©BP2
pm(t)                                (21) 

Where,   W2
pm(t)=e-2λtP(t)'''''Pm(t)	'''''''',W2

pm(t)=Pm(t)'''''''                                                            
Solving for BP0

pm**(s)                          
We get,                                                                         
BP0

pm(∞)= lim
n→∞

sBP0
pm**(s)=N4

D2
                                                                                                                         

N4=W2
pm*(0)p02p10+W5

pm*(0)p02p26p15 and D2 is already specified. 

4.6) Expected Number of Repairs (ENR) of the Unit                                                    
Let Rpi(t)be the expected number of repairs by the server in (0, t].                                      
The recursive relations for Rpi(t)are given as:                  
Rp0(t)=Q01(t)ⓈRp1(t) + Q02(t)ⓈRp2(t)                (22) 
Rp1(t)=Q10(t)Ⓢ(1+Rp0(t)) + (Q11.3+Q11.3(4,8)n)Ⓢ(1+Rp1(t))+Q11.5ⓈRp5(t) +Q19ⓈRp9(t)                     (23)   
Rp2(t)=Q20(t)ⓈRp0(t) + Q22.7ⓈRp2(t) +Q21.6ⓈRp1(t)                                         (24)                  
Rp9(t)=(Q91(t) + Q91.(11,12))ⓈRp1(t)+(Q91.(10,8)+ Q91.10(8,4)n) )Ⓢ(1+Rp1(t))                                               (25)    
Rp,(𝑡)= 𝑄,-ⓈRp-(𝑡)                  (26) 
Solving for Rp0

**(s) We have,                                                                                         

Rp0(∞)= lim
n→∞

sRp0
**(s)=N5  

D2
, N5= 2(p20p01+p26)(p10+p13+p19p9,10)3 

4.7) Expected Number of Preventive Maintenance (PM) of the Unit                         
Let Pmi(t)be the expected number of repairs by the server in (0, t].            
The expressions for Pmi(t)are given as:                                                                                       
Pm0(t)=Q01(t)ⓈPm1(t) + Q02(t)ⓈPm2(t)                                                                               (27) 
Pm1(t)=Q10(t)ⓈPm0(t) + (Q11.3+Q11.3(4,8)n)ⓈPm1(t)+Q15ⓈPm5(t)) +Q19ⓈPm9(t)                                (28)                
Pm2(t)=Q20(t)Ⓢ(1+Pm0(t)) + Q22.7Ⓢ(1+Pm2(t)) +Q21.6Ⓢ(1+Pm1(t)                                                        (29)  
Pm9(t)=(Q91(t)+Q91.(10,8)+Q91.10(8,4)n)ⓈPm1(t)+(Q32+Q91.(11,12))Ⓢ(1+Pm2(t))                                          (30)                        
Pm5(t)= Q51Ⓢ(1+Pm1(t))                                                          (31)  
Solving for Pm0

**(s)(by taking LST)                                                 
Pm0(∞)= lim

n→∞
sPm0

**(s)=N6
D2

, N6=p02p10+(p26+p01p20) 2p15+p9,11p193 

4.8) Expected Number of Visits of the Server                                                                 
Let Vi(t)be the expected number of visits by the server.                                                 
The equations for Vi(t)	are as follow:                                                        
V0(t)=Q01(t)Ⓢ(1+V1(t)) + Q02(t)Ⓢ(1+V2(t))                                                                                              (32)     
V1(t)=Q10(t)ⓈV0(t) + (Q11.3+Q11.3(4,8)n)ⓈV1(t)+Q15ⓈV5(t)) +Q19ⓈV9(t)                                              (33)                    
V2(t)=Q20(t)ⓈV0(t) + Q22.7ⓈV2(t) +Q21.6ⓈV1(t)                                                                                      (34)                                                             
V9(t)=(Q31(t) + Q91.(11,12)+Q91.10(8,4)n++Q91.10,8){V-𝑡}                                                                                 (35)                                                                      
V5(t)= Q51ⓈV1(t)                                             (36)  
Solving for V0

**(s)                                                                                                     
V0(∞)= lim

n→∞
sV0

**(s)=N7
D2

  ,N7=p10*p20+p26+
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5. Profit Analysis                                                                                                               
The profit analysis of the model can be represented as :  PC=C0A0-C1BP0

r -C2BP0
pm-C3V0 

Here,C0, C1, C2&C3 are respectively the revenue per unit time, cost per unit time the service facility 
is busy for repair, busy for preventive maintenance and costs per unit time visit by the service facility   
The particular case p(𝑡)=αe-αt,pm(t)=ηe-ηt,	rs(t)=ae-atand r(𝑡) =be-bt, C0=10000,C1=1000,C2=500,C3=100 
has been considered to obtain the reliability measures MTSF, availability and profit function. The 
values of these measures have been evaluated for arbitrary values of the parameters since there is 
no reliable source of information which tells about the actual values of the parameters. 

6. Results and Graphical Representation of Reliability Measures 
Reliability measures such as MTSF, Availability and Profit have been studied for different values of 
parameters. The graphs have been plotted for a range (1.1-1.8) of values of preventive maintenance 
completion rate(η) and corresponding effects have been explained. 
 
6.1) MTSF Vs Rate of Preventive Maintenance (𝜂) 
a: Treatment rate of the server 
 b: Repair rate of the unit 
 α: Rate by which unit undergoes for preventive maintenance 
 
 

 
 

Figure 2: MTSF vs Preventive Maintenance Rate 
 
From fig.2 it is quite evident that the MTSF increases with the increase in preventive maintenance 
rate, repair rate(b) of unit and server(a) as well. However, if the failure rate of the units is increasing 
(λ) from 0.1 to 0.2, MTSF decreases. 
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6.2) Availability vs Preventive maintenance Rate 
 

 
Figure 3: Availability vs Preventive Maintenance Rate 

 
Fig.3 shows that availability of the system keeps on increasing if preventive maintenance rate (η) of 
the units is increased (from 1.1 to 1.8) and decreases with the increase in failure rate of units. 
 
6.3) Profit vs Preventive Maintenance rate (η) 
 

 
Figure 4: Profit vs Preventive Maintenance Rate                                                                                               

 
Fig.4 shows profit increases steadily with the increase in the preventive maintenance rate (1.1 to 
1.8), repair rate (increased from 3 to 4) of the units however it sharply decreases with the increase 
in failure rates of the units and server.  
 

7. Conclusion 
 

A 2-out-of-3 system has been developed using the ideas of priority for preventive maintenance and 
conditional failure of the service facility. The MTSF, availability and profit function of this system 
have been obtained for particular values of the parameters. The study reveals that there is a decline 
in these measures with the increase of the rate by which unit undergoes for preventive maintenance, 
failure rates of the units and service facility. However, the values of MTSF, availability and profit 
function keep on increasing with the increase of treatment rate, repair rate of the unit and preventive 
maintenance completion rate.  
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The profit increases if the rate with which a unit completes its preventive maintenance. Hence, 
implementing the preventive maintenance repair policy for a 2-out-of-3 system is beneficial as it 
increases the availability and hence the profit of the system.  
 

8.Application of the Proposed Model 
 

Burning of toxic waste, especially waste produced in chemical factories, medical laboratories 
produce a lot of harmful and lethal gases. To neutralize the toxicity of these kind of gases huge 
amount of fire is required. Toxic waste incinerator is one such kind of combustion technique which 
helps in neutralising these harmful gases. It has a circuit named as flame detection circuit which 
works as a 2 -out-of-3system. The principal behind the working of the incinerator: As long as a 
sufficient amount of heat is maintained in the incinerator, it is safe to put the waste inside the 
chamber to neutralize the toxic gases produced due to combustion of waste. If the flame is not 
sufficient enough to neutralize the toxic gases produced, it would not be safe to keep inserting the 
waste inside the chambers because the gases produced would exit without being neutralized and 
may cause a severe health issue to anyone nearby. Therefore, our main focus is on designing the 
system in such a way that the system detects the sufficient amount of flame and permits waste 
insertion only when there is sufficient flame to neutralize the exhaust. Due to high risk involved in 
passing out the waste un neutralized it would be beneficial to make the flame detection system 
redundant. So that if one sensor fails to detect the flame, other may sense and cover up the risk 
involved. Hence it is very much necessary to design a system which opens the waste valve only if 
there is enough flame signalled by the sensors. The best designed system for this kind of incinerator 
is a 2-Out-of-3 system. There are three sensors to detect the flame which are identical in nature and 
the valve for injection of waste will open only if two out of three will signal that there is sufficient 
amount of flame inside the chamber to neutralize the toxic gases produced. If any of the two sensors 
fails to detect the flame it would lead to hazardous condition therefore it is highly recommended to 
keep an eye on the working condition of the sensors. Preventive maintenance is one such 
precautionary measure which ensures the proper functioning of the sensors hence it is kept as 
priority over repair while developing the system model. 
 
A pictorial presentation of Toxic Waste Incinerator: 

          
Figure 5: Toxic Waste Incinerator 
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Abstract

The study focuses on the E-Bayesian estimation of a Type-II censored sample from the Chen distribu-
tion. Three distinct prior distributions for the hyper-parameters and three different loss functions are
considered here for deriving the E-Bayes estimators of the scale parameter and hazard rate of above said
distribution under Type-II censoring. Also derived analytical expressions for the E-MSE of the proposed
estimators. Additionally, several features of the E-Bayesian estimators and E-MSEs are derived. This
paper compares E-Bayesian estimation with traditional estimation methods like MLE and Bayesian. The
applicability of the proposed estimators is demonstrated using a real data application. Furthermore, the
credible intervals of the scale parameter estimators are also provided. The numerical analysis demonstrates
that the proposed method is simpler and more feasible than traditional techniques.

Keywords: Chen distribution; Type II censoring; Bayesian estimation; E-Bayesian estimation;
E-MSE.

1 Introduction

Experiments in reliability and life-testing are done to learn more about the time of a significant
event of interest. Examples of situations where the time of occurrence is significant are when a
component fails, a disease abrogates, or a biological unit dies. For some reason, most investiga-
tions might not have complete information on the lifetimes or failure times of the experimental
units. For example, in a medical trial, patients may withdraw from treatment, or the funding
is only available for a specific period. In industrial trials, it is planned to remove accidentally
damaged units before they fail to reduce testing time and costs. Censored data are those obtained
from such experiments. The censoring schemes that appear the most frequently in the literature
are Type-I and Type-II censoring. The experiment’s endpoint is fixed, while the amount of failures
reported is random in Type-I censoring. In contrast, the experiment’s endpoint is random, and
the number of failures is fixed in Type-II censoring. Type-II censoring is more cost-effective than
Type-I censoring when comparing two censoring schemes. Inference under Type-II censoring for
different parametric family distributions has been thoroughly studied in the literature. For more
details, one can refer to [23], [7], [4], [9], [10].

A number of distributions with hazard rate functions that are constant, increasing, or decreas-
ing in nature are discussed in the reliability literature. These distributions include generalized
exponential, gamma, Weibull, and lognormal. These are the most often used models, and we use
them to investigate various phenomena that occur in real life. However, these models do not
work well with data sets showing bathtub-shaped hazard rates. In order to analyze real data
with bathtub-shaped failure rates, several authors introduced probability models like modified
Weibull by [18] and extended Weibull by [19], but these models are still unsuitable for producing
accurate bathtub shape failure rates. Chen [8] showed a two-parameter lifespan distribution with
a bathtub-shaped or increasing failure rate function. The hazard rate for this distribution initially
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declines, keeps the same, and increases. Chen distribution is a useful model for examining the
lifespan of mechanical and electronic devices and humans. In addition to well-known models
like lognormal and gamma, it can also be used to model positively skewed data. Due to the
two parameters, closed-form confidence intervals for the shape parameter and joint confidence
regions, this distribution is adaptable.

The MLEs of the Chen distribution parameter using samples that have been progressively
Type-II censored are calculated by [24]. The MLE and Bayes estimators for the parameters of
the Chen distribution using complete and censored samples are derived by [22], [2], [17], [16].
Kayal et al. [15] developed point and interval estimates of the multicomponent stress-strength
reliability model of an s-out-of-j system using both classical and Bayesian techniques under the
presumption that both the stress and the strength variables follow a Chen distribution. The
literature on estimations of Chen distributions mentioned above mainly focuses on MLE or
Bayesian techniques.

In addition to the Bayesian approach, the E-Bayesian estimation method, was developed in
the literature. Originally, Han [13] addressed the definition of E-Bayesian estimation. Since
the prior distribution of the hyperparameters is taken into account, the E-Bayesian approach is
more reliable than Bayesian. The term "E-Bayesian estimation" refers to the expectation of the
parameter’s Bayesian estimate for all hyperparameters. In recent days so many works related
to E-Bayesian inference of parameters and reliability functions of different distributions using
complete and censored samples are discussed in the literature. For more details, one can refer to
[1], [12],[3], [21], [20], [5]. The works mentioned above were a source of inspiration for further
research on E-Bayes estimators for the scale parameter and hazard rate of Chen distributions
under Type-II censoring schemes. The present work aims to develop E-Bayes estimators for the
scale parameter and hazard rate of the Chen distribution using a Type-II censoring scheme and
to calculate E-MSEs for the proposed estimators.

The organization of the remaining part of the work is as follows. In part 2, we go through the
MLE of the scale parameter and hazard rate of the Chen distribution under the Type-II censoring
scheme. Section 3 discusses the estimators’ MSE as well as the Bayesian estimation of the scale
parameter and hazard rate. Section 4 developed how to obtain E-Bayesian estimators of the scale
parameter, hazard rate, and their associated E-MSEs. Section 5 of the article discusses the features
that all of these estimators possess. In Section 6, it is discussed how well the estimators work
with real data set. The final findings of the proposed study are provided in Section 7.

2 Maximum Likelihood Estimation

In this section, using a Type-II censoring technique, we derive the MLE of the scale parameter and
hazard rate of the Chen distribution. The pdf, cdf and hazard function of the Chen distribution
are respectively given by

f (x; θ, λ) = θλxλ−1exλ+θ(1−exλ
), x > 0, λ > 0, θ > 0, (1)

F(x; θ, λ) = 1 − eθ(1−exλ
), x > 0, λ > 0, θ > 0 (2)

and
h(t) = θλtλ−1etλ

, t > 0. (3)

With pdf and cdf defined in (1) and (2), respectively, assume that n distinct units selected from
a population are put to the test and that the associated lifetimes are distributed identically. Let
X = (X(1), X(2), ..., X(r)) be the Type-II censored sample taken from (1) with r failure times. The
likelihood function for Type-II censored sample is given by

L(λ, θ|x) =
n!

(n − r)!
πr

i=1 f (x(i))[1 − F(x(r))]
n−r

=
n!

(n − r)!
θrν(λ, x)e−θT . (4)
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where ν(λ, x) = λrπr
i=1xλ−1

i e∑r
i=1 xλ

i , x = (x(1), x(2), ..., x(r)) and T = ∑r
i=1 exλ

i + (n − r)exλ
r − n.

The log-likelihood function is provided by Chen distribution when λ is known is given by

ln(L) = ln θr + ln e−θT .

The normal equation is obtained by differentiating the log-likelihood with respect to the scale
parameter θ and equating them to zero.

∂ ln(L)
∂θ

= 0 =⇒ r
θ
− T = 0.

By solving the above equation we can obtain MLE of the parameter θ as

θ̂ML =
r
T

. (5)

3 Bayesian Estimation

The Bayes estimators of the parameter θ are obtained in this section based on the squared error
loss function (SELF), entropy loss function (ELF), and precautionary loss function (PLF). For
developing the Bayesian estimation, we assume the gamma distribution as conjugate prior with
probability density function

π(θ|a, b) =
ba

Γ(a)
θa−1e−bθ , θ > 0, a, b > 0, (6)

where a and b are the hyper parameters. The posterior density of θ can be expressed as the
following using the prior density (6) and likelihood function (4) as

q(θ|x) = (b + T)r+a

Γ(r + a)
θr+a−1e−θ(b+T), θ > 0. (7)

We arrived at the Bayes estimators of θ and the hazard rate of (1) under three distinct loss
functions in the subsequent theorem.

Theorem 1. For the Type-II censored sample X = (X(1), X(2), ..., X(r)) from (1) under SELF, ELF,
and PLF together with the likelihood function (4) and prior distribution (6), we obtain the Bayes
estimators of θ and hazard rate, respectively, provided as

i) Under SELF

θ̂B1 =
r + a
b + T

, (8)

ĥ(t)B1 =
r + a
b + T

λtλ−1etλ
. (9)

ii) Under ELF

θ̂B2 =
r + a − 1

b + T
, (10)

ĥ(t)B2 =
r + a − 1

b + T
λtλ−1etλ

. (11)

iii) Under PLF

θ̂B3 =

√
(r + a + 1)(r + a)

(b + T)2 , (12)

ĥ(t)B3 =

√
(r + a + 1)(r + a)

(b + T)2 λtλ−1etλ
. (13)

RT&A, No 1 (72) 
 Volume 18, March 2023

226



Athirakrishnan and Abdul Sathar
E-Bayesian estimation

Proof.

i) The mean of (7) serves as the Bayes estimator of θ under SELF and is written as

θ̂B1 = E(θ|x) = r + a
b + T

.

Likewise, the Bayes estimator of hazard rate is

ĥ(t)B1 = E
(

θλtλ−1etλ |x
)
=

r + a
b + T

λtλ−1etλ
.

ii) The following is the expression of a Bayes estimator of θ using ELF:

θ̂B2 =

[
E
(

1
θ
|x
)]−1

=
r + a − 1

b + T
.

Likewise, the Bayes estimator of hazard rate is

ĥ(t)B2 =

[
E
((

θλtλ−1etλ
)−1

|x
)]−1

=
r + a − 1

b + T
λtλ−1etλ

.

iii) The following is the expression of a Bayes estimator of θ using PLF:

θ̂B3 =
√

E(θ2|x) =

√
(r + a)(r + a + 1)

(b + T)2 .

Likewise, the Bayes estimator of hazard rate is

ĥ(t)B3 =

√
E
((

θλtλ−1etλ
)2

|x
)
=

√
(r + a + 1)(r + a)

(b + T)2 λtλ−1etλ
.

�
We determined the MSE of the Bayes estimators of θ and the hazard rate of (1) for three

distinct loss functions in the subsequent theorem.

Theorem 2. For the Type-II censored sample X = (X(1), X(2), ..., X(r)) from (1), the MSE of the
Bayes estimators of θ and the hazard rate under SELF, ELF, and PLF, respectively as

i) Under SELF

MSE(θ̂B1) =
r + a

(b + T)2 , (14)

MSE(ĥ(t)B1) = (λtλ−1etλ
)2 r + a
(b + T)2 . (15)

ii) Under ELF

MSE(θ̂B2) =
r + a + 1
(b + T)2 , (16)

MSE(ĥ(t)B2) = (λtλ−1etλ
)2 r + a − 1

(b + T)2 . (17)

iii) Under PLF

MSE(θ̂B3) =
2(r + a)
(b + T)2 [(r + a + 1)−

√
(r + a + 1)(r + a)], (18)

MSE(ĥ(t)B3) = (λtλ−1etλ
)2 2(r + a)
(b + T)2 [(r + a + 1)−

√
(r + a + 1)(r + a)]. (19)
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Proof.

i) MSE of the Bayes estimator of θ under SELF is defined as

MSE(θ̂B1(a, b)) = E(θ2|x)− 2θ̂B1(a, b)E(θ|x) + [θ̂B1(a, b)]2

=
r + a

(b + T)2 .

Likewise, the MSE of the Bayes estimator of hazard rate under SELF is as follows:

MSE(ĥ(t)B1) = E[h(t)2|x]− 2ĥ(t)B1E[h(t)|x] + [ĥ(t)B1]
2

= (λtλ−1etλ
)2 r + a
(b + T)2 .

ii) MSE of Bayes estimator of θ using ELF is defined as

MSE(θ̂B2(a, b)) = E(θ2|x)− 2θ̂B2(a, b)E(θ|x) + [θ̂B2(a, b)]2

=
r + a − 1

(b + T)2 .

Likewise, the MSE of the Bayes estimator of hazard rate under ELF is as follows:

MSE(ĥ(t)B2) = E[h(t)2|x]− 2ĥ(t)B2E[h(t)|x] + [ĥ(t)B2]
2

=
r + a − 1

b + T
λtλ−1etλ

.

iii) MSE of the Bayes estimator of θ using PLF is defined as

θ̂B3 = E(θ2|x)− 2θ̂B3(a, b)E(θ|x) + [θ̂B3(a, b)]2

=
2(r + a)
(b + T)2 [(r + a + 1)−

√
(r + a + 1)(r + a)].

Likewise, the MSE of the Bayes estimator of hazard rate under PLF is as follows:

ĥ(t)B3 = E[h(t)2|x]− 2ĥ(t)B3E[h(t)|x] + [ĥ(t)B3]
2

= (λtλ−1etλ
)2 2(r + a)
(b + T)2 [(r + a + 1)−

√
(r + a + 1)(r + a)].

�

4 E-Bayesian Estimation and its E-MSE

Han [13] is the author who first introduced E-Bayesian estimation in literature. Here we will
obtain the E-Bayes estimator of the scale parameter and hazard rate of the Chen distribution
under Type II censoring based on SELF, ELF and PLF and derive the properties exhibited by these
estimators. Three different prior distributions of the hyper-parameters are considered to examine
the impact of various prior distributions on the E-Bayesian estimate of θ. According to [13], it is
important to establish that the prior distribution of a and b, indicated by π(θ|a, b), is a decreasing
function in θ. Finding the first derivative of π(θ|a, b) with respect to θ and obtaining the result as

∂π(θ|a, b)
∂θ

=
baθa−2e−bθ

Γa
[(a − 1)− bθ].

As a result, the function ∂π(θ|a,b)
∂θ <0 and π(θ|a, b) is a decreasing function of θ for 0< a <1 and

b>0. Given 0< a <1, the gamma density function’s tail will be thinner the larger b. The thinner-
tailed prior distribution frequently affects the robustness of the Bayesian estimate, according to
[6], which took the robustness of the Bayesian estimate into account. As a result, b must not
exceed a specified upper bound c, where c > 0 is an unknown constant. As a result, the restriction
of 0< a <1 and 0< b < c should be used when choosing the hyper-parameters a and b.
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Definition 4.1. θ̂EB =
∫ ∫

D θ̂B(a, b)π(a, b)dadb = E[θ̂(a, b)] is referred to as the E-Bayesian
estimate of θ when θ̂B(a, b) is continuous and is considered finite. D is the domain of a and b,
θ̂B(a, b) is the Bayesian estimation of θ with hyper-parameters a and b, and π(a, b) is the prior
density of a and b over D.

The expectation of the Bayesian estimation of θ for the hyperparameters is what definition 4.1
defines as the E-Bayesian estimation of θ. The definition of E-MSE of the E-Bayes estimators of θ
presented by [11] is provided below.

Definition 4.2. E − MSE(θ̂EB) =
∫ ∫

D MSE(θ̂B(a, b))π(a, b)dadb = E[MSE(θ̂B(a, b))] is referred
to as the E-MSE of E-Bayes estimation of θ when MSE(θ̂B(a, b)) is continuous and is considered
finite. D is the domain of a and b, MSE(θ̂(a, b)) is the MSE of the Bayesian estimation of θ with
hyper-parameters a and b, and π(a, b) is the prior density of a and b over D.

The E-Bayesian estimators of the parameter θ are obtained in this section using three different
prior distributions for the hyper-parameters a and b. These prior distributions were chosen
to demonstrate how the various prior distributions affected the E-Bayesian estimation of the
parameter θ. The prior distributions we used are given by

π1(a, b) =
2(c − b)

c2 , 0 < a < 1 0 < b < c. (20)

π2(a, b) =
1
c

, 0 < a < 1 0 < b < c. (21)

π3(a, b) =
2b
c2 , 0 < a < 1 0 < b < c. (22)

These prior distributions are used to ensure that π(θ|a, b) is a decreasing function in θ. The
E-Bayes estimators of the parameter θ and the hazard rate function using π1(a, b) are derived in
the subsequent theorem under various loss functions.

Theorem 3. We have the E-Bayes estimators of θ and hazard rate, which are provided, for the
censored sample X = (X(1), X(2), ..., X(r)) from (1) using the prior distribution (20) under SELF,
ELF, and PLF, respectively as

i) Under SELF

θ̂ES1 =
2r + 1

c2

{
(T + c)ln

(
T + c

T

)
− c
}

, (23)

ĥ(t)ES1 = λtλ−1etλ 2r + 1
c2

{
(T + c)ln

(
T + c

T

)
− c
}

. (24)

ii) Under ELF

θ̂EE1 =
2r − 1

c2

{
(T + c)ln

(
T + c

T

)
− c
}

, (25)

ĥ(t)EE1 = λtλ−1etλ 2r − 1
c2

{
(T + c)ln

(
T + c

T

)
− c
}

. (26)

iii) Under PLF

θ̂EP1 =
2
c2

{
(T + c)ln

(
T + c

T

)
− c
} ∫ 1

0

√
(r + a)(r + a + 1)da, (27)

ĥ(t)EP1 = λtλ−1etλ 2
c2

{
(T + c)ln

(
T + c

T

)
− c
} ∫ 1

0

√
(r + a)(r + a + 1)da. (28)

Proof.
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i) The following is the expression of the E-Bayes estimator of θ using SELF:

θ̂ES1 =
∫ 1

0

∫ c

0
θ̂B1(a, b)π1(a, b)dadb

Using (8) and (20), the above equation simplifies to

θ̂ES1 =
2r + 1

c2

{
(T + c)ln

(
T + c

T

)
− c
}

Likewise, the E-Bayes estimator of hazard rate using SELF using (9) and (20) is as follows:

ĥ(t)ES1 =
∫ ∫

D
ĥB1(a, b)π1(a, b)dadb

= λtλ−1etλ 2r + 1
c2

{
(T + c)ln

(
T + c

T

)
− c
}

.

ii) The following is the expression of the E-Bayes estimator of θ using ELF:

θ̂EE1 =
∫ 1

0

∫ c

0
θ̂B2(a, b)π1(a, b)dadb.

Using (10) and (20), the above equation simplifies to

θ̂EE1 =
2r − 1

c2

{
(T + c)ln

(
T + c

T

)
− c
}

.

Likewise, the E-Bayes estimator of hazard rate using ELF using (11) and (20) is as follows:

ĥ(t)EE1 =
∫ 1

0

∫ c

0
ĥB2(a, b)π1(a, b)dadb

= λtλ−1etλ 2r − 1
c2

{
(T + c)ln

(
T + c

T

)
− c
}

.

iii) The following is the expression of the E-Bayes estimator of θ using PLF:

θ̂EP1 =
∫ 1

0

∫ c

0
θ̂B3π1(a, b)dadb.

Using (12) and (20), the above equation simplifies to

θ̂EP1 =
2
c2

{
(T + c)ln

(
T + c

T

)
− c
} ∫ 1

0

√
(r + a)(r + a + 1)da.

Likewise, the E-Bayes estimator of hazard rate using PLF using (13) and (20) is as follows:

ĥ(t)EP1 = λtλ−1etλ 2
c2

{
(T + c)ln

(
T + c

T

)
− c
} ∫ 1

0

√
(r + a)(r + a + 1)da.

�
The E-Bayes estimators of the parameter θ and the hazard rate function using π2(a, b) are

derived in the subsequent theorem under various loss functions.

Theorem 4. We have the E-Bayes estimators of θ and hazard rate, which are provided, for the
censored sample X = (X(1), X(2), ..., X(r)) from (1) using the prior distribution (21) under SELF,
ELF, and PLF, respectively as

i) Under SELF

θ̂ES2 =
2r + 1

2c
ln
(

T + c
T

)
, (29)

ĥ(t)ES2 = λtλ−1etλ 2r + 1
2c

ln
(

T + c
T

)
. (30)
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ii) Under ELF

θ̂EE2 =
2r − 1

2c
ln
(

T + c
T

)
, (31)

ĥ(t)EE2 = λtλ−1etλ 2r − 1
2c

ln
(

T + c
T

)
. (32)

iii) Under PLF

θ̂EP2 =
1
c

ln
(

T + c
T

) ∫ 1

0

√
(r + a)(r + a + 1)da, (33)

ĥ(t)EP2 = λtλ−1etλ 1
c

ln
(

T + c
T

) ∫ 1

0

√
(r + a)(r + a + 1)da. (34)

Proof. The proof is excluded since it is similar to that of Theorem 3. �
The E-Bayes estimators of the parameter θ and the hazard rate function using π3(a, b) are

derived in the subsequent theorem under various loss functions.

Theorem 5. We have the E-Bayes estimators of θ and hazard rate, which are provided, for the
censored sample X = (X(1), X(2), ..., X(r)) from (1) using the prior distribution (22) under SELF,
ELF, and PLF, respectively as

i) Under SELF

θ̂ES3 =
2r + 1

c2

{
c − Tln

(
T + c

T

)}
, (35)

ĥ(t)ES3 = λtλ−1etλ 2r + 1
c2

{
c − Tln

(
T + c

T

)}
. (36)

ii) Under ELF

θ̂EE3 =
2r − 1

c2

{
c − Tln

(
T + c

T

)}
, (37)

ĥ(t)EE3 = λtλ−1etλ 2r − 1
c2

{
c − Tln

(
T + c

T

)}
. (38)

iii) Under PLF

θ̂EP3 =
2
c2

{
c − Tln

(
T + c

T

)} ∫ 1

0

√
(r + a)(r + a + 1)da, (39)

ĥ(t)EP3 = λtλ−1etλ 2
c2

{
c − Tln

(
T + c

T

)} ∫ 1

0

√
(r + a)(r + a + 1)da. (40)

Proof. The proof is excluded since it is similar to that of Theorem 3. �
The E-MSE of the E-Bayes estimators of the parameter θ using different priors are derived in

the subsequent theorem under various loss functions.

Theorem 6. The E-MSE of the E-Bayes estimators of θ using the priors π1(a, b), π2(a, b), and
π3(a, b) under SELF, ELF, and PLF are presented, respectively, for the E-Bayes estimators of θ of
Type-II censored sample X = (X(1), X(2), ..., X(r)) from (1) as

i) Under SELF

E − MSE(θ̂ES1) =
2r + 1

c2

{
ln
(

T
T + c

)
+

c
T

}
, (41)

E − MSE(θ̂ES2) =
2r + 1

2

{
1

T(c + T)

}
, (42)

E − MSE(θ̂ES3) =
2r + 1

c2

{
ln
(

T + c
T

)
− c

c + T

}
. (43)
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ii) Under ELF

E − MSE(θ̂EE1) =
2r + 3

c2

{
ln
(

T
T + c

)
+

c
T

}
, (44)

E − MSE(θ̂EE2) =
2r + 3

2

{
1

T(c + T)

}
, (45)

E − MSE(θ̂EE3) =
2r + 3

c2

{
ln
(

T + c
T

)
− c

c + T

}
. (46)

iii) Under PLF

E − MSE(θ̂EP1) =
4
c2

{
ln
(

T
T + c

)
+

c
T

} ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da, (47)

E − MSE(θ̂EP2) =
2

T(c + T)

∫ 1

0
(r + a)[(r + a + 1)−

√
(r + a)(r + a + 1)]da, (48)

E − MSE(θ̂EP3) =
4
c2

[
ln
(

T + c
T

)
− c

c + T

] ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da. (49)

Proof.

i) Under SELF, the E-MSE of the estimator, θ̂ES1 can be obtained from (14) and (20) by using
the definition (4.2) and is given by

E − MSE(θ̂ES1) =
∫ ∫

D
MSE(θ̂B1(a, b))π1(a, b)dadb

=
2r + 1

c2

{
ln
(

T
T + c

)
+

c
T

}
.

Similarly, the E-MSE of θ̂ES2 and θ̂ES3 can be obtained from (14), (21) and (22) and by using
the definition (4.2) and are given, respectively, by

E − MSE(θ̂ES2) =
∫ ∫

D
MSE(θ̂B1(a, b))π2(a, b)dadb

=
2r + 1

2

{
1

T(c + T)

}
,

and

E − MSE(θ̂ES3) =
∫ ∫

D
MSE(θ̂B1(a, b))π3(a, b)dadb

=
2r + 1

c2

{
ln
(

T + c
T

)
− c

c + T

}
.

ii) Under ELF, the E-MSE of the estimator, θ̂EE1 can be obtained from (15) and (20), and using
the definition (4.2) and is given by

E − MSE(θ̂EE1) =
∫ ∫

D
MSE(θ̂B2(a, b))π1(a, b)dadb

=
2r + 3

c2

{
ln
(

T
T + c

)
+

c
T

}
.

Similarly, the E-MSE of θ̂EE2 and θ̂EE3 can be obtained from (15), (21) and (22) and by using
the definition (4.2) and are given, respectively, by

E − MSE(θ̂EE2) =
∫ ∫

D
MSE(θ̂B2(a, b))π2(a, b)dadb
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=
2r + 3

2

{
1

T(c + T)

}
,

and

E − MSE(θ̂EE3) =
∫ ∫

D
MSE(θ̂B2(a, b))π3(a, b)dadb

=
2r + 3

c2

{
ln
(

T + c
T

)
− c

c + T

}
.

iii) Under PLF, the E-MSE of the estimator, θ̂EP1 can be obtained from (16) and (20) by using
the definition (4.2) and is given by

E − MSE(θ̂EP1) =
∫ ∫

D
MSE(θ̂B3(a, b))π1(a, b)dadb

=
4
c2

{
ln
(

T
T + c

)
+

c
T

} ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da.

Similarly, the E-MSE of θ̂EP2 and θ̂EP3 can be obtained from (16), (20) and (21) and by using
the definition (4.2) and are given, respectively, by

E − MSE(θ̂EP2) =
∫ ∫

D
MSE(θ̂B3(a, b))π2(a, b)dadb

=
2

T(c + T)

∫ 1

0
(r + a)[(r + a + 1)−

√
(r + a)(r + a + 1)]da,

and

E − MSE(θ̂EP3) =
∫ ∫

D
MSE(θ̂B3(a, b))π2(a, b)dadb

=
4
c2

[
ln
(

T + c
T

)
− c

c + T

]
∫ 1

0
(r + a)[(r + a + 1)−

√
(r + a)(r + a + 1)]da.

�
The E-MSE of the E-Bayes estimators of the hazard rate h(t) using different priors are derived

in the subsequent theorem under various loss functions.

Theorem 7. The E-MSE of the E-Bayes estimators of h(t) using the priors π1(a, b), π2(a, b), and
π3(a, b) under SELF, ELF, and PLF are presented, respectively, for the E-Bayes estimators of h(t)
of Type-II censored sample X = (X(1), X(2), ..., X(r)) from (1) as

i) Under SELF

E − MSE(ĥ(t)ES1) = (λtλ−1etλ
)2 2r + 1

c2

{
ln
(

T
T + c

)
+

c
T

}
, (50)

E − MSE(ĥ(t)ES2) = (λtλ−1etλ
)2 2r + 1

2

{
1

T(c + T)

}
, (51)

E − MSE(ĥ(t)ES3) = (λtλ−1etλ
)2 2r + 1

c2

{
ln
(

T + c
T

)
− c

c + T

}
. (52)

ii) Under ELF

E − MSE(ĥ(t)EE1) = (λtλ−1etλ
)2 2r + 3

c2

{
ln
(

T
T + c

)
+

c
T

}
, (53)

E − MSE(ĥ(t)EE2) = (λtλ−1etλ
)2 2r + 3

2

{
1

T(c + T)

}
, (54)

E − MSE(ĥ(t)EE3) = (λtλ−1etλ
)2 2r + 3

c2

{
ln
(

T + c
T

)
− c

c + T

}
. (55)
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iii) Under PLF

E − MSE(ĥ(t)EP1) = (λtλ−1etλ
)2 4

c2

{
ln
(

T
T + c

)
+

c
T

} ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da, (56)

E − MSE(ĥ(t)EP2) = (λtλ−1etλ
)2 2

T(c + T)

∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da, (57)

E − MSE(ĥ(t)EP3) = (λtλ−1etλ
)2 4

c2

[
ln
(

T + c
T

)
− c

c + T

] ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da. (58)

Proof. The proof is excluded since it is similar to that of Theorem 6. �

5 Properties of E-Bayesian estimation

We now go over some important features of E-Bayesian estimators and their E-MSE. The rela-
tionship between E-Bayes estimators of θ under various loss functions is given in the subsequent
theorem.

Theorem 8. Using the priors π1(a, b), π2(a, b) and π3(a, b) under various loss functions, the
relationship between E-Bayes estimators of θ when 0< c <T is given as

a) under SELF

i) θ̂ES3 < θ̂ES1 < θ̂ES2,

ii) limT→∞ θ̂ES1 = limT→∞ θ̂ES2 = limT→∞ θ̂ES3,

b) under ELF

i) θ̂EE3 < θ̂EE1 < θ̂EE2,

ii) limT→∞ θ̂EE1 = limT→∞ θ̂EE2 = limT→∞ θ̂EE3,

c) under PLF

i) θ̂EP3 < θ̂EP1 < θ̂EP2,

ii) limT→∞ θ̂EP1 = limT→∞ θ̂EP2 = limT→∞ θ̂EP3.

Proof.

a) Under SELF

i) From (23) and (29), we have

θ̂ES1 − θ̂ES2 =
2r + 1

c

[(
1
2
+

c
T

)
ln
(

T + c
T

)
− 1
]

. (59)
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For −1 < x < +1, we have, ln(1 + x) = x − x2

2 + x3

3 − x4

4 + x5

5 − ... = ∑∞
k=1(−1)k−1 xk

k .
Let x = c

T , when 0 < c < T, 0 < c
T < 1, we get[(

1
2
+

c
T

)
ln
(

T + c
T

)]
− 1

=

(
1
2
+

c
T

) [
c
T
− 1

2

( c
T

)2
+

1
3

( c
T

)3
− 1

4

( c
T

)4
+ ...

]
− 1

=

[
1
2

( c
T

)
− 1

4

( c
T

)2
+

1
6

( c
T

)3
− 1

8

( c
T

)4
+ ...

]
+

[( c
T

)2
− 1

2

( c
T

)3

+
1
3

( c
T

)4
− 1

4

( c
T

)5
+ ...

]
− 1

=
1
2

( c
T

)
+

3
4

( c
T

)2
[

1 − 4
9

( c
T

)]
+

5
24

( c
T

)4
[

1 − 18
25

( c
T

)]
+ ... − 1

<0.

(60)

So, we can say that,
θ̂ES1 < θ̂ES2. (61)

Now from (23) and (35), we have

θ̂ES1−θ̂ES3

=
2r + 1

c2

[
(T + c) ln

(
T + c

T

)
− c
]
− 2r + 1

c2

[
c − T ln

(
T + c

T

)]
=

2r + 1
c2

[
(2T + c) ln

(
T + c

T

)
− 2c

]
=

2r + 1
c

[
(2T + c)

c
ln
(

T + c
T

)
− 2
]

.

(62)

[(
2T
c

+ 1
)

ln
(

T + c
T

)]
− 2

=

[
2 −

( c
T

)
+

(
2
3

)( c
T

)2
−
(

1
2

)( c
T

)3
+ ...

]
+

[( c
T

)
− 1

2

( c
T

)2

+
1
3

( c
T

)3
− 1

4

( c
T

)4
+ ...

]
− 2

=

(
1
6

)( c
T

)2 [
1 −

( c
T

)]
+

3
20

( c
T

)4
[

1 − 8
9

( c
T

)]
+ ...

>0.

(63)

So we can say that,
θ̂ES1 > θ̂ES3. (64)

From (61) and (64),
θ̂ES3 < θ̂ES1 < θ̂ES2. (65)

ii) From (59) and (60) and by applying limit T → ∞

lim
T→∞

(θ̂ES1 − θ̂ES2)

=

(
2r + 1

c

)
lim

T→∞
{1

2

( c
T

)
+

3
4

( c
T

)2
[

1 − 4
9

( c
T

)]
+

5
24

( c
T

)4
[

1 − 18
25

( c
T

)]
+ ... − 1}

=0.

(66)
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From (62) and (63) and by applying limit T → ∞

lim
T→∞

(θ̂ES1 − θ̂ES3)

=

(
2r + 1

c

)
lim

T→∞
{
(

1
6

)( c
T

)2 [
1 −

( c
T

)]
+

3
20

( c
T

)4
[

1 − 8
9

( c
T

)]
+ ...}

=0.

(67)

Hence from (66) and (67),

lim
T→∞

θ̂ES1 = lim
T→∞

θ̂ES2 = lim
T→∞

θ̂ES3. (68)

The remaining part of the proof is removed since it is comparable to that presented above. �
The relationship between E-Bayes estimators of h(t) under various loss functions is given in the
subsequent theorem.

Theorem 9. Using the priors π1(a, b), π2(a, b) and π3(a, b) under various loss functions, the
relationship between E-Bayes estimators of h(t) when 0< c <T is given as

a) under SELF

i) ĥ(t)ES3 < ĥ(t)ES1 < ĥ(t)ES2,

ii) limT→∞ ĥ(t)ES1 = limT→∞ ĥ(t)ES2 = limT→∞ ĥ(t)ES3,

b) under ELF

i) ĥ(t)EE3 < ĥ(t)EE1 < ĥ(t)EE2,

ii) limT→∞ ĥ(t)EE1 = limT→∞ ĥ(t)EE2 = limT→∞ ĥ(t)EE3,

c) under PLF

i) ĥ(t)EP3 < ĥ(t)EP1 < ĥ(t)EP2,

ii) limT→∞ ĥ(t)EP1 = limT→∞ ĥ(t)EP2 = limT→∞ ĥ(t)EP3.

The proof is excluded since it is similar to that of Theorem 8.

The relationship between E-MSE of the E-Bayes estimators of θ under various loss functions is
given in the subsequent theorem.

Theorem 10. Using the priors π1(a, b), π2(a, b) and π3(a, b) under various loss functions, the
relationship between E-MSE of the E-Bayes estimators of θ when 0< c <T is given as

a) under SELF

i) E − MSE(θ̂ES3) < E − MSE(θ̂ES1) < E − MSE(θ̂ES2),

ii) limT→∞ E − MSE(θ̂ES1) = limT→∞ E − MSE(θ̂ES2) = limT→∞ E − MSE(θ̂ES3).

b) under ELF

i) E − MSE(θ̂EE3) < E − MSE(θ̂EE1) < E − MSE(θ̂EE2),

ii) limT→∞ E − MSE(θ̂EE1) = limT→∞ E − MSE(θ̂EE2) = limT→∞ E − MSE(θ̂EE3).

c) under PLF

i) E − MSE(θ̂EP3) < E − MSE(θ̂EP1) < E − MSE(θ̂EP2),

ii) limT→∞ E − MSE(θ̂EP1) = limT→∞ E − MSE(θ̂EP2) = limT→∞ E − MSE(θ̂EP3).

Proof.

a)
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i) From (41) and (43), we have

E − MSE(θ̂ES3) − E − MSE(θ̂ES1)

=
1
c

[
ln
(

T + c
T

)
−
(

c
c + T

)
− ln

(
T

T + c

)
− c

T

]
=

1
c

[
2 ln

(
T + c

T

)
− c(2T + c)

T(c + T)

]
=

2
c

ln
(

T + c
T

)
− (2T + c)

T(c + T)
< 0. (69)

So, we can say that,
E − MSE(θ̂ES3) < E − MSE(θ̂ES1). (70)

Now, from (41) and (42), we have

E − MSE(θ̂ES2) − E − MSE(θ̂ES1)

=
c
2

1
T(c + T)

− 1
c

{
ln
(

T + c
T

)
− c

c + T

}
=

c
2T(c + T)

+
1

c + T
− 1

c
ln
(

T + c
T

)
=

c + 2T
(c + T)2T

− 1
c

[
c
T
− 1

2

( c
T

)2
+

1
3

( c
T

)3
− ...

]
=

c + 2T
(c + T)2T

− 1
T
+

1
2T

( c
T

) [
1 − 2

3

( c
T

)]
+

1
4T

( c
T

)3
[

1 − 4
5

( c
T

)]
+ ...

> 0. (71)

So, we can say that,
E − MSE(θ̂ES2) > E − MSE(θ̂ES1). (72)

From (70) and (72),

E − MSE(θ̂ES3) < E − MSE(θ̂ES1) < E − MSE(θ̂ES2). (73)

ii) From (69) and by applying limit T → ∞

lim
T→∞

(E − MSE(θ̂ES3)− E − MSE(θ̂ES1))

= lim
T→∞

[
2
c

ln
(

T + c
T

)
− (2T + c)

T(c + T)

]
= lim

T→∞

[
2
T
− c

T2 +
2c2

3T3 − c3

2T4 + ...
]

− lim
T→∞

2 + c
T

T( c
T + 1)

= 0. (74)

From (71) and by applying limit T → ∞

lim
T→∞

(E − MSE(θ̂ES2)− E − MSE(θ̂ES1))

= lim
T→∞

c
T + 2

2T( c
T + 1)

− 1
T
+

c
2T2

[
1 − 2

3

( c
T

)]
+

c3

4T4

[
1 − 4

5

( c
T

)]
+ ...

= 0. (75)

Hence from (73) and (74),

lim
T→∞

E − MSE(θ̂ES1) = lim
T→∞

E − MSE(θ̂ES2) = lim
T→∞

E − MSE(θ̂ES3). (76)
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The remaining part of the proof is removed since it is comparable to that presented above. �
The relationship between E-MSE of the E-Bayes estimators of h(t) under various loss functions is
given in the subsequent theorem.

Theorem 11. Using the priors π1(a, b), π2(a, b) and π3(a, b) under various loss functions, the
relationship between E-MSE of the E-Bayes estimators of h(t) when 0< c <T is given as

a) under SELF

i) E − MSE(ĥ(t)ES3) < E − MSE(ĥ(t)ES1) < E − MSE(ĥ(t)ES2),

ii) limT→∞ E− MSE(ĥ(t)ES1) = limT→∞ E− MSE(ĥ(t)ES2) = limT→∞ E− MSE(ĥ(t)ES3).

b) under ELF

i) E − MSE(ĥ(t)EE3) < E − MSE(ĥ(t)EE1) < E − MSE(ĥ(t)EE2),

ii) limT→∞ E− MSE(ĥ(t)EE1) = limT→∞ E− MSE(ĥ(t)EE2) = limT→∞ E− MSE(ĥ(t)EE3).

c) under PLF

i) E − MSE(ĥ(t)EP3) < E − MSE(ĥ(t)EP1) < E − MSE(ĥ(t)EP2),

ii) limT→∞ E− MSE(ĥ(t)EP1) = limT→∞ E− MSE(ĥ(t)EP2) = limT→∞ E− MSE(ĥ(t)EP3).

Table 1: The AE (first row), MSE (second row) and ACI for MLE, Bayesian and E-Bayesian estimates of θ for real
data.

n=148
r=30 r=60 r=90 r=120 ACI

θ̂MLE 0.0140806 0.0213817 0.0302629 0.0346765
9.58331 * 10−4 5.65431 * 10−4 2.45881 * 10−4 1.07767 * 10−4

θ̂B1 0.014312 0.021557 0.0304276 0.0348179 (0.0113113, 0.0473139)
1.0999 * 10−5 9.3838 * 10−6 1.11832 * 10−5 1.03929 * 10−5

θ̂B2 0.0138428 0.0212007 0.0300914 0.0345289 (0.0111863, 0.0467911)
1.13596 * 10−5 9.5389 * 10−6 1.13068 * 10−5 1.04791 * 10−5

θ̂B3 0.0145447 0.0217345 0.0305953 0.0349621 (0.0113736, 0.0475745)
1.10877 * 10−5 9.42226 * 10−6 1.12139 * 10−5 1.04144 * 10−5

θ̂ES1 0.0143109 0.0215561 0.0304265 0.0348168 (0.0113114, 0.0473116)
1.09967 * 10−5 9.38285 * 10−6 1.11823 * 10−5 1.03922 * 10−5

θ̂ES2 0.0143087 0.0215542 0.0304243 0.0348148 (0.0113117, 0.0473072)
1.09922 * 10−5 9.38095 * 10−6 1.11805 * 10−5 1.0391 * 10−5

θ̂ES3 0.0143065 0.0215524 0.030422 0.0348127 (0.011312, 0.0473028)
1.09877 * 10−5 9.37904 * 10−6 1.11788 * 10−5 1.03897 * 10−5

θ̂EE1 0.0138417 0.0211998 0.0300903 0.0345279 (0.0111864, 0.0467889)
1.13573 * 10−5 9.53794 * 10−6 1.13059 * 10−5 1.04785 * 10−5

θ̂EE2 0.0138396 0.021198 0.0300881 0.0345258 (0.0111867, 0.0467845)
1.13526 * 10−5 9.536 * 10−6 1.13041 * 10−5 1.04772 * 10−5

θ̂EE3 0.0138374 0.0211961 0.0300859 0.0345238 (0.011187, 0.0467801)
1.1348 * 10−5 9.53407 * 10−6 1.13023 * 10−5 1.04759 * 10−5

θ̂EP1 0.0300255 0.0353436 0.0443292 0.0472391 (0.0113737, 0.0475723)
1.10854 * 10−5 9.4213 * 10−6 1.1213 * 10−5 1.04137 * 10−5

θ̂EP2 0.0145414 0.0217316 0.0305919 0.0349589 (0.011374, 0.0475678)
1.10809 * 10−5 9.41939 * 10−6 1.12113 * 10−5 1.04124 * 10−5

θ̂EP3 0.0145391 0.0217297 0.0305896 0.0349568 (0.0113743, 0.0475634)
1.10763 * 10−5 9.41748 * 10−6 1.12095 * 10−5 1.04112 * 10−5
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6 Results

In this section, we examine how well the estimators developed in this article performed.

6.1 Real Data Analysis

We used the real data set given by [14] for real-life situations indicating the graft survival periods
in months of 148 renal transplant patients to examine the performance of the estimators developed
in this research. The data were fitted using the Chen distribution, and the p-value and test statistic
values for the Kolmogorov-Smirnov test are 0.5844 and 0.0626, respectively. The MLEs for the
unknown Chen distribution parameters are calculated to be θ̂ =0.0429 and λ̂ =0.3863. We generate
Type-II censored samples by choosing different values for r (30, 60, 90 and 120). We presume
that the shape parameter is always known and equal to its MLE, i.e., λ̂ = 0.3863. Using the
bootstrapping concept, we computed the AE, MSE, E-MSE and 95% average credible interval
(ACI) of the estimators and are given in Tables 1 and 2.

Table 2: The AE (first row), MSE (second row) and ACI for MLE, Bayesian and E-Bayesian estimates of h(t) for real
data.

n=148
r=30 r=60 r=90 r=120 ACI

λ̂MLE 0.0205438 0.0334508 0.0501238 0.0557942
1.82571 * 10−3 1.28701 * 10−3 7.69232 * 10−4 7.28922 * 10−4

ĥB1 0.0198053 0.0325953 0.0490964 0.0556378 (0.00534318, 0.0855648)
2.10708 * 10−5 2.20851 * 10−5 3.14922 * 10−5 3.08391 * 10−5

ĥB2 0.019156 0.0320565 0.0485539 0.0551761 (0.00528414, 0.0846193)
2.17617 * 10−5 2.24501 * 10−5 3.18402 * 10−5 3.1095 * 10−5

ĥB3 0.0201274 0.0328636 0.0493669 0.0558682 (0.00537262, 0.0860362)
2.12408 * 10−5 2.21756 * 10−5 3.15787 * 10−5 3.09028 * 10−5

ĥES1 0.0198039 0.0325939 0.0490946 0.0556361 (0.00534354, 0.0855612)
2.10668 * 10−5 2.2083 * 10−5 3.14898 * 10−5 3.08372 * 10−5

ĥES2 0.019801 0.0325912 0.0490911 0.0556328 (0.00534425, 0.0855542)
2.10586 * 10−5 2.2079 * 10−5 3.14851 * 10−5 3.08335 * 10−5

ĥES3 0.0197981 0.0325885 0.0490876 0.0556295 (0.00534496, 0.0855471)
2.10505 * 10−5 2.20749 * 10−5 3.14804 * 10−5 3.08298 * 10−5

ĥEE1 0.0191546 0.0320552 0.0485521 0.0551744 (0.00528449, 0.0846158)
2.17575 * 10−5 2.2448 * 10−5 3.18378 * 10−5 3.10931 * 10−5

ĥEE2 0.0191518 0.0320525 0.0485487 0.0551712 (0.0052852, 0.0846088)
2.17491 * 10−5 2.24439 * 10−5 3.1833 * 10−5 3.10894 * 10−5

ĥEE3 0.0191489 0.0320499 0.0485452 0.0551679 (0.0052859, 0.0846018)
2.17407 * 10−5 2.24398 * 10−5 3.18282 * 10−5 3.10856 * 10−5

ĥEP1 0.0201259 0.0328622 0.0493651 0.0558665 (0.00537298, 0.0860327)
2.12367 * 10−5 2.21735 * 10−5 3.15763 * 10−5 3.09009 * 10−5

ĥEP2 0.020123 0.0328595 0.0493616 0.0558632 (0.0053737, 0.0860256)
2.12285 * 10−5 2.21695 * 10−5 3.15716 * 10−5 3.08972 * 10−5

ĥEP3 0.02012 0.0328567 0.049358 0.0558599 (0.00537441, 0.0860184)
2.12203 * 10−5 2.21654 * 10−5 3.15669 * 10−5 3.08935 * 10−5

From Tables 1 and 2, it is to be noted that the approximated MSEs decrease as r increases. We
can deduce from Tables that E-Bayesian estimators outperform MLE and Bayesian estimators in
terms of MSE.
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7 Discussion and Concluding Remark

The parameter and hazard rate of the Chen distribution based on Type II censoring are estimated
using the MLE, Bayesian, and E-Bayesian approaches. The estimates are computed using real data,
and various estimation techniques are compared. One of the study’s key findings is the superiority
of the proposed estimators versus existing estimators. The impact of various prior distributions
and loss functions is also something we theoretically investigate. Important concluding remarks
from our study are listed below:

∙ The lowest MSE of all the estimates is seen in the E-Bayesian estimations of θ.
∙ The lowest E-MSE among all estimates is found in the E-Bayesian estimations of θ based on

ELF with prior distribution π3(a, b).
∙ For a fixed value of n and r the E-MSE is less for E-Bayesian estimators as compared to

Bayesian and MLE.
∙ Compared to Bayesian and MLE, the proposed estimators perform better in terms of

minimum MSE.
Combining the findings mentioned above, we recommended the E-Bayesian technique, which
outperforms previous estimates in terms of minimum MSE, to estimate the scale parameter and
hazard rate functions of the Chen distribution based on the type-II censoring scheme using prior
distribution π3(a, b).
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Abstract

The problem of biasness and availability of auxiliary variable for the estimating population mean is a big
concern, both can be handled by proposing unbiased estimators in the absence of auxiliary variable. So in
this paper unbiased exponential type estimators of population mean have been proposed. The estimators are
proposed in the absence of the instrumental variable called the auxiliary variable by taking the advantage
of the population and the sample median of the study variable. To about the first order approximation, the
theoretical formulations of the bias and mean square error (MSE) are obtained. The circumstances in
which the suggested estimators have the lowest mean squared error values when compared to the existing
estimators were also deduced. In comparison to the currently used estimators, it was discovered that
the suggested estimators of population mean had the lowest MSE, hence highest efficiency. Also least
influence from the data’s influential observations when it came to accurately calculating the population
mean for skewed data. The theoretical findings of the paper are validated by the numerical study.

Keywords: Dual estimator, Median, Study variable, Unbiased Estimator, Mean square error

1. Introduction

In sampling, a representative part of the population called the sample is studied to determine the
parameters or the characteristics of the population like the mean, variance, median, correlation
coefficient etc. The sample mean estimator is a good device to find the approximate value of the
population mean. The population mean can be estimated more precisely by using the auxiliary
information as the pioneer work of Cochran [2] proposed a ratio estimator which is more precise
than the sample mean estimator when the study and auxiliary variable are positively correlated,
though this estimator is biased. Using auxiliary information which is often obtained at an extra
survey cost, the authors such as Sisodia and Dwivedi [9], Yadav and Kadilar [10], Ekpenyong
and Enang [15] etc. proposed modified ratio estimators which are more efficient than the sample
mean and the classical ratio estimator. The pioneering work of Subramani [6] offered a precise
ratio estimator to estimate the mean of skewed population without the usage of auxiliary variable
by leveraging the median of main variable as the aforementioned estimators are inapplicable in
the absence of the auxiliary variable. The median of the study variable may easily be available
without having exact information on every data point (See Subramani [6] and these median based
estimators are robust in nature since outliers have the least impact on them. The exponential
ratio estimator of population mean introduced by Bahl and Tuteja [1] can be applied even when
correlations are weak. Later, to be more accurate than the traditional exponential ratio estimator,
Singh et.al [12], Yasmeen et al. [8], Zaman and Kadilar [4], Hussain et al. [3] and several others
suggested various modified exponential ratio type estimators.

The estimators discussed above are all biassed, which could cause the population mean to
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be overestimated or underestimated. As a result, the authors Singh et al. [13], Yadav et al. [11],
Singh et al. [14] etc. proposed almost unbiased estimators of population mean in presence of
auxiliary variable. The auxiliary variable may not be always avaliable, therefore in the absence of
auxiliary variable present study is carried to propose high precision exponential type estimators
of population mean which may be unbiased in nature and also able to handle the voluminous
data influenced by outliers.

2. Material and Methods

Assume that a simple random sampling without replacement (SRSWOR) sampling strategy is
used to select a random sample of size n from a finite population of N number of units. The
goal of the study is to estimate the population mean Ȳ = 1

N ∑N
i=1 Yi without the use of auxiliary

variable information. Assume that data on the study variable Y’s correlation with the auxiliary
variable X is accessible for every member of the population. The notations and formula used in
the paper are as follows

Study Variable
“Cy =

Sy
Ȳ is the coefficient of variation .

S2
y = 1

N−1 ∑N
i=1(Yi − Ȳ)2 is the population mean

square.
s2

y = 1
n−1 ∑n

i=1(yi − ȳ)2 is the sample mean
square.

Auxiliary Variable
: Cx = Sx

X̄ is the coefficient of variation.

: S2
x = 1

N−1 ∑N
i=1(Xi − X̄)2 is the population

mean square.
: s2

x = 1
n−1 ∑n

i=1(xi − x̄)2 is the sample mean
square.

Further,
M (m) are the population (sample) median of the main variable.

M̄ = 1
NCn

∑
NCn
i=1 mi is the average of sample medians of the main variable.

mi is the sample median of ith sample (i = 1, 2, ...,N Cn).
NCn is the number of samples of size n from N.
The study variable dataset is skewed, M ̸= Ȳ.

Cm = Sm
M , Cym =

Sym
ȲM , Sym = 1

NCn
∑

NCn
i=1 (ȳi − Ȳ)(mi − M), S2

m = 1
NCn

∑
NCn
i=1 (mi − M)2.

ρ = cov(x,y)
SxSy

, is the population correlation coefficient between X and Y.

γ = 1− f
n , where the sampling fraction f = n

N .
θ = rX̄

2(rX̄+s)”.

3. Examining Current Ratio Type Estimators

The sample mean estimator is the fundamental estimator of the population mean without the
usage of an auxiliary variable as

t1 =
1
n

n

∑
i=1

yi.

Bias and MSE of the estimator t1 up to O(n)−1 are as

Bias(t1) = 0. (1)

MSE(t1) = γȲ2C2
y . (2)

Making the use of auxiliary variable Cochran [2] proposed a ratio estimator which is more
efficient than the estimator t1, if Cx

2Cy
< ρ ≤ +1 as

t2 = ȳ
X̄
x̄

.
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The Bias and MSE expressions of the estimator t2 up to O(n)−1 are as

Bias(t2) = γȲ(C2
x − Cyx). (3)

MSE(t2) = γȲ2(C2
y + C2

x − 2Cyx). (4)

According to Bahl and Tuteja [1] proposal, an effective exponential ratio type estimator may be
applied even when X and Y have weak correlations.

t3 = ȳ exp
(

X̄ − x̄
X̄ + x̄

)
.

The estimator t3 is more efficient than the sample mean estimator t1, if 1
4 < ρxy

Cy
Cx

< 3
4 . The Bias

and MSE up to O(n)−1 are as

Bias(t3) = γȲ
(

3
8

C2
x −

1
2

Cyx

)
. (5)

MSE(t3) = γȲ2
(

C2
y +

C2
x

4
− Cyx

)
. (6)

A family of modified exponential ratio estimators was presented by Singh et al. [12] employing
various well-known auxiliary variable characteristics, such as correlation coefficient, coefficient of
variation, skewness, etc. as

t4 = ȳ exp
[
(rX̄ + s)− (rx̄ − s)
(rX̄ + s) + (rx̄ − s)

]
.

The Bias and MSE expressions of up to O(n)−1 for the estimator t4 are as

Bias(t4) = γȲ(θ2C2
x − θCyx). (7)

MSE(t4) = γȲ2(C2
y + θ2C2

x − 2θCyx). (8)

A median-based ratio type estimator without the usage of an auxiliary variable was proposed by
Subramani [6] as

t5 = ȳ
[

M
m

]
.

The estimator t5 is biased with the expressions of Bias and MSE up to O(n)−1 as

Bias(t5) = γȲ
(

C2
m − Cym − Bias(m)

γM

)
. (9)

MSE(t5) = γȲ2
(

C2
y +

Ȳ2

M2 C2
m − 2

Ȳ
M

Cym

)
. (10)

The sample mean estimators is biased while as all other estimators viz. Cochran [2], Bahl and
Tuteja [1], Singh et al. [12] and Subramani [6] discussed above are biased.

4. Proposed Exponential Ratio Estimators

In the absence of auxiliary variable, the proposed exponential ratio type estimators of the study
are as

tue1 = ȳ
[

α exp
(

M − m
aM

)
+ (1 − α) exp

(
m − M

aM

)]
.

tue2 = ȳ
[

β exp
(

M − m
bm

)
+ (1 − β) exp

(
m − M

bm

)]
.
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The value of non zero constants a and b is chosen such that the estimators tue1 and tue2 are
unbiased and the value of constants α and β are chosen such that the MSE of tue1 and tue2 should
be minimum.
Consider,

ȳ = Ȳ(1 + e0) and m = M(1 + e1)

Therefore,

E(e0) = 0, E(e1) =
Bias(m)

M
E(e2

0) = γC2
y ; E(e2

1) = γC2
m; E(e0e1) = γCym

Transforming the estimator tue1 and tue2 in terms of ei(i = 0, 1), the equations obtained are as

tue1 = Ȳ(1 + e0)

[
α exp

(
−e1

a

)
+ (1 − α) exp

( e1

a

)]
. (11)

tue2 = Ȳ(1 + e0)

[
β exp

(
−e1

b(1 + e1)

)
+ (1 − β) exp

(
e1

b(1 + e1)

)]
. (12)

Solving the equations (11) & (12) and retaining the terms only up to up 2nd degree, the reduced
equations are as

tue1 = Ȳ

[
1 + e0 + (1 − 2α)

e1

a
+

e2
1

2a2 + (1 − 2α)
e0e1

a

]
.

⇒ tue1 − Ȳ = Ȳ

[
e0 + (1 − 2α)

e1

a
+

e2
1

2a2 + (1 − 2α)
e0e1

a

]
(13)

tue2 = Ȳ

[
1 + e0 + (1 − 2β)

e1

b
+

(
1
2b

+ 2β − 1
)

e2
1
b
+ (1 − 2β)

e0e1

b

]
.

⇒ tue2 − Ȳ = Ȳ

[
e0 + (1 − 2β)

e1

b
+

(
1
2b

+ 2β − 1
)

e2
1
b
+ (1 − 2β)

e0e1

b

]
(14)

The bias of the estimators tue1 and tue2 is obtained by taking expectation on both sides of (13)
and (14) as

Bias(tue1) = γȲ
[

1
2a2 C2

m +
1
a
(1 − 2α)

(
Cym +

Bias(m)

γM

)]
. (15)

Bias(tue2) = γȲ
1
b

[(
1
2b

+ 2β − 1
)

C2
m + (1 − 2β)

(
Cym +

Bias(m)

γM

)]
. (16)

Taking the expectation of the square of the equations (13) & (14), the mean square error of tde1
and tde2 is obtained as

MSE(tue1) = γȲ2
[

C2
y + (1 − 2α)2 C2

m
a2 +

2
a
(1 − 2α)Cym

]
. (17)

MSE(tue2) = γȲ2
[

C2
y + (1 − 2β)2 C2

m
b2 +

2
b
(1 − 2β)Cym

]
. (18)

The estimator tue1 is unbiased, if

a =
C2

m

2(2α − 1)
(

Cym + Bias(m)
γM

) . (19)

Whereas the estimator tue2 is unbiased, if

b =
C2

m

2(2β − 1)
(

Bias(m)
γM + Cym − C2

m

) . (20)
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Substituting the values of (19) and (20) in equations (7) and (8) respectively, the following
equations are obtained as

MSE(tue1) = γȲ2

C2
y + 4(1 − 2α)4

(
Cym + Bias(m)

γM

)
C2

m

2

− 4(1 − 2α)2
Cym

(
Cym + Bias(m)

γM

)
C2

m

 . (21)

MSE(tue2) = γȲ2

C2
y + 4(1 − 2β)4

(
Cym + Bias(m)

γM − C2
m

)2

C2
m

− 4(1 − 2β)2

(
Cym + Bias(m)

γM − C2
m

)
C2

m
Cym

 .

(22)
Differentiating equations (21) and (22) with respect to α and β respectively and equating to zero,
the optimum value of α and β is obtained as

α =
1
2
± 1

2

√√√√ Cym

2
(

Cym + Bias(m)
γM

) and β =
1
2
± 1

2

√√√√ Cym

2
(

Cym + Bias(m)
γM − C2

m

) .

The constants a, b, α and β contain the unknowns Cm and Cym whose value is considered to be
known well in advance and if unknown, they can be determined from past surveys, experience
carried by the researcher in the due course of time or from the pilot survey (See Srivenkataramana
& Tracy [17], Singh & Kumar [16] and the references cited therein). Now on using the value of α
and β in equation (21) and (22) respectively, the minimum value of MSE of the estimator tue1
and tue2 up to O(n)−1 is obtained as

MSEmin(tuei) = γȲ2

[
C2

y −
C2

ym

C2
m

]
. (23)

5. Theoretical Efficiency Comparisons

From equations (2), (4), (6), (8), (10) and (23), the circumstances and conditions in which the
suggested estimators outperform the sample mean estimator, the existing estimators of Cochran
[2], Bahl and Tuteja [1], Singh et al. [12] and Subramani [6] are obtained as

MSEmin(tuei) < MSE(t1)

⇒ γȲ2

[
C2

y −
C2

ym

C2
m

]
< γȲ2C2

y , if C2
ym > 0. (24)

MSEmin(tuei) < MSE(t2)

⇒ γȲ2

[
C2

y −
C2

ym

C2
m

]
< γȲ2(C2

y + C2
x − 2Cyx), if C2

ym > C2
m(2Cyx − C2

x). (25)

MSEmin(tuei) < MSE(t3)

⇒ γȲ2

[
C2

y −
C2

ym

C2
m

]
< γȲ2

(
C2

y +
C2

x
4

− Cyx

)
, if C2

ym >
C2

m
4

(4Cyx − C2
x). (26)

MSEmin(tuei) < MSE(t4)

⇒ γȲ2

[
C2

y −
C2

ym

C2
m

]
< γȲ2(C2

y + θ2C2
x − 2θCyx), if C2

ym > C2
m(2θCyx − θ2C2

x). (27)

MSEmin(tuei) < MSE(t5)

⇒ γȲ2

[
C2

y −
C2

ym

C2
m

]
< γȲ2

(
C2

y +
Ȳ2

M2 C2
m − 2

Ȳ
M

Cym

)
, if C2

ym > C2
m

(
2

Ȳ
M

Cym − Ȳ2

M2 C2
m

)
. (28)

The proposed median based unbiased exponential ratio type estimators tuei are more precise than
the estimators t1 to t6 under the conditions (24) to (28).
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6. Numerical Study Comparisons

For the numerical study, data of populations P1 and P2 containing influential observations have
been considered as given in Table-1. The data set of population P1 is sourced from Singh and
Chaudhary [7] where the study variable is to estimate area of wheat under cultivation in the year
1974 and the auxiliary variable is the cultivated area under wheat in the year 1971. The data
set of population P2 is taken from Mukhopadhyay [5] where the study variable is to estimate
the ammount of raw materials for 20 jute mills and the auxiliary variable is the number of workers.

Table 1: Summary statistics of the population data sets.

Data Populations
constants P1 P2

N 34 20
n 5 5

NCn 278256 15504
Ȳ 856.4118 41.50000
M̄ 736.9811 40.05520
M 767.5000 40.50000
X̄ 208.8824 441.9500
Ȳ
M 1.115800 1.024700
C2

y 0.125014 0.008338
C2

x 0.088563 0.007845
C2

m 0.100833 0.006606
Cym 0.073140 0.005394
Cyx 0.047257 0.005275
ρyx 0.449100 0.652200

It can be observed from Table-1 that a sample of 5 units has been drawn from two populations
P1 and P2 having size 34 and 20 respectively. The values of different parameters like population
mean, population median, coefficient of variation etc. of the study and auxiliary variable are
obtained and can be seen from the table.

Table 2: MSE, Bias and PRE of the estimators t1, t2, t3, t4, t5 and tuei.

Population
Estimator P1 P2

MSE | Bias | PRE MSE | Bias | PRE
t1 15641.306 0.000 100.000 2.154 0.000 100.000
t2 14896.738 6.035 104.998 1.455 0.016 148.041
t3 12498.850 1.399 125.142 1.297 0.002 166.076
t4 12499.093 0.227 125.139 1.298 0.004 165.948
t5 10926.773 38.100 143.147 1.090 0.463 197.615

tuei 9003.545 0.000 173.724 1.016 0.000 212.007
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The suggested median based exponential ratio estimators tuei (i = 1, 2) have the lowest MSE
values for both population data sets P1 and P2, as can be seen from Table 2. When comparing
with the sample mean estimators, estimators of Cochran [2], Bahl and Tuteja [1], Singh et al. [12],
and Subramani [6], the PRE of the suggested estimators is found highest. Furthermore, as the
estimators suggested in the paper are unbiased, they may be used to address the issue of under
or overestimating the population mean.

7. Discussion

The paper presents two estimators of population mean as tue1 and tue2 based on population
median. Since median is a type of parameter which is least influenced by the effect of outliers, so
the proposed estimators may work efficiently for skewed data as evident from numerical study.
It can be observed from empirical study that the MSE value for tuei is 9003.545 and 1.016 for
populations P1 and P2 respectively which can be observed as minimum value among all other
estimators considered for comparision. The minimu value of MSE highlights that the estimators
tuei are most efficient. Further looking at the bias values, tuei can be found as unbiased so will
take care of under or over estimation problem . The population and sample median used in the
construction of estimators tuei are of study variable only, so do have a good advantage as the
auxiliary variable may not be always available

8. Conclusion

• In the absence of an auxiliary variable, the suggested median-based almost-unbiased
exponential ratio estimators of population mean are as follows

tue1 = ȳ
[

α exp
(

M − m
aM

)
+ (1 − α) exp

(
m − M

aM

)]
.

tue2 = ȳ
[

β exp
(

M − m
bm

)
+ (1 − β) exp

(
m − M

bm

)]
.

• The proposed estimators tue1 and tue2 are median based and therefore have least influence
of outliers present in the data set.

• The estimators proposed in the study are more precise for a skewed data set than the
estimators considered.
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Abstract

This paper deals with an analysis methodology for evaluating the performance of a coal handling
system utilized in a coal based thermal power plant. To simulate the interactions between the subsystems,
a stochastic Petri nets technique is used. A licensed software package named Petri module of GRIF were
used for computations. This work addresses the performability and cost multi-objective optimization
problem for a series-parallel coal handling system of a thermal power plant having subsystem failure
dependencies. Performability of subsystems has been examined in relation to variations in failure and
repair rates. The Particle Swarm Optimization Technique, which is based on an algorithm discussed, has
been used to optimize the results. Based upon the observation and criticality of failure, the subsystems
of the coal handling system were given maintenance order priority. A decision support provided at
last which will the maintenance personnel™s to take better and informed decision while forming the
maintenance policies. It has been observed that the Crusher and Tippler are crucial components that
demand the full attention of plant manager.

Keywords: Petri Nets, Particle Swarm Optimization, Performability, Decision Support System

1. Introduction

Electricity consumption has significantly increased in India as a result of the country’s fast
development. The Thermal Power Plant (TPP) is one of the primary sources of power generating.
The high availability of key components of equipment is necessary for continuous electricity
generation. Reliability and maintainability of the used equipment, subsystem, and system are
factors that affect thermal power plant availability to the utmost extent[1]. Keeping the systems
of thermal power plant in operational state is a big challenge for the maintenance personnels.
Unfortunately, system failure cannot be completely avoided, but it can be reduced to the absolute
minimum[2]. To increase plant efficiency, the performability of subsystems TPP’s must be
evaluated. In this study, Stochastic Petri Nets (SPN) approach is used to examine the performance
evaluation of TPP. The design of any system in the context of performability presents numerous
challenges, and the objectives may be conflicting at a time. System reliability, availability,
maintainability, safety, and cost are all prime aspects of system performability[3, 4, 5, 6]. To
keep systems in a working state over the course of several decades, maintenance scheduling was
crucial. The best maintenance plan takes care of TPP’s maintenance requirements for the least
cost[7]. The maintenance cost is influenced by both scheduled and unscheduled maintenance
tasks. Due to this, research have been done in the past to decrease system downtime, which has
improved plant availability. The field has slowly expanded to include more systems that schedule
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system maintenance using condition-based maintenance strategies. Various attempts have been
undertaken in the past to identify and prioritise the TPP’s important subsystems[8]. Furthermore,
the field of power generation has widely embraced condition monitoring tools. It makes it
easier to identify and fix major equipment flaws so that working equipment can be restored
as soon as possible[9, 10, 11]. For a coal-fired thermal power plant, earlier scholars attempted
a number of different attempts at RAM analysis. It’s important to assess TPP’s performance
under actual circumstances. He [12] has proposed a method using the Petri Net approach for
reliability evaluation and safety assessment of an industrial manufacturing system. Using Petri
nets, Sachdeva et al. [13, 14, 15, 16, 17] assessed the pulping system’s availability in the paper
sector. The study’s main aim was to determine the overall coast of operation and repair. In
their investigations, it was explored how different parameters affected the system’s availability.
Based on the Petri Nets model’s Mante Carlo simulation, the various reliability parameters were
calculated. The uses of the Petri nets model and its capacity to simulate the real world were
presented by Schneeweiss [18]. It has also been demonstrated how PN models can be used to
analyse non-repairable systems. .

2. System Description

Coal handling system is a crucial element of a coal-based thermal power plant. The continuous
operation of the thermal power plant and consequently the production of power will be ensured
by the system’s smooth operation. Tipplers are used to unload the coal and send it to the storage
yard after it has been transported to the plant via a variety of routes, including rail, road, and
water. The following description applies to the numerous subsystems of the coal handling system
also represented by fig. 1, which is configured in a hybrid mode.

• Wagon Tippler: Tipplers are used to tip laden waggons to empty them of their contents.
Tippler secures the waggon from the side and the top using gripping devices that are built
into the waggon. In addition, waggon tippler features include wheel grippers, limit switches
of various types, and track stops.

• Crusher: The bigger coal rocks are broken down into smaller coal rocks, gravel, and rock
dust using a crusher. The coal is crushed or compressed in coal crushers using metallic
surfaces.

• Bunker: Bunkers are utilised as a depot to guarantee a steady and smooth supply of coal to
the mill.

• Feeder: Feeders are used to feed coal to coal mills, primarily ensuring a smooth and constant
supply of coal in accordance with boiler demand.

• Coal Mills: For further combustion in the furnace, the coarse coal is ground into a fine
powder in a coal mill

The above-mentioned subsystems are conned in the hybrid mode of configuration i.e., the
combination of series and parallel configuration. The systems become more complex as it has the
dependencies on the performance of all subsystems mentioned. The overall performance thus
depends upon the failure and repair rate of all subsystems. Thus, it is necessary to optimize these
failure and rapier rates so that the overall performance can be enhanced in terms of performability.
Based upon the severity of failure and performance, the critical subsystems can be identified,
which will be further provided with better maintenance policies and procedures. It will the
maintenance engineers to make better strategies for repairs for the overall system.

3. Petri Nets Modelling

Petri Nets Modelling of Coal Handling System: The performability and long-term availability,
of the various subsystems of the Coal Handling System of a coal-operated thermal power plant,
has been assessed in this section. The numerous input values, including FRR for different
subsystems, were taken from repair and maintenance manuals with the help of maintenance
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Figure 1: Illustrative Diagram of Coal Handling System of Thermal Power Plant

staff and supervisors. The Weibull distribution pattern was intended to be followed by the
Failure and Repair Rates. The performance modelling of the coal handling system, which utilised
the MOCA-Computation engine based on the Monte Carlo Simulation Approach, was done
using the stochastic Petri nets technique (SPN) shown in fig.2. Using simulation for 10000 hours
with 21000 replications and a 95 confidence level, the characteristics of plant behaviour were
determined. By adjusting Failure and Repair Rates (FRR) within acceptable ranges while doing
performance modelling of the plant, it is possible to determine the long-term availability of the
various subsystems. the MATLAB program-generated charts for the performability matrices of
the Coal Handling System’s subsystems. Figures 3 to 7 display the performability w.r.t. FRR for
different Coal Handling System subsystems, and tables 1 to 5 display the performability matrices.

Assumptions Notations: The Petri Nets were used for performability analysis, with the
following notations and presumptions:

• The failure and repair rates of different subsystems of thermal power plant are exponentially
dispersed.

• Single subsystem failures happened one at a time.
• Repaired devices work just as well as brand-new ones.
• Repair includes both component replacement and repair.
• There won’t be any instances of two or more subsystems failing simultaneously.
• Standby systems are similar in nature comparable to active systems.
• Over time, the failure rate and repair rate patterns will be stable and statistically indepen-

dent.
Places: in the petri nets are represented by the circles P = {P1 P2 P3 P4 P5. . . . . . Pn} is a non-empty
finite set of places. Each place could be vacant or only store a certain number of tokens. A Petri
net’s state can be determined via the number of tokens it hold, often known as marking the net.

sys_available: indicates the upstate of the entire system, meaning that it is ready for use.
sys.works_full cap.: depicts the state of the entire system when it is operating at maximum

efficiency.
sys.works_red.cap: indicates a system that is operating at a decreased capacity.
sys_failed: depicts the system’s downstate
rep.facilities_available: indicates a facility for quick repairs.
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Figure 2: Modelling of Coal Handling System of Thermal Power Plant Using Petri Nets

WT_up, CR_up, BK_up, FD_up, CM_up: reflect the operational condition i.e., working state
of Wagon Tipplers, Crushers, Bunkers, Feeders and Coal Mills.

WT_down, CR_down, BK_down, FD_down, CM_down: symbolises a state of inefficiency
i.e., non-working state of Wagon Tipplers, Crushers, Bunkers, Feeders and Coal Mills.

WT_Rep, CR_Rep, BK_Rep, FD_Rep, CM_Rep: indicates restored conditions of Wagon
Tipplers, Crushers, Bunkers, Feeders and Coal Mills.

Transitions: Firing of transitions means occurring of events. Transition fired only if it has at
least one token in every location connected to it as an input. These are represented by black or
white bars transition T = {T1 T2 T3 T4 T5. . . . Tn,} is a non-empty finite set of transitions. These
transitions fired according some predefined sets of rules are known as guard functions. when a
transition fires it removes one token from each of its input places and produces a single token on
each of its output places. These are of two types timed and direct transitions. Timid transitions
fired with some predefined delay. Similarly, the direct transitions fired at once without any kind
of time delay. The various transitions used during the performance modelling of coal handling
system are as follows:

WT_fail, CR_fail, BK_fail, FD_fail, CM_fail: depict timid transitions linked to failure patterns
of Wagon Tipplers, Crushers, Bunkers, Feeders and Coal Mills.

WT_OK, CR_OK, BK_OK, FD_OK, CM_OK: indicates timid transitions that are linked to
the failure pattern of waggon tippers., Crushers, Bunkers, Feeders and Coal Mills.

rep. avail_ WT, rep. avail_ CR, rep. avail_ BK rep. avail_ FD, rep. avail_CM: are the
immediate transitions indicative of the presence of facilities for repair Wagon Tipplers, Crushers,
Bunkers, Feeders and Coal Mills respectively.

sys_ red, sys_ recovered, sys_ fail, and sys_ ok: are immediate transitions which fired
immediately without any delay.

Guard Functions: The guard functions, often referred to as enabling functions, are Boolean
expressions built using PN primitives (places, transitions, tokens). In addition to the usual
requirements, the enabling function must evaluate to true, which modifies the enabling rule.
Below is a description of the guard functions related to various transitions.:

[G1]: = (#7>0 and #17>0) rep. avail_ WT transition was started via this guard function.
[G2]: = (#9>0 and #17>0) rep. avail_ CR transition was started via this guard function.
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[G3]: = (#11>0 and #17>0) rep. avail_ BK transition was started via this guard function.
[G4]: = (#13>0 and #17>0) rep. avail_ FD transition was started via this guard function.
[G5]: = (#15>0 and #17>0) rep. avail_ CM transition was started via this guard function.
[G6]: = #2<3 and #2>0 or #3<3 and #3>0 or #5<3 and #5>0) sys_ red transition was started via

this guard function.
[G7]: =(#2>2and#3>2and#5>2) blocks transition from firing sys_ recovered.
[G8]: = (#1>0 or #2>0, or #2>3, or #4>0, or #5>0) sys_ fail transition was started via this guard

function.
[G9]: = (#1>0 and #2>0, and #2>3, and #4>0, and #5>0) blocks transition from firing sys_ ok.

4. Results and Discussion

Table 1: Performability-Matrix for Wagon Tippler of Coal Handling System

Performability Matrix

Φ1 ρ1 0.02 0.03 0.04 0.05 0.06 Const. Parameters

0.0045 0.8133 0.8613 0.8848 0.8932 0.8999
0.0065 0.7534 0.8342 0.8662 0.8794 0.8839 ρ2 = 0.0075 Φ2 = 0.12
0.0085 0.6854 0.7968 0.8532 0.8669 0.8794 ρ3 = 0.0125 Φ3 = 0.26
0.0105 0.6320 0.7623 0.8301 0.8526 0.8734 ρ4 = 0.00025 Φ4 = 0.0075
0.0125 0.5573 0.7285 0.8030 0.8412 0.8634 ρ5 = 0.0004 Φ5 = 0.005

Figure 3: Impact of varying FRR of Wagon Tippler on the Performability of Coal Handling System

The effects of variations in the FRR on the performance levels of the waggon tipper (WT) of
the coal handling system are shown in Table 1 and Figure 3. Maintaining the repair rate at 0.02,
as the failure rate (ϕ1) of the WT grows from 0.0045 to 0.0125, and the system’s performance
severely declines from 0.8133 to 0.5573, or 25.06 %. Similar to this, by maintaining the Failure
Rate at 0.0125 while the Repair Rate (ρ1) rises from 0.02 to 0.06, the System’s Performability
increases immediately from 0.5573 to 0.8634, or by 30.61 %. With variations in FRR combinations,
the overall availability of a subsystem can vary by up to 34.26 %.
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Table 2: Performability-Matrix for Crushers of Coal Handling System

Performability Matrix

Φ2 ρ2 0.02 0.07 0.12 0.17 0.22 Const. Parameters

0.0035 0.7626 0.8532 0.8643 0.8673 0.8707
0.0055 0.7050 0.8375 0.8555 0.8556 0.8581 ρ1 = 0.0085 Φ1 = 0.040
0.0075 0.6461 0.8270 0.8532 0.8489 0.8565 ρ3 = 0.0125 Φ3 = 0.26
0.0095 0.5661 0.8229 0.8388 0.8449 0.8527 ρ4 = 0.00025 Φ4 = 0.0075
0.0115 0.5140 0.7993 0.8310 0.8377 0.8456 ρ5 = 0.0004 Φ5 = 0.005

Figure 4: Impact of varying FRR of Crushers on the Performability of Coal Handling System

The performance of the Crusher (subsystem) of the coal handling system is affected by
variations in the FRR, as shown in Table 2 and Figure 4. The performability levels obtained
show that there is a significant impact of FRR fluctuation on the subsystem’s performability.
The Crusher’s failure rate (ϕ2) ranges from 0.0035 to 0.0115, keeping Repair Rate of 0.02 causes
the Crusher’s performability levels to drop significantly, from 0.7626 to 0.5140, or 24.86 %.
Additionally, the performability levels increase abruptly from 0.5140 to 0.8456, or 33.16 %, when
the repair rate (ρ2) varies from 0.02 to 0.22. By using various combinations of FRR, it is possible
to identify the total variation of 35.67 % in the subsystem’s performability.

Table 3: Performability-Matrix for Bunkers of Coal Handling System

Performability Matrix

Φ3 ρ3 0.16 0.21 0.26 0.31 0.36 Const. Parameters

0.0085 0.8591 0.8595 0.8610 0.8630 0.8642
0.0105 0.8480 0.8545 0.8573 0.8523 0.8594 ρ1 = 0.0085 Φ1 = 0.040
0.0125 0.8354 0.8467 0.8532 0.8546 0.8517 ρ2 = 0.0075 Φ2 = 0.12
0.0145 0.8350 0.8390 0.8416 0.8453 0.8431 ρ4 = 0.00025 Φ4 = 0.0075
0.0165 0.8274 0.8332 0.8413 0.8336 0.8401 ρ5 = 0.0004 Φ5 = 0.005

Table 3 and Figure 5 indicate the variations in the performability levels of the bunkers (a
component of the coal handling system) at various combinations of FRR. According to the
performability matrix and plot, the performability dramatically declines from 0.8591 to 0.8274, or
3.17 %, when the failure rate (ϕ3) of the Bunker rises from 0.0085 to 0.0165. The performability
only rises from 0.8274 to 0.8401, or 1.27 %, with an increase in repair rate (ρ3) from 0.16 to 0.25.
Performability with combinations of FRR has been reported to vary by an average of 3.68 %.
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Figure 5: Impact of varying FRR of Bunkers on the Performability of Coal Handling System

Table 4: Performability-Matrix for Feeders of Coal Handling System

Performability Matrix

Φ4 ρ4 0.0015 0.0045 0.0075 0.0105 0.0135 Const. Parameters

0.00005 0.8528 0.8744 0.8808 0.8835 0.8819
0.00015 0.7971 0.8548 0.8664 0.8740 0.8805 ρ1 = 0.0085 Φ1 = 0.040
0.00025 0.7332 0.8243 0.8532 0.8626 0.8686 ρ2 = 0.0075 Φ2 = 0.12
0.00035 0.6804 0.8067 0.8332 0.8493 0.8529 ρ3 = 0.0125 Φ3 = 0.26
0.00045 0.6418 0.7861 0.8188 0.8445 0.8495 ρ5 = 0.0004 Φ5 = 0.005

Figure 6: Impact of varying FRR of Feeders on the Performability of Coal Handling System

The effects of variations in FRR on the Feeder (subsystem) of the coal handling system are
shown in Table 4 and Figure 6. It shows that the performability drops from 0.8528 to 0.6418, or
21.10 %, when the failure rate (ϕ4) rises from 0.00005 to 0.00045. Similar to this, the performability
increases from 0.6418 to 0.8495, or 20.77 %, with variation in repair rate (ρ4) from 0.0015 to 0.0135.
The entire subsystem performability changes by an outrageous 24.01 %, as observed.

Table 5: Performability-Matrix for Coal Mills of Coal Handling System

Performability Matrix

Φ5 ρ5 0.0040 0.0045 0.0050 0.0055 0.0060 Const. Parameters

0.00030 0.8464 0.8578 0.8623 0.8665 0.8774
0.00035 0.8418 0.8490 0.8522 0.8639 0.8635 ρ1 = 0.010 Φ1 = 0.24
0.00040 0.8255 0.8409 0.8532 0.8602 0.8640 ρ2 = 0.00020 Φ2 = 0.0035
0.00045 0.8150 0.8317 0.8345 0.8493 0.8524 ρ3 = 0.0011 Φ3 = 0.5
0.00050 0.8097 0.8208 0.8294 0.8409 0.8427 ρ4 = 0.075 Φ4 = 0.10

According to Table 5 and Figure 7, the performability levels of the coal mill (subsystem) of the
coal handling system vary significantly. The performability levels considerably drop from 0.8464
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Figure 7: Impact of varying FRR of Coal Mill on the Performability of Coal Handling System

to 0.8097, or 3.67 %, when the failure rate of the coal mill (ϕ5) rises from 0.00030 to 0.00050. The
performability also rises from 0.8097 to 0.8427, or 3.00 %, with an increase in repair rate (ρ5) from
0.0040 to 0.0060. The performability of coal mills has changed by a total of 6.77%.

Table 6: Variation in the Overall Performability with increase in Repair Facilities

Availability Matrix

No. of Repair Facilities 1 2 3 4 5

Availability 0.8532 0.9383 0.9515 0.9446 0.9441

Figure 8: Impact of variation in Repair Facilities on the Performability of System

The effect of more repair facilities on the system’s overall availability is seen in Table 6 and
Fig. 8. The total performability of the coal handling system is seen to dramatically enhance from
0.8532 to 0.9383 as the repair facility grows from 1 to 2. The performability increases noticeably
from 0.9383 to 0.9515 when the repair facility is increased from 2 to 3. As the availability goes
from three to four and beyond, the performance becomes practically consistent.

5. Optimization Using PSO

The goal of optimization is to identify the best possible solution to a given issue while taking into
consideration all of its constraints. In the current study, a population-based global optimisation
method known as PSO was used to evaluate the performance of the coal handling system. A
stochastic global optimization technique called particle swarm optimization (PSO), proposed by
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Eberhart and Kennedy in 1995, was motivated by the social behaviour of fish schools and flocks
of birds. The PSO is motivated by swarm behaviour in nature[19, 20, 21, 22]. The movement
patterns of several fish and birds served as inspiration for this optimization process. A particle
in the swarm is referred to as a bird or a fish. PSO consists of several particles, each of which
consists of its current objective value, velocity, and position. Its personal best position, which is
the position at which the personal best value has been attained, contrasts with its personal best
value, which is the best objective value the particle has ever experienced. The following relations
are used by the global best PSO, a common variant of classical PSO, to calculate the ith particle’s
velocity and position[24].

Vi(n + 1) = w ∗ Vi(n) + C1(n) ∗ R1i(n) ∗ p − besti − Xi(n) + C2(n) ∗ R2i(n) ∗ g − best − Xi(n)
(1)

N=0,1,....., N-1
Xi(n + 1) = Xi(n) + Vi(n + 1); n = 0, 1, ....., N − 1 (2)

where Xi is the position of the ith particle, Vi is its velocity, and n in parentheses is the number of
iterations; n = 0 refers to the initialization. N stands for the overall number of iterations, C1 and
C2 stand for the personal weight and the global weight, respectively, and they range from 0 to 2
(ideally, C1 = C2 = 2). The random numbers, which are dispersed between 0 and 1, are R1i and
R2i. The inertia weight, or w, is a number between 0.4 and 1.4.

Algorithm 1 provides the major steps of the PSO that was implemented also represented in Fig. 9
Steps of the implemented PSO [23]
Repeat
Evaluate z(n, r);
For all particles y Do
Update velocities;
Move to the new position;
If z(n, r) < z(pbesty) then pbesty= (n, r);
If z(n, r) < z(gbest) then gbest= z(n, r);
Update position and velocity;

Figure 9: Flowchart of PSO Implemented

The following subsection gives more specific results on performance optimization.
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Table 7: Numerous PSO Parameters for Various System

PSO Parameters

Sr. No. Parameter Range/ Value Remarks

1 Particle or Population Size 10-100 for optimum Performability
2 Number of Generations 5-50 optimum Performability
3 Inertia Weight (w) 0-1 Its value lies between 0-1
4 Cognitive Factor (c1) 1.49 Selected Arbitrarily
5 Social Factor (c2) 1.49 Selected Arbitrarily
6 Random Number (R1) 0-1 Selected Arbitrarily
7 Random Number (R2) 0-1 Selected Arbitrarily

Figure 10: Transition Diagram for Coal Handling System

The transition diagram of the coal handling system were obtained as shown in fig. 10.
After solving the transition diagram of coal handling system using the Markovian approach the
following equation has been obtained for the performance measurement.

P0 = 1/[1 + (K1 + K2 + K3 + K4 + K5)(1 + K1 + K1K1 + K2 + K3 + K4)] (3)

Where,
Ki = ϕi/ρi
i = 1, 2, 3, 4, 5
By adjusting two factors, PS and the number of generations, the performance was optimised

using the aforementioned approach. The following chart illustrates the designed ranges for the
failure (ϕ) and repair rate (ρ) parameters of the various subsystems of :
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ϕ1 (0.0045 - 0.0125), ρ1 (0.02 - 0.06)- Tippler
ϕ2 (0.0035-0.0115), ρ2(0.02 - 0.22) Crushers
ϕ3 (0.0085-0.0165), ρ3 (0.16-0.36) Bunkers
ϕ4 (0.00005-0.00045), ρ4 (0.0015-0.0135) Feeders
ϕ5 (0.00030-0.00050), ρ5 (0.0040-0.0060) Coal Mill

The optimum performability of the coal handling system achieved is 93.34 % by using the
PSO algorithm at a PS of 40 and by taking constant GS i.e. 100. Table 8 gives the appropriate
combinations of FRR as ϕ1 = 0.006, ϕ2 = 0.007, ϕ3 = 0.011, ϕ4 = 0.0002, ϕ5 = 0.0003, ρ1 = 0.07, ρ2
= 0.21, ρ3 = 0.36, ρ4 = 0.006 and ρ5 = 0.005. The effect of common parameters like PS at constant
GS on the performability of the system is described in Figure 11. The performability levels for
coal handling system at PS varied from 5 to 50 in a step of 5 taking constant GS are mentioned in
Table 8.

Table 8: Effect of PS on System Performability at constant GS (100)

Performability Matrix

FRR PS5 PS10 PS15 PS20 PS25 PS30 PS35 PS40 PS45 PS50

ϕ1 1 0.008 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
ϕ1 2 0.007 0.006 0.006 0.006 0.005 0.006 0.007 0.007 0.007 0.007
ϕ1 3 0.012 0.009 0.009 0.009 0.010 0.010 0.011 0.011 0.011 0.011
ϕ1 4 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
ϕ1 5 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
ρ1 0.06 0.07 0.07 0.07 0.06 0.06 0.07 0.07 0.07 0.07
ρ2 0.10 0.15 0.15 0.15 0.15 0.15 0.20 0.21 0.20 0.20
ρ3 0.33 0.25 0.25 0.25 0.25 0.26 0.35 0.36 0.36 0.36
ρ4 0.007 0.009 0.009 0.009 0.009 0.009 0.006 0.006 0.006 0.006
ρ5 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
PA 90.19 92.40 92.41 92.40 92.42 92.46 93.10 93.34 93.22 93.21

Figure 11: Effect of PS on System Performability

The optimum performability of coal ash handling attained is 93.32 % by using the PSO
algorithm at a GS of 70 and by taking constant PS i.e. 40. Table 9 offers the appropriate
combinations of FRR as ϕ 1 = 0.006, ϕ2 = 0.007, ϕ3 = 0.011, ϕ4 = 0.0002, ϕ5 = 0.0003, ρ1 = 0.07, ρ2
= 0.21, ρ3 = 0.36, ρ4 = 0.006 and ρ5 = 0.005. The effect of common parameters like PS at constant
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GS is indicated in Figure 12. The performability levels for power generation system at GS varied
from 10 to 100 in a step of 10 taking constant PS are given in Table 9.

Table 9: Effect of GS on System Performability at constant PS (40)

Performability Matrix

FRR GS10 GS20 GS30 GS40 GS50 GS60 GS70 GS80 GS90 GS100

ϕ1 1 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
ϕ1 2 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
ϕ1 3 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
ϕ1 4 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
ϕ1 5 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
ρ1 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
ρ2 0.20 0.20 0.21 0.20 0.21 0.21 0.21 0.21 0.21 0.21
ρ3 0.34 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
ρ4 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
ρ5 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
PA 91.70 93.03 93.09 93.16 93.20 93.26 93.32 93.23 93.21 93.13

Figure 12: Effect of GS on System Performability

Table 10: Effect of PS on System Performability at constant GS (100)

Decision Support System

Subsystem Variation in FR (ϕ) Variation in RR (ρ) Change in Availability Priority

Tippler 0.0045- 0.0125 0.02- 0.06 55.7 to 89.99 2
Crusher 0.0035- 0.0115 0.02 -0.22 51.40 to 87.07 1
Bunker 0.0085- 0.0165 0.16 -0.36 82.7 to 86.42 5
Feeder 0.00005- 0.00045 0.0015 -0.0135 64.1 to 88.19 3
Coal Mill 0.00030- 0.00050 0.0040 -0.0060 80.97 to 87.74 4
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Figure 13: Comparative Analysis of Performability Levels using Petri Nets and PSO

6. Conclusion

The analytical identification of the most important subsystems is one of the key conclusions
of present case study’s . Due to the high risk of failure, these subsystems should be given top
priority during maintenance. It is observed that the Crusher and Tippler are crucial components
that demand the plant manager’s full attention. As a result, the concerned plant authorities
can develop and implement suitable maintenance plans to enhance system functionality. A DSS
has been suggested (in Table 10) to help the plant managers, based on a thorough analysis, and
is likely to increase efficiency even more. Due to the resources available and the maintenance
planning techniques being used, managing the maintenance of industrial systems that can be
repaired is a very difficult task. This approach also establishes a trade-off between financial
investments and benefits earned in terms of revenue, reputation, safety, etc. The best value of the
system performability obtained by PSO as shown in fig. 13 reveal that the PSO has outperformed
the Petri Nets.
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Abstract 

In this paper, a progressive type-II censoring strategy is used to estimate the parameters, reliability and 
hazard rate functions of the exponentiated moment exponential distribution. The maximum likelihood 
and Bayesian techniques have been used to estimate the proposed estimators. Gamma (informative) and 
uniform (non-informative) priors are taken into account under the squared error loss function to 
produce the Bayesian estimators. The highest posterior density interval estimations and the 95% 
approximate confidence intervals along with coverage probability are calculated. In order to evaluate 
the effectiveness of estimates produced by the Metropolis-Hastings sampling algorithms, we provide a 
numerical research. According to the study's findings, the Bayes estimates under informative priors 
are typically more accurate than other estimates. 

Key Words: Exponentiated moment exponential, gamma prior, credible interval, 
Metropolis-Hastings, Progressive censorning 

1. Introduction 

Censoring is widely used in reliability data analysis and other practical life-testing investigations. It 
becomes apparent when precise failure times for a subset of the test units used in an experiment are 
observed. The experimenter frequently runs into incomplete data in this scenario. Typical censoring 
systems include type I censoring (T1C) and type II censoring (T2C). The units can only be expelled 
after the conclusion of the experiment, which is a major drawback of TIC and T2C methods. In a more 
open-ended censoring technique known as progressive censoring (PC), units are designated to be 
discarded from the test at times other than the eventual termination time point. The remaining units 
are then tested again while being observed. To learn more, visit Balakrishnan [1]. 

Progressive T2C (PT2C) is the major topic of this research project. Let's assume that n 
identical items are used in the experiment, and that the PC scheme R is pre-fixed so that, after the first 
failure, R1 surviving items are ejected from remaining live (n-1) items, R2 surviving items are ejected 
from remaining live - -2) items, and so on. After mth failure, this procedure is maintained until (n R1
all R = n-m-R - ...R remaining objects are expelled (see Hofmann et al [2]). Therefore, a PT2C m 1 m-1

264



             

               
       

              
         

      

    
           

  

               
             

          
             

           
            

            
           

              
    

      

         
    

 

              
             

      

               

               
           

            
     

 

 

  

     
     

    
    

   

Amal S. Hassan, Samah A. Atia, Hiba Z. Muhammed 
BAYESIAN AND NON-BAYESIAN INFERENCE OF EXPONENTIATED RT&A, No 1 (72) 
MOMENT EXPONENTIAL DISTRIB. Volume 18, March 2023 

m

procedure consists of m and R R, ,...,R such that åR m+ = n . Note that, if R1 = R2= …=Rm =0 then 1 2 m i
i=1

the PT2C provides complete sampling and if R1 = R2=…= Rm-1 = 0 and Rm = n-m then PT2C yields T2C 
scheme (see Krishna and Kumar [3]). 

According to PT2C samples, the likelihood function of random variable X (Balakrishnan and 
Aggarwala [4]) is supplied as follows . 

iL(q ) =CÕ
m

f ( x(i) ) é1- F (x( )i )ù
R

, 
(1) ë û

i=1 

where C n(n-R -1) ... (n-R -R --R -m+1).Some important literature regarding the = 1 1 2 m-1

estimation studies under PT2C scheme can be found in Wu [5] , Ng [6], Dey et al. [7], Hassan et al. 
[8], EL-Sagheer [9],  Noor et al. [10],  Alshenawy  et al. [11], and  Shrahili et al. [12]. 

Moment distributions are essential in probability theory and several economic, reliability, and 
biological studies, as well as other areas of mathematics and statistics. Some of the fundamental 
features of the moment exponential (ME) distribution were studied and suggested by Dara and 
Ahmad [13]. The version of the ME distribution that includes an additional shape parameter is known 
as the exponentiated ME (EME) distribution, and it is frequently employed in reliability research. 
Hasnain et al. [14] suggested several EME distribution features, including conditional-based 
characterisation, explored maximum likelihood (ML) estimators, and fitted it to actual data sets. 
Compared to the ME distribution and exponentiated exponential (EE) distribution, the EME 
distribution is more adaptable when fitting data. As described by Hasnain et al. [14] the EME 
distribution's cumulative distribution function (CDF), is 

F x( ;a b, ) = [1-y ]a ; x, b ,a > 0,  (2) 

-1 -x bwherey (1 b )e , b is scale parameter and a is shape parameter. The probability density = + x
function (PDF) of the EME distribution is 

-2 -x bf x( ;a b, ) =ab [1-y ]a -1 xe ; x, b ,a > 0.  (3) 

For b = 1, the CDF (2) gives the CDF of one parameter EE distribution (Gupta and Kundu [15]). Also, 
fora =1 , the CDF (2) gives the CDF of ME distribution. The reliability function (RF) and hazard rate 
function (HRF) related to (3) are defined as: 

-x b a -1 
a a xe [1-y ]R x( ) =1- [1-y ] , h x( )  = . 

ab 2 (1- -[1 y ] )

Plots of the PDF and HRF of the EME distribution are displayed in Figure 1. It is evident that different 
parameter values result in varied forms for the PDF for the EME distribution. The distribution may 
alternatively be characterised as favourably skewed to right and uni-modal. It is clear that the EME 
distribution's HRF has an increasing trend. 
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Figure 1: PDF and HRF plots of the EME distribution 

Different approaches to estimating the PDF and CDF of the EME distribution were provided by 
Tripathi et al. [16]. The ML and Bayesian techniques developed by Fatima and Ahmad [17] have been 
taken into consideration when discussing the parameter estimators of the EME distribution. Akhter et 
al. [18] provided explicit algebraic equations that are generated from the EME distribution for both 
single and product moments of order statistics. Additionally, they used a full sample as well as a T2C 
sample to identify the best linear unbiased estimators based on these moments. Some generalizations 
of EME distribution may be found in Iqbal et al. [19], Ahmadini  et al. [20] and Shrahili et al. [21]. 

The RF, HRF, and parameter estimators of the EME utilising ML and Bayesian techniques are 
addressed in the current study. Both the Bayesian credible intervals (BCIs) and the approximate 
confidence intervals (ACIs) are built using the PT2C data. This document can be constructed as 
shown below. Section 2 deals with ML estimators and the ACIs of parameters, RF and HRF. Sections 
3 explore Bayesian estimate under informative (IF) and non-informative (NIF) priors. Sections 4 and 
5, respectively, provide numerical illustrative studies and a conclusion. 

2. Maximum Likelihood Procedure 

Here, using PT2C data, we obtain the ML estimators of the parameters, RF, and HRF of the EME 
distribution. In addition, the ACIs for the RF, HRF and the parameters b and a are built. 
Let x x, ,..., x be the observed PT2C random samples extracted from the EME distribution. Based (1) (2) (m)

on (1), then the likelihood function of the EME distribution takes the following form: 

-2 a -1 -xi b aé ù i

L x( b ,a ) µÕ
m

ab (1-y i ) x ei 1- (1-y i )
R
, (4) ë û

i=1

-1 -xi bwhere y =(1+ b )e and we write x = x for simplified form. The logarithm of (4), say i xi ( )i i

b a, ) becomes: = logL x(

m m m m

 µ m lna - 2m ln b +å ln xi - 1å xi + (a -1)å ln (1-y i ) +åRi ln ë
é1- (1-y )a ù. (5) i û

i=1 b i=1 i=1 i=1

The first derivative of (5) via b and a are given as: 
-xi b¶ -2m 1 m v i (1-y i )

a -1 xi (y i - e )
= + 2å

m

xi - (a -1)å +aå
m

Ri a
,

¶b b b i=1 i=1 (1-y i ) i=1 b 2 éë1 1- -( y i ) ù
û
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m m¶ m (1-y i )
a ln (1-y i )= +åln (1-y )-åR ,i i a¶a a ( i )i=1 i=1 1 1- -y

- -xi bwhere v = x b 2 (y -e ) . The estimator of b and a is the solution of the first derivative of i i i

¶ ¶b
= ˆ 0 and ¶ ¶a

b b
=  a â = 0. Numerical iterative approach may be used to calculate the estimator =

of b and a for the specified values of ( m R x). Additionally, the invariance feature of the ML method , ,
is used to evaluate R(x) and h(x) as below 

] ˆ ˆ ˆ -xi
-1a -2 b̂ â -1 âR xˆ( ) =1- 1-y , h x =a b e y - .[ ( )  x [1- ] (1 [1-y ] )

In addition, we get the observed information matrix, say I a b to build ACIs. The multivariate ( ,ˆ ˆ),
-1 ˆ ˆnormal distribution N (0, I (a b, )) is used to create ACIs for the parameters b and a with the 2

usual regularity requirements. Based on the asymptotic normality criteria of the ML, the two-sided 
100(1-e )%ACI for parameter b and a is 

AsyCI_Upper=b̂ + Z var(b̂ ) and â + Z var(â ) ,e 2 e 2

AsyCI_Lower=b̂ - Z var(b̂ ) and â - Z var(â ) ,e 2 e 2

AIL= AsyCI_Upper - AsyCI_Lower, 

where Z is the right tail probability's percentile for the standard normal distribution. Once e 2 e 2
more, an R-based numerical method is offered to get the variance-covariance matrix. Also, the 

ˆ ˆ ˆ ˆ100(1-e )%ACI for R(x) and h(x) are given by R x( ) ±Z var(R x( )) , h x  h x ( ) ± Z var( ( )).e 2 e 2

3. Bayesian Estimators 

Here, Bayesian estimator of the parameters, RF and HRF of the EME distribution in case of IF and NIF 
priors under squared error (SE) loss function. Firstly, consider b and a have a gamma distribution 
with parameters (a, b) and (c, d) respectively. Assuming that b anda are independently distributed, 
the joint prior distribution of b anda is given by: 

a cb d a-1a c-1 -bb -dah1,2 ( ,b a x) = b e ,
G( )a G( )c

where a, b, c and d are chosen to reflect the prior knowledge about the unknown parameters (the 
criteria to select the hyper-parameter values is discussed in Section 3.1). The joint posterior 
distribution of parameters b anda is defined as: 

Ria-3 c -bb -da a -1 -x b aib a e Õ
m

(1-y ) x ei {1- (1-y ) }i i
i=1p b( ,a x) = m .2 ¥ ¥ Ra-3 c -bb -da a -1 -x b a iiò ò b a e Õ (1-y ) x e {1- (1-y ) } db dai i i0 0
i=1

Hence, the marginal posterior distributions of b anda take the following forms: 
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¥ m R-1 a-3 -bb c -da a -1 -x b a iih1(b x) = k1 b e ò a e Õ(1-y i ) x ei {1- (1-y i ) } da ,
0

i=1

¥ m R-1 c -da a-3 -bb a -1 -x b a iih2 (a x) = k a e ò b e Õ (1-y ) x e {1- (1-y ) } db ,1 i i i0
i=1

¥ ¥ m Ria-3 c -bb -da a -1 -x b aiwhere k = ò ò b a e Õ (1-y ) x e {1- (1-y ) } db da .1 i i i0 0
i=1

The Bayesian estimator of b anda , expressed by b and a ,are obtained as follows: 

 -1 a-2 c -bb -da a-1 -x b a iib = k
¥ ¥

ò ò b a e Õ
m

(1-y ) x e {1- (1-y ) }R db da ,1 i i i
0 0 i=1

¥ ¥ m Ri-1 a-3 c+1 -bb -da a -1 -x b aia = k ò ò b a e Õ (1-y i ) x e {1- (1-y i ) } db da .1 i0 0
i=1

The Bayesian estimators of R(x) and h(x) are given by: 

 -1 -1 -x b a-3 c -bb -da a-1 -x b a iiR x( ) = k
¥ ¥

ò ò (1- ëé1- (1+xb )e ûù
a )b a e Õ

m

(1-y ) x e {1- (1-y ) }R da db , (6) 1 i i i
0 0 i=1

-x b -1 -x b1 (1+xb ) ù
a -1 

m¥ ¥ xe é - e
 -1 ë û a-5 c+1 -bb -da a -1 -x b a Rih x( )  = k1 ò ò a

b a e Õ(1-y ) x ei {1- (1-y ) } da db . (7) 
-1 -x b

0 0  1- - (1+xb )e ù i=1é1( ë û ) i
i

i

   The above Bayesian estimators b a, ,R x(  )  and  h( )x are not in closed forms but can be evaluated 
numerically for the given values of a b, , c ,d,n ,m, x and R .
Secondly, assuming the prior of parameters b anda , denoted by g1( )b and 2 a has the uniform g ( )
(NIF) prior distribution. The joint prior for parameters b anda , represented by g1,2 ( ,a b ), assuming 
independent of priors, is 

g1,2 ( ,a b x) = (ab)-1 , 0 < b, a <1.

The joint posterior density of b anda given the data x is given by: 

i-1 -3 a -1 -x b aiπ (1 b a, x) =k b Õ
m

(1-y ) x e {1- (1-y ) }R .2 i i i
i=1

¥ ¥ Ri-3 a -1 -x b aiwhere k = ò ò b Õ
m

(1-y ) x e {1- (1-y ) } db da .2 i i i0 0
i=1

Hence, the marginal posterior distributions of b anda take the following forms: 

¥ R

ò
i-1 -3 a-1 a -xg1(b x) = π (1 b ,a x) da =k b ò Õ

m

(1-y ) {1- (1-y ) } x e i bda ,2 i i i0
i=1a

ò
¥ m R-1 -3 a-1 a -x big2 (a x) = π (1 b ,a x) db = k2 ò b Õ(1-y i ) {1- (1-y i ) } i x ei db ,
0

b i=1

The Bayesian estimator of b and a ,denoted by b anda, are obtained as follows: 
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¥ ¥ m Ri-1 -2 a -1 -x b aib = E(b x)=k ò ò b Õ(1-y ) x e {1- (1-y ) } db da , (8) 2 i i i
0 0 i=1
¥ ¥ m R-1 -3 a-1 -x b a iia= E(a x) = k ò òab Õ(1-y ) x e {1- (1-y ) } db da. (9) 2 i i i
0 0 i=1

The Bayesian estimator of R(x) and h(x) are given by: 
¥ ¥

a m R
 -1 -x b -3 a-1 -x b a ii iR x( ) = ò ò (1- éë1- (1+xb )e ùû )b Õ(1-y ) x ei {1- (1-y ) } da db , (10) i i

0 0 i=1

-x b -1 -x b¥ ¥ ia xe é1 (1+- xb )e ù
a -1 

m Ri -1 ë û -3 a-1 -x b aih x( )  = k2 ò ò a
b Õ(1-y i ) x ei {1- (1-y i ) } da db . (11) 

2 -1 -x b- - i=0 0  b (1 é1 (1+xb )e ù ) 1ë
i

û

 The above Bayes estimates b a, , R x(  )  and  h ( )x are assessed numerically for the given values of 
n m, , xandR. Integrals (8)-(11) are very hard to be solved analytically, so the Metropolis-Hastings 

(MH) algorithm will be used to solve these integrals. 

3.1 Hyper-Parameter Elicitation 

This sub-section handled the elicitation of the hyper-parameter values in case of IP. These hyper-
parameters of IP are obtained from ML estimators for b anda , by equating the mean and variance of 

b̂ i and â i with the mean and variance of the gamma distributions, where i=1,2,….,N and N is the 
number of samples available from the EME distribution. Thus, 

N N N N N N1 i a 1 æ i 1 i ö
2 a 1 i c 1 æ i 1 i ö

2 cåb̂ = , åçb̂ - åb̂ ÷ = 2 , åâ = , åçâ - åâ ÷ = 2 .N i=1 b N -1 i=1 è N i=1 ø b N i=1 d N -1 i=1 è N i=1 ø d

Hence, the estimated hyper-parameters are obtained as follows 
: 

N N N Næ 1 ö
2

1 æ 1 ö
2

1ˆ i i i i
ç åb ÷ åb̂ ç åâ ÷ åâ
è N i=1 ø N i=1 è N i=1 ø N i=1a = ,b = , c = , d = .2 2 2 2N N N N n N N N1 æ i 1 i ö 1 æ i 1 i ö 1 æ i 1 i ö 1 æ i 1 i öåçb̂ - åb̂ ÷ åç b̂ - åb̂ ÷ åçâ - åâ ÷ åçâ - åâ ÷N -1 i=1 è N i=1 ø N -1 i=1 è n i=1 ø N -1 i=1 è N i=1 ø N -1 i=1 è N i=1 ø

For more information (see Dey and Pradhan, 2014). 

3.2 Bayesian Credible Intervals 

Furthermore, the BCI of a and b denoted by  and b is obtained under IF and NIF priors asaBCIF BCIF

follows: 

i -1 -1 a-2 c -bb -da a-1 -x b aib = k
U

ò ò
¥

k b a e Õ
m

(1-y ) x e {1- (1-y ) }R db da = 0.95, (12) BCIF 1 2 i i i
L 0 i=1
U ¥ m

-1 a-3 c+1 -bb -da a-1 -x b aiaBCIF= k1 ò ò b a e Õ(1-y i ) x ei {1- (1-y i ) }
Ri db da = 0.95. (13) 

L 0 i=1
U ¥ m

 -1 -2 a-1 -x b a iibBCNIF = ò ò k2 b Õ(1-y i ) x ei {1- (1-y i ) }
R
db da = 0.95, (14) 

L 0 i=1
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U ¥ m R-1 -3 a-1 -x b a iia = ò ò k ab Õ(1-y ) x e {1- (1-y ) } db da = 0.95. (15) BCNIF 2 i i i
L 0 i=1

Integrals (12)-(15) are very hard to be solved analytically, so the MH algorithm will be used to solve 
these integrals Similary, the BCI of R(x) and h(x) provided in (6), (7) under IP and the BCI of R(x) and 
h(x) provided in (10) and (11) under NIP are obtained using the above procedure. 

4. Numerical Illustration 

To determine ML estimates (MLEs) and Bayesian estimates (BEs) for parameters, RF and HRF under 
the PT2C scheme, a simulation study was conducted. Different sample sizes (n), effective failure sizes 
(m), and picking parameter values are taken into consideration. The R 3.6.1 software is used to 
complete the following stages. 
1. Using the same technique as that provided by Balakrishnan and Sandhu [22], which includes the 
following, random samples X X, ,...,X are produced from the EME distribution under PT2C 1 2 n

samples: 
i. Generate m independent and identically (iid) random numbers W W1 2 m from , ,...,W
uniform distribution U(0,1). 

(1 i Rm +Rm-1+...+Rm-i+1 )ii. Set i =
+ for m.V Wi i =1,2,...,

iii. Set = V V ... and for 1,2,...,m .Then , ,...,U is the PT2C U 1- V i = U Ui m m-1 m-i+1 1 2 m

sample from U(0, 1) distribution. 

iv. Finally, set Xi Ui for 1,2,...,m , where 1(.) is the inverse CDF of EME = F 1( ) i = F
distribution consideration, then X X, ,...,X are the required PT2C samples from 1 2 m

EME distribution with censoring scheme R = ( ,R1 R2 ,...,Rm ).


2. Three different sampling schemes are considered as follows: 
Scheme I: R1 = R2 =…= Rm-1and Rm = n -m (T2C), 

Scheme II: Rm = n -m, R2 = R3 =…= Rm=0 and 

Scheme III: R1 = R2 = (n -m) / 2 , R3 = R4 =…= Rm=0. 

3. The parameters b and a are chosen with values; Case 1: b = 0.5 , a =1.5 and Case 2: b = 0.5, a = 3
4. With the mission time x = 0.8, the number of stages m, and the censoring strategy R = ( , ,..., ,R R R )1 2 m


various sample sizes of n=50, 100, and 150 are chosen. The method described by Dey et al. [23] is used 
to choose the hyper-parameters for gamma priors 
5. To create samples from the posterior distributions, the MH approach is applied. 
6. The biases, mean squared errors (MSEs), average lengths (AILs), and CPs for MLEs and BEs are 
computed for various sample sizes, with the number of repeated samples being 1000 samples 
7. A portion of the results, which are lengthy numerically, are shown Tables 1–3 for MLEs and BEs 
under IF. 
Figures 2–8 provide examples from the investigation. 
Regarding the behaviour of various estimations, the following findings are found. 
• All the precision measures for MLEs and BEs tend to decrease with sample sizes n and number of 

stages m, in majority of the cases. The sample size n and number of stages m both enhance the CPs 
of the HRF estimates. 

• Figure 2 shows that the MSEs of aand b, obtain the least values across all schemes, and the MSEs 

of â  and b̂ in Case 1 get the biggest values across all schemes. 
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Figure 2: MSEs for aandb estimates in Case 1 for all values of m 

• Figure 3 demonstrates that the MSEs of aand b in Case 2 obtain the lowest values among all 

schemes, whereas the MSEs of â  and b̂ obtain the highest values within all schemes 

Figure 3: MSEs foraandb estimates in Case 2 for all values of m 

• Regarding Case 1, in Figure 4, the MSEs of   x in all schemes take the least value, while R x( ) and h( )  
the MSEs of   x receive the biggest value R x( ) and h( )  

Figure 4: MSEs for RF and HRF estimates in Case 1 for all values of m 
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• The MSEs of   x in all schemes, obtain the least values, as shown in Figure 5. R x( ) and h( ),  

Figure 5: MSEs for RF and HRF in Case 2 for all values of m 

• In most cases, it is possible to draw the conclusion that the MSEs of population parameters 
employing IF priors take the lowest values. 

• The widths of the BCIs via IF priors are shorter than those of the MLEs and BEs under NIP priors 
in Case 1 ( b =0.5, a =1.5 ). 

• The CPs for BEs under IF priors are higher than the equivalent for MLEs and BEs under NIF 
priors. 

• In Figure 6, for NIF prior, history graphs for various estimates of b and a are demonstrated. The 
plots of the parameter chains resemble a horizontal band without any discernible lengthy upward 
or downward trends, which are evidence of convergence. 

(a) b and a at n=100, m= 50 for b =0.5, a =1.5 
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(b) b and a at n=100, m= 50 for b =0.5, a = 3 
Figure 6: Different BEs for b anda under NIF priors 

• In Figure 7, for IF priors, history graphs for various estimations of b anda are shown. The plots of 
the chains for the parameters resemble a horizontal band without any significant long-term rising 
or downward trends, which are signs of convergence 

(a) b and a at n=100, m= 50 for b =0.5, a =1.5 

(b) b and a at n=100, m= 50 for b =0.5, a = 3 

Figure 7: Different Bayesian estimates for b anda under gamma priors 
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Table 1: MLEs and associated measures fora b, ,R x(  )  and  h( )x in case 1 

Scheme I 
n m Estimate Mean Bias MSE AIL CP 

50 

20 

b̂ 0.490 0.010 0.017 0.511 95.6 
â 1.780 0.280 0.562 2.728 95.8 
ˆ( )R x 0.842 0.169 0.029 0.299 95.0 
ˆ( )h x 0.627 0.366 0.134 0.758 95.0 

30 

b̂ 0.485 0.015 0.010 0.383 96.6 
â 1.734 0.234 0.471 2.531 96.2 
ˆ( )R x 0.790 0.117 0.014 0.483 96.7 
ˆ( )h x 0.729 0.264 0.070 1.118 96.7 

100 

20 

b̂ 0.477 0.023 0.020 0.550 95.2 
â 1.810 0.310 0.560 2.670 95.6 
ˆ( )R x 0.909 0.237 0.056 0.184 95.0 
ˆ( )h x 0.470 0.523 0.273 0.737 95.0 

50 

b̂ 0.492 0.008 0.006 0.297 96.9 
â 1.626 0.126 0.159 1.484 95.5 
ˆ( )R x 0.772 0.100 0.010 0.469 96.0 
ˆ( )h x 0.765 0.228 0.052 1.031 96.0 

70 

b̂ 0.495 0.005 0.004 0.237 96.5 
â 1.582 0.082 0.098 1.184 96.7 
ˆ( )R x 0.638 0.035 0.001 0.640 97.1 
ˆ( )h x 0.978 0.015 0.000 1.108 97.1 

150 

50 

b̂ 0.490 0.010 0.007 0.324 96.1 
â 1.615 0.115 0.138 1.384 95.8 
ˆ( )R x 0.835 0.162 0.026 0.306 96.0 
ˆ( )h x 0.676 0.317 0.100 0.767 96.0 

70 

b̂ 0.491 0.009 0.004 0.258 96.8 
â 1.599 0.099 0.103 1.198 95.7 
ˆ( )R x 0.826 0.153 0.023 0.393 97.1 
ˆ( )h x 0.686 0.308 0.095 0.964 97.1 

100 

b̂ 0.495 0.005 0.003 0.202 96.7 
â 1.562 0.062 0.070 1.011 95.3 
ˆ( )R x 0.685 0.012 0.000 0.592 97.0 
ˆ( )h x 0.915 0.078 0.006 1.103 97.0 

130 

b̂ 0.498 0.002 0.002 0.165 96.8 
â 1.530 0.030 0.047 0.838 96.3 
ˆ( )R x 0.583 0.089 0.008 0.756 96.9 
ˆ( )h x 1.046 0.053 0.003 1.173 96.9 
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Continued Table 1 

Scheme II 
n m Estimate Mean Bias MSE AIL CP 

50 

20 

b̂ 0.488 0.012 0.010 0.385 96.5 
â 1.673 0.173 0.314 2.090 96.8 
ˆ( )R x 0.533 0.139 0.019 0.906 95.0 
ˆ( )h x 1.092 0.099 0.010 1.491 95.0 

30 

b̂ 0.494 0.006 0.007 0.335 95.8 
â 1.652 0.152 0.263 1.921 95.2 
ˆ( )R x 0.577 0.096 0.009 0.898 96.7 
ˆ( )h x 1.026 0.033 0.001 1.380 96.7 

100 

20 

b̂ 0.498 0.002 0.010 0.385 95.9 
â 1.615 0.115 0.214 1.759 96.5 
ˆ( )R x 0.491 0.181 0.033 0.893 95.0 
ˆ( )h x 1.133 0.140 0.020 1.393 95.0 

50 

b̂ 0.497 0.003 0.004 0.257 96.2 
â 1.585 0.085 0.123 1.336 94.8 
ˆ( )R x 0.512 0.160 0.026 0.967 96.0 
ˆ( )h x 1.110 0.117 0.014 1.573 96.0 

70 

b̂ 0.497 0.003 0.000 0.085 97.0 
â 1.559 0.059 0.004 0.084 96.8 
ˆ( )R x 0.549 0.123 0.015 0.938 100.0 
ˆ( )h x 1.057 0.064 0.004 1.462 100.0 

150 

50 

b̂ 0.490 0.010 0.004 0.251 96.5 
â 1.600 0.100 0.111 1.247 96.3 
ˆ( )R x 0.499 0.173 0.030 0.859 96.0 
ˆ( )h x 1.169 0.176 0.031 1.156 96.0 

70 

b̂ 0.497 0.003 0.003 0.210 96.2 
â 1.557 0.057 0.079 1.081 95.8 
ˆ( )R x 0.569 0.104 0.011 0.913 97.1 
ˆ( )h x 1.043 0.050 0.002 1.312 97.1 

100 

b̂ 0.500 0.000 0.002 0.183 97.0 
â 1.538 0.038 0.059 0.939 96.5 
ˆ( )R x 0.472 0.201 0.040 0.949 97.0 
ˆ( )h x 1.171 0.178 0.032 1.425 97.0 

130 

b̂ 0.498 0.002 0.002 0.160 97.1 
â 1.536 0.036 0.044 0.809 96.0 
ˆ( )R x 0.465 0.208 0.043 0.912 96.9 
ˆ( )h x 1.193 0.200 0.040 1.280 96.9 
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Continued Table 1 

Scheme III 
n m Estimate Mean Bias MSE AIL CP 

50 

20 

b̂ 0.483 0.017 0.010 0.392 96.1 
â 1.693 0.193 0.319 2.081 95.9 
ˆ( )R x 0.566 0.107 0.011 0.938 95.0 
ˆ( )h x 1.057 0.064 0.004 1.502 95.0 

30 

b̂ 0.495 0.005 0.007 0.332 96.3 
â 1.645 0.145 0.254 1.892 95.9 
ˆ( )R x 0.580 0.093 0.009 0.958 96.7 
ˆ( )h x 0.988 0.006 0.000 1.626 96.7 

100 

20 

b̂ 0.490 0.010 0.010 0.381 96.3 
â 1.617 0.117 0.191 1.653 95.9 
ˆ( )R x 0.603 0.069 0.005 0.952 95.0 
ˆ( )h x 0.958 0.035 0.001 1.614 95.0 

50 

b̂ 0.496 0.004 0.004 0.253 96.4 
â 1.588 0.088 0.123 1.333 95.4 
ˆ( )R x 0.559 0.114 0.013 0.919 96.0 
ˆ( )h x 1.069 0.075 0.006 1.371 96.0 

70 

b̂ 0.494 0.006 0.003 0.209 96.8 
â 1.581 0.081 0.093 1.151 95.6 
ˆ( )R x 0.538 0.134 0.018 0.869 97.1 
ˆ( )h x 1.100 0.106 0.011 1.227 97.1 

150 

50 

b̂ 0.498 0.002 0.004 0.247 96.6 
â 1.560 0.060 0.092 1.166 96.8 
ˆ( )R x 0.462 0.210 0.044 0.932 96.0 
ˆ( )h x 1.173 0.180 0.032 1.444 96.0 

70 

b̂ 0.500 0.000 0.003 0.216 96.8 
â 1.546 0.046 0.071 1.030 96.3 
ˆ( )R x 0.536 0.136 0.019 0.947 97.1 
ˆ( )h x 1.090 0.097 0.009 1.471 97.1 

100 

b̂ 0.496 0.004 0.002 0.185 97.2 
â 1.556 0.056 0.064 0.967 95.4 
ˆ( )R x 0.544 0.129 0.017 0.937 97.0 
ˆ( )h x 1.081 0.088 0.008 1.423 97.0 

130 

b̂ 0.497 0.003 0.002 0.160 96.3 
â 1.542 0.042 0.046 0.828 95.7 
ˆ( )R x 0.485 0.188 0.035 0.960 96.9 
ˆ( )h x 1.153 0.160 0.025 1.560 96.9 
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Table 2: Bayes estimates and associated measures fora b, ,R x(  )  and  h( )x in case 1 using IF priors 

Scheme I 
N m Estimate Mean Bias MSE CIL CP 

50 

20 

b 0.489 0.011 0.001 0.082 97.4 
a 1.779 0.279 0.078 0.082 97.0 
( )R x 0.841 0.169 0.028 0.308 100.0 
( )h x 0.629 0.364 0.132 0.787 100.0 

30 

b 0.484 0.016 0.001 0.080 97.0 
a 1.734 0.234 0.055 0.082 98.5 
( )R x 0.789 0.116 0.014 0.483 96.7 
( )h x 0.732 0.261 0.068 1.100 100.0 

100 

20 

b 0.477 0.023 0.001 0.084 96.7 
a 1.809 0.309 0.096 0.080 96.7 
( )R x 0.909 0.237 0.056 0.186 100.0 
( )h x 0.471 0.522 0.273 0.745 100.0 

50 

b 0.492 0.008 0.001 0.080 97.2 
a 1.624 0.124 0.016 0.077 98.1 
( )R x 0.714 0.041 0.002 0.452 96.0 
( )h x 0.895 0.098 0.010 0.922 100.0 

70 

b 0.495 0.005 0.000 0.077 97.6 
a 1.580 0.080 0.007 0.084 97.4 
( )R x 0.638 0.035 0.001 0.640 97.1 
( )h x 0.977 0.016 0.000 1.099 98.6 

150 

50 

b 0.491 0.009 0.001 0.081 98.9 
a 1.619 0.119 0.015 0.082 96.4 
( )R x 0.793 0.120 0.014 0.281 96.0 
( )h x 0.779 0.214 0.046 0.598 100.0 

70 

b 0.490 0.010 0.001 0.081 98.0 
a 1.599 0.099 0.010 0.085 98.2 
( )R x 0.825 0.153 0.023 0.374 100.0 
( )h x 0.688 0.305 0.093 0.884 100.0 

100 

b 0.496 0.004 0.000 0.078 96.9 
a 1.549 0.049 0.003 0.084 96.8 
( )R x 0.697 0.024 0.001 0.571 99.0 
( )h x 0.899 0.094 0.009 1.114 100.0 

130 

b 0.496 0.004 0.000 0.076 97.5 
a 1.547 0.047 0.003 0.084 97.3 
( )R x 0.567 0.105 0.011 0.799 96.2 
( )h x 1.067 0.074 0.006 1.196 99.2 
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Continued Table 2 

Scheme II 
n m Estimate Mean Bias MSE CIL CP 

50 

20 

b 0.486 0.014 0.001 0.080 97.4 
a 1.673 0.173 0.030 0.085 97.5 
( )R x 0.532 0.140 0.020 0.965 100.0 
( )h x 1.097 0.104 0.011 1.595 100.0 

30 

b 0.494 0.006 0.000 0.080 96.5 
a 1.651 0.151 0.023 0.090 97.5 
( )R x 0.577 0.095 0.009 0.891 96.7 
( )h x 1.024 0.031 0.001 1.308 100.0 

100 

20 

b 0.496 0.004 0.000 0.082 97.1 
a 1.615 0.115 0.014 0.083 97.1 
( )R x 0.490 0.182 0.033 0.991 100.0 
( )h x 1.137 0.144 0.021 1.704 100.0 

50 

b 0.493 0.007 0.000 0.083 98.8 
a 1.590 0.090 0.009 0.080 97.8 
( )R x 0.522 0.151 0.023 0.922 96.0 
( )h x 1.118 0.125 0.016 1.333 100.0 

70 

b 0.497 0.003 0.000 0.078 97.2 
a 1.557 0.057 0.004 0.083 98.1 
( )R x 0.549 0.123 0.015 0.938 100.0 
( )h x 1.057 0.064 0.004 1.461 100.0 

150 

50 

b 0.495 0.005 0.000 0.079 96.8 
a 1.574 0.074 0.006 0.082 96.6 
( )R x 0.505 0.167 0.028 0.958 100.0 
( )h x 1.117 0.124 0.015 1.555 98.0 

70 

b 0.496 0.004 0.000 0.082 97.7 
a 1.555 0.055 0.004 0.085 96.9 
( )R x 0.567 0.105 0.011 0.911 98.6 
( )h x 1.046 0.053 0.003 1.319 97.1 

100 

b 0.498 0.002 0.000 0.077 98.2 
a 1.547 0.047 0.003 0.085 97.2 
( )R x 0.511 0.162 0.026 0.940 96.0 
( )h x 1.125 0.132 0.018 1.370 100.0 

130 

b 0.497 0.003 0.000 0.075 97.7 
a 1.540 0.040 0.002 0.082 97.2 
( )R x 0.486 0.186 0.035 0.925 98.5 
( )h x 1.164 0.170 0.029 1.330 96.9 
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Continued Table 2 

Scheme III 
n m Estimate Mean Bias MSE CIL CP 

50 

20 

b 0.483 0.017 0.001 0.081 97.1 
a 1.693 0.193 0.038 0.088 98.2 
( )R x 0.565 0.107 0.012 0.968 100.0 
( )h x 1.059 0.066 0.004 1.590 100.0 

30 

b 0.494 0.006 0.000 0.083 98.9 
a 1.644 0.144 0.021 0.080 97.4 
( )R x 0.579 0.094 0.009 0.959 100.0 
( )h x 0.991 0.003 0.000 1.626 100.0 

100 

20 

b 0.488 0.012 0.001 0.079 96.4 
a 1.617 0.117 0.014 0.084 97.1 
( )R x 0.602 0.070 0.005 0.973 100.0 
( )h x 0.962 0.031 0.001 1.672 100.0 

50 

b 0.498 0.002 0.000 0.079 96.8 
a 1.562 0.062 0.004 0.084 96.9 
( )R x 0.457 0.215 0.046 0.927 98.0 
( )h x 1.189 0.196 0.038 1.427 98.0 

70 

b 0.494 0.006 0.000 0.077 97.1 
a 1.580 0.080 0.007 0.089 97.3 
( )R x 0.538 0.135 0.018 0.865 100.0 
( )h x 1.102 0.109 0.012 1.254 97.1 

150 

50 

b 0.497 0.003 0.000 0.079 96.7 
a 1.559 0.059 0.004 0.082 97.3 
( )R x 0.472 0.200 0.040 0.912 96.0 
( )h x 1.172 0.179 0.032 1.271 100.0 

70 

b 0.499 0.001 0.000 0.079 98.0 
a 1.547 0.047 0.003 0.084 96.8 
( )R x 0.535 0.137 0.019 0.928 100.0 
( )h x 1.094 0.101 0.010 1.487 97.1 

100 

b 0.495 0.005 0.000 0.076 97.6 
a 1.552 0.052 0.003 0.082 98.0 
( )R x 0.515 0.158 0.025 0.887 99.0 
( )h x 1.127 0.134 0.018 1.416 97.0 

130 

b 0.497 0.003 0.000 0.076 98.3 
a 1.534 0.034 0.002 0.085 97.1 
( )R x 0.489 0.183 0.034 0.950 100.0 
( )h x 1.148 0.154 0.024 1.438 100.0 
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5. Discussion and Summary 
This study uses maximum likelihood and Bayesian techniques to analyse parameter estimators, 
reliability function estimator, and hazard rate function estimator for EME distributions under 
PT2Cschemes. Gamma and uniform priors are taken into account under the squared error loss 
function to construct the Bayesian estimators. On the basis of IF and NIF priors, it is possible to derive 
approximate confidence intervals as well as Bayesian credible intervals. A simulation study is 
conducted to compare the effectiveness of every estimate. The Bayesian estimates using the gamma 
prior are, roughly speaking, generally more accurate than the MLEs, according to a numerical 
illustration. When compared to other schemes, Scheme I's MSEs have the highest value. Additionally, 
the MSEs for each estimate use the value for Scheme III that is the lowest. Comparatively speaking, 
the Bayesian estimates using gamma priors have the highest coverage probability. 
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Abstract

It has been noted in the literature on probability theory that the classical probability distributions do
not adequately fit real-world data and do not exhibit non-monotonic hazard rate behavior. To overcome
this limitation, researchers are focusing on the improvement of these distributions. In this manuscript,
we have introduced a new probability model called Ratio Transformation Lomax Distribution (RTLD) as
a new generalization of Lomax distribution. A thorough mathematical analysis of the new distribution
is provided in closed form such as density function, distribution function, the r-th moment, survival
function, hazard function, moment generating function, generalized entropy and also the order statistics.
The new model’s parameters are calculated using the method of maximum likelihood estimation. The
proposed distribution’s performance and adaptability is backed by three sets of real lifetime data as well as
simulated data.

Keywords:Ratio Transformation Lomax distribution, hazard rate function, moments, maximum
likelihood estimation

1. Introduction

In several literary contexts, the Lomax distribution has been employed. It has been frequently
utilised for reliability modelling and life testing. But it does not provide an acceptable fit
for several applications, particularly when the risk rates include bimodal or bathtub-shaped
hazards. To overcome these limitations, researchers have created a variety of extensions and
changes to the Lomax distribution to model various sorts of data. In the statistical literature,
a variety of probability models are available to simulate various real-life random processes.
Every year more distinct models with high degrees of flexibility are developed because no
single distribution can fully represent all phenomena. As a result, researchers are focusing on
creating new families of distribution and releasing a new variety of families of distribution in
order to more thoroughly analyse real-world data in a variety of applications. Among these,
some of the extensions of the Lomax distribution found in the literature are exponentiated
Weibull-Lomax distribution proposed by [7], power Lomax distribution introduced by [8], a
new extension of Lomax distribution formulated by [5], Marshall-0lkin alpha power Lomax
distribution presented by [4]. The generalization of probability models has been very popular
in recent years. There are variety of approaches for generalizing probability distributions, such
as Alpha Power Transformation (APT) proposed by [12], exponentiation, mixture and Weighted
Technique ,Power Transformation, and several others. Recently, [11] proposed a new method for
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generating distributions known as Ratio Transformation(RT) method. In this manuscript, our
motive is the generalization of Lomax distribution to develop the new probability model called as
Ratio Transformation Lomax Distribution (RTLD) by using Ratio Transformation (RT) method.
The primary justification for making this generalization is that RTLD’s hazard rate displays a
variety of complex shapes, such as constant, increasing-decreasing, decreasing-increasing, etc.,
which overcomes Lomax distribution’s drawbacks. Additionally, when considering a real-world
data sets, the new distribution performs better than the baseline distribution and certain well-
known competitive models. The remaining portions of the manuscript are structured as follows:
In section 2, the Ratio Transformation (RT) method is discussed. In section 3, the RTLD’s pdf and
cdf are defined, and its sub-cases are covered. In section 4, the reliability analysis of the RTLD is
presented. In sections 5, 6, 7, and 8 the statistical properties ,generating functions, order statistics,
and information measure of the RTLD are respectively discussed. A very effective method is used
to carry out the parameter estimation in section 9. Sections 10, 11 and 12, respectively, provide
information on the simulation study, applicability of RTLD and its conclusion.

2. Ratio Transformation (RT) Method

The Ratio Transformation (RT) family of probability distributions, as proposed by [11] is high-
lighted in this section. Suppose the continuous random variable X has cdf F(x). Therefore, the
RT of F(x) denoted by FRT(x) for x ∈ R and is defined by

FRT(X) =
F(x)

1 + η − ηF(x)
; η > 0 (1)

The pdf of the Ratio Transformation(RT) distribution is defined as follows

fRT(X) = f (x)

(
1 + η − ηF(x) (1− F(x)logη)

)
(
1 + η − ηF(x)

)2 ; η > 0 (2)

3. Ratio Transformation Lomax Distribution (RTLD)

Suppose the random variable X has the Lomax distribution with shape parameter β and scale
parameter θ respectively, then its probability density function(pdf) and Cumulative distribution
function (cdf) are respectively given by

f (x; β, θ) =
β

θ

(
1 +

x
θ

)−(β+1)
; x > 0, β > 0, θ > 0 (3)

F(x; β, θ) = 1−
(

1 +
x
θ

)−β
; x > 0, β > 0, θ > 0 (4)

The RTLD is constructed from the Lomax distribution by using the (3) and (4)into (2) and(1)
respectively. Therefore, the cdf of the RTLD is obtained as;

FRTLD(x; β, θ, η) =
1−

(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

; ; x > 0, η > 0, β > 0, θ > 0 (5)

and the corresponding pdf is

fRTLD(x, β, θ, η) =

β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2 ; x > 0, η > 0, β > 0, θ > 0

(6)
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Table 1: Sub-Cases of RTLD

η θ β Reduced Model
- 1 - Two parameter RTLD
1 - - Two parameter Lomax distribution
1 1 - Beta Prime distribution
1 1 1 F(2, 2)
1 1

θq(q−1)
(2−q)
(q−1) q-exponential distribution

Figure 1 and 2 have been displayed to provide a visual representation of the potential shapes
of pdf and cdf of RTLD. Figure 3 represents the hazard rate plots of the RTLD for different
parameter values.
Remark: For η = 1 in 6, RTLD becomes the two parametric Lomax distrbution. The important
sub-cases of RTLD are presented in Table 1

4. Reliability analysis of the RTLD

This section primarily focuses on calculating the reliability (survival function), hazard rate (failure
rate), reverse hazard function, cumulative hazard function, and mills ratio expressions for RTLD
respectively.

4.1. Survival function

The survival function/reliability function is the complement of the cumulative distribution
function and it is defined as the probability that a system will survive beyond a specified time.
For the RTLD, the survival function denoted as RRTLD(x) is given by

RRTLD(x) = 1− FRTLD(x; β, θ, η) =

η

(
1− η−(1+ x

θ )
−β
)
+
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

(7)

4.2. Hazard Rate

Hazard rate also known as hazard function , force of mortality or failure rate. The expression for
the hazard rate of RTLD is expressed as

h(x; η, β, θ) =
fRTLD(x, β, θ, η)

RRTLD(x, β, θ, η)

h(x; η, β, λ) =

β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))(
1 + η − η1−(1+ x

θ )
−β
)−1

η

(
1− η−(1+ x

θ )
−β
)
+
(
1 + x

θ

)−β

(8)

4.3. Reverse Hazard function

The reverse hazard function for the RTLD is expressed as

hr(x; η, β, θ) =
fRTLD(x, β, θ, η)

FRTLD(x; β, θ, η)
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Using equation (6) and(5) , the reverse hazard function for the RTLD is obtained as

hr(x; η, β, θ) =

β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))(
1 + η − η1−(1+ x

θ )
−β
)−1

1−
(
1 + x

θ

)−β

(9)

4.4. Cumulative Hazard function

The Cumulative hazard function for the RTLD is obtained as

ΛRTLD(x; η, β, θ) = − log RRTLD(x)

ΛRTLD(x; η, β, θ) = log


1 + η − η1−(1+ x

θ )
−β

η

(
1− η−(1+ x

θ )
−β
)
+
(
1 + x

θ

)−β

 (10)

4.5. Mills Ratio

The Mills ratio for the RTLD is obtained as

M.R =
FRTLD(x; β, θ, η)

RRTLD(x)
=


1−

(
1 + x

θ

)−β

η

(
1− η−(1+ x

θ )
−β
)
+
(
1 + x

θ

)−β

 (11)

5. STATISTICAL PROPERTIES OF RTLD

This part focuses on discussing the related measures that are connected to the formulated model,
including the raw moments, central moments, pearson’s coefficients, coefficient of variation, and
index of dispersion.

5.1. Raw Moments

The rthmoment of the RTLD about origin µ
′
r is given by

µ
′
r = E(xr) =

∞∫
0

xr fRTLD(x, β, θ, η)dx

µ
′
r =

∞∫
0

xr

β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2 dx (12)

Here, rth moment of the RTLD is obtained by using the following series representations.

η−x =
∞

∑
k=0

(−logη)kxk

k!
(13)

(1− x)−2 =
∞

∑
k=0

(k + 1)xk ; |x| < 1, (14)

(1− x)−1 =
∞

∑
k=0

xk ; |x| < 1, (15)
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By substituting y =
(
1 + x

θ

)−β in (12) and solving the integral further,we obtain rthmoment of the RTLD
about origin µ

′
r as

µ
′
r =

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(16)

where
A = B(r + 1, β(m + 1)− r) and C = B(r + 1, β(m + 2)− r) represents the beta functions of second type.

Using equation (16) and substituting r = 1, 2, 3, 4 , the first four moments about origin of the RTLD are
obtained as

µ
′
1 =

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}
(17)

where

A
′
1 = B(2, β(m + 1)− 1)

C
′
1 = B(2, β(m + 2)− 1)

The equation (17) represents the mean of the RTLD.

µ
′
2 =

∞

∑
k,m=0

βθ2ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
2 + (1 + k)m+1logη

[
A
′
2 − C

′
2

]}
(18)

where

A
′
2 = B(3, β(m + 1)− 2)

C
′
2 = B(3, β(m + 2)− 2)

µ
′
3 =

∞

∑
k,m=0

βθ3ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
3 + (1 + k)m+1logη

[
A
′
3 − C

′
3

]}
(19)

where

A
′
3 = B(4, β(m + 1)− 3)

C
′
3 = B(4, β(m + 2)− 3)

µ
′
4 =

∞

∑
k,m=0

βθ4ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
4 + (1 + k)m+1logη

[
A
′
4 − C

′
4

]}
(20)

where

A
′
4 = B(5, β(m + 1)− 4)

C
′
4 = B(5, β(m + 2)− 4)
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5.2. Moments about Mean (Central Moments)
The moments about the mean also known as central moments of RTLD are obtained as

µ2 = µ
′
2 − (µ

′
1)

2

µ2 =
∞

∑
k,m=0

βθ2ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
2 + (1 + k)m+1logη

[
A
′
2 − C

′
2

]}

−
{

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}}2

(21)

The equation (21) represents the variance of RTLD.

µ3 =
∞

∑
k,m=0

βθ3ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
3 + (1 + k)m+1logη

[
A
′
3 − C

′
3

]}
−3

(
∞

∑
k,m=0

βθ2ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
2 + (1 + k)m+1logη

[
A
′
2 − C

′
2

]})
(

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]})

+2

{
∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}}3

(22)

µ4 =
∞

∑
k,m=0

βθ4ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
4 + (1 + k)m+1logη

[
A
′
4 − C

′
4

]}
−4

(
∞

∑
k,m=0

βθ3ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
3 + (1 + k)m+1logη

[
A
′
3 − C

′
3

]})
(

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]})

+6

(
∞

∑
k,m=0

βθ2ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
2 + (1 + k)m+1logη

[
A
′
2 − C

′
2

]})
(

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]})

−3

{
∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}}4

(23)

As a result, these equations may be used to calculate the skewness measure, kurtosis, coefficient of variation
and index of dispersion for the RTLD.

5.3. Pearson’s Coefficients
The following four coefficients can be obtained for the RTLD based upon the first four moments about the
mean using the above section as:

β1 =
µ2

3
µ3

2

γ1 =
√

β1

β2 =
µ4

µ2
2

γ2 = β2 − 3
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5.4. Coefficient of Variation

CV =

√
µ2

µ
′
1

On using the equations (17) and(21), the coefficient of variation can be obtained for RTLD.

5.5. Index of Dispersion
The index of dispersion is defined as :

D =
µ2

µ
′
1

On using the equations (17) and(21), the index of dispersion can be obtained for RTLD.

6. Generating Functions RTLD

6.1. Moment Generating Function
Moment generating function (MGF) is used to represent all the moments of a distribution. The MGF for
RTLD distribution is given in the following theorem.

Theorem 1. Let X follows the RTLD distribution, then the moment generating function, MX(t) is

Mx(t) =
∞

∑
r=0

tr

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(24)

Proof: The moment generating function of RTLD distribution is defined as

Mx(t) =
∞∫

0

etx f (x)dx

Using the series representation of etx, we have

∞

∑
r=0

tr

r!

∞∫
0

xr f (x; η, β, θ)dx

Using equation (16) we obtain the moment generating function for RTLD as

Mx(t) =
∞

∑
r=0

tr

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(25)

6.2. Characteristic Function
The characteristic function for RTLD distribution is given in the following theorem.

Theorem 2. Let X follows the RTLD distribution, then the characteristic function, φX(t)is

φX(t) =
∞

∑
r=0

(it)r

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(26)

Proof: The characteristic function for the RTLD can be obtained using the relation φX(t) = Mx(it)

φX(t) =
∞

∑
r=0

(it)r

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(27)
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6.3. Cumulant Function
The cumulant function for the RTLD can be obtained using the relation kx(t) = log Mx(t)

kv(t) = log
∞

∑
r=0

tr

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(28)

7. Order Statistics of RTLD

The order statistics connected to the RTLD is devoted in this section. Let X(t;n) be the tth order statistics with
the random sample x(1), x(2), x(3), ...x(m) derived from the RTLD having the probability density function
(pdf) f (x; η, β, θ) and cumulative distribution function (cdf) F(x; η, β, θ). Therefore, the probability density
function (pdf) and cumulative distribution function (cdf) of x(t;n) say f(t;n)(x) and F(t;n)(x) respectively is
defined as

f(t;n)(x) =
n!

(t− 1)!(n− t)!
[F(x; η, β, θ)]t−1 [1− F(x; η, β, θ)]n−t f (x; η, β, θ) (29)

F(t;n)(x) =
n

∑
j=t

(
n
j

)
[F(x; η, β, θ)]j [1− F(x; η, β, θ)]n−j (30)

Using equation(5) and equation(6) in equation(29) and equation(30), the pdf and cdf of tth ordered statistics
for the RTLD is derived and is expressed as

f(t;n)(x) =
n!

(t− 1)!(n− t)!

 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

t−1 (1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n−t


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2

 (31)

F(t;n)(x) =
n

∑
j=t

(
n
j

) 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

j (1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n−j

(32)

In order to obtain the expression for pdf of smallest(minimum) order statistics x(1)and the largest (maximum)
order statistics x(m) of RTLD , we assume t = 1 and n respectively and is expressed in the form as

f(1;n)(x) = n

(1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n−1


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2


(33)

f(n;n)(v) = n

 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

n−1


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2


(34)

7.1. Median order statistics
Theorem 3. The Pdf of median order statistics for the RTLD is given as

f(n+1;n)(x) =
(2n + 1)!
(n)!(n)!

 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

n (1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2

 (35)
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Proof The pdf of median order statistics, x(n+1) is defined as

f(n+1;n)(x) =
(2n + 1)!

n!n!
[F(x; η, β, θ)]n [1− F(v; η, β, θ)]n f (v; η, β, θ)

f(n+1;n)(x) =
(2n + 1)!
(n)!(n)!

 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

n (1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2

 (36)

8. Information measure of RTLD

Entropy is a quantitative measures of the amount of uncertainty in a random variable. In this section we
derive the expression for generalized entropy of RTLD.

Theorem 4. The generalized entropy for the RTLD is expressed as

I(α) =
1

α(α− 1)


∑∞

k,m=0
βθαηk(−logη)m

(1+η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}{
∑∞

k,m=0
βθηk(−logη)m

(1+η)k+2m!

{
km(1 + η)A′1 + (1 + k)m+1logη

[
A′1 − C′1

]}}α − 1

 (37)

Proof:The generalized entropy is defined as

I(α) =
xαµ−α − 1
α(α− 1)

where

xα =

∞∫
−∞

xα f (x)dx

and µ represents mean. For RTLD, we have

xα =
∞

∑
k,m=0

βθαηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(38)

where
A = B(α + 1, β(m + 1)− α) and C = B(α + 1, β(m + 2)− α) represents the beta functions of second type.

µ−α =

{
∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}}−α

(39)

where

A
′
1 = B(2, β(m + 1)− 1)

C
′
1 = B(2, β(m + 2)− 1)

Therefore, the expression for the generalized entropy of RTLD is obtained as

I(α) =
1

α(α− 1)


∑∞

k,m=0
βθαηk(−logη)m

(1+η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}{
∑∞

k,m=0
βθηk(−logη)m

(1+η)k+2m!

{
km(1 + η)A′1 + (1 + k)m+1logη

[
A′1 − C′1

]}}α − 1

 (40)
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9. Estimation of Parameters

This section is devoted to maximum likelihood estimation procedure for estimating unknown parameters
η, β, θ of RTLD.

9.1. Maximum Likelihood Estimation(MLE)
Suppose x1, x2, x3, ...xn be the random sample derived from the RTLD having the probability density function
(pdf) f (x; η, β, θ). Therefore, for n observations , the logarithm of the likelihood function of RTLD is obtained
as

l = nlogβ + nβlogθ − (β + 1)
n

∑
i=1

log(xi + θ)− 2
n

∑
i=1

log
(

1 + η − η1−(1+ x
θ )
−β
)

+
n

∑
i=1

log
[

1 + η − η1−(1+ x
θ )
−β
(

1− logη (1−
(

1 +
x
θ

)−β
)

)]
(41)

The MLEs of η, θ and β are obtained by partially differentiating (41) with respect to the corresponding
parameters and equating to zero, we have

∂l
∂η

=
n

∑
i=1

1 + (1−
(
1 + x

θ

)−β
)2η−(1+ x

θ )
−β

logη

1 + η − η1−(1+ x
θ )
−β (

1− logη(1−
(
1 + x

θ

)−β
)
) − 2

n

∑
i=1

1− (1−
(
1 + x

θ

)−β
)η−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

(42)

∂l
∂β

=
n
β
+ nlogθ −

n

∑
i=1

log(xi + θ) + 2
n

∑
i=1

η1−(1+ x
θ )
−β

logη
(
1 + x

θ

)−β log
(
1 + x

θ

)
1 + η − η1−(1+ x

θ )
−β

−
n

∑
i=1

1 + η − η1−(1+ x
θ )
−β

(1 + x
θ )
−βlogη(1 + x

θ ) +
(

1− logη (1−
(
1 + x

θ

)−β
)
)

η1−(1+ x
θ )
−β

logη(1 + x
θ )
−βlog(1 + x

θ )

1 + η − η1−(1+ x
θ )
−β (

1− logη(1−
(
1 + x

θ

)−β
)
)

(43)

∂l
∂θ

=
nβ

θ
− (β + 1)

n

∑
i=1

1
(xi + θ)

− 2
n

∑
i=1

βθ−2xη1−(1+ x
θ )
−β

logη
(
1 + x

θ

)−(β+1)

1 + η − η1−(1+ x
θ )
−β

−
n

∑
i=1

[
βθ−2xlogη

(
1 + x

θ

)−(β+1)
] {

(1 + η − η1−(1+ x
θ )
−β

) +
(

1− logη (1−
(
1 + x

θ

)−β
)
)

η1−(1+ x
θ )
−β
}

1 + η − η1−(1+ x
θ )
−β (

1− logη(1−
(
1 + x

θ

)−β
)
)

(44)

The above three non-linear equations (42),(43) and (44) are not in closed form.Therefore,we shall solve these
equations with the help of R software.

10. SIMULATION ILLUSTRATION

In this section, the effectiveness of the (MLEs) of RTLD is explored. To demonstrate the behavior of MLEs in
terms of random generating sample sizes of n= 50, 100, 200, 300, 400 a simulation research was conducted
using R Software. The procedure is repeated 500 times. Different sets of parameter combinations are selected
as (1,0.5,1)and (0.5,1,1) with reference to the usual order (θ, η, β). The average MLE values, bias, and related
empirical mean squared errors (MSEs) were determined for each scenario. From Table 2 and Table 3 the
simulation findings are shown. The estimates are stable and near to the genuine parameter values, as
presented in Tables 2 and 3. In all circumstances, the MSE drops as the sample size increases.
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Table 2: Results of the simulation study for the RTLD model at parameter combination set as (θ = 1, η = 0.5, β = 1).

Sample MLE BIAS MSE
n θ̂ η̂ β̂ θ̂ η̂ β̂ θ̂ η̂ β̂

50 1.88737 0.81308 1.48624 0.88737 0.31308 0.48624 5.31104 4.05814 1.24

100 1.36960 0.77404 1.23155 0.369604 0.27404 0.23155 1.26655 3.01730 0.32662

200 1.17796 0.61684 1.12613 0.177968 0.11684 0.126133 0.456912 0.24202 0.085288

300 1.09238 0.59553 1.07560 0.09238 0.0955 0.07560 0.381143 0.08623 0.06454

400 1.02375 0.59153 1.02596 0.02375 0.09153 0.02596 0.23470 0.06871 0.033937

Table 3: Results of the simulation study for the RTLD model at parameter combination set as (θ = 0.5, η = 1, β = 1).

Sample MLE BIAS MSE
n θ̂ η̂ β̂ θ̂ η̂ β̂ θ̂ η̂ β̂

50 0.82485 1.9607 1.36407 0.3248 0.9607 0.36407 1.07362 6.2609 0.59748

100 0.78055 1.64962 1.20104 0.28055 0.6496 0.2010 1.02573 4.14133 0.25056

200 0.60470 1.16408 1.07572 0.1047 0.1640 0.07572 0.16791 1.0627 0.04460

300 0.59327 1.14369 1.06681 0.0932 0.14369 0.06681 0.122244 0.50144 0.033350

400 0.56298 1.13550 1.0422 0.0629 0.135501 0.04229 0.0884 0.5013 0.01751

11. Application

This section concentrates on application of the proposed model to real life data sets. The significance and
superiority of RTLD are highlighted in this part by the use of three real-life data sets. The MLEs of the model
parameters are computed along with the corresponding Standard Error (SE) and goodness-of-fit statistics
for these models are compared with other competing models. We compare the fits of the RTLD distribution
with some competitive models which are listed in Table 4. To choose the best model among the compared
models, performance comparing tools such as Akaike Information Criteria (AIC),Bayesian Information
Criteria (BIC) and Akaike Information Criteria Corrected (AICc) are exploited. These Criterions choose the
superior distribution as the one which is having the smallest value of AIC,BIC,and AICc. Furthermore, the
Kolmogorov -Smirnov (KS)-distance and associated p- value is obtained to assess the goodness of fit. The
superior probability model is considered the one which is having the least value of KS and maximum value
of p- value.
The performance comparing tools are mentioned below:

∙ Akaike Information Criterion(AIC) is calculated as

AIC =-2l̂ + 2m

∙ Bayesian Information Criterion (BIC) is defined as

BIC =-2l̂ + m ln(n)

∙ Akaike Information Criterion Corrected(AICC) is defined as.

AICC =AIC + 2m(m+1)
n−m−1

where

l̂ is the log-likelihood function of the model given the data.
m represents the number of parameters involved in the given model.
n is the sample size.

Table 5 and Table 6 displays the MLE’s with corresponding Standard Error (SE) and the comparison of
performance of RTLD with compared distributions for data set 1 ,which represents the COVID-19 vaccination
rate from different countries. Table 7 and Table 8 presents the MLE’s along with corresponding Standard
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Table 4: Competitive models of the RTLD model.

Competitive models of the RTLD model
Distribution(s) Author(s)
(1) Sine Power Lomax (SPL) [14]
(2) Length Biased Weighted Lomax Distribu-
tion(LBWLD)

[2]

(3) Topp-Leone Lomax (TLLo) [15]
(4) Power Lomax (PL) [16]
(5) Exponentiated Lomax (EL) [1]
(6) Weibull Lomax(WL) [17]
(7) Lomax (L) [10]

Table 5: MLE’s of RTLD and compared distributions with corresponding standard error (given in parenthesis) for
Covid -19 vaccination rate data set .

Model η̂ β̂ θ̂ α̂ λ̂

RTLD 0.3446 2.7564 25.9981
( 0.1854) ( 2.3906) ( 31.3471) - -

PL 0.9390 1.6917 6.7054
- ( 0.2478) - (1.6295) (6.9138)

SPL 0.9402 0.7755 0.2037
- ( 0.2714) - ( 0.7075) (0.2041)

EL 0.1952 1.3525 1.0322
- (0.2336) - (0.6882) (0.3999)

TLLo 0.6762 0.1952 1.0322
- (0.3441) - ( 0.2336) (0.3999)

L 5.5782 1.3924
- (3.3975) (0.5346) - -

Table 6: Comparison of RTLD and compared distributions for Covid -19 vaccination rate data set

Model -2l̂ AIC AICC BIC K-S p-value
RTLD 284.6826 290.6826 291.2540 296.1685 0.0845 0.8697

PL 285.6881 291.6881 292.2595 297.1740 0.1013 0.6938

SPL 285.8228 291.8229 292.3943 297.3088 0.1030 0.6751

EL 285.8365 291.8365 292.4079 297.3224 0.10699 0.6294

TLLo 285.8365 291.8365 292.4079 297.3224 0.10699 0.6294

L 288.7432 292.7432 293.0222 296.4004 0.108 0.6124

Error (SE) and comparison of performance of RTLD with compared distributions for data set 2. In addition
to these, the result findings of the RTLD for the data set 3 , that represents the organic carbon content
percentage in the soil of the district Ganderbal and are discussed in Table 9 and Table 10. The results shown
in Table 6, Table 8 and 10 reveals that RTLD is having a minimum value of AIC ,BIC and AICC, and thus
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Table 7: MLE’s of RTLD and compared distributions with corresponding standard error (given in parenthesis) for the
dataset of the life of fatigue fracture of Kevlar 373/epoxy data .

Model η̂ β̂ θ̂ α̂ λ̂

RTLD 20.9773 3.31514 0.635077
( 17.388) ( 0.892) ( 0.550) - -

SPL 1.543 1.768 0.127
- ( 0.246) - ( 1.385) (0.106)

PL 1.591 3.629 9.746
- ( 0.243) - (3.024) (8.519)

TLLo 15.937 0.023 1.772
- (17.019) - ( 0.026) (0.303)

EL 0.026 27.846 1.794
- (0.027) - (26.984) (0.309)

WL 9288.5276 41544.7577 1.32698 19.90441
(17578.45506) (548.674) (0.11376) (30.64844) -

L 112,212.8 219,815.9
- (11,863.8471) (231.3384) - -

Table 8: Comparison of RTLD and compared distributions for the data set of the life of fatigue fracture of Kevlar
373/epoxy data

Model -2l̂ AIC AICC BIC K-S p-value
RTLD 239.2362 245.2362 245.5695 252.2284 0.0669 0.863

SPL 242.6924 248.6924 249.0257 255.6846 0.0829 0.6416

PL 243.0583 249.0583 249.3916 256.0505 0.0844 0.6204

TLLo 244.5824 250.5824 250.9157 257.5746 0.0907 0.53

EL 244.6087 250.6087 250.9421 257.6009 0.0906 0.52

WL 245.0592 253.0592 253.6226 262.3822 0.11003 0.2943

L 254.2288 258.2289 258.3931 262.8902 0.16631 0.02635

outperforms the base model of Lomax and a few well-known competitive models as shown in Table 4 for
the provided data set 1, data set 2 and data set 3 (Given in Appendix A). The claim is further supported by
Figures 4 and 5. Also the P-P plots of the RTLD model for all the given 3 data sets are shown in Figure 6
,supports the results presented in Table 6, Table 8 and 10.
*Note: The findings of the TLLO and EL models for data set 1 and data set 2 are nearly equal,because of
their similar nature but slight numerical variations are seen without rounding.

12. Conclusion

In this manuscript, the main contribution is to propose a flexible generalization of Lomax distribution that
can acts as a potential substitute for the base model in various situations. In this regard , we use the Ratio
Transformation (RT) method and introduced a new model called as RTLD. Some of its key characteristics
are discussed, and parameters are determined using a fairly potent estimation technique. The application of
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Table 9: MLE’s of RTLD and compared distributions with corresponding standard error (given in parenthesis) for the
dataset of the Organic carbon content percentage in the soil of district Ganderbal .

Model η̂ β̂ θ̂ α̂ λ̂

RTLD 18.0874 112511.8 24858.69
( 5.0829) ( 6957.718) ( 241.6045) - -

SPL 2.2218 48.3872 0.01316
- ( 0.2901) - ( 60.3950) (0.0164)

LBWLD 82006.2083 34926.7946
(8393.8383) - - - ( 141.5032)

L 58010.4142 49436.1672
- (10617.0983) (227.7487) - -

Table 10: Comparison of RTLD and compared distributions for the data set of the Organic carbon content percentage
in the soil of district Ganderbal

Model -2l̂ AIC AICC BIC K-S p-value
RTLD 36.7457 42.7457 43.3457 48.0982 0.0787 0.948

SPL 42.9822 48.9822 49.5822 54.3347 0.137 0.3808

LBWLD 56.3150 60.3150 60.60774 63.8834 0.22998 0.01904

L 73.91046 77.91046 78.20314 81.47884 0.30589 0.01

RTLD from a practical perspective is demonstrated through the incorporation of a three real life data sets.
The goodness of fit measure is used to assess the effectiveness of the proposed model to other existing known
models. The acquired findings are quite encouraging and demonstrate that the RTLD model outperforms
the competing models for the provided data sets.
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Appendix A

Data set 1: The first data represents the COVID-19 vaccination rate from 46 different countries in southern
Africa . The data has been previously analyzed by [3]. The data is as follows: 0.042, 0.205, 0.285, 0.319, 0.464,
0.550, 0.889, 0.895, 0.939, 0.986, 1.000, 1.088, 1.212, 1.244, 1.450, 1.593, 1.844, 2.039, 2.157, 2.167, 2.334, 2.440,
2.657, 3.685, 3.879, 4.493, 4.800, 4.944, 5.155, 5.674, 7.602, 10.004, 12.238, 12.520, 12.553, 13.063, 15.105, 15.229,
15.629, 15.848, 18.641, 18.940, 29.885, 58.162, 61.838, 72.286.
Data set 2 The data set represents the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant
pressure at the 90 % stress level until all had failed. For previous studies on the data sets, see, [9] and [6]
The data are: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753,
0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570,
1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746,
1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100,
2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455,
3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.
Data set 3 The data set represents the organic carbon(%) content in the soil of district Ganderbal. For
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previous studies on the data set, see, [13].The data set are: 0.99, 0.81, 0.57, 1.11, 0.97, 0.78, 0.85, 0.85, 0.91,
0.79, 0.66, 0.99, 0.94, 1.17, 1.06, 0.99, 0.84, 1.47, 1.14, 1.41, 0.2, 0.6, 0.03,0.12, 1.11, 0.25, 1.14, 0.63, 0.45, 0.76, 1.2,
1.08, 1.26, 1.08, 0.27, 0.15, 0.75, 0.33, 0.75, 0.63, 1.47, 1.21, 1.24, 1.48.
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Here in this section the figures related to the probability density functions, distribution functions, hazard
rate and different plots for the three given data sets
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Figure 1: Probability density plots of the RTLD for various values of η, β, θ > 0
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Figure 2: Distribution function plots of the RTLD for various values of η, β, θ > 0
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Figure 3: Hazard rate plots of the RTLD for various values of η, β, θ > 0
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Figure 4: Plot of the Fitted densities.
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Figure 6: P-P plot of the RTLD model for data set 1,data set 2 and data set 3 respectively.
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Abstract

Based on the power Cauchy distribution, we have purposed a new distribution called inverse
power Cauchy distribution that offers greater modeling flexibility for lifetime data. Real-world
data can be efficiently analyzed using the suggested model because it is analytically sound. Its
density function can take on a number of different shapes, including reversed-J, symmetrical,
and right-skewed. Depending on the different values of the parameters, it can adapt to different
hazard forms, such as an upside-down bathtub, a monotonically increasing or decreasing curve,
and others. Its moments, quantile, reliability, hazard, order statistics with density function,
moment generating function, and entropy are all given with various explicit forms. The ob-
served information matrix is created when the new model’s parameters are calculated through
maximum likelihood technique. A simulation study is conducted to investigate the behaviour
of maximum likelihood estimators. The proposed model gets a superior fit compared to certain
well-known distributions, according to the test of goodness-of-fit we conducted. The significance
of the purposed distribution is demonstrated empirically using two real-world data sets.

Keywords: Entropy, Maximum likelihood estimation, Moment, order statistics, Power Cauchy
distribution

1. Introduction

Many families of probability models have been developed in the recent decades. New distributions
are frequently produced from modifications of a random variable X of parent distribution by: power
(e.g., Weibull is obtained from the exponential); linear; non-linear (e.g., log-logistic from logistic);
log (e.g., log gamma, log-normal, logistic) and inverse transformation (e.g., inverse Lindley, inverse
Exponential models); T-X family framework proposed by Alzaatreh et al. [3]; the compounding
of some important lifetime and discrete distributions (e.g. the Poisson-X family distribution) by
Tahir et al. [28]. In most cases, a given mixture of baseline models or linear combination defines
a class of probability distributions where baseline model is a particular case.

In contrast to the Gaussian distribution, the Cauchy distribution has a significantly thicker tail
and is symmetric, unimodal, and bell-shaped. It can be used to analyze data that contains outliers.
The ratio of two independent normal variates can be used to generate the Cauchy distribution. It is
a widely used distribution that has applications in a variety of disciplines, including biology, applied
mathematics, engineering, econometrics, physics, clinical trials, stochastic modeling of decreasing
failure rate survival data, queuing theory, and reliability. With location parameter θ > 0 and
non-negative scale parameter β > 0, the cumulative distribution function (CDF) of the Cauchy
distribution is,

FX(x;β, θ) =
1

2
+

1

π
tan−1

(
x− θ

β

)
; x ∈ ℜ, β ¿ 0. (1)

and probability density function (PDF) of Equation (1) is

fX(x;β, θ) =

{
βπ

[
1 +

(
x− θ

β

)2
]}−1

; x ∈ ℜ, β ¿ 0 (2)
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The centre limit theorem (CLT) is invalid because there is no finite moment generating function for
the Cauchy distribution. Due to the lack of a closed-form solution, the MLEs of its parameters are
also not the good. These factors make it unlikely or unreasonable to use this distribution to model
real-life data. Therefore, the Cauchy distribution must be modified to address the aforementioned
shortcomings, some of which are listed below. The generalized form of Cauchy distribution has
introduced by Rider [25] whose PDF is given by

fx(x) =
Γ (m)

β Γ (1/2) Γ (m− 1/2)

[
1 +

(
x− θ

β

)2
]−m

; m ⩾ 1, β > 0−∞ < x < ∞. (3)

A truncated Cauchy distribution was suggested by Nadarajah and Kotz [21] to address the issue
of the lack of MLEs and moments of Cauchy distribution and having PDF,

f (x) =
1

πβ
+

[
1 +

(
x− θ

β

)2
]−1 [

tan−1

(
B − θ

β

)
− tan−1

(
A− θ

β

)]−1

;

−∞ < A ⩽ x ⩽ B, θ ∈ ℜ, β > 0

(4)

Additionally, a relationship between the Cauchy and the hyperbolic secant distribution has been
established by Manoukian and Nadeau [17] and Kravchuk [15]. A Modified form of Cauchy distribu-
tion has introduced by Ohakwe and Osu [22] and another generalization of the Cauchy distribution
is presented by Eugene et al. [11] and Alshawarbeh et al. [[1], [2]]. Further, the Half- Cauchy (HC)
distribution has used by using Marshall and Olkin [18] and defined a generators, Beta-G by Eugene
et al. [11], and Kumaraswamy-G by Cordeiro and de Castro [9]. Similar to this, some half-Cauchy
families have been proposed, including the Marshall-Olkin- HC, beta- HC, and Kumaraswamy- HC
families by Jacob and Jayakumar [14], Cordeiro and Lemonte [10], and Ghosh [12] respectively, and
the truncated form of Cauchy power-exponential model by Chaudhary et al. [8] and exponentiated
form of PC distribution has presented by Sapkota [27].

Extensive study has recently been conducted to develop models that fit survival data, which
can be negatively or positively skewed and can have the unimodal hazard function. Power Cauchy
(PC) distribution, a two-parameter model that is a sub-model of the modified Beta family that
does well with the survival data, was introduced by Rooks et al. [26]. Positively skewed data can
be employed with the PC distribution’s PDF, which has a somewhat larger right tail than the
other recognized humped-shaped two-parameter sub-model of the transformed beta family Rooks
et al. [26]. The PC distribution’s CDF and PDF are,

F (x) = 2π−1 tan−1 (λx)
α
; x > 0, α, λ > 0. (5)

and

f(x) = 2π−1 (λx) (λx)
α−1

[
1 + (λx)

2α
]−1

;x > 0, α, λ > 0. (6)

respectively.
The hazard function of PC distribution is

h (x) =
2π−1 (λx) (λx)

α−1
[
1 + (λx)

2α
]−1

1− 2π−1 tan−1 (λx)
α ; x > 0, α, λ > 0 (7)

Also using PC distribution Weibull PC has been defined by Tahir et al. [29] and Burr XII-power
Cauchy distribution by Bhatti et al. [4] using the T-X family technique. The fundamental goal
of this work is to present a more adaptable model, demonstrate its applicability, and improve the
fitting to the real-life data. In this study, a novel model known as the inverse power Cauchy (IPC)
distribution was created using the inversion method. It is the inverse of PC distribution. We have
also demonstrated some of the intended model’s mathematical and statistical characteristics. The
structure of this paper’s contents is as follows. In section 2, we presented the IPC distribution
and a few distributional features, including the graph of the density, the survival and hazard rate
function, the quantile function, random number generation, and skewness and kurtosis. Section
3 presents some of the IPC distribution’s crucial characteristics. We go over the procedure for
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estimating the model parameters in section 4. In section 5, a simulation experiment is done to
examine how maximum likelihood estimators behave. We conduct a goodness-of-fit test and a
model adequacy test in section 6 using two real data sets. We present some conclusions in section
7.

2. Inverse Power Cauchy Distribution

We have introduced new IPC distribution and visualized some graphs of its PDF and HRF in
this section. The CDF of IPC distribution with shape parameter α and scale parameter λ can be
expressed by using Equation (5) as

F (x) = 1− 2π−1 tan−1

[(
λ

x

)α]
; x > 0, α, λ > 0. (8)

And its corresponding PDF is obtained as,

f(x) = 2π−1αλαx−(α+1)

[
1 +

(
λ

x

)2α
]−1

; x > 0, α, λ > 0. (9)

2.1. Survival and hazard rate function (HRF)

The survival and HRF of X ∼ IPC(α, λ) are

S(x) = 2π−1 tan−1

[(
λ

x

)α]
; x > 0, α, λ > 0 (10)

and

h(x) =
αλαx−(α+1)

[
1 + (λ/x)

2α
]−1

tan−1{(λ/x)α}
; x > 0, α, λ > 0. (11)

respectively.
A special case of the IPC distribution: If α = 1 and λ = 1 in Equation (9) the IPC distribution
tends to two times the standard Cauchy distribution.

2.2. Cumulative hazard function and Failure rate average (FRA)

The cumulative hazard function of IPC distribution can be expressed as

H(x) =

x∫
−∞

h(x)dx

= − log [1− F (x)]

= − log
[
2π−1 tan−1 (λ/x)

α]
(12)

and FRA function is

FRA (x) =
H(x)

x
= − 1

x
log
[
2π−1 tan−1 (λ/x)

α]
;x > 0 (13)

here H(x) is the cumulative hazard rate function. The IPC distribution exhibits unimodal, de-
creasing, right skewed and symmetrical shapes of PDF and decreasing, increasing, and inverted
bathtub hazard rate shapes in Figure 1.
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Figure 1: Various shapes of PDF and HRF function of IPC distribution.

3. SOME PROPERTIES OF IPC DISTRIBUTION

3.1. The Quantile Function

The quantile function can be expressed as

Q(p) = λ

[
tan

{
(1− p)π

2

}]− 1
α

; 0 < p < 1. (14)

The median, lower quartile, and upper quartile can be calculated by using Equation (14) as follows

median = λ
[
tan

{π
4

}]− 1
α

lower quartile

Q1 = λ

[
tan

{
3π

8

}]− 1
α

and upper quartile

Q3 = λ
[
tan

{π
8

}]− 1
α

Random deviate generation
The random deviate can be generated from IPC(α, λ) by

x = λ

[
tan

{
(1− u)π

2

}]− 1
α

; 0 < u < 1 (15)

Where u has the U(0, 1) uniform distribution.

3.2. Mode of IPC distribution

The probability distribution of the provided PDF’s mode is its most frequent value. For computing

the mode, the following requirements must be met: df(x)
dx = 0 and d2f(x)

dx2 < 0 respectively. Since
f(x) > 0, by resolving the equation, the model value of the suggested distribution is determined
as

2αλ2α − (1 + α)
(
x2α + λ2α

)
= 0

Hence we obtained the mode of the IPC distribution is

x =

{
2αλ2α

(1 + α)
− λ2α

}1/2α
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3.3. Skewness and Kurtosis

The quantile based Skewness and Kurtosis can be computed using the following expressions,
� Coefficient of Bowley’s skewness can be computed by using

Skewness (B) =
Q (0.75)− 2Q (0.5) +Q (0.25)

Q (0.75)−Q (0.25)

and
� The coefficient of kurtosis based on octiles which was defined by Moors [20] is

MK =
Q (0.875) +Q (0.375)−Q (0.625)−Q (0.125)

Q (3/4)−Q (1/4)

In table 1 we have displayed the distributional nature of the IPC distribution. Nine sets of random
samples of equal size 100 are generated from Equation (15) for different values of parameters
α and λ We have computed the values of central tendencies and dispersions like mean, mode,
median, skewness, and kurtosis of the proposed distribution. From the table, we observed that
the median is increased as the values of the parameters are increases while the mean and mode
increases first and then decrease. Similarly, skewness is positive at first and becomes negative when
the values of the parameters increase. The proposed distribution is leptokurtic initially, changing
progressively to platykurtic when the parameter values are increased, according to the measure of
kurtosis.

Table 1: The mean, median, mode, skewness, and kurtosis for different values of the parameters

Parameters
Mean Median Mode Skewness Kurtosis

alpha lambda

1 0.1 0.2907 0.095 0.2041 9.2321 89.1813
1 1.0 2.9069 0.9504 2.0408 9.2321 89.1813
2 1.1 1.2948 1.0723 1.5714 5.2338 38.0526
5 1.2 1.1874 1.1878 1.384 1.2998 5.4178
10 1.3 1.2765 1.2934 1.3961 0.317 2.1062
15 1.4 1.3791 1.3953 1.4682 0.0238 1.6876
20 1.5 1.4815 1.4962 1.5545 -0.1187 1.5904
25 1.6 1.5834 1.5967 1.6463 -0.2032 1.5666
30 1.8 1.6848 1.6979 1.7049 -0.2592 1.5649

4. Expansion and Properties of IPC distribution

The PDF and CDF of IPC distribution can be transform into linear form by using the binomial
expansion as

(1 + a)−c =
∞∑
k=0

(−1)k
(

c+ k − 1
k

)
ak, for |a| < 1, c > 0. (16)

Applying Equation (16) the PDF of IPC distribution can be expressed as

f (x) =
2α

π

∞∑
k=0

ηk x−α(1+2k)−1 (17)
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where ηk = (−1)kλα(1+2k) also the CDF

[F (x)]
h
=

[
1− 2π−1 tan−1

{(
λ

x

)α}]h
=

∞∑
j=0

(−1)j
(

h
j

)[
2π−1 tan−1

{(
λ

x

)α}]j

=
∞∑
j=0

(−2π−1)j
(

h
j

)[
tan−1

{(
λ

x

)α}]j
(18)

4.1. Moments of IPC distribution

Let X be a random variable that follows IPC(α, λ) then raw moments about the origin can be
calculated as

µ
′

r = E(Xr) =

∞∫
0

xr2π−1αλαx−(α+1)

[
1 +

(
λ

x

)2α
]−1

dx

= 2π−1αλα

∞∫
0

xr+α−1 1

x2α + λ2α
dx

=
λα

π

r−α
2α∑
k=0

(
r−α
2α
k

)(
−λ2α

)k ∞∫
λ2α

z
r−α
2α −k−1dz

(19)

Where z = x2α + λ2α

Case I: if r−α
2α − k = 0, then µ

′

r = λα

π

r−α
2α∑
k=0

(
r−α
2α
k

)(
−λ2α

) (
1− λr−α−2kα

)
.

Case II: if r−α
2α − k < 0, then µ

′

r = λα

π

r−α
2α∑
k=0

(
r−α
2α
k

)(
−λ2α

) (
−λr−α−2kα

)
.

Case III: if r−α
2α − k > 0 then µ

′

r is undefined.

4.2. Moment Generating Function

A moment-generating function is an important tool for studying random variables. Let X be a
random variable that follows IPC distribution and the moment generating function can be defined

as MX(δ) = E(eδx) =
∞∑
r=0

δr

r!E(Xr). By using equation (19) we can write

MX(δ) =
∞∑
r=0

r−α
2α∑
k=0

δr

r!

λα

π

(
r−α
2α
k

)(
−λ2α

)k ∞∫
λ2α

z
r−α
2α −k−1dz (20)

Where z = x2α+λ2α, hence the moment generating function of IPC distribution can be expressed
as

MX(δ) =
∞∑
r=0

r−α
2α∑
k=0

δr

r!

λα

π

(
r−α
2α
k

)(
−λr−α

)
for

r − α

2α
− k < 1. (21)

4.3. Residual life function

In reliability studies, the additional lifetime given that an event or a component or a system has
survived until time t is called the residual life function (RLF) of the event or component, or a
system. The rth moment of the residual life of random variable X of IPC distribution can be
defined as

Dr(t) =
1

R(t)

∞∫
t

(x− t)rf(x)dx. (22)
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Using the binomial expansion (x− t)k =
k∑

r=0
(−1)r

(
k
r

)
xk−rtr in Equation (22) and using Equa-

tion (17) we get

Dr(t) =
1

R(t)

∞∑
j=0

k∑
r=0

(−1)r
(

k
r

)
tr ηj

∞∫
t

x−α(1+2j)−k+r−1dx (23)

Where ηj =
2
π (−1)kαλα(1+2k). Hence RLF for the time t is

Dr(t) =
1

R(t)

∞∑
j=0

k∑
r=0

θjrt
r−(k+α+2αj) for r < k + α+ 2αj (24)

here θjr = (−1)r
(

k
r

)
trηj .

4.4. Entropy

The entropy of a random variable T is a measure of the variance of an uncertainty and has density
function f(t). The Renyi entropy is defined as,

IR (ρ) = (1− ρ)−1 log

[∫
f(t)ρdt

]
; where ρ > 0, ρ ̸= 1

= (1− ρ)−1 log

 ∞∫
0

2π−1αλαt−(α+1)

[
1 +

(
λ

t

)2α
]−1


ρ

dt


= (1− ρ)−1 log

(2α)ρ−1
π−1

αρ−2α−ρ+1
2α∑
k=1

λαρ+2αk (−1)
k

∞∫
λ2α

z
1−αρ−2α−ρ

2α −k−ρdz


(25)

Where z = t2α + λ2α

Case I: when 1−αρ+2α−ρ
2α < k + ρ then

IR (ρ) = (1− ρ)−1 log

[
(2α)

ρ−1
π−1λαρ

αρ−2α−ρ+1
2α∑
k=1

(−1)
k {−λ1−α(ρ+2k+2ρ+2)−ρ

}]
Case II: when 1−αρ+2α−ρ

2α > k + ρ, then the integral is divergent.

4.5. Order Statistics (OS)

Numerous applications of probability theory and applied statistics can make use of OS. So, for the
suggested distribution, we have shown some OS features. Let X1, ..., Xn be n iid random variates,
each with F (x). Suppose represents the rth OS and denote PDF of rth OS for X1, ..., Xn be n iid
random variables from CDF F (x) and can be defined as

fr:n (x) =
n!

(r − 1)! (n− r)!
f (x) [F (x)]

r−1
[1− F (x)]

n−r

=
n!

(r − 1)! (n− r)!
f (x)

n−r∑
j=1

(
n− r
j

)
[F (x)]

j+r−1

=
n!

(r − 1)! (n− r)!
2π−1αλαx−(α+1)

[
1 +

(
λ

x

)2α
]−1 n−r∑

j=1

(
n− r
j

)
×

[
1− 2π−1 tan−1

[(
λ

x

)α]]j+r−1

Hence the PDF of rth order statistic can be expressed as
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fr:n (x) = C
∞∑
k=0

n−r∑
j=1

ωjk

[
tan−1

(
λ

x

)]αk
(26)

where C = n!
(r−1)!(n−r)!2π

−1αλαx−(α+1)
[
1 +

(
λ
x

)2α]−1

and ωjk = (−1)k
(
2π−1

)k ( n− r
j

)(
j + r − 1

k

)
.

5. PARAMETER ESTIMATION OF IPC DISTRIBUTION

In this section, we talk about the maximum likelihood estimation (MLE) method and their asymp-
totic properties to get approximate confidence intervals based on MLEs. Let x− = (x1, . . . , xn)

be a random sample drawn from IPC (α, λ) distribution, and log-likelihood function l(α, λ/x−) can

be written as,

l(α, λ/x−) = n ln(2/π) + n ln(α) + nα ln(λ)− (α+ 1)
n∑

i=1

ln(xi)−
n∑

i=1

ln

{
1 +

(
λ

xi

)2α
}

(27)

Differentiating Equation (27) with respect to α and λ we get,

∂l

∂α
=

n

α
+ n ln(λ) +

n∑
i=1

ln(xi)− 2
n∑

i=1

ln(λ/xi)(λ/xi)
2α

1 + (λ/xi)2α
(28)

∂ℓ

∂λ
=

α

λ
− 2α(λ/x)2x

λ {1 + (λ/x)2x}
(29)

By setting Equations (28) and (29) to zero and solving them simultaneously we get the maximum

likelihood estimate α̂ and λ̂ of the model parameters. For the parameters α and λ the 100(1−τ)%
confidence intervals can be calculated as the customary asymptotic normality of the maximum like-
lihood estimators var(α̂) and var(λ̂) estimated from the inverse of the matrix of second derivatives

of the log-likelihood function Casella & Berger [5] locally at α̂ and λ̂.

∂2ℓ

∂α2
= − n

α2
− 4

n∑
i=1

{ln (λ/xi)}2 (λ/xi)
2α[

1 + (λ/xi)
2α
]2

∂2ℓ

∂λ2
= −nα

λ2
+

2α

λ2

n∑
i=1

(λ/xi)
2α
{
l−2α+ (λ/xi)

2α
}

[
1 + (λ/xi)

2α
]2

∂2ℓ

∂α∂λ
=

n

λ
+

2

λ

n∑
i=1

(λ/xi)
2α
{
l +2α ln(λ/xi) + (λ/xi)

2α
}

[
1 + (λ/xi)

2α
]2

∂2ℓ

∂λ∂α
=

n

λ
+

2

λ

n∑
i=1

(λ/xi)
2α
{
l +2α ln(λ/xi) + (λ/xi)

2α
}

[
1 + (λ/xi)

2α
]2

Let δ− = (α, λ) represent the parameter vector and the corresponding MLE of δ− as δ̂ = (α̂, λ̂) ,

then, δ̂ − δ− → N2

[
0,
(
I
(
δ−

))−1
]
where I

(
δ−

)
is the matrix of Fisher’s information (FIM) given

by,

I
(
δ−

)
= −

 E
(

∂2l
∂α2

)
E
(

∂2l
∂α∂λ

)
E
(

∂2l
∂λ∂α

)
E
(

∂2l
∂λ2

) 
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Because we don’t know δ−, it is pointless for practical purposes that the MLEs have asymptotic

variance
(
I
(
δ−

))−1

. So, using the estimated values of the parameters, we approximate the asymp-

totic variance. The general procedure is to use the observed FIM O
(
δ̂−

)
as an estimate of I

(
δ−

)
given by

O
(
δ̂−

)
= −

(
∂2l
∂α2

∂2l
∂α∂λ

∂2l
∂λ∂α

∂2l
∂λ2

)
|(α̂,λ̂)

= −H
(
δ−

)
|(

δ−= δ̂−
)

here H is the Hessian matrix. The observed information matrix is given maximum likelihood
using the Newton-Raphson algorithm. Consequently, the variance-covariance matrix is calculated
as follows: −H

(
δ−

)
|(

δ−= δ̂−
)

−1

=

(
var(α̂) cov(α̂, λ̂)

cov(λ̂, α̂) var(λ̂)

)

Confidence intervals for α and λ can be constructed using the asymptotic normality of MLEs,

α̂ ± Zτ/2

√
var(α̂) and λ̂ ± Zτ/2

√
var(λ̂), where Zτ/2 is the upper percentile of standard normal

variate.

6. SIMULATION STUDY

A simulation study is carried out to investigate the capability of the ML estimators for es-
timating the parameters of the model IPC (α, λ) . Using the random deviate function de-
fined in Equation (15) we have generated N = 10000 independent samples of different sizes
n = (50, 100, 200, 250, 500) for three different sets of the parameter values. The estimated value of

the parameters α̂ and λ̂ , absolute average bias (Bias) and mean square errors (MSEs) of the ML
estimators are reported in Table 2. From Table 2 we have observed that the ML estimators tend
to the actual values, Biases are comes close to zero, and MSEs are decreased as we expected under
asymptotic theory when the size of the samples is increased.

Table 2: The estimated values, Biases, and MSEs are based on 10000 simulations of IPC distribution.

Actual values MLEs Bias MSEs

n α λ α̂ λ̂ α̂ λ̂ α̂ λ̂

50 0.5 0.25 0.5142 0.2731 0.0142 0.0231 0.0048 0.014
0.75 0.5 0.7705 0.5185 0.0205 0.0185 0.0106 0.0203
1 0.75 1.0274 0.7659 0.0274 0.0159 0.0189 0.0248

100 0.5 0.25 0.5066 0.2604 0.0066 0.0104 0.0022 0.0057
0.75 0.5 0.7597 0.5086 0.0097 0.0086 0.0049 0.0095
1 0.75 1.0122 0.7567 0.0122 0.0067 0.0088 0.0119

200 0.5 0.25 0.5033 0.2557 0.0033 0.0057 0.0011 0.0028
0.75 0.5 0.7548 0.505 0.0048 0.005 0.0024 0.0045
1 0.75 1.0065 0.7544 0.0065 0.0044 0.0042 0.0058

250 0.5 0.25 0.5031 0.2537 0.0031 0.0037 0.00083 0.0021
0.75 0.5 0.7535 0.5037 0.0035 0.0037 0.0019 0.0037
1 0.75 1.0053 0.7539 0.0053 0.0039 0.0033 0.0045

500 0.5 0.25 0.5016 0.2519 0.0016 0.0019 0.0004 0.001
0.75 0.5 0.752 0.5018 0.002 0.0018 0.0009 0.0018
1 0.75 1.0029 0.7515 0.0029 0.0015 0.0016 0.0023
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7. APPLICATIONS TO REAL DATASET

Using two real datasets, we have examined the applicability of IPC distribution in this section.
Data set 1
The data set below is from an accelerated life test of 59 conductors Lawless [16] where failure times
are measured in hours and there are no censored observations.

“6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381,
6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369,
7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092,
7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071,
10.491, 5.923”.
Data set 2
The second data set of 72 observations represents the coating weight (gm/m2) of Iron Sheets by a
chemical method on the top center side (TCS) Rao and Mbwambo [24].

”36.8, 47.2, 35.6, 36.7, 55.8, 58.7, 42.3, 37.8, 55.4, 45.2, 31.8, 48.3, 45.3, 48.5, 52.8, 45.4, 49.8,
48.2, 54.5 ,50.1 ,48.4, 44.2, 41.2, 47.2, 39.1, 40.7, 40.3, 41.2,30.4, 42.8, 38.9, 34.0, 33.2, 56.8, 52.6,
40.5, 40.6, 45.8, 58.9, 28.7, 37.3, 36.8, 40.2, 58.2, 59.2, 42.8, 46.3, 61.2, 58.4, 38.5, 34.2, 41.3, 42.6,
43.1 ,42.3, 54.2,44.9, 42.8, 47.1, 38.9, 42.8, 29.4, 32.7, 40.1, 33.2, 31.6, 36.2, 33.6, 32.9, 34.5, 33.7,
39.9”

7.1. Estimation of the Parameters of IPC distribution

By using the maxLik() function Henningsen and Toomet [13] in R programming software R
Core Team [23], we have computed the MLEs (see McElreath [19]) by maximizing the likelihood
function for IPC distribution along with some models with their standard errors (SE) and presented
in Tables 3 and 4.

Table 3: MLEs and SE (parenthesis) for the distributions under study (data set 1)

Distribution
Estimated parameters

k̂ α̂ β̂ λ̂ θ̂

IPC - 6.3604(0.7692) - 6.8773(0.1997) -
WPC - 2.7753(2.2584) 2.1901(1.7000) 6.3793(0.7396) -
BurrXII-PC 1.480(5.005) 4.547(4.182) 4.016(15.330) - 7.361(8.356)
LHC - - - 4.495(1.117) 18.374(4.324)
NLHC - - - 4.448(2.530) 1.787 (1.062)
HC - 6.8049(0.9046) - - -
Cauchy - - - 6.8049(0.9046) -

Table 4: MLEs and SE (parenthesis) for the distributions under study (data set 2)

Distribution
Estimated parameters

k̂ α̂ β̂ λ̂ θ̂

IPC - 7.5515(0.8957) - 42.1573(1.1228) -
WPC - 3.368(1.901) 2.129(1.152) 40.00(2.521) -
BurrIX-PC 0.865(0.3027) 1.4109(0.8936) 11.658(3.871) - 27.3261(4.1769)
LHC - - - 4.2178(0.4471) 106.0269(4.4036)
NLHC - - - 114.9316(4.42782) 0.5731(0.071)
HC - 42.323(4.194) - - -
Cauchy - - - 42.323(4.194) -
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7.2. Adequacy test of the IPC model

To evaluate the goodness-of-fit and adequacy of the proposed model we have considered some
well-known models like three-parameter Weibull power Cauchy (WPC) by Tahir et al. [29], four-
parameter BurrXII-power Cauchy (BurrXII-PC) by Bhatti et al. [4], two parameters Lindley half
Cauchy (LHC) by Chaudhary and Kumar [6], new Lindley half Cauchy (NLHC) by Chaudhary and
Kumar [7], single parameter half Cauchy (HC) and Cauchy distributions. For the adequacy test of
the model we have compared the IPC model with underlying models using the criterions Akaike
information criterion (AIC), Corrected Akaike Information criterion (CAIC), Bayesian information
criterion (BIC), and Hannan-Quinn information criterion (HQIC) respectively, and calculate as

AIC = −2l(α̂, λ̂) + 2d

BIC = −2l(α̂, λ̂) + d log (n)

CAIC = AIC +
2d (d+ 1)

n− d− 1

HQIC = −2l(α̂, λ̂) + 2d log [log (n)]

where d is the number of parameters associated with the concern model and n is the sample size.
The results are reported in Tables 5 and 6 and noticed that a two-parameter simple IPC model can
perform as complex models with three and four parameters WPC and BurrXII-PC respectively
and our model is better than LHC, NLHC, HC, and Cauchy models. To evaluate the fit attained by
the IPC model we have also presented the quantile-quantile (Q-Q) plot and Kolmogorov-Smirnov
(KS) plot (Figures 2 and 3) and also verified that the IPC model fits the real data under study
very nicely.

Table 5: Model selection statistics (data set 1)

Model AIC BIC CAIC HQIC LL

IPC 228.1826 232.3376 228.3968 229.8045 -112.091
WPC 228.3944 234.627 228.8308 230.8274 -111.197
BurrXII-PC 230.6105 238.9206 231.3512 233.8544 -111.305
LHC 344.665 348.8201 344.8793 346.287 -170.333
NLHC 345.139 349.2941 345.3533 346.761 -170.57
HC 366.3982 368.4757 366.4684 367.2092 -182.199
Cauchy 448.1896 450.2671 448.2597 449.0005 -223.095

Table 6: Model selection statistics (data set 2)

Model AIC BIC CAIC HQIC LL

IPC 513.6304 518.1838 513.8043 515.4431 -254.815
WPC 513.1188 519.9488 513.4718 515.8379 -253.559
BurrIX-PC 515.0942 524.2009 515.6913 518.7196 -253.547
LHC 681.5617 686.115 681.7356 683.3744 -338.781
NLHC 689.2971 693.8504 689.471 691.1098 -342.649
HC 627.2789 629.5556 627.336 628.1852 -312.639
Cauchy 808.5337 810.8104 808.5909 809.4401 -403.267

7.3. Test of goodness of fit of the proposed model

Further, we have compared the proposed distribution with competitive distributions by comput-
ing the Kolmogorov-Smirnov (KS), the Cramer-Von Mises (A2) and the Anderson-Darling (W )
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Figure 2: Q-Q and KS plot (data set 1)
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Figure 3: Q-Q and KS plot (data set 2)

statistics. These measures are frequently used to contrast non-nested models and show how well a
certain CDF matches the empirical distribution of a particular data and computed as

KS = max
1⩽j⩽n

(
cj −

j − 1

n
,
j

n
− cj

)

W = −n− 1

n

n∑
j=1

(2j − 1) [log cj + log (1− cn+1−j)]

A2 =
1

12n
+

n∑
j=1

[
(2j − 1)

2n
− cj

]2
where cj = CDF (xj) ; the xj ’s are the ordered observations. The results are reported in Tables
7 and 8 and found that IPC model gets small test statistics values (except the value of AD for
WPC and Burr XII-PC) and the highest p-value, hence the proposed model fits the data under
study very well. This result is also verified by figures 4 and 5.
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Figure 4: PDF and CDF fit attained by competing models (data set 1)
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Figure 5: PDF and CDF fit attained by competing models (data set 2)

8. CONCLUSION

In this paper, we present the inverse power Cauchy (IPC) distribution, a novel class of continuous
distributions. The plots of the PDF, and HRF, explicit expressions for CDF, quantile function,
survival function, reverse HRF, skewness, kurtosis, moments, order statistics, and entropy have
all been covered. The parameters of the suggested model were estimated using the maximum
likelihood estimation (MLE) approach. For the purpose of illustrating the IPC distribution, two
real data sets are taken into account. We come to the conclusion that the IPC distribution out-
performs by comparing it to several other lifetime models the WPC, BurrXI-PC, LHC, NLHC,
HC, and Cauchy distributions that are taken into account. We anticipate that the fields of applied
statistics, probability theory, and survival analysis may choose to use this distribution.
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Table 7: The goodness-of-fit test statistic with p-value (data set 1)

Model KS(p-value) W(p-value) A2(p-value)

IPC 0.0480(0.9982) 0.1780(0.9953) 0.0199(0.9973)
WPC 0.05602(0.9876) 0.1541(0.9983) 0.0257(0.9887)
BurrXII-PC 0.0589(0.979) 0.1659(0.9971) 0.0282(0.9825)
LHC 0.4152(1.004e-09) 15.561(1.017e-05) 3.2415(7.108e-09)
NLHC 0.4348(1.156e-10) 15.321(1.017e-05) 3.214(8.475e-09)
HC 0.3517(4.956e-07) 14.226(1.017e-05) 2.8148(9.604e-08)
Cauchy 0.6569(7.772e-16) 33.963(1.017e-05) 7.4666(¡ 2.2e-16)

Table 8: The goodness-of-fit test statistic with p-value (data set 2)

Model KS(p-value) W(p-value) A2(p-value)

IPC 0.0623(0.9429) 0.4434(0.8044) 0.0453(0.9055)
WPC 0.0776(0.7792) 0.5364(0.7094) 0.0595(0.8189)
BurrIX-PC 0.0599(0.9581) 0.3916(0.8566) 0.0406(0.9315)
LHC 0.4719(2.387e-14) 20.943(8.333e-06) 4.4141(2.2e-16)
NLHC 0.4940(1.11e-15) 22.016(8.333e-06) 4.6737(¡ 2.2e-16)
HC 0.3852(1.054e-09) 18.986(8.333e-06) 3.8139(2.697e-10)
Cauchy 0.6897(¡ 2.2e-16) 42.534(8.333e-06) 9.3442(¡ 2.2e-16)
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Abstract 

 
This paper analyses the performance and behavior of water circulation system (WCS) of a thermal 
power plant in fuzzy environment. For this purpose, fuzzy λ–τ technique coupled with petrinet 
modelling has been used. To address the vagueness in data, trapezoidal fuzzy numbers have been 
employed in fuzzy λ–τ technique. Various reliability indicators of WCS viz. failure rate, repair time, 
expected number of failures, mean time between failures, reliability and availability have been 
computed at ±15%, ±25% and ±40% spreads using fuzzy λ–τ technique. Further, fuzzy values of 
reliability indicators have been defuzzified employing COA method and the failure dynamics of WCS 
have been studied on account of decreasing / increasing trends of reliability indicators. The outcomes 
of this study are of great importance for plant personnel / management to enhance the availability of 
WCS.  
 
Keywords: thermal power plant, water circulation system, fuzzy λ–τ technique, 
trapezoidal fuzzy number 

 
 

1. Introduction 
 
Thermal power plant is a prominent source of electricity generation. It is a complex arrangement of 
various systems / subsystems / components. The highest availability of a thermal power plant 
depends upon reliability and maintainability of each of its systems / subsystems. Unfortunately, 
system failure cannot be avoided entirely, but it can be reduced to minimum possible level by proper 
planning and following a suitable maintenance strategy [1]. Therefore, the failure prediction of each 
system in a thermal power plant is necessary for its successful and perpetual operation. Further, 
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Water is an essential fluid used in a thermal power plant for ash removal, condenser cooling and 
steam generation etc. WCS of a thermal power plant regulates the flow of water and plays a vital 
role in its proper functioning. Therefore, it should remain operative with full capacity for longer 
duration.  

Several techniques namely Markov technique, fault tree analysis and petrinet among others, 
are available in the literature for assessment of the performance / behavior of a system [2, 3]. The 
performance of many real-world industrial systems such as urea plants, sugar mills, paper mills and 
thermal power plants have been improved by using the probabilistic Markov technique, which 
considers a constant repair time and failure rate. Gupta et al. [4] calculated reliability indicators for 
plastic-pipe production plants, while, Garg et al. [5] analysed performance of a cattle feed plant 
employing Markov technique. Sikos and Klemes [6] optimised the availability, reliability and 
maintainability of a heat exchanger in a thermal power plant employing Markov technique. Modgil 
et al. [7] employed Markov technique to discuss the performance of a shoe upper manufacturing 
unit. Sharma and Vishwakarma [8] analysed performance of feeding system in a sugar industry 
employing Markov technique. Malik and Tewari [9] modeled the performance of water flow system 
in a thermal power plant using Markov technique.  

To handle the uncertainty / imprecision of data due to system complexity as well as ambiguity 
in human verdicts, several academicians have employed fuzzy methodology (FM) for reliability 
analysis of systems in different sectors like healthcare, tunnel boring machines, power distribution 
systems and process industries. In fuzzy methodology, fuzzy numbers can be represented by 
triangular, trapezoidal, normal, gamma, gaussian types of membership functions. In literature, most 
of the studies using fuzzy methodology have been conducted using triangular membership 
functions due to their simplicity.  

Fuzzy λ–τ technique using petrinet was proposed by Knezevic and Odoom [10] to analyse the 
behavior of a general production plant. Verma et al. [11] employed vague λ–τ technique with 
triangular fuzzy numbers and petrinet model to assess the reliability of combustion system of a gas 
turbine plant. The reliability of coal handling unit of a thermal power plant has been investigated 
by Kumar and Panchal [12] using fuzzy λ–τ technique with triangular fuzzy numbers. Srivastava et 
al. [13] analysed the reliability of a CNG dispensing unit using fuzzy λ–τ technique with triangular 
fuzzy numbers. Gopal and Panchal [14] evaluated the risk and reliability of milk process industry 
implementing fuzzy λ–τ technique with triangular fuzzy numbers. The performance of juice 
clarification unit has been analysed by Kushwaha et al. [15] employing triangular fuzzy numbers in 
intuitionistic fuzzy λ–τ technique.  

In this paper, the performance of WCS in a thermal power plant has been analysed employing 
trapezoidal fuzzy numbers in fuzzy λ–τ technique coupled with petrinet modelling. The interval 
expressions for OR / AND transitions of petrinet model of WCS have been evaluated using 
trapezoidal fuzzy numbers. Here, trapezoidal fuzzy numbers have been chosen in the light of a 
comparison study presented by Princy and Dhenakaran [16]. They compared trapezoidal and 
triangular fuzzy membership functions and revealed the fact that “although trapezoidal 
membership functions make the procedure more complex but their performance is still better than 
the triangular membership functions”. To counter the vagueness of input data, some reliability 
indicators of WCS have been evaluated at ±15%, ± 25% and ± 40% spreads. Then the obtained fuzzy 
values of reliability indicators have been defuzzified using COA method for quantitative analysis of 
performance of WCS.   
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2. Proposed Methodology 
 

Fuzzy λ–τ technique [10] is a quantitative technique for analysing the performance of repairable 
systems in an ambiguous environment. In order to study the behavior of complex repairable 
systems, failure and repair rates are assumed to be constant in this technique. Moreover, this 
technique uses fuzzified values of repair time and failure rate data of each of its components / 
subsystems. This technique is more powerful than Markov technique since it takes care of ambiguity 
in repair time and failure rate data. Numerous researchers have implemented it in various areas like 
sugar mills, thermal power plants and chemical sector, among others. The various steps of 
methodology used in this paper are given below: 
 
Step 1: Collect the information regarding various components and subsystems of WCS to construct 
its fault tree model and then its analogous petrinet model. 
 
Step 2: Collect the data for failure rate and repair time of various components and subsystems of 
WCS. 
 
Step 3: Fuzzify failure and repair data of each components and subsystems of WCS using 
trapezoidal membership function.  
 
Step 4: Compute various reliability indicators of WCS at different spreads.  
 
Step 5: Defuzzify the fuzzy values of reliability indicators employing COA method.  
 
Step 6: Analyse the behavior of WCS. 
 

3. Preliminaries 
 
This section discusses some fuzzy set theory concepts to be used in this paper [17-19]. 
 

3.1. Fuzzy set 
 
A fuzzy set is defined as  
 

                                                ,                      

(1) 
 
where, is the membership function.  

 
3.2. Fuzzy number 

 
A normal convex fuzzy set on real line  is called fuzzy number if its support is bounded. 
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3.3. Trapezoidal fuzzy number 
 

A trapezoidal fuzzy number  has its membership function  given by 

 

           .                                                                  (2)  

 
 

3.4. α–cut of a trapezoidal fuzzy number 
 
The α-cut of the trapezoidal fuzzy number  is given by  
 

,          where,  
 
and is shown in the figure 1.  

 
                 

Figure 1: Trapezoidal fuzzy number with α-cut 

 
4.   An application 

 
Water circulation system has a significant role for proper functioning of a thermal power plant and 
therefore should remain operative for longer duration. The hot water collected from the condenser 
enters into the condensate extraction pump and then passes to low pressure (LP) heater where its 
temperature is further increased to improve the system efficiency. The hot water further passes 
through the deaerator where the dissolved gases are removed from the hot water.  The ash content 
free water then enters into the high pressure (HP) heater with the help of the boiler feed pump and 
further enters into the economiser. In economiser, the hot flue gases exiting the boiler are used to 
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heat the feed water. This heated water enters the boiler drum, where super-heated steam is 
generated by super heaters of boiler. This steam is expanded in turbine to produce mechanical 
energy by the turbine shaft. Then the exhaust steam is condensed in condenser. Figure 2 depicts 
schematic flow diagram of WCS. It is made up of five subsystems as described below: 
 

i. Subsystem 1 (SS1): It consists a condensate extraction pump (CEP) which is used to extract 
the condensate. The system will stop working if CEP fails. 
 

ii. Subsystem 2 (SS2): It is made up of three LP heaters which are linked in a parallel 
arrangement and are used to raise the condensate's temperature. If one of them fails, the 
system will run at a lower efficiency. 
 

iii. Subsystem 3 (SS3): It consists a deaerator to extract dissolved gases from hot water obtained 
from LP heater. The efficiency of the system reduces if deaerator fails. 
 

iv. Subsystem 4 (SS4): Three boiler feed pumps (BFP) are connected in a parallel configuration 
in this subsystem. They are responsible for supplying hot water to the HP heater. The system 
efficiency is reduced if any of these pumps fails. 
 

v. Subsystem 5 (SS5): It is made up of two HP heaters that are connected in a parallel manner. 
They are used to further heat the water received from the boiler feed pump. The efficiency 
of the system reduces if anyone HP heater fails.  
 
 

 

 
 
 

Figure 2: Flow diagram of water circulation system 
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5.  Reliability Analysis of WCS 
 
The reliability of WCS has been calculated using following steps: 
 
Step 1. Fault tree and petrinet models construction: First a fault tree model of the complicated 
parallel and series arrangement of the WCS has been prepared (figure 3) and then its equivalent 
petrinet model has been developed (figure 4). The AND gate represents the parallel arrangement of 
components, while, the OR gate represents the series arrangement of components in these models. 
 

 
 

Figure 3: Fault tree model of WCS 
 

 

 
 

Figure 4: Petrinet model of WCS 
 
Step 2. Data extraction: The failure and repair data of all ten components of WCS acquired from 
service logbook and validated by a maintenance specialist are given in Table 1 [20]. 
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Table 1:  Failure and repair data of different components of WCS 
 

Components  Failure rate  (failures / h) Repair time  (h) 

Condensate extraction pump 
(SS1) (k = 1) 

5.78×10-5 11 

Low pressure heater (SS2)  
(k = 2, 3, 4) 

3.85×10-5 16 

Deaerator (SS3) (k = 5) 1.15×10-4 9 
Boiler feed pump (SS4) 
(k = 6, 7, 8) 

1.15×10-4 11 

High pressure heater (SS5) (k = 9, 
10) 

3.85×10-5 11 

 
Step 3. Fuzzification of crisp data: The acquired crisp data for repair time and failure rate has been 
fuzzified into trapezoidal fuzzy numbers using trapezoidal membership functions to reduce 
ambiguity in the collected data. The values of , ,  and  have been fixed at ±10% of 

acquired crisp data whereas the values of , ,  and   have been changed at ±15%, ± 25% 

and ± 40% spreads  for  each  component of the  system. Figure 5 depicts trapezoidal fuzzy numbers 
for failure rate  and repair time  for kth component. 

 
 

Figure 5:  Trapezoidal fuzzy numbers for failure rate  and repair time  for kth component 

 
Step 4. Computation of fuzzy reliability indicators: After fuzzifying the failure rate and repair time 
of all the components of WCS shown in petrinet model (figure 4) as trapezoidal fuzzy numbers, the 
fuzzy failure rate and repair time of the top most position of petrinet model of WCS are evaluated 
using interval expressions for OR / AND transitions presented in equations (3-6). These interval 
expressions are obtained utilising the extension principle and α-cut along with interval arithmetic 
operations on the basic λ-τ expressions for OR / AND gates given in Table 2.  
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Table 2: Basic expressions for λ-τ technique 
 

Gate 
    

Expressions 
(n-inputs)  

  
 

 
 
Interval expressions for OR transition  
 
 

,      (3) 

 
 

.                                                              (4) 

 
 
Interval expressions for AND transition  
 
 

 
                                                                  

                          
(5) 

, 
 

 

                                 (6)                             

 
 

To analyse the performance of WCS quantitatively the reliability indicators viz., failure rate, repair 
time, expected number of failures, mean time to failure, mean time to repair, mean time between 
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failures, reliability and availability are calculated using expressions given in Table 3 at ±15%, ±25% 
and ± 40% spreads for α = 0.0 (0.1) 1.0. 
 

Table 3: Expressions for reliability indicators 
 

Reliability indicator Expression 
 
Expected number of failures  

Mean time to failure    
 

Mean time to repair 
 

Mean time between failures 
 

 

Reliability 
 

 
Availability  

 
The left and right spread fuzzy values of the reliability indicators of WCS at 15% spread are 
presented in Table 4 and Table 5, respectively. The fuzzy reliability indicators at ±15%, ± 25% and ± 
40% spreads for α = 0.0 (0.1) 1.0 are depicted in figure 6.  
 

 
 

Table 4: The left spread fuzzy values of WCS at 15% spread 
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α Failure 
Rate 

(/h) 

Repair 
Time (h) 

ENOF 
 

MTBF 
 (h) 

Reliability Availability 

1.0 1.555441    7.118736 2.610373 5.266834 0.968564 0.997535 
0.9 1.546797 7.007978 2.595923 5.242912 0.968423 0.997487 
0.8 1.538153 6.898654 2.581470 5.219206 0.968282 0.997438 
0.7 1.529509 6.790745 2.567017 5.195713 0.968142 0.997389 
0.6 1.520865 6.684231 2.552621 5.172431 0.968001 0.997339 
0.5 1.512222 6.579095 2.538106 5.149355 0.967861 0.997288 
0.4 1.503578 6.475318 2.523648 5.126484 0.967720 0.997236 
0.3 1.494934  6.372881 2.509189 5.103816 0.967579 0.997183 
0.2 1.486290 6.271767 2.494729 5.081346 0.967439 0.997129 
0.1 1.477647  6.171960 2.480267 5.059073 0.967298 0.997074 
0 1.469003 6.073441 2.465804 5.036994 0.967158 0.997019 
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Table 5: The right spread fuzzy values of WCS at 15% spread 
 

    

 

 
 

Figure 6: Graph representation of fuzzy reliability indicators 
 

α Failure 
Rate 

(/h) 

Repair Time 
(h) 

ENOF 
 

MTBF 
 (h) 

Reliability Availability 

1.0 1.901244 12.999494 3.186822 6.442043 0.974207 0.998894 
0.9 1.909890 13.191290 3.201183 6.478163 0.974349 0.998917 
0.8 1.918536 13.385785 3.215540 6.514689 0.974490 0.998940 
0.7 1.927182 13.583026 3.229894 6.551628 0.974632 0.998962 
0.6 1.935829 13.783060 3.244246 6.588987 0.974773 0.998984 
0.5 1.944475 13.985935 3.258594 6.626774 0.974915 0.999006 
0.4 1.953122 14.191699 3.272938 6.664995 0.975056 0.999027 
0.3 1.961768 14.400403 3.287279 6.703659 0.975198 0.999048 
0.2 1.970415 14.612099 3.301617 6.742773 0.975339 0.999069 
0.1 1.979061 14.826838 3.315951 6.782345 0.975481 0.999089 
0 1.987708 15.044674 3.330282 6.822383 0.975623 0.999109 
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Figure 6: Graph representation of fuzzy reliability indicators (continued) 
 
Step 5. Defuzzification of fuzzy reliability indicators: The fuzzy results of reliability indicators are 
defuzzified by employing COA method for defuzzification. The reliability indicators have been 
defuzzified for ±15%, ±25% and ±40% spreads using equation (7) and are presented in Table 6 
together with their crisp values. 
                                                           

                                                                   (7) 

 
Table 6: Values of reliability indicators of WCS 

 
Reliability Indicator Crisp Value Defuzzified Values 

Spreads 
± 15 % ± 25 % ± 40 % 

Failure rate  (/h) 1.728332 1.730000 1.730000 1.731031 
Repair time (h) 9.668175 10.327083 11.320939 14.323654 

ENOF  2.898757 2.898380 2.897209 2.894103 

MTBF (h) 5.795593 5.894658 6.043965 6.493699 

Reliability  0.971382 0.971388 0.971397 0.971421 

Availability  0.998332 0.998134 0.997831 0.996912 

 
6. Results and Discussion 

 
It is observed from the behavioral graphs given in figure 6 that the membership curves of many 
reliability indicators are deformed trapezoids, whose non-parallel sides are parabolic. Further, it is 
demonstrated that the defuzzified values vary with changes in spread. For instance, for the spread 
expansion from ±15% to ±25%, the failure rate does not change, the reliability increases marginally, 
the repair time and MTBF increase by 9.62% and 2.53%, respectively, the ENOF and availability 
decrease by 0.04% and 0.03%, respectively. Further, for spread expansion from ±25% to ±40%, failure 
rate, repair time, MTBF and reliability increase by 0.06%, 26.52%, 7.44% and 0.002%, respectively, 
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while, ENOF and availability decrease by 0.10% and 0.09%, respectively. The effect of spread change 
is most significant on repair time in comparison to other reliability indicators, resulting in system 
availability loss. These findings will assist plant managers in planning and adapting best 
maintenance policy to improve performance of WCS and minimise operational and maintenance 
expenses. 
 

7. Conclusion 
 

In this study, the performance of WCS of a thermal power plant has been analysed using fuzzy λ–τ 
technique. Trapezoidal fuzzy numbers have been employed to remove ambiguity in acquired data. 
To eliminate unexpected failure of the plant, the trend of different reliability indicators viz. repair 
time, failure rate, reliability, availability, ENOF and MTBF with respect to spread changes has been 
analysed. The maintenance personnels of the considered system should focus at system's availability 
because it diminishes by increasing spread, which is unfavorable. The reason behind this is that 
repair time varies more rapidly in comparison to other reliability indicators. A structured framework 
has been established in this research to assist maintenance engineers for improving availability of 
the considered plant.   
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Abstract 
 

Reliability optimization of a system is an extant problem. By solving these problems, new 
methodologies are obtained that have invent new engineering technology and changes the 
management perspective. Aim of the reliability analysis is to study the failure mechanisms of a system 
and and outcomes of the analysis serve to identify design solutions and maintenance actions for 
preventing the failures from occurring. So, it is used to evaluate and improve the quality of products, 
processes, and systems. Measurement, planning, and improvement in the reliability are the things 
which are well do in any business but only when efforts are focused on important problems which are 
highlighted by monetary values, improve reliability, reduce unreliability costs, generate more profit, 
and get more business. To serve this purpose, present study investigates a parallel system of two 
identical units which is based on several assumptions like, the system is served by one serviceman 
who is immediately available for service when it will call. System failure rate is fix and the failure 
type (repairable or replaceable) is known by inspection. The failure and repair activities are 
stochastically independent, and their rates are exponentially distributed. Priority to PM over 
inspection is given in the system. Several measures of reliability effectiveness like MTSF, availability 
and cost-benefit analysis of the system are obtained by semi-Markov and regenerative point approach. 
Reliability characteristics parameters are random variables, and results are obtained in the form of 
graphs and tables by changing the values of these variables one by one, while keeping other variables 
constant at that point. From the results we conclude how to make the given system more profitable. 
Findings of present system model shows that when the failure rate is low then the system obtained 
more profit by increasing preventive maintenance rate. On the other hand, when failure rate going 
high then we make the system more profitable by increasing inspection rate. These insights of 
modelling and analysis helps the system developers and managers to make good choices of action 
against specified criteria that managing engineered products and industrial plants safely and reliably. 
This leads to more profit and making a business more growing.  
 
Keywords: Parallel system, priority, inspection, semi-Markov, regenerative points, 
repair activities, profit.  
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1. Introduction 
 
The objectives of any equipment or system manufactured is to design it in such a way that it achieves 
its goals in terms of production. A reliable equipment is the one which works satisfactorily for a 
given time period under given environmental conditions without any interruptions. Hence the 
reliability is the key point in the manufacturing/ production industries. Although ever-increasing 
urge of the society is making the design of system more complicated and to control the strength and 
effectiveness of failure of such system reliability experts frame a model which is more productive 
and profitable. Various researcher has done a lot of research work in the reliability theory to improve 
the repair techniques. Several authors such as Gupta and Agarwal [1], Dhillon and Yang [2] 
extensively discussed complex systems by considering various failure and repair disciplines. Ram 
[3] gave the summery of various reliability approaches. Parallel redundancy is highly used by the 
researcher to enhance the system reliability. Hitomi [4] investigates the reliability of a manufacturing 
system in which two machines are arranged in parallel. Termoto et al. [5] studied an optimal 
inspection policy for an n-unit parallel system which is checked at successive times and PM is carried 
out after the failure of a certain number of units at each inspection. Gupta et al. [6] analyzed a two 
non-identical unit parallel system. They have taken the joint distribution of lifetimes of both units as 
bivariate negative exponential. Malik et al. [7] considered two reliability models with two parallel 
units in which one is original and other is duplicate. Priority to repair of the original unit is given in 
model I and no priority is given in model II. Yu and Khambadkone [8] derived a parallel inverter 
system to analyses the reliability and cost optimization using sensitivity analysis. Rathee and Malik 
[9] observed a parallel system under the aspect of priority to PM over repair and replacement. 
Sivakumar and Jayanth [10] studied the reliability of a Mobile network system during 
communication. Kakkar et.al. [11] worked on the reliability and profit analysis of a parallel industrial 
system. Bhardwaj and Parasher [12] analyzed a cold standby system with geometric failure and 
repair rates. Pundir et.al. [13] studied a two non-identical units’ parallel system with priority in 
repair to first unit. Chopra and Ram [14] investigate the reliability measures of the system, which 
has two dissimilar units in the parallel network under copula. Li et al. [15] developed a two similar 
component parallel degradation repairable system. They considered that when the repairman is on 
vacation then the failed component is not repaired as good as new. Dabas and Rathee [16,17] derived 
a parallel system with the idea of priority to preventive maintenance over replacement and 
inspection for repair activities. Sherbeny [18] studied the impact of some system parameters on an 
industrial system consisting parallel units with one repairer and optional vacations under Poisson 
shocks.  
In this paper we consider a two identical units parallel system using priority to PM over inspection. 
All repair activities and inspection is done by a single serviceman. Units’ failure rate is taken to be 
constant, and inspection is done to find the type of failure. Time taken in repair activities is 
distributed arbitrarily and their rates are exponentially distributed. The failure and repair activities 
are stochastically independent. To meet the objective of reliability evolution we derive some suitable 
measure like MTSF, availability and cost-benefit analysis of the system using semi-Markov and 
regenerative point approach. Graphs are plotted to observe the change in the behaviour of these 
measures with failure rate for particular cases of various rates included in the system. 
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2. Notations for System Model 
 

λ  : Constant Failure Rate 
a/b/α0 : Rate by which system goes for Repair / Replacement / Preventive   Maintenance 

respectively 
α/β/γ/θ : Repair / Replacement / Inspection / Preventive Maintenance rate respectively done 

by the server 
h(t)/f(t)/r(t)/g(t) : pdf of the Inspection / Repair / Replacement / Preventive Maintenance time 

respectively 
H(t)/F(t)/R(t)/G(t) : cdf of the Inspection / Repair / Replacement / Preventive Maintenance time 

respectively 
pij : Transition probability from state Si to state Sj 

pij.kr : Transition probability from state Si to state Sj via state Sk, Sr  

Qij(t)/qij(t) : Cdf/pdf of passage time from regenerative state Si to a regenerative state Sj or to a 
failed state Sj without visiting any other regenerative state in (0, t] 

Qij.kr(t)/qij.kr(t) : pdf/cdf of direct transition time from regenerative state Si to a regenerative state Sj 

or to a failed state Sj visiting state Sk, Sr once in (0, t]  
µi : Mean sojourn time in state Si 

mij : Contribution to mean sojourn time in state Si when the system transits directly to 
state Sj  

*/** : Symbol for Laplace transformation/ Laplace Stieltjes Transformation 
©/Ⓢ : Symbol for Laplace transformation/Laplace Stieltjes convolution  

 
3. System Description and Assumptions 

 
To evaluate the effectiveness of the present research, the numerical data is examined in order to 
establish essential assumptions to the system model. The Semi-markov and re-generative point 
process are used to provide formulations of system dependability measures such as reliability, mean 
time to system failure (MTSF), availability, and profit function. Numerical examples are provided 
to demonstrate the acquired conclusions. Results are obtained in tabular and graphical form to 
investigate the influence of various system features. 
Assumptions 

• Initially both the units are in working mode 
• Units are failed with constant rate 
• System is served by single serviceman 
• All the times associated with all events are random and independent. 
• All the repair activities follow exponential distribution 

 
Table 1: Description of the states 

States Description 

S0 Both the units are operative 
S1 One unit is operative and other is failed under inspection  
S2 Resume for PM  
S3 One is working and other is failed under replacement  
S4 One unit is continuously under inspection from previous state and other is waiting 

for inspection  
S5 One is working and other is failed under repair   
S6 One unit is waiting for inspection from previous state and other is under PM  

S7 One unit is working and other under PM  
S8 One unit is continuously under replacement from previous state and other is waiting 
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for inspection   

S9 One unit is under repair and other is continuously waiting for inspection from 
previous state 

S10 One unit is under replacement and other is continuously waiting for inspection from 
previous state 

S11 One unit is continuously under repair from previous state and other is waiting for 
inspection   

S12 One unit is continuously under repair from previous state and other is waiting for PM  
S13 One unit is continuously under replacement from previous state and other is waiting 

for PM  
S14 One unit is continuously under PM from previous state and other is waiting for 

inspection 
 

 
 

Figure 1: Transition State Diagram 
 
 

4. Formulation and Stochastic Analysis of the Model 
4.1. Transition Probabilities & Mean Sojourn Times (µ!) 
 
Steady- state transition probabilities from regenerative state i to state j are given by the formula  

p!" = Q!"(∞) = ( q!"
#

$
(t)dt	 

	p$% =
&'

&'()!
 ,     p$& =

)!
&'(∝!

 , P%+ = bh∗(λ +∝$), p%- =
'

'(∝!
31 − h∗(λ +∝$)6, 

p%. = ah∗(λ +∝$), 	p%/ =
∝!
'(∝!

(1 − h∗(λ +∝$))  , p+$ = r∗(λ +∝$) , p+0 = p+%.0 =
'

'(∝!
(1 −	r∗(λ +∝$)) , 

p+,%+ = p+3.%+ =
∝!
'(∝!

(1 − r∗	(λ +∝$)), 

p-4 = a	,   p-,%$ = 	b	,p.$ = f ∗(λ +∝$)  ,p.,%% = p.%.%% =
'

'(∝!
(1 −	 f ∗(λ +∝$)) ,  

p.,%& = p.3.%& =
∝!
'(∝!

(1 −	 f ∗(λ +∝$)), p3$ = g∗(λ) , p3,%- = p3%.%- = 1 − g∗(λ) ,  

p%%.-4 =
'5

'(∝!
(1 − h∗(λ +∝$)) ,p%%.-,%$ =

'6
'(∝!

(1 − h∗(λ +∝$)) , 

	p%,%-./ =
∝!6
'(∝!

(1 − h∗(λ +∝$)) ,  	p%3./,%+ =
∝!5
'(∝!

(1 −	h∗(λ +∝$))  , 
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 p&3 = p/% = p0% =	p4% =	p%$,% = p%%,% =	p%&,3 	= p%+,3 = p%-,%	 = 1 
 
It is noticed that the ∑ p!"" = 1 for all possible values of ‘i’. 
Further mean sojourn times (µ!) is the expected time taken by the system in a particular state before 
transiting to any other state. If Ti is the sojourn time in state ‘i’ ,then 

	µ! = E(t) = ∫ P(T! > t)	dt#
$ = ∑ m!"" 	and   	m!"	 =

8[:"#
∗∗(<)]	

8<
|s = 0. 

Expressions for 	µ! are given as  

µ$ =
1

2λ + α$
	 , µ% =

1
λ + α$

(1 − h∗(λ + α$)), µ+ =
1

λ + α$
(1 − r∗(λ + α$))		 

µ. =
%

'()!
(1 − f ∗(λ + α$), µ3 =

%
'
(1 − g∗(λ)) 

µ%? =	 [
1

λ + α$
+

λ
λ + α$

(
b
β +

1	
γ +

a		
α )](1 − h

∗(λ + α$)) 

µ+? =
%
@
	 , µ.? =

%
∝
, µ3? =

%
A
      

 
4.2. Reliability & Mean Time to System Failure (MTSF) 
 
Let cdf of first transition time from the state S! to the state in which failure occur is represented by 
Φ!(t) . We take absorbing state as the failed state. So, the expressions for Φ!(t) from which MTSF of 
discussed system is obtained as 
 Φ!(t) 	= 	∑ Q!"!," (t)	Ⓢ	Φ"(t) 	+ ∑ Q!B!,B (t)	                                                                                                      (1) 
Where i is the operating state from which transition takes place to j (operating & regenerative state) 
and k (failed state). 
If we take LST of above relation (1) and solved them for  Φ$

∗∗(s), we have  
R∗(s) = %C	D∗∗(<)

<
                                                                                                                                                  (2) 

 By taking Inverse Laplace transform of (2), we get system reliability.  
And MTSF is obtained as:  MTSF	 = lim

																								<→$

%C	D∗∗(<)
<

= F
G
	                                              

Where, N = µ$ + µ%p$% + µ+p$%p%+ + µ.p$%p%.  and  D = 1 − p$%p%+p+$ − p$%p%.p.$ 
 
4.3.  Analysis of Availability 
 
Let A!(t) be the probability of the system availability at an instant ‘t’ given that system goes to 
regenerative state S! at t = 0. So the expressions for A!(t) as                                                                                          
A!(t) 	= 	M!(t) 	+	∑ q!"

(H)
!," (t)©A"(t)                                                                                                                  (3) 

Where i is regenerative state from which transition takes place to j (successive regenerative state) 
through n transitions. 
M!	(t) be the probability of the system in up state Si up to the time ‘t’ without visiting to any other 
regenerative state.  
 M$(t) = eC(&'(	∝!)I ,  M%(t) = eC('(∝!	)IH(t), 
M+(t) = eC('(∝!	)IR(t), M.(t) = eC('(∝!	)IF(t) ,  M3(t) = eC('I)G(t) 
Now, if we use LT of (3) and solved it for A$∗ (s).We get the result for steady state availability as 
A$(∞) = lim

<→$
sA$∗ (s) =

F%
G%

                                                                                                                                  (4) 

 Where 
N% = µ$X + (µ% + µ+p%+ + µ.p%.)Y + µ3Z    and 
D% = (µ$ + µ&p$&)X + (µ%? + µ+? p%+ + µ.? p%. + µ/p%/)Y + µ3? Z 
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4.4. Busy Period Analysis for Server 

 
 Let B!J(t), B!K(t), B!

KL(t), B!M(t)be the probability of busy period of server during inspection, repair, 
replacement and PM at instant ‘t’ with the given condition that the system go to regenerative state 
Si at t=0. The expressions for B!J(t), B!K(t), B!

KL(t), B!M(t) are as follows:  
B!J(t) 	= 	W!(t) 	+	∑ q!"

(H)
!," (t)©B"J(t)  ,     B!K(t) 	= 	W!(t) 	+	∑ q!"

(H)
!," (t)©B"K(t) 

B!
KL(t) 	= 	W!(t) 	+	∑ q!"

(H)
!," (t)©B"

KL(t)  , B!M(t) 	= 	W!(t) 	+	∑ q!"
(H)

!," (t)©B"M(t)                                            (5) 
Where i is regenerative state from which transition takes place to j (successive regenerative state) 
through n transitions. 
Wi(t) be the probability of server busyness at state Si due to repair activities at time t without making 
any transition to any other regenerative state or returning to the same via one or more non 
regenerative state.  
Here, 
W%(t) = eC('(∝!)IH(t)^̂ ^̂ ^̂ + (λeC('(∝!)I©1)H(t)^̂ ^̂ ^̂   
W.(t) = eC('(∝!)IF(t)^̂ ^̂ ^ + (λeC('(∝!)I©1)F(t)^̂ ^̂ ^ 	+	(∝$ eC('(∝!)I©1)F(t)^̂ ^̂ ^ 
W+(t) = eC('(∝!)IR(t)^̂ ^̂ ^̂ + (λeC('(∝!)I©1)R(t)^̂ ^̂ ^̂ + 	(∝$ eC('(∝!)I©1)R(t)^̂ ^̂ ^̂  
W&(t) = G(t)^̂ ^̂ ^̂ = W/(t),W3(t) = eC(')IG(t)^̂ ^̂ ^̂ + (λeC(')I©1)G(t)^̂ ^̂ ^̂   
Take LT of (5) and solving it for B$J

∗(s), B$K
∗(s), B$

KL∗(s), B$M
∗(s)	.The busy time in inspection, repair, 

replacement and PM for server is given by 
B$J (∞) = lim

<→$
sB$J

∗(s) = F&
G%

 , B$K(∞) = lim
<→$

sB$K
∗(s) = F'

G%
 

B$
KL(∞) = lim

<→$
sB$

KL∗(s) = F(
G%

 ,  B$M(∞) = lim
<→$

sB$M
∗(s) = F)

G%
 

Here,  
N&	 = W%

∗(0)Y, N+ = W.
∗(0)p%.Y, N-	 = W+

∗(0)p%+Y  and  
N.	 = W&

∗(0)p$&X +W/
∗(0)p%/Y +W3

∗(0)Z and D1 is mentioned above. 
 
4.5. Expected Number of Visits by The Server 
 
Consider  I!(t), R!(t), Rp!(t)	, Pm!(t)		 as the expected number of visits make by the server for 
inspection, repair, replacement and PM in (0, t] .We have the following recursive relations for 
I!(t), R!(t), Rp!(t)	, Pm!(t)	are  
I!(t) 	= 	∑ Q!"

(H)
!," (t)Ⓢ	(C + I"	(t))    ,      R!(t) 	= 	∑ Q!"

(H)
!," (t)Ⓢ	(C + R"	(t))  

Rp!(t) 	= 	∑ Q!"
(H)

!," (t)Ⓢ	(C + Rp"	(t)) ,  Pm!(t) 	= 	∑ Q!"
(H)

!," (t)Ⓢ	(C + Pm"	(t))                                              (6) 
                                                          
Where i is regenerative state from which transition takes place to j (successive regenerative state) 
through n transitions and and C = 1 server does the job afresh at j, otherwise C = 0. 
Take LST of  (6) and solving it for I$∗∗(s), R$∗∗(s), Rp$∗∗(s), Pm$

∗∗(s).The expected number of inspections, 
repairs, replacements and PM by the server is given by (per unit time) 
I$(∞) = lim

<→$
sI$∗∗(s) =

F*
G%

  ,         R$(∞) = lim
<→$

sR$∗∗(s) =
F+
G%

  

Rp$(∞) = lim
<→$

sRp$∗∗(s) =
F,
G%

   , Pm$(∞) = lim
<→$

sPm$
∗∗(s) = F-

G%
                                                          

Where, 
N/ = (1 − p%/)Y, N3 = (p%%.-4 + p%.)Y, N0 = (p%%.-,%$ + p%+)Y, 
	N4 = p$&X + p%/Y + Z  and D% is already mentioned. 
Here  X, Y  & Z are  
X = p%+p+$ + p%.p.$ + p3$(p%+p+3.%+ + p%.p.3.%&) ,  Y = (1 − p$&p3$)    and  
Z = p%+ + p%. − p%+p+%.0 − p%.p.%.%% − p$%p%+p+$ − p$%p%.p.$  
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4.6.  Profit Analysis 
 
In steady state the profit function of the system model can be obtained as  
P = k$A$ − k%B$J − k&B$K − k+B$

KL − k-B$MN − k.I$ − k/R$ − k3Rp$ − k0Pm$                                                      
Here, 
 P = Profit	function	of	system	model 
𝑘$ = Revenue	per	unit	up − time	of	the	system 
𝑘%	, 𝑘&	, 𝑘+	, 𝑘- = 	Cost	per	unit	time	of	the	server	when	it	is	busy	in	 
                              inspection, repair, replacement, preventive	maintenance  
𝑘.	, 𝑘/	, 𝑘3	, 𝑘0 = Cost	per	unit	time	for	inspection, repair,	 
																																	replacement, preventive	maintenance 
	 

5. Analytical Study of the Model 
 
To make the study more practical we draw the results in the form of tables and graphs. Tables 1, 2, 
3 and figures 2, 3, 4 show the behaviour of MTSF, availability and profit with respect to failure rate 
for different values of the given parameters by assuming that the rate of repair activities follow 
exponential distribution. Table 1 and figure 2 talks about the values of MTSF goes decreasing when 
failure rate increases.  If we increase the values of repair rate (α=4.1), replacement rate (β=5) and 
inspection rate (γ=3) one by one and keep all other parameters fix we find that the MTSF is increases. 
But if we increase α0=3.1 (rate by which system goes for PM) the MTSF is decreases.  
 Table 2 and figure 3 shows the effect of various parameters on availability with respect the failure 
rate and we observe that the availability of the system decreases with increase in the failure rate. 
Similarly if we increase α, β,γ and θ (rate by which system do preventive maintenance) then the 
availability is also increases but availability decreases when we increase in α0.  
From table 3 and figure 4 we conclude about the profit of the system. We see that if values of α, β, γ 
and θ increases then the profit is also increases but if we increase α0 then the profit goes decline. 
 

 

 
Figure 2: MTSF VS Failure Rate 
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Table 2: MTSF w.r.t various parameters 
Failure 

rate 
α=2.1,β=2,a=0.6,b=0.4,γ

=1.3,α0=3 
α= 4.1 β=5 γ= 3 α0= 3.1 

a= 0.4, b= 
0.6 

0.1 0.33274 0.33275 0.33275 0.33279 0.32204 0.33274 

0.2 0.33113 0.33119 0.33119 0.33130 0.32056 0.33113 

0.3 0.32875 0.32887 0.32886 0.32908 0.31838 0.32875 

0.4 0.32577 0.32596 0.32594 0.32627 0.31563 0.32577 

0.5 0.32235 0.32260 0.32258 0.32302 0.31247 0.32234 

0.6 0.31859 0.31890 0.31887 0.31943 0.30899 0.31858 

0.7 0.31458 0.31495 0.31492 0.31558 0.30527 0.31457 

0.8 0.31040 0.31082 0.31079 0.31153 0.30138 0.31039 

0.9 0.30610 0.30657 0.30653 0.30736 0.29737 0.30609 

 

 
Figure 3:  Availability VS Failure Rate 

 
Table 3: Availability w.r.t various parameters 

Failure 
Rate 

α=2.1,β=2,a=0.
6,b=0.4,γ=1.3,

α0=3,θ=1.4 
α=4.1 β=5 

a=0.4,b=0.
6 

γ=3 α0=3.1 θ=2 

0.1 0.53052  0.53208  0.53170  0.53043  0.55323  0.52682  0.57425  
0.2 0.48233  0.48528  0.48462  0.48218  0.51847  0.47809  0.53218  
0.3 0.44435  0.44852  0.44764  0.44414  0.48875  0.43990  0.49653  
0.4 0.44435  0.41859  0.41754  0.41312  0.46298  0.40888  0.46580  
0.5 0.38741  0.41859  0.39237  0.38714  0.44036  0.38300  0.43895  
0.6 0.36524  0.37219  0.37087  0.36494  0.42031  0.36094  0.41524  
0.7 0.34599  0.35362  0.35221  0.34567  0.40238  0.34183  0.39411  
0.8 0.34599  0.33727  0.33578  0.32871  0.38622  0.32505  0.37514  
0.9 0.34599  0.33727  0.32115  0.31363  0.37156  0.31014  0.35799  
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Figure 4: Profit VS Failure Rate 

 
Table 4: Profit w.r.t various parameters 

Failure 
Rate 

α=2.1,β=2,a=0.6
,b=0.4,γ=1.3,α0

=3,θ=1.4 
α=4.1 β=5 

a=0.4,b=0.
6 

γ=3 α0=3.1 θ=2 

0.1 7271.45  7307.88  7308.10  7256.59  7596.16  7216.20  7800.53  
0.2 6382.77  6445.78  6446.11  6357.37  6877.03  6321.97  6980.11  
0.3 5684.64  5767.44  5767.80  5651.40  6265.67  5622.79  6297.90  
0.4 5117.12  5214.77  5215.12  5077.84  5738.43  5056.42  5719.43  
0.5 4643.64  4752.40  4752.75  4599.59  5278.18  4585.18  5221.28  
0.6 4240.52  4357.50  4357.87  4192.61  4872.23  4184.81  4786.85  
0.7 3891.68  4014.63  4015.04  3840.60  4510.94  3838.93  4404.02  
0.8 3585.81  3712.90  3713.39  3532.09  4186.87  3536.04  4063.65  
0.9 3314.65  3444.43  3445.03  3258.70  3894.18  3267.80  3758.75  

 
 

6. Practical Implication 
Redundancy is a useful method of increasing reliability and optimizing the balance between 
operation effectiveness and expenditure. Arranging elements of the system in parallel provide 
alternative paths of operation. The parallel structure in the reliability engineering is widely used in 
many industrial systems such as power generation systems, pump systems, production systems and 
computing systems. One of the examples is in the commercial boiler market.  Packaged boilers 
installed in multiple boiler cascade systems offer long-term energy savings and reliability. L. 
Vorsteveld [19] gives that the preferred control scheme is parallel cascading, and it leads to high 
turn down ratio. 
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Figure 5: Parallel Boiler Cascade System 
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Abstract

In this paper, we first discuss pathway model in general. Then a special case for the real scalar variable
is considered. This special case is relevant in reliability problems. In the pathway model, an arbitrary
function is introduced so that the hazard function resulting from this model is of a given shape such as
a bathtub type hazard function. The model is also derived by using an entropy optimization procedure
by introducing a new entropy measure. It is shown that a large number of densities in current use are
connected to the pathway model. Certain combinations of pathway densities resulting in hazard functions
of desired shapes, multi-component failure situation etc are examined from a reliability point of view. For
further use of the proposed model, the unknown parameters are estimated using the method of maximum
likelihood estimation. The behaviour of the reliability measure has been observed graphically for arbitrary
values of the parameters related to the number of components and operating time.

Keywords: Pathway model, reliability analysis, hazard function, entropy optimization

1. Introduction

The common knowledge used in the literature is that an approximate model for the data at hand
can be found, regardless of whether the data comes from the biological, physical, engineering,
social, or other fields. The information at hand can be described in the area around the stable
condition or along a path that leads there. In (2005) Mathai [1] introduced a pathway model
to cover the stable as well as the transitional stages, which describes transitions of rectangular
matrix-variate distributions in the real case. It is a mathematical or stochastic model that switches
from one functional form to another through pathway parameter so that intermediate steps can
be represented. Also the parameters of pathway model connect many families of functions, and
as a result, it is possible to identify a suitable member either a given family or between stages
of two families. The idea was extended to cover the complex rectangular matrix-variate case
in Mathai and Provost [2]. The real scalar version of the pathway model can be stated as the
following:

f1(x) = c1|x|γ[1 − a(1 − q)|x|δ]
η

1−q (1)

for a > 0, q < 1, γ > −1, δ > 0, η > 0, 1 − a(1 − q)|x|δ > 0, and zero elsewhere, where c1 can act
as the normalizing constant if we wish to create a statistical density out of f1(x). The support
of (1) is on −[a(1 − q)]−

1
δ < x < [a(1 − q)]−

1
δ . It is a finite range model. The functional part

in a basic type-1 beta model is of the form xα−1(1 − x)β−1, α > 0, β > 0, 0 ≤ x ≤ 1 and zero
elsewhere, and hence the model in (1) can be looked upon as a generalized, extended and
power-transformed type-1 beta model for q < 1. When q → 1 the range of x will go from −∞ to
∞. Note that (1) is a symmetric model for x < 0 and x > 0. If an asymmetric model is required
then different weights can be used for x < 0 and x > 0 situations. These differing weights can be
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introduced either by multiplying with constants or through one of the parameters. For q > 1,
write 1 − q = −(q − 1), q > 1, then (1) switches into the following model:

f2(x) = c2|x|γ[1 + a(q − 1)|x|δ]−
η

q−1 (2)

for −∞ < x < ∞, a > 0, q > 1, δ > 0, γ > −1, η > 0. The model in (2) can be looked upon as a
generalized, power-transformed and extended type-2 beta family of functions. The functional
part of the basic type-2 beta model is xα−1(1 + x)−(α+β), 0 ≤ x < ∞, α > 0, β > 0. Thus, (2) is the
generalized and extended version of this basic type-2 beta function. When q → 1− in (1) and
q → 1+ in (2) the models in (1) and (2) go to the generalized and extended gamma family of
functions as follows:

f3(x) = c3|x|γe−aη|x|δ (3)

for a > 0, η > 0, δ > 0, γ > −1,−∞ < x < ∞. This is the generalized gamma family of functions.
Thus, the basic pathway model is (1), and (2) and (3) are available from (1). For q < 1 the family of
functions is the generalized and extended type-1 beta family of functions. When q goes to 1, then
one goes into the generalized and extended gamma family of functions. When q moves to q > 1
then we go into the generalized and extended type-2 beta family of functions. The parameter
q enables us to go to three different families of functions and hence q is called the pathway
parameter. The pathway idea in model building situation is to capture the stable situation as well
as the unstable neighborhoods by the same model. If the gamma family is the stable situation in
a physical problem then the paths leading to this stable situation through the generalized type-1
beta model and generalized type-2 beta model and the transitional stages are captured by the
pathway parameter q. If (1) to (3) are to be treated as statistical densities then the following are
the normalizing constants:

c1 =
δ[a(1 − q)]

γ+1
δ Γ( η

1−q + 1 + γ+1
δ )

2Γ( γ+1
δ )Γ( η

1−q + 1)
, for γ > −1, a > 0, q < 1, η > 0, δ > 0 (4)

c2 =
δ[a(q − 1)]

γ+1
δ Γ( η

q−1 )

2Γ( γ+1
δ )Γ( η

q−1 − γ+1
δ )

, for η > 0, δ > 0, a > 0, q > 1, γ > −1,
η

q − 1
− γ + 1

δ
> 0 (5)

c3 =
δ(aη)

γ+1
δ

2Γ( γ+1
δ )

, a > 0, η > 0, δ > 0, γ > −1. (6)

Our interest is to consider a special case of the pathway model for x ≥ 0 and when γ = δ − 1.
In this case the normalizing constants reduce to very simple forms. These forms of the pathway
model are the most relevant in reliability analysis. Our main focus will be on this special case.
Before we concentrate on the special case, let us see some other special cases of the general
models. Note that (1) for γ = 0, a = 1, δ = 1, η = 1, q < 1, q > 1, q → 1 is Tsallis statistics in
non-extensive statistical mechanics. It is claimed that between 1990 and 2010, over 3000 articles
are published on this topic of Tsallis statistics. Details of the development may be seen from his
book Tsallis [3]. Equation (2) for q > 1, q → 1, a = 1, δ = 1, η = 1 is superstatisitcs in statistical
mechanics. Dozens of articles are also written in this area since 2003. The basic article in this area
is Beck and Cohen [4].

If location and scale parameters are to be incorporated into the models in (1) to (3) then
replace |x| by | x−µ

σ | for some constant µ and some constant σ > 0 in (1) to (3). Note that (3) for
γ = 0, δ = 2 is the normal or Gaussian density. For x > 0, (3) produces the generalized gamma
density, Weibull density, gamma density, chisquare density, exponential density, Rayleigh density,
Maxwell-Boltzmann density etc. Exponentiation in (2), that is put x = e−cy, c > 0, produces the
generalized logistic density of Mathai and Provost [5], logistic density and other special cases of
the generalized logistic density, which are relevant in reliability analysis. (2) can produce Cauchy
density, Student-t density, F-density etc. For γ = δ − 1, (1) and (2) produce many models in
reliability analysis. As a limiting form of (2) one can obtain Fermi-Dirac density from (2) and
Bose-Einstein density from (1), after exponentiation.
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2. Construction of the Pathway Model through Entropy Optimization

Model building in physical situations is often done by optimizing an appropriate entropy measure
and then deriving the model from therein. Consider Mathai’s entropy, for an earlier version see
Mathai and Haubold [6],

Mq( f ) =

∫
X [ f (X)]

1−q+η
η dX − 1

q − 1
, q ̸= 1, q < 2 (7)

where f (X) is a statistical density where X could be real or complex scalar or matrix variable, and∫
X denotes the integral over the support of f . A corresponding version for the discrete situation

can be constructed. One can look upon (7) as an expected value of f
1−q

η which then corresponds
to Kerridge’s measure of inaccuracy for η = 1, see Mathai and Rathie [7]. For the real scalar
variable case, (7) for η = 1 can be looked upon as a modified Havrda-Charvat entropy, see Mathai
and Rathie [7]. In the following discussion we consider the real scalar variable case first. Let us
optimize (7) subject to the following moment-type restrictions for real scalar variables:∫

x
xγ

(1−q)
η f (x)dx = fixed &

∫
x

xγ
(1−q)

η +δ f (x)dx = fixed (8)

for γ > −1, q < 1, δ > 0, and it is assumed that the integrals in (8) exist. Note that for γ = 0, (8)
states that the total integral is unity and that the first moment is given. This is equivalent to the
physical law of conservation of energy when we consider energy distribution. It is convenient
to use calculus of variation for optimizing (7) subject to the conditions in (8). Then the Euler
equation is the following:

∂

∂ f
[ f

1−q+η
η − λ1xγ

(1−q)
η f + λ2xγ

(1−q)
η +δ f ] = 0 (9)

where λ1 and λ2 are Lagrangian multipliers. Then (9) gives

f
(1−q)

η = µ1xγ
(1−q)

η [1 − µ2xδ]

for some constants µ1 and µ2, which then gives

f1 = ν xγ[1 − µ2xδ]
η

1−q (10)

for some ν and µ2. Take µ2 = a(1 − q) and ν as the normalizing constant to obtain the model (1).
In (7) if X is a p × 1 vector random variable and if (8) is replaced by the following conditions∫

X
[(X − µ)′V−1(X − µ)]

γ
(q−1)

η f (X)dX = fixed (11)

and ∫
X
[(X − µ)′V−1(X − µ)]

γ
(q−1)

η +δ f (X)dX = fixed (12)

where V is p × p real symmetric and positive definite constant matrix, µ is a p × 1 constant vector,
a prime denotes transpose, γ > 0, q > 1, η > 0, then from (2.3) and (10) we have the following
density:

f4(X) = c4[(X − µ)′V−1(X − µ)]γ[1 + a(q − 1){(X − µ)′V−1(X − µ)}δ]
− η

q−1 , q > 1. (13)

Then, when q → 1, f4(X) goes to f5(X) given by

f5(X) = c5[(X − µ)′V−1(X − µ)]γe−aη[(X−µ)′V−1(X−µ)]δ . (14)
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Note that (13) and (14) are also associated with type-2 and gamma distributed random points
in Euclidean n-space, p ≤ n, see Mathai [8]. Also, (14) for γ = 0, δ = 1 is the p-variate Gaussian
density with mean value vector µ and covariance matrix V. The quantity

(X − µ)′V−1(X − µ) = c > 0 (15)

is known as the ellipsoid of concentration. Hence the constraints can be explained in terms of
ellipsoid of concentration. In (7) if X is a p × q, q ≥ p rectangular matrix-variate random variable
and if the conditions in (8) are replaced by the following:∫

X
[tr(AXBX′)]γ

(q−1)
η f (X)dX = fixed (16)

and ∫
X
[tr(AXBX′)]γ

(q−1)
η +δ f (X)dX = fixed (17)

where A is p × p and B is q × q constant real positive definite matrices, q > 1, η > 0, δ > 0 then
the steps in (9) and (10) give the density

f6(X) = c6[tr(AXBX′)]γ[1 + a(q − 1){tr(AXBX′)}δ]
− η

q−1 , q > 1 (18)

which when q → 1 gives

f7(X) = c7[tr(AXBX′)]γe−aη[tr(AXBX′)]δ (19)

for a > 0, η > 0, δ > 0, γ > −1. Note that (19) for γ = 0, δ = 1 is the real matrix-variate Gaussian
density. By replacing X by X − M, where M is a p × q constant matrix, one can also incorporate
a location parameter matrix in the models in (18) and (19). Mathai and Princy [9] illustrate the
significance of models (18) and (19) to the real multivariate reliability analysis.

3. A Special Case of Pathway Model and Reliability Analysis

A special case of the pathway model (1),(2),(3) is the case where γ = δ − 1, for x ≥ 0. This will
then correspond to a power-transformed basic model. Take the basic model in (1) as the one with

γ = 0 and δ = 1 for x ≥ 0 or c[1 − a(1 − q)x]
η

1−q where a > 0, q < 1 and c is a constant. Make the
power transformation here or put x = yδ for some δ > 0. Then we have

g1(y) = C1yδ−1[1 − a(1 − q)yδ]
η

1−q , q < 1, η > 0, a > 0, δ > 0 (20)

and C1 is a constant. The cases for q > 1, q → 1 are available from (20) as

g2(y) = C2yδ−1[1 + a(q − 1)yδ]
− η

q−1 , q > 1 (21)

and
g3(y) = C3yδ−1e−aηyδ

, a > 0, η > 0, δ > 0. (22)

If g1, g2, g3 are to be treated as statistical densities then the normalizing constants are the following:

C1 = δa(η + 1 − q), q < 1; C2 = δa(η + 1 − q), q > 1; C3 = δηa. (23)

The following are the graphs showing the relative positions of g1, g2, g3.
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Figure 1: Pathway models for γ = δ − 1

Note that in g2(y) and g3(y) the densities of 1
y also belong to the same families. Put x = 1

y then
g2(x) and g3(x) go to the following for 0 ≤ x < ∞:

g2∗(x) = aδ(η + 1 − q)x−δ−1[1 + a(q − 1)x−δ]
η

1−q (24)

and
g3∗(x) = aδ(η + 1 − q)x−δ−1e−aηx−δ

. (25)

Thus, in g2(y) and g3(y) both δ and −δ with δ > 0 are admissible with the corresponding change
in yδ−1. Let us compute the survival functions. For q < 1

S1(t) = Pr{x ≥ t} =
∫ [a(1−q)]−

1
δ

x=t
aδ(η + 1 − q)xδ−1[1 − a(1 − q)xδ]

η
1−q dx

= [1 − a(1 − q)tδ]
η

1−q +1, q < 1, η > 0, a > 0, δ > 0. (26)

For q > 1 the survival function S2(t) is given by the following:

S2(x) = [1 + a(q − 1)tδ]
− η

q−1+1, q > 1, η > 0, a > 0, δ > 0 (27)

and for q → 1
S3(t) = Pr{x ≥ t} = e−aηtδ

, a > 0, η > 0, δ > 0. (28)

The hazard functions for q < 1, q > 1, q → 1, denoted by h1(t), h2(t), h3(t) are the following:

h1(t) =
g1(t)
S1(t)

=
δa(η + 1 − q)tδ−1

1 − a(1 − q)tδ
, q < 1 (29)

h2(t) =
δa(η + 1 − q)tδ−1

1 + a(q − 1)tδ
, q > 1 (30)

h3(t) = aδηtδ−1. (31)

Here (29) to (31) do not show any interesting shapes. A useful shape is the bathtub shape. All
different shapes are available from (29) to (31).

4. Exponentiation of the Pathway Model in the Special Case

In this paper our main objective is to construct some useful bathtub shaped models for reliability
analysis. For this, let us make the transformation y = ecx, c > 0 in (20). Then the condition

1 − a(1 − q)yδ > 0 ⇒ 1 − a(1 − q)ecδx > 0 or x <
−1
cδ

ln[a(1 − q)]
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for q < 1. But for q > 1 and q → 1, −∞ < x < ∞ under exponentiation. Then the models reduce
to the following:

g4(x) = caδ(η + 1 − q)ecδx[1 − a(1 − q)ecδx]
η

1−q , q < 1 (32)

for c > 0, a > 0, δ > 0, η > 0, η + 1 − q > 0,−∞ < x < −1
cδ ln[a(1 − q)] and zero elsewhere.

g5(x) = caδ(η + 1 − q)ecδx[1 + a(q − 1)ecδx]
− η

q−1 , q > 1 (33)

for a > 0, η > 0, δ > 0, c > 0, η + 1 − q > 0,−∞ < x < ∞.

g6(x) = caδηecδxe−aηecδx
(34)

for a > 0, η > 0, δ > 0, c > 0,−∞ < x < ∞. The hazard functions for (32) to (34) can be seen to
the the following:

h5(t) =
acδ(η + 1 − q)ecδt

[1 − a(1 − q)ecδt]
, q < 1. (35)

h6(t) =
acδ(η + 1 − q)ecδt

[1 + a(q − 1)ecδt]
, q > 1. (36)

h7(t) = acδηecδt, a > 0, c > 0, δ > 0, η > 0. (37)

If we make the transformation y = e−cx, c > 0 in (20), we can connect the transformed models to
Bose-Einstein density, Logistic and Fermi-Dirac densities. The corresponding transformed models
are

g7(x) = caδ(η + 1 − q)e−cδx[1 − a(1 − q)e−cδx]
η

1−q , q < 1 (38)

for c > 0, a > 0, δ > 0, η > 0, η + 1 − q > 0, 1
cδ ln[a(1 − q)] < x < ∞ and zero elsewhere.

g8(x) = caδ(η + 1 − q)e−cδx[1 + a(q − 1)e−cδx]
− η

q−1 , q > 1 (39)

for a > 0, η > 0, δ > 0, c > 0, η + 1 − q > 0,−∞ < x < ∞.

g9(x) = caδηe−cδxe−aηe−cδx
(40)

for a > 0, η > 0, δ > 0, c > 0,−∞ < x < ∞.

4.1. Bose-Einstein density

Consider the limiting case η + 1 = q. This is not admissible in the density (38). For η + 1 = q can
we re-normalize the function for 0 ≤ x < ∞ and create a density out of it? That is, can

g10(x) = c10[
1

a(1 − q)
ecδx − 1]−1 = C7[eα+cδx − 1]−1, 0 ≤ x < ∞ (41)

be a density where 1
a(1−q) = eα?. Let us consider the integral

∫ ∞

0
[eα+cδx − 1]−1dx =

1
ξ

∫ ∞

α
[eu − 1]−1du, ξ = cδ, put ν = eu

=
1
ξ

∫ ∞

eα

1
v

1
v − 1

dv =
1
ξ

∫ ∞

eα
[

1
v − 1

− 1
v
]dv

=
1
ξ

ln
(

eα

eα − 1

)
, eα ̸= 1.

Hence for c10 = ξ[ln
(

eα

eα−1

)
]−1 is a density for 0 ≤ x < ∞. This density in (41) is the Bose-Einstein

density in Physics.
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4.2. Logistic and Fermi-Dirac densities

Consider (33) and (39) for q = 3
2 and η = 1 and let a = 2. Then (33) and (39) become

g11(x) = cδ
e−cδx

(1 + e−cδx)2 = cδ
ecδx

(1 + ecδx)2 ,−∞ < x < ∞. (42)

This is the logistic density. Hence (33) is a generalized form of the logistic density. Still more
general forms can be obtained by deleting the condition γ = δ − 1 in (2) and then exponentiating.
Consider again the model (39). This can be written as follows:

g8(y) = acδ(η + 1 − q)e−cδx[1 + a(q − 1)e−cδx]
− η

q−1

= acδ(η + 1 − q)[a(q − 1)]−
η

q−1 [e−cδx]
− (η+1−q)

q−1 (43)

× [1 +
1

a(q − 1)
ecδx]

− η
q−1 . (44)

Note that η
q−1 = 1 or η + 1− q = 0 is not an admissible value in (44). This is the limiting situation.

Can we re-normalize the function in (44) for η + 1 = q and 0 ≤ y < ∞ and create a density from
(44)? Consider

g12(x) = c12[1 + eα+cδx]−1,
1

a(q − 1)
= eα. (45)

Consider ∫ ∞

0
g12(x)dx = c12

∫ ∞

0
[1 + eα+cδx]−1dx =

c12

cδ

∫ ∞

α
(1 + eu)−1du, put ν = eu

=
c12

cδ

∫ ∞

eα
[
1
v

1
1 + v

]dv =
c12

cδ
ln(

eα

1 + eα
).

Hence for c12 = cδ

ln( eα

1+eα )
, g12(x) is a density for 0 ≤ x < ∞ and this density is known as

Fermi-Dirac density in Physics.

4.3. Arbitrary function P(x)

Instead of power transformations and exponentiation let us take an arbitrary function P(x) in our
basic pathway models in (20) to (22). Then the models become the following:

g13(x) = aδ(η + 1 − q)P′(x)[P(x)]δ−1[1 − a(1 − q)(P(x))δ]
η

1−q (46)

for a > 0, δ > 0, η > 0, q < 1, P′(x) = d
dx P(x) > 0, P(x) > 0.

g14(x) = aδ(η + 1 − q)P′(x)[P(x)]δ−1[1 + a(q − 1)(P(x))δ]
− η

q−1 (47)

for a > 0, δ > 0, η > 0, q > 1, P′(x) > 0, P(x) > 0.

g15(x) = aδηP′(x)[P(x)]δ−1e−aη[P(x)]δ (48)

for a > 0, η > 0, δ > 0, P′(x) > 0, P(x) > 0. Thus, P(x) must be a positive and increasing function
so that P(x) and P′(x) are positive. One such function is the distribution function for an arbitrary
density. Let y be a real continuous random variable with density g(y) and distribution function
Fy(x) = Pr{y ≤ x}. Then take P(x) = Fy(x) so that P′(x) = g(x) is the density which is positive
on the support of g(x). Observe that when Fy(x) is a distribution function then [Fy(x)]δ, δ > 0 is
again a distribution function for some other random variable. Our problem is the following: Can
we select a function P(x) so that the hazard function coming out of the pathway model is of the
desired shape? From (29) and (30) note that the hazard function is of the following structure:

h1(x) = − (η + 1 − q)
1 − q

∂

∂x
ln[1 − a(1 − q)(P(x))δ], q < 1 (49)
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for 1 − a(1 − q)[P(x)]δ > 0, q < 1, a > 0, η > 0, δ > 0, and

h2(x) =
(η + 1 − q)

q − 1
∂

∂x
ln[1 + a(q − 1)[P(x)]δ], q > 1, (50)

for a > 0, δ > 0, η > 0. Then for a pre selected hazard function of the desired shape one can solve
for (49) and (50) and compute the corresponding P(x). This is the aim. Suppose that the hazard
function h1(x) is of the form

h1(x) =
1

x − a + ϵ1
+

1
b − x + ϵ2

, ϵ1 > 0, ϵ2 > 0, a ≤ x ≤ b

and zero elsewhere. When x = a one has 1
ϵ1
+ 1

(b−a)+ϵ2
and when x = b it is 1

ϵ2
+ 1

(b−a)+ϵ1
. It is

bathtub shaped, take b − a large. Then∫
x

h1(x)dx = ln(x − a + ϵ1)− ln(b − x + ϵ2) = ln
(

x − a + ϵ1

b − x + ϵ2

)
.

That is, for example, (49) yields∫
x

h1(x)dx = − (η + 1 − q)
1 − q

ln[1 − a(1 − q)[P(x)]δ] = ln
(

x − a + ϵ1

b − x + ϵ2

)
.

That is,

ln[1 − a(1 − q)[P(x)]δ] = ln
[

b − x + ϵ2

x − a + ϵ1

] 1−q
η+1−q

One solution is

[P(x)]δ =
1

a(1 − q)

1 −
[

b − x + ϵ2

x − a + ϵ1

] 1−q
η+1−q

 .

But when we impose the conditions P(x) > 0, P′(x) > 0 the bathtub shape cannot be maintained.
The conditions P(x) > 0, P′(x) > 0 can be met only by taking ϵ1 = ϵ2 + (b − a) or by shifting
the minimum point to the left-end. Then we get a semi-bathtub shaped hazard function of the
following form:

Figure 2: Semi-bathtub shaped hazard function

Consider the case of the arbitrary function P(x) being the distribution function for some random
variable. Let P(x) = Fy(x) for a distribution function Fy(t) = Pr{y ≤ t} for some continuous
random variable y. Then P′(t) = gy(t) where gy(t) is the density of some random variable y,
evaluated at t. Let P(t) = [Fy(t)]. Then the hazard function of (46)

h13(t) =
P′(t)

Pr{x ≥ t} =
aδ(η + 1 − q)gy(t)[Fy(t)]δ−1

1 − a(1 − q)[Fy(t)]δ
.

Take δ = 1. Then

h13(t) =
a(η + 1 − q)gy(t)
1 − a(1 − q)Fy(t)

, 0 ≤ Fy(t) ≤ 1.
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Take a fast decreasing gy(t) with gy(0) ̸= 0 then such a gy(t) should produce a bathtub shaped
hazard function curve. We shall examine a few such cases here. Case (1): Let

gy(t) = θe−θt, t ≥ 0, θ > 0

and zero elsewhere. In this case the hazard function

h14(t) =
aθ(η + 1 − q)e−θt

(1 − a(1 − q))[1 − e−θt]

for a(1− q) < 1,> 0, q < 1, η > 0, η + 1− q > 0. Some of the plots are given below for the various
values of the parameters of h14(t)

Figure 3: a = 2, θ = 1
10 , η = 1

2 , q = 1
2 Figure 4: a = 2, θ = 1

10 , η = 2, q = 3
10

Figure 5: a = 2, θ = 2, η = 1
100 , q = 6

10

Case (2): Consider a type-1 beta model with the density gy(t) = β(b − t)β−1, 0 ≤ t ≤ b, β > 0.
Then the distribution function is Fy(t) = bβ − (b − t)β. Again, taking the pathway model for
q < 1 and γ = δ − 1 in (1.1), with δ = 1, produces the hazard function

h15(t) =
a(η + 1 − q)β(b − t)β−1

1 − a(1 − q)[bβ − (b − t)β]
, 0 ≤ t ≤ b.

When t = 0, h(0) = a(η + 1 − q)βbβ−1. When t is nearing b the numerator nears zero and the
denominator nears 1− a(1− q). Observe that a(1− q) < 1. Select a and q such that a(1− q) nears
1 then h15(t) will be a large quantity. This is plotted for various values of the parameters a, q, β, b.
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Figure 6: a = 1, β = 10, b = 1, η = 20, q = 9
10 Figure 7: a = 0.0002, β = 2

10 , b = 50, η = 5, q = 9
10

Case (3): Consider a Pareto type density for gy(t). Let

gy(t) = Cα(1 + t)−(α+1), 0 ≤ t ≤ b, α > 0, C =
(1 + b)α

(1 + b)α − 1
.

When b = ∞ then C = 1 and in this case gy(t) is a type-2 beta density. The hazard function in
this case of pathway model of (1.1) for q < 1 with γ = δ − 1 and δ = 1 is as follows:

h16(t) =
a(η + 1 − q)Cα(1 + t)−(α+1)

1 − a(1 − q)C[1 − (1 + t)−α]

for α > 0, q < 1, a > 0, 0 ≤ t ≤ b. Note that when t = 0 the denominator is 1 and the numerator
is a(η + 1 − q)Cα and when t is large then the numerator is very small and the denominator
nears 1 − a(1 − q). Selecting a and q such that a(1 − q) < 1 but close to 1 we can make a bathtub
shaped curve. The following are the curves for some selected values of the parameters.

Figure 8: a = 3, α = 1, η = 12, b = 50, q = 9
10 Figure 9: a = 2, α = 1

100 , η = 1, b = 20, q = 5
10

Hence this approach does not produce a satisfactory hazard function.

5. Combinations of Pathway Models with Other Models

Consider an exponentiated pathway model of (38) for c = 1, of the form

f10(x) = aδ(η + 1 − q)e−δx[1 + a(q − 1)e−δx]
− η

q−1 , q > 1, (51)

for η > 0, δ > 0, a > 0. Take another function of the power function type.

f11 =
γ

ebγ − 1
eγx, 0 ≤ x ≤ b, γ > 0 (52)
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and zero elsewhere. Let f (x) be a convex combination of f10(x) and f11(x). Let

f (x) =
a1

a1 + a2
f10(x) +

a2

a1 + a2
f11(x), a1 > 0, a2 > 0.

Then the survival function S(t) is the following:

S(t) = Pr{x ≥ t} =
a1

a1 + a2

∫ ∞

t
f10(x)dx +

a2

a1 + a2

∫ b

t
f11(x)dx

=
a1

a1 + a2
[1 + a(q − 1)e−δt]

− η
q−1+1

+
a2

a1 + a2

1
eγb − 1

[ebγ − eγt].

Therefore the hazard function is the following:

h(x) =
f (x)
S(x)

=
a1aδ(η + 1 − q)e−δx[1 + a(q − 1)e−δx]

− η
q−1 + a2

γ
ebγ−1

eγx

a1[1 + a(q − 1)e−δx]
− η

q−1+1
+ a2

1
eγb−1

[ebγ − eγx]
, 0 ≤ x ≤ b. (53)

Note that a1 + a2 will be canceled. Hence we may take any positive linear combinations of f10(x)
and f11(x) to get the numerator of h(x) and the same linear combination to get the denominator.
This (53) is plotted for various parameter values. The graphs are for the following combinations
of the parameters:

Figure 10 Figure 11

Figure 10: a1 = 1, a2 = 1, b = 40, a = 1, δ = 2, q = 1.5, η = 1, γ = 0.1
Figure 11: a1 = 9, a2 = 1, b = 40, a = 1, δ = 2, q = 1.5, η = 1, γ = 0.1

Figure 12 Figure 13

Figure 12: a1 = 7, a2 = 3, b = 50, a = 1.δ = 2, q = 1.5, η = 1, γ = 0.1
Figure 13: a1 = 7, a2 = 3, b = 70, a = 1, δ = 2, q = 1.5, η = 1, γ = 0.1
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Figure 14 Figure 15

Figure 14: a1 = 7, a2 = 3, b = 80, a = 1, δ = 2, q = 1.5, η = 1, γ = 0.1
Figure 15: a1 = 1, a2 = 1, b = 70, δ = 2.2, q = 1.9, η = 1, γ = 0.1

This approach can give hazard functions of the desired shapes by selecting the parameters
appropriately.

We shall try combination of f10(x) with a power function of the type

f12(x) =
ln a

ab − 1
ax, 0 ≤ x ≤ b, a > 0 (54)

and zero elsewhere. We would like to have a slow rising f12(x). This can be achieved by
taking a near 1 such as a = 1.01. The hazard function in this case is the following, denoting
f ∗(x) = a1 f10(x) + a2 f12(x) and S∗(t) = Pr{x ≥ t} in f ∗(x):

h∗(x) =
f ∗(x)
S∗(x)

=
a1aδ(η + 1 − q)e−δx[1 + a(q − 1)e−δx]

− η
q−1 + a2

ln a
ab−1

ax

a1[1 − [1 + a(q − 1)e−δx]
− η

q−1+1
] + a2[

ab−ax

ab−1
]

. (55)

For convenience, consider the pathway model f10(x) = α(ρ−1)
(1+αx)ρ , 0 ≤ x < ∞, α > 0, ρ > 1 and zero

elsewhere. Then

h∗(x) =
a1[α(ρ − 1)(ab − 1)] + a2[(ln a)ax(1 + αx)ρ]

a1(1 + αx)(ab − 1) + a2(ab − ax)(1 + αx)ρ
. (56)

From here we can get bathtub shaped curves for the hazard function. This is plotted for the
following sets of parameters.

Figure 16 Figure 17

Figure 16: a1 = 1, a2 = 1, α = 1, ρ = 2, b = 100, a = 1.01
Figure 17: a1 = 2, a2 = 1, α = 1, ρ = 2, b = 100, a = 1.01

RT&A, No 1 (72)
 Volume 18, March 2023

351



T. PRINCY
SOME USEFUL PATHWAY MODELS FOR RELIABILITY ANALYSIS

Figure 18: a1 = 2, a2 = 1, α = 2, ρ = 2, b = 100, a = 1.01

6. Moments and Laplace Transforms

Let us consider the special case where γ = δ − 1 in (1),(2),(3) with x ≥ 0. This situation is more
relevant to reliability analysis. In this case the pathway models are the following:

K1(x) = aδ(η + 1 − q)xδ−1[1 − a(1 − q)xδ]
η

1−q (57)

for q < 1, a > 0, δ > 0, η > 0.η + 1 − q > 0, 1 − a(1 − q)xδ > 0.

K2(x) = aδ(η + 1 − q)xδ−1[1 + a(q − 1)xδ]
− η

q−1 (58)

for q > 1, a > 0, δ > 0, η > 0, η + 1 − q > 0, x ≥ 0.

K3(x) = aδηxδ−1e−aηxδ
, a > 0, η > 0, δ > 0. (59)

As illustrated before, in (58) and (59) both x and 1
x belong to the same family of distributions,

namely type-2 pathway model and generalized gamma model respectively. Consider arbitrary
moments E(xh) for a complex number h. This is available from the type-1 beta integral, type-2
beta integral and gamma integral respectively, and they are the following, denoted by E(j)(xh), j =
1, 2, 3:

E(1)(xh) =
a(η + 1 − q)

[a(1 − q)]
h
δ +1

Γ( h
δ + 1)Γ( η

1−q + 1)

Γ( h
δ + η

1−q + 2)
, (60)

for a < 1,ℜ( h
δ + 1) > 0.

E(2)(xh) =
a(η + 1 − q)

[a(q − 1)]
h
δ +1

Γ( h
δ + 1)Γ( η

q−1 − h
δ − 1)

Γ( η
q−1 )

(61)

for q > 1,ℜ( h
δ + 1) > 0,ℜ( η

q−1 − h
δ − 1) > 0 or −δ < ℜ(h) < δη

q−1 + δ. Thus, only a few moments
will exist here. But the above strip of analyticity is sufficient to compute the density via the
inverse Mellin transform.

E(3)(xh) =
Γ( h

δ + 1)

(aη)
h
δ

, a > 0, δ > 0, η > 0,ℜ(h
δ
+ 1) > 0. (62)

Let the Laplace transforms with Laplace parameter t be denoted by Lg1(t), Lg2(t), Lg3(t) respec-
tively.

Lg1(t) = aδ(η + 1 − q)
∫ [a(1−q)]−

1
δ

0
e−txxδ−1[1 − a(1 − q)xδ]

η
1−q dx

=
(η + 1 − q)
(1 − q)

∫ 1

0
e−

[
tδu

a(1−q)

] 1
δ

(1 − u)
η

1−q du.
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Expanding the exponential part and integrating term by term we have the following:

Lg1(t) =
(η + 1 − q)
(1 − q)

∞

∑
k=0

(−t)k

k! [a(1 − q)]
k
δ

∫ 1

0
u

k
δ (1 − u)

η
1−q du

=
(η + 1 − q)Γ( η

1−q + 1)

(1 − q)

∞

∑
k=0

Γ( k
δ + 1)

k!Γ( k
δ +

η
1−q + 2)

[
−t

[a(1 − q)]
1
δ

]k

. (63)

If 1
δ = m, m = 2, 3, ... then we can expand the gammas by using the multiplication formula for

gamma functions, namely,

Γ(mz) =
√

2π mmz− 1
2 Γ(z)Γ(z +

1
m
)...Γ(z +

m − 1
m

) (64)

and then (63) can be written as a hypergeometric series of the type mFm.
Now, consider Lg2(t). Since only a few moments exist the Laplace transform or moment generating
function does not exist here. But for truncated case the Laplace transform will exist. Let the right
tail be truncated out from x = b onward where b < [a(q − 1)]−

1
δ so that 0 < a(q − 1)xδ < 1. In

this case the truncated density is the following:

g∗2(x) =
(η + 1 − q)aδ

Pr{x ≤ b} xδ−1[1 + a(q − 1)xδ]
− η

q−1 , 0 ≤ x ≤ b

and zero elsewhere. Then the Laplace transform in this truncated case is the following:

Lg∗2
(t) =

(η + 1 − q)aδ

Pr{x ≤ b}

∫ b

0
e−txxδ−1[1 + a(q − 1)xδ]

− η
q−1 dx

r =
(η + 1 − q)aδ

Pr{x ≤ b}
∞

∑
k=0

(
η

q − 1
)k[

(−1)k

k!
][a(q − 1)]k

∫ b

0
xδk+δ−1e−txdx

=
(η + 1 − q)aδ

tδPr{x ≤ b}

∞

∑
k=0

(
η

q − 1
)k
(−1)k

k!
[
a(q − 1)

tδ
]kγ(kδ + δ, bt) (65)

for | a(q−1)
tδ | < 1 where γ(ξ, c) =

∫ c
0 xξ−1e−xdx is the incomplete gamma function. In the truncated

case of g∗2(x) we can also derive arbitrary moments. Let c = Pr{x ≤ b}. Then

E(xh) =
(η + 1 − q)aδ

c

∫ b

0
xhxδ−1[1 + a(q − 1)xδ]

− η
q−1 dx

=
(η + 1 − q)

c(q − 1
1

[a(q − 1)]
h
δ

∫ a(q−1)bδ

0
u

h
δ [1 + u]−

η
q−1 du.

Since 0 < u < 1 we can expand the binomial part. (1 + u)−
η

q−1 = ∑∞
k=0(

η
q−1 )k

(−1)k

k! uk. Then

E(xh) =
(η + 1 − q)

c(q − 1)
1

[a(q − 1)]
h
δ

∞

∑
k=0

(
η

q − 1
)k
(−1)k

k!

∫ a(q−1)bδ

0
u

h
δ +kdu

=
(η + 1 − q)

c(q − 1)
bh δ[a(q − 1)bδ]

(h + δ) 2F1(
η

q − 1
,

h
δ
+ 1;

h
δ
+ 2;−a(q − 1)bδ).

We already have 0 < a(q − 1)bδ < 1 and hence the 2F1 series is convergent. Note that for h = 0
the 2F1 reduces to a 1F0 multiplied by a constant which is equal to (q−1)c

η+1−q which when multiplied
by the remaining factor gives 1.
The Laplace transform for g3 is given by the following:

Lg3(t) = aδη
∫ ∞

0
e−txxδ−1e−aηxδ

dx

=
∞

∑
k=0

(−1)k

k!

[
t

(aη)
1
δ

]k

Γ(
k
δ
+ 1), for | t

(aη)
1
δ

| < 1, δ > 1. (66)
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7. Component Failures

In engineering fields, a system or network is described as a collection of parts or components.
Usually a system is represented by as a network in which the system components are connected
together either in series, parallel or a combination of these. Consider a system consisting of k
components, these components acting independently. Let the life times of these k components
be denoted by x1, .., xk. Suppose that the system fails if any component fails. Let the system
failure time be denoted by x. Then x = min{x1, ...., xk}. Then Pr{x ≥ t} is given by the product
of the probabilities Pr{xj ≥ t}, j = 1, ..., k because if the smallest is ≥ t then all are ≥ t. The
corresponding distribution function of x is

P{x ≤ t} = 1 − P{x > t} = 1 −
k

∏
i=1

P{xj > t} = 1 − [P{xj > t}k]

= 1 − [1 − P{x1 ≤ t}]k, (67)

when x1, . . . , xn are independently and identically distributed. Then the survival function for x,
denoted by Sk(x), is the following:

Sk(t) = Pr{x ≥ t} =
k

∏
j=1

Pr{xj ≥ t} =
k

∏
j=1

Sxj(t). (68)

Several generalized statistical models are developed by using the formula given in (67) (i.e,
the concept of series system) for details see Pascoa et al. [10]. In (1980), Kumaraswamy [11]
proposed a two-parameter distribution on (0, 1), so called Kumaraswamy distribution. This is
contained in the pathway model for q < 1. This type of generalizations contains distributions
with unimodal and bathtub shaped hazard functions, see Cordeiro and de Castro [12] and Jones
[13]. These generalized models include Kumaraswamy-Weibull distribution by Cordeiro et al.
[14], Kumaraswamy-Gumbel distribution by Cordeiro et al. [15], Kumaraswamy-generalized
gamma distribution by Pascoa et al. [10], Kumaraswamy-log-logistic distribution by Tiago et al.
[16], Kumaraswamy-modified Weibull distribution by Cordeiro et al. [17], Kumaraswamy-half
Cauchy distribution by Gosh [18], Kw-generalized Rayleigh distribution by Antonio et al. [19]
and Kumaraswamy-Gompertz distribution by Rocha et al. [20].

Let the life times be pathway distributed. For convenience let us take the case where the
pathway parameter q > 1 or 1 < q < η + 1. Then from (27)

Sxj(t) = Pr{xj ≥ t} = [1 + aj(qj − 1)tδj ]bj+1 (69)

where bj = − ηj
qj−1 , bj + 1 = − ηj+1−qj

qj−1 . The density of x, denoted by fx(t) is available from Sx(t)
by differentiation. That is,

fx(t) = − d
dt

Sx(t) = − d
dt

k

∏
j=1

[1 + aj(qj − 1)tδj ]bj+1

=
k

∑
j=1

[−(bj + 1)][1 + aj(qj − 1)tδj ]bj [
d
dt

(1 + aj(qj − 1)tδj)]
k

∏
i ̸=j=1

[1 + ai(qi − 1)tδi ]bi+1

=
k

∑
j=1

[
k

∏
i ̸=j=1

(1 + ai(qi − 1)tδi )bi+1][1 + aj(qj − 1)tδj ][aj(qj − 1)δjt
δj−1]. (70)

Hence the hazard function for x is given by the following:

hx(t) =

k

∑
j=1

(ηj + 1 − qj)[ajδjt
δj−1][

k

∏
i ̸=j=1

(1 + ai(qi − 1)tδi )bi+1][1 + aj(qj − 1)tδj ]

k

∏
j=1

(1 + aj(qj − 1)tδj)bj+1

(71)
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This is a very interesting form. Note that in (7.4) all the three families of functions, namely the
generalized type-1 beta, type-2 beta and gamma families are involved. For different j, qj can be
qj < 1 or qj > 1, 1 < qj < ηj + 1 or qj → 1. Hence we can consider many special cases of various
types. For example, let k = 2 and q2 → 1. Then

hx(t) = (η1 + 1 − q1)
δ1a1tδ1−1

[1 + a1(q1 − 1)tδ1 ]b1
+ δ2a2η2tδ2−1. (72)

The graph for the following parameter values is given below.

Figure 19: Plots of hx(t) for b1 = 1 and different values of the other parameters

8. Estimation of Reliability Function

Let x1, . . . , xn denote a random sample of size n from the pathway model (21) with parameters
a, q, δ, η. From (21), the logarithmic likelihood function is

L(a, δ, η, q; y) = n ln a + n ln δ + n ln(η + 1 − q) + (δ − 1)
n

∑
i=1

ln yi −
η

q − 1

n

∑
i=1

ln(1 + a(q − 1)yδ
i ).

(73)
First of all we differentiate (73) with respect to all unknown parameters and equate these
differential equations to zero. The MLEs of the unknown parameters are obtained on solving
these differential equations simultaneously. Let â, q̂, η̂ and δ̂ be the MLEs of the a, q, η, and δ
respectively.

Theorem 1. The MLE of S2(t) is given by

ˆS2(t) = [1 + â(q̂ − 1)tδ̂]
− η̂

q̂−1+1. (74)

Using the invariance property of the MLEs, we can easily establish the above result.
The first derivative of the logarithmic likelihood function relative to the parameters is non-linear,
and analytical solutions are difficult to obtain. A constrained optimization method can be used to
solve such kinds of equations. This optimization problem can be carried out using constrOptim ()
or optim () function in R software.

8.1. Simulation Study

Random samples were generated from the pathway model using its distribution function. We
considered a random sample of sizes n = 200, 400, 600 and the procedure was repeated 1000 times.
The maximum likelihood estimate was computed using the optim () function in R. The results
are given in the following tables, bias and MSE can be observed to decrease as the sample size
increases. Similarly, the parameters of the distribution corresponding to q < 1 can also estimated
by using this method. We are able to estimate the parameters of all the models proposed in this
paper using the same procedure.
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Table 1: ML estimate, Bias, MSE’s for the parameter value (q, a, η, δ) = (1.2, 2, 3, 1)

n q̂ Abs.Bias MSE â Abs.Bias MSE
200 1.2256 0.0256 0.00065 2.1298 0.1298 0.0168
400 1.2134 0.0237 0.00018 2.0237 0.0237 0.0005
600 1.2109 0.0108 0.00011 2.0079 0.0079 0.00006
n η̂ Abs.Bias MSE δ̂ Abs.Bias MSE

200 3.1186 0.1186 0.0140 1.015 0.0158 0.0002
400 3.1148 0.1148 0.0131 1.0063 0.0066 0.00004
600 3.0894 0.0894 0.0079 1.0049 0.0049 0.00002

Table 2: ML estimate, Bias, MSE’s for the parameter value (q, a, η, δ) = (1.1, 2, 2, 5)

n q̂ Abs.Bias MSE â Abs.Bias MSE
200 1.1360 0.0360 0.0013 2.1013 0.1013 0.0102
400 1.1190 0.0190 0.0003 2.0496 0.0496 0.0024
600 1.1113 0.0113 0.00012 2.0433 0.0433 0.0018
n η̂ Abs.Bias MSE δ̂ Abs.Bias MSE

200 2.0831 0.0831 0.0069 5.0953 0.0953 0.00908
400 2.0397 0.0397 0.0015 5.0466 0.0466 0.00217
600 2.0148 0.0148 0.0002 5.0344 0.0344 0.00118

Table 3: ML estimate, Bias, MSE’s for the parameter value (q, a, η, δ) = (1.2, 4, 3, 5)

n q̂ Abs.Bias MSE â Abs.Bias MSE
200 1.2423 0.0423 0.0017 4.3068 0.3068 0.0941
400 1.2243 0.0243 0.0005 4.0791 0.0791 0.0062
600 1.2155 0.0155 0.0002 4.0746 0.0746 0.0055
n η̂ Abs.Bias MSE δ̂ Abs.Bias MSE

200 3.1272 0.1272 0.0161 5.0793 0.0793 0.0062
400 3.1246 0.1246 0.0155 5.0331 0.0331 0.0010
600 3.0505 0.0505 0.0025 5.0247 0.0247 0.00061

9. Reliability for Arbitrary Values of the Parameters

In this section we discussed some simple numerical results for illustrating the theory developed
in this paper. The reliability measurement of the system was obtained for arbitrary values of
parameters related to the number of components, running time, etc. The reliability behavior of
the system was graphically observed to identify the best possible configuration of the components
with enhanced reliability of the system.

Table 4: Reliability measure for a = 0.5, δ = 0.1, η = 2 and various values of q at time t = 10

No of components q = 1.2 q = 1.3 q = 1.4 q = 1.5 q = 1.6
1 0.3439755 0.3752348 0.4072686 0.4400367 0.4735025
2 0.1183192 0.1408012 0.1658677 0.1936323 0.2242046
3 0.0406989 0.0528335 0.0675527 0.0852053 0.1061614
4 0.0139994 0.019825 0.0275121 0.0374935 0.0502677
5 0.0048155 0.007439 0.0112048 0.0164985 0.0238019
6 0.0016564 0.0027914 0.0045634 0.00726 0.0112702
7 0.0005698 0.0010474 0.0018585 0.0031946 0.0053365
8 0.000196 0.000393 0.0007569 0.0014058 0.0025268
9 0.0000674 0.0001475 0.0003083 0.0006186 0.0011965

10 0.0000232 0.0000553 0.0001255 0.0002722 0.0005665
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Table 5: Reliability measure for q = 1.6, δ = 0.1, η = 2 and various values of a at time t = 10

No. Of Components (n) a = 0.02 a = 0.03 a = 0.04 a = 0.05 a = 0.06
1 0.9656186 0.9490587 0.9329014 0.9171343 0.9017451
2 0.9324194 0.9007123 0.870305 0.8411353 0.8131442
3 0.9003615 0.8548288 0.8119088 0.771434 0.7332488
4 0.8694059 0.8112827 0.7574309 0.7075086 0.6612035
5 0.8395145 0.7699549 0.7066083 0.6488803 0.596237
6 0.8106509 0.7307323 0.6591959 0.5951104 0.5376538
7 0.7827796 0.6935078 0.6149648 0.5457961 0.4848267
8 0.7558666 0.6581796 0.5737015 0.5005684 0.4371901
9 0.7298789 0.6246511 0.535207 0.4590884 0.394234

10 0.7047846 0.5928305 0.4992953 0.4210457 0.3554986

Table 6: Reliability measure for q = 1.6, a = 0.06, η = 2 and various values of δ at time t = 10

No of Components δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5 δ = 0.6
1 0.8785595 0.8505635 0.8170973 0.7775798 0.7316045
2 0.7718669 0.7234583 0.667648 0.6046303 0.5352452
3 0.678131 0.6153472 0.5455333 0.4701483 0.3915878
4 0.5957784 0.5233919 0.4457538 0.3655778 0.2864874
5 0.5234268 0.445178 0.3642242 0.2842659 0.2095955
6 0.4598616 0.3786522 0.2976066 0.2210394 0.153341
7 0.4040158 0.3220677 0.2431735 0.1718758 0.112185
8 0.3549519 0.273939 0.1986964 0.1336471 0.082075
9 0.3118464 0.2330025 0.1623543 0.1039213 0.0600465

10 0.2739756 0.1981835 0.1326593 0.0808071 0.0439303

Table 7: Reliability measure for q = 1.6, a = 0.06, δ = 0.6 and various values of η at time t = 10

No of Components η = 3 η = 4 η = 5 η = 6 η = 7
1 0.5852359 0.4681505 0.3744899 0.2995675 0.2396344
2 0.342501 0.2191649 0.1402427 0.0897407 0.0574247
3 0.2004439 0.1026022 0.0525195 0.0268834 0.0137609
4 0.117307 0.0480333 0.019668 0.0080534 0.0032976
5 0.0686522 0.0224868 0.0073655 0.0024125 0.0007902
6 0.0401778 0.0105272 0.0027583 0.0007227 0.0001894
7 0.0235135 0.0049283 0.001033 0.0002165 0.0000454
8 0.0137609 0.0023072 0.0003868 0.000064 0.0000109
9 0.0080534 0.0010801 0.0001449 0.0000194 0.0000026

10 0.0047131 0.0005057 0.0000543 0.0000058 0.0000006

The following are the graphical representations of reliability relative to the number of compo-
nents n.

Figure 20 Figure 21
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Figure 22 Figure 23

The results obtained for arbitrary values of the parameters indicate that reliability of a series
system of 10 identical components keeps on decreasing with the increasing number of components.
Several distributions are obtained from our paper for particular parameter values and various
arbitrary functions P(x). As q → 1 the models (20) and (21) become the Weibull distribution, so it
can be considered as an extended version of the Weibull distribution.

10. Conclusions

An arbitrary function is introduced in the pathway model, for constructing the hazard functions
of desired shapes. In the present study, we conclude that reliability continues to decline as the
number of components increases. It is recommended to use the smallest number of components
in a series system for better performance. However, the performance of these systems can be
enhanced by using components that follow the extended form of Weibull failure laws.
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Abstract

Stimulated by the work of Rządkowski et al. (2015, J. Nonlinear Math. Phys., 22 (2015), 374–380),
the authors derive representations for certain classes of univariate and bivariate lifetime distributions
in terms of sequences of Bell, Bernoulli, and Stirling numbers of the second kind, their generalizations,
and associated polynomials. Gould–Hopper polynomials are used in the bivariate case, leading to
representations for large classes of distributions satisfying a law of uniform seniority for dependent lives
formulated by Genest and Kolev (Scan. Act. J., 2021-8 (2021), 726–743).

Keywords: Bell numbers, Bernoulli numbers, Gould–Hopper polynomials, law of uniform
seniority, lifetime distributions, Stirling numbers of the second kind, survival functions.

1. Introduction

A random variable X is said to have a Gumbel distribution with parameters a ∈ R and b ∈ (0, ∞)
if and only if, for every real x ∈ R, one has

Pr(X ≤ x) = exp{−e−(x−a)/b}. (1)

Also known as the log-Weibull and double exponential distribution, this model belongs to the
class of generalized extreme-value or Fisher–Tippett distributions. It was identified by Fisher and
Tippett [6] as one of the three possible limit distributions of properly normalized maxima of a
sequence of mutually independent and identically distributed random variables.

In a note published in 2015, Rządkowski et al. [18] pointed out that Gumbel distributions are
related to Stirling numbers of the second kind and Bernoulli numbers. Limiting the discussion to
the case a = 0 and b = 1 for simplicity, these authors showed that the cumulative distribution
function of the standard Gumbel distribution, defined for every real x ∈ R, by G(x) = exp(−e−x),
is such that, for every integer n ∈N = {1, 2, . . .},∫

{G(n)(x)}2dx =
(−1)n

2n
B2n(1− 22n) ,

where G(n) denotes the nth derivative of G and Bn is the nth Bell polynomial defined in terms of
the Stirling numbers S(n, k) of the second kind by setting, for every real x ∈ R,

Bn(x) =
n

∑
k=1

S(n, k) xk.

Recall that for arbitrary integers n ∈N and k ∈ {1, . . . , n}, S(n, k) represents the number of
ways in which one can partition a set of n elements into k non-empty and non-overlapping subsets.
The nth Bell number Bn = Bn(1) = S(n, 1) + · · ·+ S(n, n) is then the number of partitions of a
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set with n elements. For convenience, one also sets B0 = S(0, 0) = 1 and S(n, 0) = 0 for every
integer n ∈N. For additional information, the reader is referred to the book by Comtet [3].

The purpose of this note is to extend the observation of Rządkowski et al. [18] to a large class
of lifetime distributions routinely used in actuarial practice, and to show how the approach can
be extended to the bivariate case. The starting point is the fact that the exponential generating
function of the Bell numbers is such that, for every real x ∈ R,

B(x) =
∞

∑
n=0

Bn
xn

n!
= exp(ex − 1), (2)

and hence both ex = 1 + ln{B(x)} and x = ln[1 + ln{B(x)}].
As shown in Section 2, these relations can be used to express some of the most common

univariate lifetime distributions in terms of Bell numbers. A bivariate extension is then considered
in Section 3 using a special case of the Appell polynomials introduced by Gould and Hopper [10],
and recently discussed in the multivariate case by Ricci et al. [17].

Specifically, for any integers m, n ∈N with m ≥ 2, the Gould–Hopper generalization of the
classical Hermite polynomial of order m− 1 is defined, for every pair (x, y) ∈ R2, by

H[m−1]
n (x, y) =

b n
m−1 c

∑
k=0

n!
k!(n−mk + k)!

xn−mk+kyk,

where in general, bxc refers to the integer part of x. As shown by Gould and Hopper [10], one
has, for every pair (x, y) ∈ R2 and γ ∈ (0, ∞),

∞

∑
n=0

H[m−1]
n (x, y)

γn

n!
= exp(γx + γm−1y). (3)

Relation (3) will be used in Section 3 to derive the Gould–Hopper polynomial expansion of
continuous bivariate models satisfying a law of uniform seniority for dependent lives recently
introduced and characterized in [7]. A few concluding comments are given in Section 4.

2. Expansions for univariate lifetime distributions

Representations in terms of Bell, Bernoulli, and Stirling numbers of the second kind are given
below for various classes of univariate lifetime distributions. The classical Gompertz law of
mortality is considered in Section 2.1, and its extension to the Gompertz–Makeham model is the
object of Section 2.2. The little known Teissier and Chiang–Conforti distributions are treated in
Section 2.3.

2.1. Bell-number expansion of Gompertz’s law

Gompertz’s law is possibly the oldest documented demographic model. Proposed by the British
actuary Benjamin Gompertz (1779–1865) in the early 19th century [9], this model states that for
any fixed scale parameter λ ∈ (0, ∞) and shape parameter θ ∈ [0, ∞), the survival probability of
a random lifetime T is given, at any age t ∈ [0, ∞), by

Pr(T > t) = exp{−θ(eλt − 1)}. (4)

As is readily seen, Gompertz’s law is the same as the Gumbel distribution for the negative of
age, restricted to negative values. More specifically, if T = −X in Eq. (1) and t = −x is restricted
to positive values for age, then Pr(T > t) is of the form (4) with λ = 1/b, θ = ea/b, save for the
normalizing constant eθ which ensures that Pr(T > 0) = 1.

Given the result of Rządkowski et al. [18], it may thus be suspected that a similar result holds
for Gompertz’s law. The following simple result confirms this suspicion.
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Proposition 1. The Bell number representation of Gompertz’s survival function (4) is given, for every
real t ∈ [0, ∞), by Pr(T > t) = {B(λt)}−θ .

Indeed, it follows at once from Eq. (2) that, for every real t ∈ [0, ∞), one has

{B(λt)}−θ = exp{−θ(eλt − 1)}, (5)

which is precisely the survival function (4) of Gompertz’s law. The hazard rate (or force of
mortality) implied by Gompertz’s law is given, at any age t ∈ (0, ∞), by −{Pr(T > t)}−1 d Pr(T >
t)/dt = θλ exp(λt). It corresponds to an exponential increase in death rate with age which is
echoed in the exponential increase of the Bell numbers: the first ten are 1, 1, 2, 5, 15, 52, 203,
877, 4140 and 21147. Similarly, the convexity of this hazard rate is mirrored by the convexity
of the sequence of Bell numbers, namely the fact that for every integer n ∈ N, one has Bn ≤
(Bn−1 + Bn+1)/2; see Exercise 1 on p. 291 in Comtet [3].

If desired, connections between Gompertz’s law and other famous sequences of numbers
could be found just as easily through their corresponding exponential generating function. For
instance, a representation of the survival function (4) could be established in terms of

(i) Stirling numbers of the second kind S2(k, n), given that for every integer k ∈ N and real
x ∈ R, one has

(ex − 1)k/k! =
∞

∑
n=k

S(k, n)
xn

n!
;

(ii) Bernoulli numbers, Bn, given that B0 = 1 and that for every real x ∈ R, one has

x
ex − 1

=
∞

∑
n=0
Bn

xn

n!
.

In particular, B1 = −0.5, B2 = 1/6, and B2k+1 = 0 for every integer k ∈N.

Further note that if λ and θ are replaced by −λ and −θ, respectively, Eq. (5) transforms into
the survival function of the negative Gompertz distribution defined, at every real t ∈ [0, ∞),
by exp{θ(e−λt − 1)}. When λ = 1 in the latter expression, one gets the Laplace transform of
a Poisson distribution with parameter θ ∈ (0, ∞); see Chapter 10 of the book by Marshall and
Olkin [15].

2.2. r-Bell number expansion of the Gompertz–Makeham law

The Gompertz–Makeham law is an extension of the Gompertz model which was proposed by
another British actuary, William Matthew Makeham (1826–1891). The latter proposed to add
an age-independent term to the exponentially age-dependent term of Gompertz’s model. The
resulting construction is one of the most effective theories to describe human mortality.

Stated differently, let X and Y be independent random variables, where X follows Gompertz’s
law with survival function (4) and Y has an exponential distribution with mean ξλθ for some
ξ ∈ (0, ∞). Then the random variable Z = min(X, Y) has the Gompertz–Makeham distribution
with survival function given, at any age t ∈ [0, ∞), by

Pr(Z > t) = exp{−ξλθt− θ(eλt − 1)}. (6)

Refer to Chapter 10 of the book by Marshall and Olkin [15] for details and historical notes. This
model is still used today to describe the age dynamics of human mortality and construct life
tables, with remarkable accuracy, for individuals between 30 and 80 years of age.

Now consider the r-Stirling number of the second kind with integer-valued parameters
n ≥ k ≥ r, denoted S(n, k, r). This number is a count of the partitions of the set {1, . . . , n} into
k non-empty non-overlapping subsets, such that the integers 1, . . . , r are in distinct subsets. By
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convention, one sets S(n, k, 0) = S(n, k). See Broder [1] for basic facts about r-Stirling numbers of
the first and second kind.

Mezo [16] defined the nth r-Bell number, denoted Bn,r, by Bn,r = S(n, 0, r) + · · ·+ S(n, n, r)
so that by convention, one has Bn,0 = Bn. More generally, the nth r-Bell number is a count of
the partitions of a set with n + r elements whose first r elements are in distinct subsets of the
partition. The first few r-Bell numbers are given in Table A134980 of Sloane [19]. For example, the
first seven 6-Bell numbers are 1, 7, 50, 365, 2727, 20878, and 163967. Recent results about r-Bell
numbers are reported by Corcino et al. [4].

Mezo [16] showed that the exponential generating function of the nth r-Bell number Bn,r is
given, at every real x ∈ R, by

Br(x) =
∞

∑
n=0

Bn,r
xn

n!
= exp(ex − 1 + rx).

The following result is then immediate.

Proposition 2. Suppose that the random variable Z has a Gompertz–Makeham distribution with scale
parameter λ ∈ (0, ∞) and shape parameter θ ∈ (0, ∞). Further suppose that the parameter ξ is integer-
valued with ξ ∈ {r, . . . , n}. Then the survival function of Z given in Eq. (6) is such that, for every real
t ∈ (0, ∞), one has Pr(Z > t) = {Bξ(λt)}−θ .

A connection between the Gompertz–Makeham survival function and r-Stirling numbers of
the second kind can also be deduced from the fact that, for every real x ∈ (0, ∞),

1
k!

(
ex −

r−1

∑
`=0

x`

`!

)k

=
∞

∑
n=kr

S(n, k, r)
xn

n!
.

2.3. Two other Bell-number representations of distributions

In 1934, the French biologist Georges Teissier (1900–1972) introduced a model to describe the
mortality of several domestic animal species protected from accidents and disease, i.e., dying
from “pure aging” [20]. Based on data collected on several species, this author found that animal
mortality does not follow Gompertz’s law, as it does for humans.

The survival function of Teissier’s distribution is defined, at any age t ∈ [0, ∞), by exp(t + 1−
et). This model was later rediscovered by Laurent [13], who considered a one-parameter extension.
A two-parameter version called the scaled Teissier distribution with parameters λ ∈ (0, ∞) and
θ ∈ (0, ∞) such that λθ ≤ 1 has survival function is given, for every real t ∈ (0, ∞), by

ST(t) = exp{λt− (eλt − 1)/(λθ)}. (7)

See Kolev et al. [12] for more details on the history of the Teissier distribution.
Taking into account Eq. (5) and the identity ln{B(λt)}+ 1 = eλt, valid for all real t ∈ [0, ∞),

one can get the following Bell-number representation of Teissier’s scaled model.

Proposition 3. The Bell-number representations of the Teissier survival functions (7) is given, for every
real t ∈ [0, ∞), by ST(t) = [ln{B(λt)}+ 1]/{B(λt)}1/(λθ).

As a final example, Chiang and Conforti [2] designed a stochastic model assuming that
mortality intensity is a function of the accumulated effect of a person’s continuous exposure
to toxic material in the environment (absorbing coefficient) and their biological reaction to the
toxin absorbed (discharging coefficient). Given parameters α ∈ (0, ∞) and θ ∈ (1, ∞), the survival
function of the Chiang–Conforti model is given, for every real t ∈ [0, ∞), by

SCC(x) = exp{−λx− θ(e−λx − 1)}. (8)

Note in passing that an equivalent form of this model had appeared earlier, with a different
parametrization, in the work of Ghurye [8].

From Eq. (2), one has, for every real t ∈ [0, ∞), ln{B(−λt)}+ 1 = e−λt and {B(−λt)}−θ =
exp{−θ(e−λt − 1)}, leading to the following representation of the Chiang–Conforti model.

363



C. Genest & N. Kolev
Lifetime Models via Sequences of Special Numbers

RT&A, No 1 (72)
Volume 18, March 2023

Proposition 4. The Bell-number representation of the Chang–Conforti survival function (8) is given, for
every real t ∈ [0, ∞), by SCC(t) = [ln{B(−λt)}+ 1]/{B(−λt)}θ .

3. A bivariate extension

A common characteristic of the univariate models considered in Section 2 is that they have what
Laurent [13] termed an exponential structure. Namely, in all cases considered, a survival function
S could be expressed, for every real t ∈ [0, ∞), in the form

S(t) = exp{−Λ(t)} (9)

for a map Λ which involved a linear and an exponential term. This map is called the cumulative
hazard rate in survival analysis.

A similar approach can actually be used in higher dimensions. To make this point, consider
the b-BLUS class of bivariate survival functions introduced in [7] as a model for dependent lives
based on an extension of the actuarial law of uniform seniority [5].

Specifically, a pair (X, Y) of continuous random variables is said to belong to the b-BLUS class
if there exist real-valued parameters α, β ∈ (0, ∞) and a continuous, strictly decreasing univariate
survival function ψ : [0, ∞)→ [0, 1] such that, for every pair (x, y) ∈ (0, ∞)2, Pr(X > x, Y > y) =
ψ(αx + βy).

It will be shown below how various models from the b-BLUS class can be expressed in terms
of Bell numbers, Bernoulli numbers, and Stirling numbers of the second kind with the help of the
Gould–Hopper polynomials specified by Eq. (3).

3.1. Gould–Hopper expansion of Gompertz’s bivariate law

Recall that a random pair (X, Y) has a bivariate Gompertz distribution with parameters α, β ∈
(0, ∞) and θ ∈ [1, ∞) whenever, for every pair (x, y) ∈ [0, ∞)2, one has

SBG(x, y) = Pr(X > x, Y > y) = exp{−θ(eαx+βy − 1)}. (10)

The proof of the following result is straightforward.

Proposition 5. The Gould–Hopper polynomial expansion of the bivariate Gompertz joint survival function
(10) with real-valued parameters θ ∈ (0, ∞), α = γ ∈ (0, ∞), and β = γm−1 for some integer m ∈N is
given, for every pair (x, y) ∈ [0, ∞)2, by

SBG(x, y) = exp[−θ{H[m−1](x, y; γ)− 1}],

where H[m−1] stands for the parametric function implicitly defined in Eq. (3).

3.2. Gould–Hopper expansion of two other bivariate models

In [7], bivariate versions of the univariate Teissier and Chang–Conforti distributions (7) and (8)
are defined as follows.

Definition 1. A random pair (X, Y) is said to have a bivariate Teissier distribution with real-valued
parameters α ∈ (0, ∞), β ∈ (0, ∞), and θ ∈ [(3 +

√
5)/2, ∞) if and only if, for every pair (x, y) ∈

(0, ∞)2, one has

SBT(x, y) = Pr(X > x, Y > y) = exp{αx + βy− θ(eαx+βy − 1)}. (11)

Definition 2. A random pair (X, Y) is said to have a bivariate Chang–Conforti distribution with real-
valued parameters α ∈ (0, ∞), β ∈ (0, ∞), and θ ∈ [0, (3 −

√
5)/2] if and only if, for every pair

(x, y) ∈ (0, ∞)2, one has

SBCC(x, y) = Pr(X > x, Y > y) = exp{−αx− βy− θ(e−αx−βy − 1)}. (12)
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The following results are then immediate from relation (3).

Proposition 6. The Gould–Hopper polynomial expansion of the bivariate Teissier distribution with
survival function (11) and real-valued parameters α = γ ∈ (0, ∞), θ ∈ [(3 +

√
5)/2, ∞), and β = γm−1

for some integer m ∈N, is given, for every pair (x, y) ∈ [0, ∞)2, by

SBT(x, y) = exp{ln[H[m−1](x, y; γ)]− θ[H[m−1](x, y; γ)− 1]}

where H[m−1] stands for the parametric function implicitly defined in Eq. (3).

Proposition 7. The Gould–Hopper polynomial expansion of the bivariate Chang–Conforti distribution
with survival function (12) and real-valued parameters α = γ ∈ (0, ∞), θ ∈ [0, (3−

√
5)/2], and

β = γm−1 for some integer m ∈N is given, for every pair (x, y) ∈ [0, ∞)2, by

SBCC(x, y) = exp{− ln[H[m−1](x, y; γ)]− θ[H[m−1](−x,−y; γ)− 1]},

where H[m−1] stands for the parametric function implicitly defined in Eq. (3).

3.3. Two b-BLUS models with positive or negative dependence

The b-BLUS property discussed in [7] can model lives that are either positively or negatively
dependent. The following two examples illustrate each one of these two cases. Given real-valued
parameters α ∈ (0, ∞), β ∈ (0, ∞), δ ∈ (0, ∞) and ρ ∈ [1, ∞), consider the joint survival functions
of random pairs (X, Y) defined, for every pair (x, y) ∈ [0, ∞)2, by

S1(x, y) = Pr(X > x, Y > y) = (1 + αx + βy)−1/δ

and
S2(x, y) = Pr(X > x, Y > y) = (1− αx− βy)ρ1(0,1)(αx + βy),

where in general, 1A refers to the indicator function of the set A.
In these two cases, a direct application of identity (3) with α = γ and β = γm−1 for some

integer m ∈N leads to the following Gould–Hopper polynomial expansions:

S1(x, y) =
{

1 + lnH[m−1](x, y; γ)
}−1/δ and S2(x, y) =

{
1 + lnH[m−1](x, y; γ)

}ρ.

Here again, H[m−1] stands for the parametric function implicitly defined in Eq. (3).

4. Final remarks

The initial motivation for this note was the intriguing observation of Rządkowski et al. [18] to the
effect that Gumbel’s distribution is related to Stirling numbers of the second kind and Bernoulli
numbers. It was shown that upon expressing a survival function S through its cumulative hazard
rate Λ as in Eq. (9), new relations involving Bell numbers, Bernoulli numbers, and Stirling
numbers of the second kind can be obtained via Eq. (2) for a large class of survival models, at the
cost of suitable restrictions on the parameters. Such representations may or may not be elegant,
insightful or useful for computational purposes.

In the bivariate case, the survival function of any continuous random pair (X, Y) can be
written, for every pair (x, y) ∈ [0, ∞)2, in the form

Pr(X > x, Y > y) = exp
{
−
∫
C

R(z) dz
}

, (13)

where R is the hazard gradient vector and C is any sufficiently smooth continuous path beginning
at (0, 0) and terminating at (x, y). Relation (13) holds so long as S is absolutely continuous along
the path of integration; see Marshall [14]. Therefore, the expressions derived in Section 3 for
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distributions in the b-BLUS class in terms of the Gould–Hopper polynomial are just as natural as
those presented by Rządkowski et al. [18] and in Section 2.

Of course, the Gould–Hopper polynomials are not always the right tool. For instance, consider
a random pair (X, Y) with Gumbel’s bivariate exponential distribution [11] with real-valued
parameters α ∈ (0, ∞), β ∈ (0, ∞), and δ ∈ [0, αβ], whose survival function is defined, for every
pair (x, y) ∈ [0, ∞)2, by

Pr(X > x, Y > y) = exp(−αx− βy− δxy) = exp(−αx− βy) exp(xy)−δ.

The first factor can be expressed via the Gould–Hopper polynomial via Eq. (3), but for the
second factor one must resort to the map defined, for every pair (x, y) ∈ [0, ∞)2, by W(x, y) =
yexy/(ey − 1), i.e., the generating function of the classical Bernoulli polynomials; see Comtet [3]
for details. Letting B denote the Bell polynomial, one then finds, for every pair (x, y) ∈ [0, ∞)2,

exp(xy) = W(x, y)(ey − 1)/y = W(x, y) ln{B(y)}/ ln[1 + ln{B(y)}].

Representations of multivariate continuous survival functions might be derived from recent
results for Appell polynomials due to Ricci et al. [17]. This may be the object of future work.
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Abstract

A strong need for an appropriate lifetime model arises in reliability analysis. A large number of lifetime
distributions are available in the literature. To analyze reliability data, a more suitable lifetime distribution
is plausible. Power Generalized DUS (PGDUS) transformation of the lifetime model gives a solution to fit
the data with more precision. PGDUS transformation of the exponential distribution is the first attempt in
this regard. This new class of distributions can be used for model series systems in which the components
are distributed as DUS transformations of some lifetime model. This paper introduces two novel classes
of distributions using PGDUS transformation, which is a generalization of DUS transformation, with
Weibull and Lomax distributions as the baseline distributions. Some analytical properties like moments,
moment generating function, characteristic function, cumulant generating function, quantile function,
distribution of order statistics, and Rényi entropy are derived. The maximum likelihood estimation
procedure is employed to estimate the unknown parameters. Moreover, a simulation study has been
conducted, and data has been analyzed for each of the proposed distributions to demonstrate how well the
distributions would perform in a real-life situation. In comparison with some other recent new models,
the proposed distribution is found to be a better model.

Keywords: PGDUS transformation, Weibull Distribution, Moments, Lomax Distribution, Maxi-
mum likelihood estimator, Simulation

1. Introduction

A large number of distributions are available in the literature to model monotone failure rate data.
The Weibull distribution is confined to model data that exhibit monotone failure rate behavior.
Due to the inability to handle non-monotone failure rate behavior, various modifications and
generalizations are made to the existing Weibull distribution. The generalized Weibull distribution
is widely applied in survival analysis and reliability engineering due to its simplicity and relative
flexibility. Xie and Lai [24] introduced an additive Weibull model by adding two Weibull
survival functions having a bathtub-shaped failure rate function. Theoretical investigations of
the exponentiated Weibull family were carried out by Mudholkar and Srivastava ([18], [19]).
Bagdonavicius and Nikulin [3] proposed a power-generalized Weibull distribution as an extension
of the Weibull distribution. Xie et al. [25] proposed a modified Weibull bathtub-shaped failure
rate distribution.

The Lomax distribution (also called Pareto-II distribution) is a heavily skewed probabil-
ity distribution that plays an imperative role in the analysis of lifetime data sets in business,
actuarial science, computer science, queueing theory, Internet traffic modeling, economics, in-
come and wealth inequality, and reliability modeling. A few generalizations and extensions
of the Lomax distribution can be seen in the literature, such as the Marshall-Olkin extended
Lomax distribution (Ghitany et al. [9], Gupta et al. [10]), exponentiated Lomax distribution
(Abdul-Moniem and Abdel-Hameed [1]), Beta-Lomax distribution (BL), Kumaraswamy Lomax
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distribution and McDonald-Lomax distribution (Lemonte and Cordeiro [15]), Gamma-Lomax
distribution (Cordeiro et al. [6]), transmuted Weibull Lomax distribution (Afify et al. [2]) and the
generalized transmuted Lomax distribution (Nofal et al. [20]).

With application to survival data analysis, Kumar et al. (2015) proposed a method, called DUS
transformation, for getting a new distribution based on exponential baseline distributions. In
terms of computation and interpretation, this transformation produces a parsimonious result since
it does not include any new parameters other than those involved in the baseline distribution.
In the case where F(x) is the CDF of the baseline distribution, then the CDF of the new DUS
transformed distribution is as follows:

G(x) =
1

e − 1
[eF(x) − 1]

Maurya et al. [17] introduced the DUS transformation of the Lindley distribution. Tripathi et al.
[23] studied the DUS transformation of an exponential distribution and its inference based on the
upper record values. Recent studies using the DUS transformation can be seen in the works of
Deepthi and Chacko [7], Kavya and Manoharan [11], and Gauthami and Chacko [8]. Recently,
Thomas and Chacko [22] introduced an exponentiated generalization of the DUS transformation
called the power generalized DUS transformation. When researchers deal with series systems with
components distributed as DUS-transformed lifetime distributions, the PGDUS transformation is
highly useful. So the investigation of the PGDUS transformation of various lifetime distributions
is relevant in the sense of the selection of appropriate lifetime models for series systems.

The main goal of this study is to introduce two novel distributions using the power generalized
DUS (PGDUS) transformation. Let X be a random variable with baseline cumulative distribution
function (CDF) G(x) and corresponding probability density function (PDF) g(x). Then the CDF of
the proposed PGDUS distribution is defined as:

F(x) =

(
eG(x) − 1

e − 1

)θ

, θ > 0, x > 0. (1)

and the PDF is,

f (x) =
θ

(e − 1)θ
(eG(x) − 1)θ−1eG(x)g(x), θ > 0, x > 0. (2)

The survival function is,

R(x) = 1 −
( eG(x) − 1

e − 1
)θ , θ > 0, x > 0.

The failure rate function is,

h(x) =
θg(x)eG(x)(eG(x) − 1)θ−1

(e − 1)θ − (eG(x) − 1)θ
, θ > 0, x > 0.

The paper is organized as follows. In Section 2, the distribution based on PGDUS transforma-
tion with Weibull distribution as baseline distribution is proposed. Moments, moment generating
function, characteristic function, cumulant generating function, quantile function, distribution of
order statistics, and Rényi entropy are derived. Parameter estimation based on the maximum
likelihood method, simulation study, and real data application are also discussed. In section 3,
a different distribution using the Lomax distribution as the baseline distribution in the PGDUS
transformation is proposed. As in section 2, properties of PGDUS transformation of Lomax
distribution are derived. Parameter estimation using the maximum likelihood method, simulation
study, and real data application are also discussed. Finally, concluding remarks are given in
Section 4.
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2. PGDUS Weibull Distribution

In this section, the Weibull distribution is used as the baseline distribution for PGDUS trans-
formation and investigated the distributional properties. The CDF of Weibull distribution with
parameters α and β is

G(x) = 1 − e−(xβ)α
, α, β > 0, x > 0. (3)

and corresponding PDF is

g(x) = αβ(xβ)α−1e−(xβ)α
, α, β > 0, x > 0 (4)

Using Eq.3 in Eq.1, the CDF of PGDUS transformation of Weibull distribution is obtained as

F(x) =
(

e1−e−(xβ)α − 1
e − 1

)θ

, α, β > 0, θ > 0, x > 0. (5)

and the corresponding PDF is given as

f (x) =
θαβα

(e − 1)θ
xα−1(e1−e−(xβ)α − 1)θ−1e1−(xβ)α−e−(xβ)α

, α, β, θ > 0, x > 0. (6)

Then, the failure rate function associated to Eq.5 and Eq.6 is,

h(x) =
θαβαxα−1(e1−e−(xβ)α − 1)θ−1e1−(xβ)α−e−(xβ)α

(e − 1)θ − (e1−e−(xβ)α − 1)θ
, α, β, θ > 0, x > 0. (7)

The distribution with CDF Eq.5 and PDF Eq.6 is referred to as Power generalized DUS Weibull
distribution with parameters α, β and θ and is denoted as PGDUSW(α, β, θ). Figures 1 and 2
provide the graphical representation of the PDF and failure rate function respectively for various
parameter values

Figure 1: PGDUSW distribution density plot for various parameter values.

2.1. Analytical Properties

Moments, moment generating function (MGF), characteristic function (CF), cumulant generating
function (CGF), quantile function, distribution of order statistics, and Rényi entropy of the
proposed PGDUSW(α, β, θ) distribution are derived.
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Figure 2: PGDUSW distribution failure rate plot for various parameter values.

2.1.1 Moments

The rth raw moment of the PGDUSW(α, β, θ) distribution is given by

µ′
r =

∫ ∞

0
xr θαβαxα−1

(e − 1)θ
(e1−e−(xβ)α − 1)θ−1e1−(xβ)α−e−(xβ)α

dx

=
θαβαe
(e − 1)θ

∫ ∞

0
xr+α−1e−(xβ)α

e−e−(xβ)α
∞

∑
k=0

(
θ − 1

k

)
(e1−e−(xβ)α

)θ−k−1(−1)kdx

=
θαβαe
(e − 1)θ

∞

∑
k=0

(
θ − 1

k

)
(−1)keθ−k−1

∫ ∞

0
xr+α−1e−(xβ)α

e−(θ−k)e−(xβ)α

dx

=
θαβαe
(e − 1)θ

∞

∑
k=0

(
θ − 1

k

)
(−1)keθ−k−1

∞

∑
m=0

(−1)m

m!
(θ − k)m

∫ ∞

0
xr+α−1e−(1+m)(xβ)α

dx

=
θβ−re
(e − 1)θ

∞

∑
k=0

∞

∑
m=0

(−1)m+k

m!
eθ−k−1

(
θ − 1

k

)
(θ − k)m Γ( r

α + 1)

(1 + m)
r
α +1

2.1.2 Moment Generating Function

The MGF of PGDUSW(α, β, θ) distribution is

MX(t) =
θαβαe
(e − 1)θ

∫ ∞

0
xα−1etxe−(xβ)α

e−e−(xβ)α

(e1−e−(xβ)α − 1)θ−1dx
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=
θαβαe
(e − 1)θ

∫ ∞

0
xα−1etxe−(xβ)α

e−e−(xβ)α
∞

∑
k=0

(
θ − 1

k

)
(−1)k(e1−e−(xβ)α

)θ−k−1dx

=
θαβαe
(e − 1)θ

∞

∑
k=0

(
θ − 1

k

)
(−1)keθ−k−1

∫ ∞

0
xα−1etxe−(xβ)α

e−(θ−k)e−(xβ)α

dx

=
θαβα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

(−1)k+m

m!

(
θ − 1

k

)
eθ−k(θ − k)m

∫ ∞

0
xα−1etxe−(1+m)(xβ)α

dx

=
θαβα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

m!n!

(
θ − 1

k

)
eθ−k(θ − k)m(1 + m)nβαn

∫ ∞

0
xα+αn−1etxdx

=
θα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

m!n!

(
θ − 1

k

)
eθ−k(θ − k)m(1 + m)nβα+αn Γ(α + αn)

tα+αn

2.1.3 Characteristic Function and Cumulant Generating Function

The CF of PGDUSW(α, β, θ) is given by

ϕX(t) =
θα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

m!n!

(
θ − 1

k

)
eθ−k(θ − k)m(1 + m)nβα+αn Γ(α + αn)

(it)α+αn ,

and the CGF of PGDUSW(α, β, θ) is given by

KX(t) = log ϕX(t)

= log

[
θα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

m!n!

(
θ − 1

k

)
eθ−k(θ − k)m(1 + m)nβα+αn Γ(α + αn)

(it)α+αn

]

where i =
√
−1 is the unit imaginary number.

2.1.4 Quantile Function

The pth quantile Q(p) of the PGDUSW(α, β, θ) is the real solution of the following equation

((e1−e−(βQ(p))α − 1)/(e − 1))θ = p

where p ∼ Uni f orm(0, 1). Solving the above equation for Q(p), we have

Q(p) =
−1
βα

log[1 − log (e − 1)p
1
θ + 1]

1
α

. (8)

The median is obtained by setting p = 0.5 in the Eq.8. Thus,

Median =
−1
βα

log[1 − log (e − 1)0.5
1
θ + 1]

1
α

.

Similarly, the quartiles Q1 and Q3 are obtained respectively by setting p = 0.25 and p = 0.75 in
Eq.8.
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2.1.5 Distribution of Order Statistic

Let X1, X2, . . . , Xm be m independent random variables from the PGDUSW(α, β, θ) distribution
with CDF Eq.5 and PDF Eq.6. Then the PDF of rth order statistics X(r) of the PGDUSW(α, β, θ)
distribution is given by

fX(r)
=

m!
(r − 1)!(m − r)!

θαβαxα−1

(e − 1)θm

(
e1−e−(xβ)α − 1

)θr−1

e1−(xβ)α−e−(xβ)α

[
(e − 1)θ − (e1−e−(xβ)α

)θ
]m−r

, r = 1, 2, . . . , m.

(9)

Then, the PDF of X(1) and X(m) are obtained by setting r = 1 and r = m respectively in Eq.9. This
can be used to analyze the reliability of serial and parallel systems.

2.1.6 Rényi Entropy

Rényi entropy introduced by Rényi [21] is defined as

R(ν)ג =
1

1 − ν
log
( ∫

f ν(x)dx
)

where ν > 0 and ν ̸= 1.

∫ ∞

0
f ν(x)dx =

(θαβαe)ν

(e − 1)θν

∫ ∞

0
xνα−νe−ν(xβ)α

e−νe−(xβ)α
∞

∑
k=0

(
νθ − ν

k

)
(−1)k(e1−e−(xβ)α

)νθ−ν−kdx

=
(θαβαe)ν

(e − 1)θν

∞

∑
k=0

∞

∑
m=0

(−1)k+m

m!

(
νθ − ν

k

)
(νθ − k)meνθ−ν−k

∫ ∞

0
xνα−νe−(ν+m)(xβ)α

dx

=
(θα)ν

(e − 1)θν

∞

∑
k=0

∞

∑
m=0

(−1)k+m

m!

(
νθ − ν

k

)
(νθ − k)meνθ−k Γ(ν − ν

α + 1)

(ν + m)ν− ν
α +1βα−ν

Then the Rényi entropy becomes

R(ν)ג =
1

1 − ν
log

[
(θα)ν

(e − 1)θν

∞

∑
k=0

∞

∑
m=0

(−1)k+m

m!

(
νθ − ν

k

)
(νθ − k)meνθ−k Γ(ν − ν

α + 1)

(ν + m)ν− ν
α +1βα−ν

]

2.2. Estimation

The method of Maximum likelihood estimation is used to estimate the unknown parameters
of the PGDUSW(α, β, θ). For this, consider a random sample of size n from PGDUSW(α, β, θ)
distribution. Therefore, the likelihood function is given by,

L(α, β, θ|x) =
n

∏
i=1

f (x) =
n

∏
i=1

θαβα

(e − 1)θ
xα−1e1−(xi β)

α−e−(xi β)α

(e1−e−(xi β)α

− 1)θ−1 (10)

Applying the natural logarithm to Eq.10, the log-likelihood function becomes

log L = n log(θ) + n log(α) + αn log(β)− θn log(e − 1) + n +
n

∑
i=0

(α − 1) log(xi)

−
n

∑
i=0

(xiβ)
α −

n

∑
i=0

e−(xi β)
α
+ (θ − 1)

n

∑
i=0

log(e1−e−(xi β)α

− 1).
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Computing the first order partial derivatives, we get

∂ log L
∂α

=
n
α
−

n

∑
i=0

(xiβ)
α log(xiβ) +

n

∑
i=0

log(xi) +
n

∑
i=0

(xiβ)
αe−(xi β)

α
log(xiβ)

+n log(β) +
(θ − 1)(xiβ)

α

(e1−e−(xi β)α − 1)
log(xiβ)e1−(xi β)

α−e−(xi β)α

,
(11)

∂ log L
∂β

=
nα

β
−

n

∑
i=0

α(xiβ)
α

β
+

n

∑
i=0

α(xiβ)
α

β
e−(xi β)

α

+(θ − 1)
n

∑
i=0

α

β
(xiβ)

α e1−(xi β)
α−e−(xi β)α

(e1−e−(xi β)α − 1)
,

(12)

and
∂ log L

∂θ
=

n
θ
− n log(e − 1) +

n

∑
i=0

log(e1−e−(xi β)α

− 1). (13)

Equations 11, 12, and 13 are not in closed form. The solution of these explicit equations can be
obtained analytically and can be solved numerically using R software by taking arbitrary initial
values.

2.3. Simulation Study

In order to illustrate the performance of the maximum likelihood method for PGDUSW(α, β, θ)
distribution, the inversion transformation method is used. For different values of α, β, and θ,
samples of sizes n = 100, 250, 500, 750, and 1000 are generated from the PGDUSW(α, β, θ) model.
For 1000 repetitions, the bias and mean square error (MSE) of the estimated parameters are
computed. The selected parameter values are α = 0.5, β = 0.5 and θ = 0.5, α = 0.5, β = 1 and
θ = 0.5 and α = 1, β = 1 and θ = 0.5. From Tables 1, 2, and 3, it is noted that bias and MSE
decrease for the selected parameter values as sample size increases.

Table 1: Estimate, Biases and MSEs for PGDUSW model at α = 0.5, β = 0.5 and θ = 0.5

n Estimated value of Parameters Bias MSE

100
α̂=0.5668 0.0668 0.0473
β̂=0.7541 0.2541 1.0617
θ̂=0.5021 0.0031 0.0413

250
α̂=0.5251 0.0251 0.0118
β̂=0.5832 0.0832 0.1488
θ̂=0.5032 0.0022 0.0165

500
α̂=0.5297 0.0189 0.0057
β̂=0.4929 0.0177 0.0318
θ̂=0.4922 0.0007 0.0068

750
α̂=0.5188 0.0188 0.0034
β̂=0.4936 -0.0065 0.0223
θ̂=0.5026 0.0003 0.0050

1000
α̂=0.5165 0.0165 0.0025
β̂=0.4795 -0.0205 0.0160
θ̂=0.4922 -0.0078 0.0035
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Table 2: Estimate, Biases and MSEs for PGDUSW model at α = 0.5, β = 1 and θ = 0.5

n Estimated value of Parameters Bias MSE

100
α̂=0.5730 0.0730 0.0460
β̂=1.4827 0.4827 3.7354
θ̂=0.5134 0.0434 0.0485

250
α̂=0.5019 0.0019 0.0083
β̂=1.2852 0.2852 0.6372
θ̂=0.5333 0.0393 0.0169

500
α̂=0.4943 -0.0057 0.0041
β̂=1.2236 0.2236 0.2915
θ̂=0.5399 0.0339 0.0102

750
α̂=0.4886 -0.0109 0.0023
β̂=1.1045 0.1814 0.1353
θ̂=0.5244 0.0244 0.0050

1000
α̂=0.4822 -0.0178 0.0022
β̂=1.1814 0.1045 0.1195
θ̂=0.5207 0.0207 0.0042

Table 3: Estimate, Biases and MSEs for PGDUSW model at α = 1, β = 1 and θ = 0.5

n Estimated value of Parameters Bias MSE

100
α̂=1.1273 0.1273 0.1628
β̂=1.1460 0.1460 0.8851
θ̂=0.5223 0.0223 0.0545

250
α̂=1.0184 0.0184 0.0450
β̂=1.0889 0.0889 0.1068
θ̂=0.5205 0.0205 0.0177

500
α̂=1.0109 0.0109 0.0185
β̂=1.0490 0.0490 0.0447
θ̂=0.5151 0.0151 0.0085

750
α̂=1.0056 0.0056 0.0107
β̂=1.0381 0.0381 0.0260
θ̂=0.5095 0.0095 0.0049

1000
α̂=0.9851 -0.0149 0.0074
β̂=1.0239 0.0239 0.0167
θ̂=1.0012 0.0012 0.0035

2.4. Application

A real data analysis is carried out to determine the performance of the proposed model. For this,
the data on the number of million revolutions before the failure of 23 ball bearings put on test is
considered (Lawless [13]), see Table 4.

Different distributions namely, Inverse Weibull (IW) distribution, DUS Exponential (DUSE)
distribution, and Kavya-Manoharan Weibull (KMW) distribution are used to compare the per-
formance with the proposed PGDUSW(α, β, θ) distribution. In order to perform the necessary
numerical evaluations, the software R is used.
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Table 4: Lawless Data

17.88 28.92 33.00 41.52 42.12 45.60
48.80 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

Table 5: Findings for PGDUSW Distribution

Model MLEs log L AIC CAIC KS p-value

IW
λ̂ = 1.8341

-115.7887 235.5774 236.1774 0.1328 0.8118
θ̂ = 0.0206

DUSE â = 0.0182 -127.4622 256.9244 257.1149 0.2774 0.0580

KMW
λ̂ = 2.3169

-113.4076 230.8152 231.4152 0.1421 0.7419
κ̂ = 0.0107

PGDUSW
α̂ = 0.9362

-113.0114 230.0228 230.6228 0.10921 0.9467β̂ = 0.0383
θ̂ = 4.4478

To check the acceptability of the PGDUSW(α, β, θ) distribution for the given data set Akaike
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), log-likelihood
value, and Kolmogorov-Smirnov goodness of fit test statistic (KS) with the p-value are used and
the computed values are provided in Table 5. It is worth noting that in the goodness of fit test,
the purpose is to determine whether the sets of data with the distribution function F(y) and
the hypothesised distribution FPGDUSW(y) are compatible. This problem can be formulated as
H0 : F(y) = FPGDUSW(y) versus the alternative H1 : F(y) = FPGDUSW(y).

From Table 5, it is noted that the PGDUSW(α, β, θ) distribution fits well for the given data set.
To facilitate a better understanding of the results, the plot of the empirical CDF (ECDF) is shown
in the figure along with other CDFs of the distributions for the Lawless dataset. Furthermore, our
proposed distribution is found to fit better than those of the other distributions.
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Figure 3: ECDF plot for various distributions.
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Figure 4: ECDF plot for various distributions.

3. PGDUS Lomax Distribution

Power Generalized DUS Lomax distribution denoted as PGDUSL(α, β, θ), is obtained using
PGDUS transformation with Lomax distribution as baseline distribution. Then the CDF of the
PGDUSL(α, β, θ) distribution using Eq.1 is given by

F(x) =
(

e1−(1+xβ)−α − 1
e − 1

)θ

, α, β > 0, θ > 0, x > 0. (14)

Then the PDF is

f (x) =
θαβ

(e − 1)θ
(e1−(1+xβ)−α − 1)θ−1e1−(1+xβ)−α

(1 + xβ)−(α+1). (15)

The failure rate function is

h(x) =
θαβ(e1−(1+xβ)−α − 1)θ−1e1−(1+xβ)−α

(1 + xβ)−(α+1)

(e − 1)θ − (e1−(1+xβ)−α − 1)θ

3.1. Properties of PGDUSL Distribution

Here, we explore a few properties of the PGDUSL distribution.

3.1.1 Moments

The rth raw moments of PGDUSL(α, β, θ) is

µ′
r =

θα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

n!

(
α + k

k

)(
θ − 1

m

)
βk+1eθ−m(θ − m)n

B(r + k + 1, αn − r − k − 1)
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Figure 5: PGDUSL distribution density plot for various parameter values.

3.1.2 Quantile Function

The pth quantile Q(p) of the PGDUSL(α, β, θ) is the real solution of the following equation

((e1−1+(βQ(p))α − 1)/(e − 1))θ = p

where p ∼ Uni f orm(0, 1). Solving the above equation for Q(p), we have

Q(p) =
1
β
{
[
1 − log

[
p

1
θ (e − 1) + 1

]]−1
α − 1}.

The median is obtained by setting p = 0.5 in the above equation. Thus,

Median =
1
β
{
[
1 − log

[
0.5

1
θ (e − 1) + 1

]]−1
α − 1}

3.2. Estimation of PGDUSL Distribution

The method of maximum likelihood estimation is used to estimate the unknown parameters of
PGDUSL(α, β, θ). For this, consider a random sample of size n from PGDUSL(α, β, θ) distribution.
Therefore, the likelihood function is given by,

L(α, β, θ|x) =
n

∏
i=1

f (x) =
(θαβ)n

(e − 1)θn

n

∏
i=1

(e1−(1+xi β)
−α − 1)θ−1e1−(1+xi β)

−α
(1 + xiβ)

−α+1 (16)

The log-likelihood function becomes

log L = n log(θ) + n log(α) + n log(β)− θn log(e − 1) + n −
n

∑
i=1

(1 + xiβ)
−α

− (α + 1)
n

∑
i=1

log(1 + xiβ) + (θ − 1)
n

∑
i=1

log(e1−(1+xi β)
−α − 1) (17)

RT&A, No 1 (72)
 Volume 18, March 2023

378



Beenu Thomas and V. M. Chacko
PGDUS Transformation in Weibull and Lomax Distributions

Figure 6: PGDUSL distribution failure rate plot for various parameter values.

Computing the first order partial derivatives of Eq.17, we get

∂ log L
∂α

=
n
α
+

n

∑
i=1

log(1 + xiβ)(1 + xiβ)
−α −

n

∑
i=1

log(1 + xiβ)

+
n

∑
i=1

(θ − 1) log(1 + xiβ)e1−(1+xi β)
−α
(1 + xiβ)

−α

(e1−(1+xi β)−α − 1)
,

(18)

∂ log L
∂β

=
n
β
−

n

∑
i=1

αxi(1 + xiβ)
−(α+1) − (α + 1)

n

∑
i=1

xi
1 + xiβ

−
n

∑
i=1

αxi(θ − 1)(1 + xiβ)
−(α+1)

(e1−(1+xi β)−α − 1)

(19)

and

∂ log L
∂θ

=
n
θ
− n log(e − 1) +

n

∑
i=1

log(e1−(1+xi β)
−α − 1) (20)

Equations 18, 19, and 20 are not in closed form. The solution to these explicit equations can be
obtained analytically and can be solved numerically using R software by taking arbitrary initial
values.

3.3. Simulation Study

In order to illustrate the performance of the maximum likelihood method for PGDUSL(α, β, θ)
distribution, the inverse transformation method is used. For different combinations of values of
α, β, and θ, samples of sizes n = 250, 500, 750, and 1000 are generated from the PGDUS− L(α, β, θ)
model. For 1000 repetitions, the bias and mean square error (MSE) of the estimated parameters
are computed. The selected parameter values are α = 0.5, β = 0.5 and θ = 0.5, α = 1, β = 1.5 and
θ = 0.5 and α = 1, β = 1.5 and θ = 1. From Tables 6, 7, and 8, it is observed that bias and MSE
decrease for the selected parameter values as sample size increases.
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Table 6: Estimate, Biases and MSEs for PGDUSL model at α = 0.5, β = 0.5 and θ = 0.5

n Estimated value of Parameters Bias MSE

250
α̂=0.5100 0.0100 0.0031
β̂=0.5520 0.0720 0.0665
θ̂=0.5218 0.0218 0.0049

500
α̂=0.4921 -0.0039 0.0016
β̂=0.5926 0.0526 0.0422
θ̂=0.5197 0.0197 0.0023

750
α̂=0.4960 -0.0079 0.0010
β̂=0.5313 0.0343 0.0181
θ̂=0.5088 0.0088 0.0013

1000
α̂=0.4889 -0.0111 0.0008
β̂=0.5343 0.0313 0.0134
θ̂=0.5046 0.0046 0.0009

Table 7: Estimate, Biases and MSEs for PGDUSL model at α = 1, β = 1.5 and θ = 0.5

n Estimated value of Parameters Bias MSE

250
α̂=1.0268 0.0268 0.0314
β̂=1.6452 0.1800 0.4484
θ̂=0.5217 0.0217 0.0037

500
α̂=1.0140 0.0140 0.0131
β̂=1.6800 0.1452 0.2215
θ̂=0.5187 0.0187 0.0017

750
α̂=0.9838 -0.0070 0.0080
β̂=1.6374 0.1374 0.1404
θ̂=0.5040 0.0050 0.0008

1000
α̂=0.9930 -0.0162 0.0059
β̂=1.6070 0.1070 0.0906
θ̂=0.5050 0.0040 0.0006

Table 8: Estimate, Biases and MSEs for PGDUSL model at α = 1, β = 1.5 and θ = 1

n Estimated value of Parameters Bias MSE

250
α̂=1.0284 0.0284 0.0194
β̂=1.69386 0.19386 0.71071
θ̂=1.05298 0.05297 0.03426

500
α̂=1.0179 0.0179 0.0082
β̂=1.5999 0.0999 0.1999
θ̂=1.0472 0.0472 0.0144

750
α̂=0.9917 -0.0083 0.0049
β̂=1.5596 0.0596 0.1101
θ̂=1.0145 0.0145 0.0068

1000
α̂=0.9836 -0.0164 0.0033
β̂=1.5187 0.0187 0.0755
θ̂=0.9967 -0.0033 0.0051
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From Tables 6, 7, and 8, it is observed that bias and MSE are getting closer to zero, as the
sample size increases. Therefore, it can be concluded that the proposed model is more consistent
and the performance of MLE is highly adequate.

3.4. Real Data Application

Real data analysis is used to determine the applicability of the PGDUSL model. The data
set shown in Table 9 is an uncensored data set. As reported by Lee and Wang [14], Table
9 shows the number of months in which 128 bladder cancer patients experienced remission.
Different distributions namely, Lomax distribution (LD), DUS Exponential distribution (DUSE),
and DUS Lomax distribution (DUSL) are used to compare the performance with the proposed
PGDUSL(α, β, θ) distribution. In order to perform the necessary numerical evaluations, the
software R is used.

Table 9: Remission Times in Months of Blood Cancer Patients

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23
0.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09
0.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24
0.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81
0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32
0.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01
0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33
0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
0.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85
0.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02
0.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07
0.73 2.07 3.36 6.93 8.65 12.63 22.69 5.49

To check the acceptability of the PGDUSL(α, β, θ) distribution for the given data set AIC,
Consistent AIC (CAIC), log-likelihood value, and KS statistic with the p-value are used and the
computed values are provided in Table 10. It is worth noting that in the goodness of fit test,
the purpose is to determine whether the sets of data with the distribution function F(y) and
the hypothesised distribution FPGDUSL(y) are compatible. This problem can be formulated as
H04 : F(y) = FPGDUSL(y) versus the alternative H14 : F(y) ̸= FPGDUSL(y).
Similarly the following hypotheses are tested.
H01 : F(y) = FLD(y) Vs H11 : F(y) ̸= FLD(y)
H02 : F(y) = FDUSE(y) Vs H12 : F(y) ̸= FDUSE(y)
H03 : F(y) = FDUSL(y) Vs H13 : F(y) ̸= FDUSL(y)
From Table 10, it is clear that PGDUSL(α, β, θ) distribution fits well for the given data set. To
facilitate a better understanding of the results, the plot of the empirical CDF (ECDF) is shown
in the Fig.7 along with other CDFs of the distributions for the blood cancer patients dataset.
Also, the plot of fitted densities for the blood cancer patients dataset are given. Furthermore, our
proposed distribution is found to fit better than those of the other distributions.
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Table 10: Findings for PGDUSL distribution

Model MLEs log L AIC CAIC KS p- value

LD
λ̂ = 15.2817

-414.98 833.960 834.056 0.094 0.208
θ̂ = 0.0074

DUSE µ̂ = 0.1342 -433.139 868.278 868.309 0.081 0.366

DUSL
λ̂ = 6.471

-413.077 830.153 830.249 0.075 0.463
θ̂ = 0.0253

PGDUSL
α̂ = 3.842

-411.019 828.039 828.2324 0.035 0.998β̂ = 0.0605
θ̂ = 1.3984
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Figure 7: ECDF plot of the models for blood cancer patients dataset.
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4. Discussion

This paper proposes the power generalized DUS transformation of Weibull and Lomax distri-
butions. Moments, MGF, CF, CGF, quantile function, distribution of order statistics, and Rényi
entropy are derived. The parameter estimation has been done using the maximum likelihood
method. By using a simulation study, it is observed that the estimates of the proposed distri-
butions have smaller bias and mean square error when the sample size is larger. Real-world
applications have been performed to determine the applicability of the proposed model. Further-
more, the newly developed models are compared with a few existing models, and it is found that
the newly developed distributions perform better than the few existing models. When conducting
reliability analysis with a series system where each of the components has a specific lifetime
distribution, the PGDUS approach is highly useful.
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Abstract

AIM: Lindley distribution has been widely studied in statistical literature because it accommodates several
interesting properties. In lifetime data analysis contexts, Lindley distribution gives a good description over
exponential distribution. It has been used for analysing copious real data sets, specifically in applications
of modeling stress-strength reliability. This paper proposes a new generalized two-parameter Lindley
distribution and provides a comprehensive description of its statistical properties such as order statistics,
limiting distributions of order statistics, Information theory measures, etc.

METHODS: We study shapes of the probability density and hazard rate functions, quantiles, mo-
ments, moment generating function, order statistic, limiting distributions of order statistics, information
theory measures, and autoregressive models are among the key characteristics and properties discussed.
The two-parameter Lindley distribution is then subjected to statistical analysis. The paper uses methods
of maximum likelihood to estimate the parameters of the proposed distribution. The usefulness of the
proposed distribution for modeling data is illustrated using a real data set by comparison with other
generalizations of the exponential and Lindley distributions and is depicted graphically.

RESULTS/FINDINGS: This paper presents relevant characteristics of the proposed distribution and
applications. Based on this study, we found that the proposed model can be used quite effectively to
analyzing lifetime data.

CONCLUSIONS: In this article, we proffered a new customized Lindley distribution. The proposed
distribution enfolds exponential and Lindley distributions as sub-models. Some properties of this
distribution such as quantile function, moments, moment generating function, distributions of order
statistics, limiting distributions of order statistics, entropy, and autoregressive time series models are
studied. This distribution is found to be the most appropriate model to fit the carbon fibers data compared
to other models. Consequently, we propose the MOTL distribution for sketching inscrutable lifetime data
sets.

Keywords: Exponential distribution, Generalized family, Lindley distribution, Marshall-Olkin
extended distribution, Maximum likelihood estimation

1. Introduction

Lindley distribution [16, 17] has been proposed to describe a difference between fiducial dis-
tribution and posterior distribution. The works on Lindley distribution; see, for example, [11],
[14], [8], [2], [28], [33], etc. In the last decades, a lot of attempts have been made to define
new probability distributions based on Lindley model, for example, three parameters-Lindley
distribution [37], generalized Poisson-Lindley distribution [18], generalized Lindley distribution
[23], Marshall-Olkin Lindley distribution [38], power Lindley distribution [10], two-parameter
Lindley distribution [29], quasi Lindley distribution [30], transmuted Lindley distribution [20],
transmuted Lindley-geometric distribution [21], beta-Lindley distribution [22], discrete Harris
extended Lindley distribution [35], etc. Moreover, [36] has provided a detailed review study on
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the generalizations of the Lindley distribution.
[31] introduced a new distribution, called two-parameter Lindley distribution. A random variable
X is said to have the two-parameter Lindley distribution with parameters α and β if its survival
function (sf) takes the form

F̄(x, α, β) =
(α + β + αβx)

α + β
e−αx , x > 0, α > 0, β > −α (1)

and the corresponding probability density function (pdf) can be expressed as

f (x, α, β) =
α2(1 + βx)e−αx

α + β
, x > 0, α > 0, β > −α. (2)

It can easily be seen that at β = 1, the distribution in equation (2) reduces to the Lindley
distribution and at β = 0, equation (2) reduces to the exponential distribution. [12] has also studied
this distribution as a new flexible form of exponential distribution is called flexible exponential
distribution. Some generalizations and extensions of this flexible exponential distribution are
proposed in [34] and [25].

On the other hand, there is a vast amount of statistical literature on methods of introducing
new family of distributions. Notable among them are Azzalinis skewed family of distributions
[4], exponentiated family of distributions [13], gamma-generated family of distributions [39,
27], Kumaraswamy family of distributions [6], Weibull generalized family of distributions [5],
logistic-generated family of distributions [Torabi and Montazari(2014)], Kumaraswamy Marshal-
Olkin family of distributions [1] and Marshall-Olkin Kumaraswamy family of distributions [15].
Moreover, [19] has introduced a general method for adding parameter to a baseline distribution,
the resulting distribution is called Marshall-Olkin family of distributions, its sf Ḡ(x) and pdf g(x)
are given by the following formulae,

Ḡ(x, α) =
γF̄(x)

1 − γ̄F̄(x)
, x ∈ R, γ > 0 (3)

g(x, α) =
γ f (x)

(1 − γ̄F̄(x))2 , x ∈ R, γ > 0 (4)

where F̄(x) is sf of the random variable X to be generated, γ̄ = 1 − γ and γ is a tilt parameter. If
F(x) has the hazard rate function (hrf) r(x) then the hrf of MOE family is given by

h(x, α) =
r(x)

1 − γ̄F̄(x)
, x ∈ R, γ > 0

The main object of this paper is to present an extension for the two-parameter Lindley
distribution, that can be used as an alternative to the existing generalized exponential and
Lindley distributions. The rest of this article is organized as follows: Section 2 introduces the
Marshall-Olkin two-parameter Lindley distribution; its properties including quantile function,
moments, moment generating function, distributions of order statistics, limiting distributions
of order statistics, entropy and autoregressive time series models are presented in Section 3;
Section 4 proposes parameter estimation of the proposed distribution by the method of maximum
likelihood estimation; Section 5 deals with the application of the new distribution to a real data
set; Section 6 presents the conclusion of the study.

2. Marshall-Olkin two-parameter Lindley distribution

If X is distributed according to equation (2), then the corresponding Marshall-Olkin (MO)
generalized form of its sf and pdf using equations (3) and (4) is given by

Ḡ(x, α, β, γ) =

γ(α+β+αβx)
α+β e−αx[

1 − γ̄
(
(α+β+αβx)

α+β e−αx
)] , x > 0, α, γ > 0, β > −α (5)
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and

g(x, α, β, γ) =
γα2(1 + βx)e−αx

α + β
[
1 − γ̄

(
(α+β+αβx)

α+β e−αx
)]2 , x > 0, α, γ > 0, β > −α (6)

respectively. The new distribution given by the pdf equation (6) is called the Marshall-Olkin
two-parameter Lindley (MOTL) distribution. In addition, hrf of the MOTL distribution is given
by following equation

h(x, α, β, γ) =
α2(1 + βx){

1 − γ̄
[
(α+β+αβx)

α+β e−αx
]}

(β + α + αβx)
, x > 0, α, γ > 0, β > −α. (7)

Notably, the classical exponential and one-parameter Lindley distributions are special cases of
the MOTL distribution. Some distributions that are special cases of MOTL distribution are:

Exponential distribution : when γ=1 and β=0 in equation (6) with pdf

g(x, γ) = αe−αx

One-parameter Lindley distribution : when γ=1 and β=1 in equation (6) with pdf

g(x, α, γ) =
α2(1 + x)e−αx

α + 1

MO exponential distribution : when β = 0 in equation (6) with pdf

g(x, α, γ) =
γαe−αx

[1 − γ̄(e−αx)]2

MO Lindley distribution: when β = 1 in equation (6) with pdf

g(x, α, γ) =
γα2(1 + x)e−αx

α + 1
[
1 − γ̄

(α+1+αx)
α+1 e−αx

]2

The different shapes of the pdf and hrf of the MOTL distribution are displayed in Figure 1
and Figure 2 for selected parameter values. From figures it is clear that the pdf and hrf of MOTL
distribution can be increasing, decreasing, upside-down bathtub (unimodal) depending on the
values of its parameters.

3. Statistical Properties

In this section, we study the statistical properties for the MOTL distribution.

3.1. Quantiles

The quantile function of the MOTL distribution is given by

x = G−1(u) = −(
α + β

αβ
)− 1

α
W−1

[
− 1

β

(
u − 1

1 − u + uγ

)
(α + β)e(−

α+β
β )

]
(8)

where G(x) = u and 0 ≤ u ≤ 1. W−1 denotes the negative branch of the Lambert W function.
Table 1 represents the quantiles for selected values of the parameters of the MOTL distribution
using R programming language.
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Figure 1: Graphs of pdf of the MOTL distribution for different values of α, β and γ.

Table 1: The quantiles for different values of the parameters of the MOTL distribution

(α, β, γ) (α, β, γ) (α, β, γ) (α, β, γ) (α, β, γ)

u (0.5,0.5,1.5) (0.4,0.3,.05) (2.1,2.2,0.5) (3.5,4.2,2.5) (5,6,7)

0.1 0.5784 0.2331 0.0513 0.1360 0.1515
0.2 1.1374 0.5001 0.1087 0.2503 0.2596
0.3 1.7018 0.8107 0.1741 0.3563 0.3515
0.4 2.2923 1.1796 0.2504 0.4604 0.4360
0.5 2.9324 1.6295 0.3422 0.5676 0.5202
0.6 3.6556 2.1986 0.4565 0.6838 0.6078
0.7 4.5205 2.9585 0.6074 0.8170 0.7061
0.8 5.6539 4.0696 0.8255 0.9879 0.8282
0.9 7.4520 6.0382 1.2080 1.2505 1.0135
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Figure 2: Graphs of pdf of the MOTL distribution for different values of α, β and γ.
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3.2. Moments

In statistical analysis and its applications, moments have received important role. It can be used
to study the most eminent features and characteristics such as tendency, dispersion, skewness and
kurtosis of a distribution. We now give simple expansions for the pdf of the MOTL distribution.
We have following expansion

(1 − z)−r =
∞

∑
i=0

(
r + i − 1

i

)
zi , |z| < 1, r > 0

Put

S(x) =
(α + β + αβx)

α + β
e−αx

When γ ∈ (0, 2)

(1 − (1 − γ)(1 − S(x))−2 =
∞

∑
i

i

∑
j=0

(i + 1)(1 − γ)i
(

i
j

)
S(x)j (9)

Using the series expansion in equation (9) and the representation for the MOTL pdf in equation
(6), we obtain

g(x) = γ
∞

∑
i=0

α2

α + β
(i + 1)(1 − γ)i

{
1 +

αβx
α + β

}i
(1 + βx)e−(i+1)αx

= γ
∞

∑
i=0

∞

∑
j=0

α2

(α + β)
(i + 1)(1 − γ)i

(
i
j

){
αβx

α + β

}j
(1 + βx)e−(i+1)αx

= γ
∞

∑
i=0

∞

∑
j=0

α2

(α + β)j+1 (i + 1)(1 − γ)i
(

i
j

)
(αβ)j

[
xje−(i+1)αx + βxj+1e−(i+1)αx

]
(10)

We have
E(Xr) =

∫ ∞

0
xrg(x, α, β, γ)dx. (11)

Substituting equation (10) into the equation (11), we obtain the rth moment of MOTL distribution
in the form

E(Xr) = γ
∞

∑
i=0

∞

∑
j=0

α2

(α + β)j+1 (i + 1)(1 − γ)i
(

i
j

)
(αβ)j

∫ ∞

0
xr

[
xje−(i+1)αx + βxj+1e−(i+1)αx

]
dx

= γ
∞

∑
i=0

∞

∑
j=0

α2

(α + β)j+1 (i + 1)(1 − γ)i
(

i
j

)
(αβ)jwijr

wijr =
Γ(r + j + 1)

[(i + 1)α]r+j+1 + β
Γ(r + j + 2)

[(i + 1)α]r+j+2

Similarly, when γ > 1/2

g(x) =
γα2(1 + βx)e−αx

α + β

[
1 − γ̄

γ
(1 − S(x))

]−2

g(x) = γ
∞

∑
i=0

∞

∑
j=0

i

∑
k=0

α2

(α + β)j+1 (−1)i+k
(

γ̄

γ

)i (i − 1
k

)(
k
j

)
(αβ)j

[
xje−(i+1)αx + βxj+1e−(i+1)αx

]
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The rth moment of MOTL distribution is

E(Xr) = γ
∞

∑
i=0

∞

∑
j=0

i

∑
k=0

α2

(α + β)j+1 (−1)i+k
(

γ̄

γ

)i (i − 1
k

)(
k
j

)
(αβ)jwijr

Table 3.2 lists the moments, standard deviation (SD), coefficient of variation (CV), coefficient of
skewness (CS) and coefficient of kurtosis (CK) of the MOTL distribution for selected values of the
parameters.

Table 2: Moments of the MOTL distribution for different values of the parameters α, β, and γ

(α, β, γ) (α, β, γ) (α, β, γ) (α, β, γ) (α, β, γ)

(0.5,0.5,.5) (1.5,0.5,1.5) (2.5,0.005,3.5) (3,5,3.5) (5,6,7)

µ
′
1 1.5273 1.0084 0.7029 0.8856 1.3452

µ
′
2 3.0999 1.7819 0.7641 1.0953 2.5024

µ
′
3 7.5709 4.3852 1.0910 1.6799 5.7702

µ
′
4 21.4836 13.7554 1.9276 3.0565 15.7912

SD 0.8760 0.8746 0.5196 0.5577 0.8326
CV 0.5735 0.8676 0.7392 0.6297 0.6076
CS 3811.034 749.2536 211.0792 548.7451 2284.693
CK 3.8968 6.5565 5.3869 4.2850 4.3509

3.3. Moment Generating Function

Moment generating function is given by the following formula

MX(t) = E(etX) =
∞

∑
r=0

tr

r!
E(Xr) (12)

The moment generating function of MOTL distribution is obtained by using equation (12). When
γ ∈ (0, 2), it has following form

MX(t) = γ
∞

∑
r=0

∞

∑
i=0

∞

∑
j=0

α2tr

(α + β)j+1r!
(i + 1)(1 − γ)i

(
i
j

)
(αβ)jwijr

Similarly, when γ > 1/2

MX(t) = γ
∞

∑
r=0

∞

∑
i=0

∞

∑
j=0

i

∑
k=0

α2tr

(α + β)j+1r!
(−1)i+j

(
1 − γ

γ

)i (i − 1
j

)(
k
j

)
(αβ)jwijr

where

3.4. Order Statistics

Let X1, X2, ..., Xn be a random sample taken from the MOTL distribution and X1:n, X2:n, ..
., Xn:n be the corresponding order statistics. The pdf gr:n(x, α, β, γ) of the rth order statistics Xr:n
is given by
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gr:n(x, α, β, γ) =
n!

(r − 1)(n − r)!
g(x, α, β, γ)G(x, α, β, γ)r−1[1 − G(x, α, β, γ)]n−r (13)

where g(x), G(x) are pdf and cdf of MOTL distribution by equations (5) and (6). We can use the
binomial expansion of [1 − G(x)]n−i given as follows

[1 − G(x)]n−i =
n−r

∑
i=0

(
n − r

i

)
(−1)iG(x, α, β, γ)i (14)

substitute equation (15) into the equation (14), we get

gr:n(x, α, β, γ) =
n−r

∑
i=0

(
n − r

i

)
n!(−1)i

(r − 1)(n − r)!
g(x, α, β, γ)G(α, β, γ)i+r−1 (15)

We get pdf of rth order statistics for MOTL distribution from equation (15), by using above
equations (5) and (6). We can express the kth ordinary moment of the rth order statistics Xr:n
(E(Xk

r:n)) as a liner combination of the kth moments of the MOTL distribution with different shape
parameters. The rth order statistic for MOTL distribution can be expressed as

gr:n(x, α, β, γ) =
n−r

∑
i=0

(
n − r

i

)
n!(−1)i

(r − 1)(n − r)!

γ
α2(1+βx)e−αx

α+β[
1 − γ̄

α+β−(β+α+αβx)
α+β e−αx

]2


α+β−(β+α+αβx)

α+β[
γ + (1 − γ) α+β−(β+α+αβx)

α+β e−αx
]


i+r−1

(16)

When r=1 and r=n in equation (16), we get the equations of pdf of the smallest and largest order
statistics, respectively.

3.5. Limiting distributions of order statistics

Theorem: 1. If X1:n be the minimum and Xn:n be the maximum of a random sample x = (x1, ...., xn)
from MOTL distribution, then

(a) lim
n→∞

P
(

X1:n − pn

qn
≤ x

)
= 1 − e−x

(b) lim
n→∞

P
(

Xn:n − p∗n
q∗n

≤ t
)
= exp(−e−t)

where pn = 0, qn = G−1( 1
n ), p∗n = G−1(1 − 1

n ), q∗n = 1 and G−1(·) is given in (8).

Proof
For MOTL distribution, by applying L′ Hospital rule, we obtain

lim
ϵ→0+

G(ϵx)
G(ϵ)

= lim
ϵ→0+

xg(ϵx)
g(ϵ)

= x

Hence, the minimal domain of attraction of the MOTL distribution can be the standard exponential
distribution (see Theorem 8.3.6 [3]).
Subsequently, for the MOTL distribution, we can express

lim
x→∞+

d
dx

(
1

h(x)

)
= 0

Therefore, the maximal domain of attraction of MOLT distribution can be the standard Gumbel
distribution (see Theorem 8.3.3 [3]).
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3.6. Information Theory Measures

The concept of entropy has played a vital role in information theory. The entropy of a random
variable can be defined in terms of its probability distribution and it has been used in distinct
fields in science as a measure of variation of the uncertainty. Numerous measures of entropy
have been mentioned and compared in the literature. The entropy and mutual information
concepts have been formalized by Shannon (1948). [26] proposed a other measure of entropy
namely, Rényi entropy as a generalization of Shannon entropy. The Rényi entropy is defined as
IR(γ) =

1
1−δ log

∫
R gδ(x)dx, δ > 0 and δ ̸= 1. Rényi entropy of order 1 is Shannon entropy. We

consider first gδ(x) given by,

gδ(x) =
γδ α2δ(1+βx)δe−αδx

α+β

δ

{
1 − γ̄

α+β−(β+α+αβx)
α+β e−αx

}2δ

Suppose that γ > 1
2 . Using the series expansion[

1 − γ̄
α + β − (β + α + αβx)

α + β
e−αx

]−2δ

= γ−2δ
∞

∑
k=0

Γ(2δ + k)
Γ(2δ)k!

(
1 − 1

γ

)k

[
α + β − (β + α + αβx)

α + β
e−αx

]k

Thus we obtain that in the case γ > 1/2, the Rényi entropy is

IR(δ) =
1

1 − δ
log{ γδα2δ

(α + β)δ

∞

∑
i,j,k,l=0

Γ(2δ + k)
Γ(2δ)k!(α + β)j

(
1 − 1

δ

)k

(
j
k

)(
i + k

i

)(
l
δ

)
(−1)i(αβ)jβδ

∫
R

x(δ+j)e−α(δ+k)xdx}

=
1

1 − δ
log{ γ−δα2δ

(α + β)δ

∞

∑
i,j,k,l=0

Γ(2δ + k)
Γ(2δ)k!(α + β)j

(
1 − 1

δ

)k

(
j
k

)(
i + k

i

)(
l
δ

)
(−1)i(αβ)jβδ Γ(δ + j + 1)

[α(δ + k)]δ+j+1

Similarly, we can show that in the case 0 < γ < 2 and by using the series expansion{
1 − γ̄

α + β − (β + α + αβx)e−αx

α + β

}−2δ

=
∞

∑
k=0

Γ(2δ + k)
Γ(2δ)k!

(1 − γ)k

[
(β + α + αβx)e−αx

α + β

]k

Corresponding Rényi entropy is

IR(δ) =
1

1 − δ
log{ γ−δα2δ

(α + β)δ

∞

∑
i,j,k=0

Γ(2δ + k)
Γ(2δ)k!(α + β)i (1 − δ)k

(
i
k

)(
j
δ

)
(αβ)iβj

∫
R

x(i+j)e−α(δ+k)xdx}

=
1

1 − δ
log{ γ−δα2δ

(α + β)δ

∞

∑
i,j,k=0

Γ(2δ + k)
Γ(2δ)k!(α + β)i (1 − δ)k

(
i
k

)(
j
δ

)
(αβ)iβj Γ(i + j + 1)

[α(δ + k)]i+j+1 }
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3.7. Autoregressive Time Series Modeling

Autoregressive models are types of random process, has utilized to model and predict various
type of natural phenomena. In other words, autoregressive models are group of linear prediction
formulas which try to predict an output of a system based on the past observations. In the
following Subsections we construct and explore different autoregressive models of order 1 (AR(1)),
that is, MIN AR(1) model I, MIN AR(1) model II, MAX-MIN AR(1) model I and MAX-MIN AR(1)
model II with MOTL as marginals.

3.7.1 MIN AR (1) Model-1 with MOTL Marginal Distribution

The first AR (1) structure is given by

Xn =

{
en, with probability ϱ

min(Xn−1, en), with probability 1 − ϱ
(17)

where {en} is a sequence of independently and identically distributed (iid) random variables
independent of {Xn} and ϱ ∈ (0,1). Hence the process is stationary Markovian with MOTL
distribution as marginal.

Theorem: 2. {Xn} is stationary Markovian with MOTL distribution with parameters ϱ, α, β ⇐⇒ {en}
is distributed as two-parameter Lindley distribution, under in an AR (1) process defined in (17).

Proof. Let en follows two-parameter Lindley distribution with parameters α and β. Using
equation (17), we can express

F̄Xn(x) = ϱF̄en(x) + (1 − ϱ)F̄Xn−1(x)F̄en(x)

While under stationary equilibrium,

F̄X(x) =
ϱF̄e(x)

1 − (1 − ϱ)F̄e(x)

and therefore

F̄e(x) =
F̄X(x)

ϱ + (1 − ϱ)F̄X(x)

When en, it follows two-parameter Lindley with parameters α and β

F̄e(x) =
(α + β + αβx)

α + β
e−αx

Hence

F̄X(x) =
ϱ(α+β+αβx)

α+β e−αx[
1 − ϱ̄

(
(α+β+αβx)

α+β e−αx
)]

It is easy to see that this is the sf of the MOTL(α, β, ϱ).
Conversily, if

F̄X(x) =
ϱ(α+β+αβx)

α+β e−αx[
1 − ϱ̄

(
(α+β+αβx)

α+β e−αx
)]

then F̄en(x) is distributed as two-parameter Lindley distribution with parameters α and β, and
the process is stationary.
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We have to prove its stationarity, so we take that Xn−1∼ MOTL(α, β, ϱ) and en follows two-
parameter Lindley distribution with parameters α and β, then

F̄X(x) =
ϱ(α+β+αβx)

α+β e−αx[
1 − ϱ̄

(
(α+β+αβx)

α+β e−αx
)]

It is easy to see that Xn is distributed as MOTL(α, β, ϱ).

3.7.2 MIN AR (1) Model-II with MOTL Marginal Distribution

The second AR (1) structure is given by

Xn =


Xn−1, with probability ϱ1

en, with probability ϱ2

min(Xn−1, en), with probability 1 − ϱ1 − ϱ2

(18)

where ϱ1, ϱ2 > 0, ϱ1 + ϱ2 < 1 and {en} is a sequence of iid random variables independent of {Xn}.
This structure allows probabilistic selection of process values, innovations and combinations of
both. Then the process is stationary with MOTL as marginal.

Theorem: 3. {Xn} is stationary Markovian with MOTL distribution with parameters γ, α and β ⇐⇒
{en} is distributed as two-parameter Lindley distribution with parameters α and β, where γ = ϱ2

1−ϱ1
,

under in an AR (1) process with structure defined in equation (18).

Proof.
Let en follows two-parameter Lindley with parameters α and β. By using equation (18),

F̄Xn(x) = ϱ1[1 − (1 − F̄Xn−1(x))(1 − F̄en(x))] + ϱ2 F̄Xn−1(x)F̄en(x) + (1 − ϱ1 − ϱ2)F̄Xn−1(x)

Under stationary equilibrium it becomes,

F̄X(x) =
γF̄e(x)

1 − (1 − γ)F̄e(x)

where γ = ϱ2
1−ϱ1

, it is evident that it has Marshall-Olkin form. Next, we assume that {Xn} ∼
MOTL(α, β, γ). By using equation (18), under stationarity, we can write

F̄e(x) =
(1 − ϱ1)F̄X(x)

ϱ2 + (1 − ϱ1 − ϱ2)F̄X(x)

Next by using Xn as MOTL(α, β, γ), it can be obtained as

F̄e(x) =
(α + β + αβx)

α + β
e−αx

which is the sf of two-parameter Lindley distribution with parameters α and β.

3.7.3 MAX-MIN AR(1) model-I with MOTL Marginal Distribution

Consider now the third model with AR(1) structure

Xn =


max(Xn−1, en), with probability ϱ1

min(Xn−1, en), with probability ϱ2

Xn−1, with probability 1 − ϱ1 − ϱ2

(19)

where 0 < ϱ1, ϱ2 < 1, ϱ2 < ϱ1, ϱ1 + ϱ2 < 1 and {en} is a sequence of iid random variables
independent of {Xn}. Then the process is stationary Markovian with MOTL distribution as
marginal.
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Theorem: 4. {Xn} is stationary Markovian AR (1) max-MIN process with MOTL distribution with
parameters α, β and γ ⇐⇒ {en} is distributed as two-parameter Lindley distribution with parameters α
and β, where γ = ϱ1

ϱ2
, under an AR (1) MAX-MIN process with structure (19).

Proof. Let en follows two-parameter Lindley with parameters α and β. It is obvious from
equation (19),

F̄Xn(x) = ϱ1[1 − (1 − F̄Xn−1(x))(1 − F̄en(x))] + ϱ2 F̄Xn−1(x)F̄en(x) + (1 − ϱ1 − ϱ2)F̄Xn−1(x)

Under stationary equilibrium,

F̄Xn(x) =
γF̄e(x)

1 − (1 − γ)F̄e(x)

where γ = ϱ1
ϱ2

and F̄Xn(x) has Marshall-Olkin form. Let Xn ∼ MOTL(α, β, γ).
Then by using (19), under stationarity,

F̄e(x) =
ϱ2 F̄Xn(x)

ϱ1 + (ϱ2 − ϱ1)F̄Xn(x)

Thus, after simplification it can be written as

F̄e(x) =
(α + β + αβx)

α + β
e−αx

Consequently, which is the sf of two-parameter Lindley with parameters α and β.

3.7.4 MAX-MIN AR(1) model-II with MOTL Marginal Distribution

Finally, we consider the more general max-min process that includes minimum, maximum
innovations and the process. The relating model with AR(1) structure being of the form

Xn =


max(Xn−1, en), with probability ϱ1

min(Xn−1, en), with probability ϱ2

en, with probability ϱ3

Xn−1, with probability 1 − ϱ1 − ϱ2 − ϱ3

(20)

where 0 < ϱ1, ϱ2, ϱ3 < 1, ϱ1 + ϱ2 + ϱ3 < 1 and {en} is a sequence of iid random variables
independent of {Xn}. Then the process is stationary Markovian with MOTL distribution as
marginal.

Theorem: 5. AR (1) MAX-MIN process {Xn} with structure (20) is a stationary Markovian AR (1)
MAX-MIN process with MOTL distribution (α, β, γ ) ⇐⇒ {en} is distributed as two-parameter Lindley
distribution with parameters α and β where γ = ϱ1+ϱ3

ϱ2+ϱ3

Proof. Let en follows two-parameter Lindley with parameters α and β. It is clear from equation
(20),

F̄Xn(x) = ϱ1[1 − (1 − F̄Xn−1(x))(1 − F̄en(x))] + ϱ2 F̄Xn−1(x)F̄en(x) + ϱ3 F̄en(x)

+ (1 − ϱ1 − ϱ2 − ϱ3)F̄Xn−1(x)

Under stationary equilibrium it gives,

F̄Xn(x) =
γF̄e(x)

1 − (1 − γ)F̄e(x)
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Figure 3: Graphs of sample path of AR(1) Minification model I for different values of ϱ=0.3,0.5,0.8, α=30 and β = 0.02

Figure 4: Graphs of sample path of AR(1) Minification model II for different sets of (ϱ1, ϱ2)=(0.1,0.4), (0.4,0.1),
(0.4,0.4), α=0.2 and β =0.3

where γ = ϱ1+ϱ3
ϱ2+ϱ3

, which has Marshall-Olkin form. Now let Xn ∼ MOTL(α, β, γ) and from (20),
we obtain

F̄e(x) =
(ϱ2 + ϱ3)F̄X(x)

(ϱ1 + ϱ3) + (ϱ2 − ϱ1)F̄X(x)

Thus, after simplification it reduces to

F̄e(x) =
(α + β + αβx)

α + β
e−αx

which is the sf of two-parameter Lindley with parameters α and β. The sample path properties of
the four AR(1) models developed in this section are displayed in Figure 3-6 and it shows how
these measures vary with different values of parameters.

Figure 5: Graphs of sample path of AR(1) Minification model II for different sets of
(ϱ1, ϱ2)=(0.3,0.5), (0.5,0.3), (0.4,0.4), α=1.7 and β =1.4
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Figure 6: Graphs of sample path of AR(1) Min-max model II for different sets of (ϱ1, ϱ2, ϱ3)=(0.1,0.3,0.4), (0.2,0.2,0.4),
(0.1,0.1,0.1), α=0.02 and β =0.02

4. Estimation of Parameters

In this section, we consider maximum likelihood estimation (MLE) for a given sample of size
x1, x2, ..., xn from MOTL(α, β, γ), then the log likelihood function is given by

l(ξ) = n(log γ + 2 log α) +
n

∑
i=1

log(1 + βxi)− α
n

∑
i=1

xi − n log(α + β)

− 2
n

∑
i=1

log
{

1 − (1 − γ)
(α + β + αβxi)e−αxi

α + β

}
The partial derivative of the log likelihood functions with respect to the parameters are

∂ł(ξ)
∂α

=
2n
α

−
n

∑
i=1

xi −
n

α + β
− 2

n

∑
i=1

(1 − γ)

(
(α2 + (α + β)αβxi)xie−αxi

){
1 − (1 − γ) (α+β+αβxi)e−αxi

α+β

}
(α + β)2

∂l(ξ)
∂β

=
n

∑
i=1

xi
1 + βxi

− n
α + β

+ 2
n

∑
i=1

(1 − γ)α2xie−αxi{
1 − (1 − γ) (α+β+αβxi)e−αxi

α+β

}
(α + β)2

∂l(ξ)
∂γ

=
n
γ
− 2

n

∑
i=1

(α+β+αβxi)e−αxi

α+β{
1 − (1 − γ) (α+β+αβxi)e−αxi

α+β

}
The MLE ξ̂=(α̂, β̂, γ̂)T of ξ=(α, β, γ)T can be numerically obtained by solving the equations

∂l(ξ)
∂α = 0, ∂l(ξ)

∂β = 0, ∂l(ξ)
∂γ = 0. For this purpose, we can use functions like nlm, fitdist or optimize

from the programming language R.

5. Application

Now we use a real data set to show that the MOTL distribution can be a better model than the
some other generalized exponential and Lindley distributions. The distributions are given below:

1. beta generalized exponential distribution (BGE) [9]

2. exponentiated exponential distribution (EE) [7]

3. gamma generalized exponential distribution (GGE) [39]

4. Kumaraswamy generalized exponential distribution (KGE) [6]
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Figure 7: pdf for fitted distributions of the breaking stress of carbon fibers data

5. Weibull generalized exponential distribution (WGE) [1]

6. two-parameter Lindley distribution (TL) [31]

7. one-parameter Lindley distribution (OL) [16, 17]

8. classical exponential distribution (E)

The data set represents the breaking stress of carbon fibers of 50mm in length (n=66) and it has
been given by [24]. The data set is given as:

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11,3.56, 4.42, 2.41, 3.19, 3.22, 1.96, 3.28, 3.09, 1.87,
3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20,3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68,
2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88,2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39,2.96, 2.35, 2.55,
2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53

The distribution of this data set is unimodal and slightly left skewed (skewness = 0.131 and
kurtosis = 3.223). For each distribution, we estimated the unknown parameters (by the maximum
likelihood method), the values of the −log-likelihood (−logL), AIC (Akaike Information Criterion),
BIC (Bayesian Information Criterion), the values of the Kolmogorov-Smirnov (K-S) statistic and
the corresponding p-values.

All the computations were done through the use of the R programming language. The results
for these data are listed in Table 3. From the table, we can observe that MOTL distribution
provides smallest −logL, AIC, BIC and K-S statistics values and highest p-value as compare
to other distributions. This indicates that the MOTL distribution provides a better fit than
other distributions. Plots of the histogram with fitted density functions and comparison of the
cumulative distribution function for the each models with the empirical distribution function are
displayed in Figure ?? and Figure ??. From figures, one can easily identify the suitability behavior
of the MOTL distribution. Therefore, the new model may be an interesting alternative to the
other available generalized exponential models in the literature.
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Table 3: Estimated values, −logL, AIC, BIC, K-S statistics and p-value for data set.

Distribution Estimates −logL AIC BIC K-S p-value

MOTL(α, β,γ) α̂ = 2.2964 84.5821 175.1641 181.7331 0.0599 0.9717
β̂= 11012.6970

γ̂= 79.8819
β̂= 4.323281e+06

BEG( a,b,β) â=7.5387 90.9961 187.9922 194.5611 0.1309 0.2082
b̂=20.1066
β̂=0.1176

EE( a,β) â=9.2945 95.2187 194.4373 198.8166 0.1527 0.0921
β̂=1.0092

GGE( a,β) a=7.5710 90.9359 185.8719 190.2512 0.1303 0.2124
β̂=2.7395

KGE(a,b,β) â =4.3710 86.5579 179.1158 185.6848 0.0899 0.6603
b̂= 53.0724
β̂= 0.1696

WGE(a,b,β) â = 3.4608 85.7900 177.58 184.149 0.0799 0.7925
b̂= 5.0392
β̂= 1.6439
γ̂=50.4204

TL(α, β) α̂= 2.2410 112.0511 228.1022 232.4815 0.2510 -
β̂=174.011

OL(β) β̂=0.5895 181.7535 246.8953 249.085 0.3017 -

E(β) β̂= 0.3618 133.0921 268.1842 270.3739 0.35764 -
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Figure 8: Estimated cumulative distribution function for the data set
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6. Conclusions

The quality of the methods used in statistical analysis is eminently dependent on the underlying
statistical distributions. In this article, we proffered a new customized Lindley distribution.
The proposed distribution enfolds exponential and Lindley distributions as sub-models. Some
properties of this distribution such as quantile function, moments, moment generating function,
distributions of order statistics, limiting distributions of order statistics, entropy and autoregressive
time series models are studied. This distribution is found to be the most appropriate model
to fit the carbon fibers data compared to other models. Consequently, we propose the MOTL
distribution for sketching inscrutable lifetime data sets.
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[27] Ristić, M.M., Balakrishnan. (2012). The gamma-exponentiated exponential distribution.
Journal of Statistical Computation and Simulation, 82, 1191–1206.

[28] Shanker, R., Hagos, F, Sujatha, S. (2015). On modeling of Lifetimes data using exponential
and Lindley distributions. Biometrics & Biostatistics International Journal, 2, 5, 1-9.

[29] Shanker, R., Mishra, A.(2013a). A two-parameter Lindley distribution. Statistics in transition
new series, 14, 1, 45-56.

[30] Shanker, R. Mishra A. (2013b). A quasi Lindley distribution. African Journal of Mathematics
and Computer Science Research, 6, 4, 64-71.

[31] Shanker, R., Sharma, S., Shanker. R., (2013). A two-parameter Lindley distribution for
modeling waiting and survival times data. Applied Mathematics, 4, 363-368.

[32] Shannon, C.E. (1948). A Mathematical Theory of Communication. Bell System Technical
Journal, 27(3):379–423.

[33] Sharma, V,K, Singh, S., Singh, U. Agiwal, V. (2015). The inverse Lindley distribution: a
stress-strength reliability model with applications to head and neck cancer data. Journal of
Industrial and Production Engineering, 32, 3, 162-173.

[34] Thiago, A.N., Bourguignon, A.N.M., Cordeiro, G.M. (2016). The exponentiated generalized
extended exponential distribution. Journal of Data Science, 14, 393–414.

[35] Thomas S.P., Jose K.K., Tomy L. (2019). Discrete Harris Extended Lindley Distribution and
Applications, preprint.

[36] Tomy, L. (2018). A retrospective study on Lindley distribution, Biometrics and Biostatistics
International Journal, 7, 3, 163-169.

[Torabi and Montazari(2014)] Torabi, H., Montazari, N.H. (2014). The logistic-uniform distribu-
tion and its application. Communications in Statistics-Theory and Methods, 43, 2551–2569.

[37] Zakerzadeh, H., Dolati, A. (2009). Generalized Lindley distribution, Journal of mathematical
extension, 3, 2, 13-25.

[38] Zakerzadeh H, Mahmoudi E (2012). A New Two Parameter Lifetime Distribution: Model
and Properties. arXiv:1204.4248 [stat.CO], URL http://arxiv.org/abs/1204.4248.

[39] Zografos, K., Balakrishnan. N (2009). On families of beta-and generalized gamma generated
distributions and associated inference. Statistical Methodology, 6, 344–362.

RT&A, No 1 (72)
 Volume 18, March 2023

402



Abhishek Tyagi, Bhupendra Singh, Varun Agiwal, Amit Singh Nayal
ANALYSING RANDOM CENSORED DATA FROM DISCRETE TEISSIER MODEL

Analysing Random Censored Data from Discrete Teissier
Model

Abhishek Tyagi
1, Bhupendra Singh

1, Varun Agiwal
2, Amit Singh Nayal

1∗

•
1 Department of Statistics, Chaudhary Charan Singh University, Meerut, India

2Indian Institute of Public Health, Hyderabad, Telangana, India.
abhishektyagi033@gmail.com
bhupendra.rana@gmail.com

varunagiwal.stats@gmail.com
*amitnayal009@gmail.com

Abstract

This paper deals with the classical and Bayesian estimation of the discrete Teissier distribution with
randomly censored data. We have obtained the maximum likelihood point and interval estimator for the
unknown parameter. Under the squared error loss function, a Bayes estimator is also computed utilising
informative and non-informative priors. Furthermore, an algorithm to generate randomly right-censored
data from the proposed model is presented. The performance of various estimation approaches is compared
through comprehensive simulation studies. Finally, the applicability of the suggested discrete model has
been demonstrated using two real datasets. The results show that the suggested discrete distribution fits
censored data adequately and can be used to analyse randomly right-censored data generated from various
domains.

Keywords: Bayesian estimation; Classical estimation; Discrete Teissier distribution; Random
censoring.

1. Introduction

In many instances, the collection of data is constrained by time or budgetary limitations, making
it difficult to obtain the whole data set. Such partial data is known as censored data. Various
censoring schemes are available in the literature to examine this partial data. Conventional
Type I and Type II censoring techniques are the most often used censoring schemes. In Type
I censoring, the event is observed only if it occurs prior to some pre-specified time, whereas,
in Type II censoring, the study continues until the predetermined number of individuals are
observed to have failed. Random censoring is an another important censoring technique in the
literature, this censoring scheme occurs when the subject under study is lost or removed from
the experiment before its failure or event of intrest. This type of censoring commonly arises in
medical time-to-event studies for example in clinical trials some patients do not complete the
course of treatment and leave before the termination point. Therefore, the subject who leaves
the study area before the event of interest occurs has a randomly censored value. The random
censoring was introduced in literature by [1], he did so as part of his doctoral dissertation. For
more details about the censoring schemes, their generalization, and analysis, one can refer to [2].

Randomly censored lifetime data frequently occur in many applications like medical science,
biology, reliability studies, etc., which need to be analysed properly to make correct inferences
and suitable research conclusions. These data are often right censored because it is not possible to
observe the patients or the items under study until their death or patients may withdraw during
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the study period. In the existing literature, the random censoring scheme is widely studied under
continuous models [see [3]].

In recent years, researchers in a variety of domains have acknowledged the distinctive sig-
nificance played by discrete distributions. In certain circumstances, discrete distributions are
more suitable than continuous distributions, even if the data is collected on a continuous scale.
Also, discrete distributions are the only choice if the number of completed cycles of operation is
used to measure the lifetime of different types of equipment [see [4],[5],[6] and references cited
therein]. Most of the discrete models in the present literature were designed to fit the count data
primarily, and in most cases, they fail to capture the diversity of the censored data. In literature, a
few studies considered a random censoring scheme for discrete models, viz. [7] , [8], [9], and
recently [10], discussed inferences of discrete inverted Nadarajah-Haghighi distribution with
complete and random censored data. Due to the fact that most of the discrete distributions do
not sufficiently portray the variety of real-world censored data, there is always a need for novel
discrete distributions that can fit censored data adequately. One of such discrete distributions is
the Discrete Teissier (DT) distribution proposed by [11], which provides the flexibility to fit the
censored data with just a single parameter. Moreover, it can also model equi-, over-, and under-
dispersed, positively skewed, negatively skewed, and increasing failure data. The probability
mass function (PMF) of DT distribution is given by,

py = P[Y = y] = exp(1) exp(αy)(exp(−eαy)− exp(α − eα(y+1))); y = 0, 1, 2, ..., α > 0. (1)

Putting θ = exp(α), the PMF (1) can be written as

py = P[Y = y] = exp(1)θy(exp(−θy)− θ exp(−θ(y+1))); y = 0, 1, 2, ..., θ > 1. (2)

The cumulative distribution function (CDF) corresponding to PMF (2) is

F(y) = 1 − θy+1 exp(1 − θ(y+1)); y = 0, 1, 2, ..., θ > 1. (3)

In this paper, we investigate the features of the DT distribution under randomly censored data.
The article is organized as follows: The maximum likelihood estimator (MLE) for the model’s
parameter under randomly right-censored data is discussed in Section 2. Section 3 deals with the
Bayesian estimation of the unknown parameter. The algorithm to generate censored data from
the proposed model is given in Section 4. We use a Monte Carlo simulation analysis in Section 5
to investigate the characteristics of the different estimates established in the previous sections.
Section 6 deals with the real data analysis to study the applications of random censoring in DT
distribution. Finally, some concluding remarks are given in Section 7.

2. Method of maximum likelihood

2.1. Point Estimation

In this part, we compute the maximum likelihood point estimator for the DT distribution’s
parameter θ in the presence of random censored data. Let yi be the ith individual lifetime. In the
presence of right-censored observations, the ith individual contributes to the likelihood function
(LF) based on a random sample (yi, di) of size n as follows:

Li = [p(yi)]
di [S(yi)]

1−di ,

where S(yi) is the survival function and di is a censoring indicator variable, that is, di = 1 for an
observed lifetime and di = 0 for a censored lifetime (i = 1, 2, ..., n). Then, for the DT distribution
under random censoring, the LF of θ is given by

L(y, θ) = exp(n)θ∑n
i=1 (yi−di+1) exp

(
−∑n

i=1 θyi+1
)

∏n
i=1

[
exp(θyi+1 − θyi )− θ

]di
. (4)
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The log likelihood (LL) function corresponding to LF (4) is

LL = n +
(
∑n

i=1 (yi − di + 1)
)

log θ − ∑n
i=1 θyi+1 + ∑n

i=1 di log
[
exp(θyi+1 − θyi )− θ

]
. (5)

Taking the partial derivative of the LL function (5) with respect to the parameter θ, we get the
following normal equation,

∂LL
∂θ

=
1
θ

[
∑n

i=1 (yi − di + 1)− ∑n
i=1 (E2 + 1)− ∑n

i=1
di(θE1 + E3)

1 − θE1

]
= 0. (6)

where E1 = exp(θyi − θyi+1), E2 = (yi + 1) θyi+1 − 1 and E3 = θyi (yi − (yi + 1) θ).
The MLE of the parameter θ can be obtained by simplifying Equation (6); however, this equation
does not provide an analytical solution. As a result, we employ an iterative method such
as Newton-Raphson (NR) to compute the estimate computationally using built-in codes in R
software.

2.2. Interval Estimation

The MLE of the unknown parameter θ is not found in closed form, hence exact distribution of
MLE of θ cannot be derived. Therefore, it is infeasible to compute exact confidence interval for θ.
Hence, we will construct the asymptotic confidence interval (ACI) for θ using the asymptotic
distribution of MLE of θ. We know, the MLE θ̂ of θ, is consistent and asymptotic Gaussian

distribution with
√

n(θ̂ − θ) follows N(0, I−1(θ)), where I(θ) = E
(
− ∂2LL

∂θ2

)
. Therefore, the

variance of the estimator θ̂ can be computed as V(θ̂) ≈ J−1(θ̂) where J(θ̂) = −
(

∂2 log L
∂θ2

)∣∣∣
θ=θ̂

. The
second-order partial derivative of LL function (5) is

∂2LL
∂θ2 = − 1

θ2

n
∑

i=1
(yi − di + 1)− 1

θ2

n
∑

i=1
yi(1 + E2) +

1
θ2

n
∑

i=1

di((1−θE1)(E2
3−yi(E3−θyi ))−(θE1+E3)

2)

(1−θE1)
2 .

Hence, the 100 × (1 − γ)% ACI for the parameter θ is

θ̂ ∓ Zγ/2

√
V(θ̂),

where Zγ/2 is the upper γ/2 quantile of the standard Gaussian distribution.

3. Bayesian estimation

The Bayesian estimation blends prior and experimental information in terms of prior density and
LF, respectively, to derive posterior inferences about the unknown quantities. The prior infor-
mation is generally divided into two categories: informative priors and non-informative priors.
Here, we will perform Bayesian estimation using both informative and non-informative priors to
obtain Bayes estimators of the unknown parameter. Furthermore, the highest posterior density
(HPD) interval for the parameter θ is also derived.

Case 1: When a probability distribution for the parameter θ provides adequate and full
information, informative prior (IP) is used. In this scenario, we suppose θ has an exponential
prior distribution with a density as

g(θ) = λe−λ(θ−1); θ > 1, λ > 0. (7)

By combining prior distribution (7) with the LF (4) using the Bayes rule, the posterior distribution
of θ given data is

P1(θ|y) ∝ θ∑n
i=1 (yi−di+1) exp

(
−

n

∑
i=1

θyi+1 − λθ

)
∏n

i=1 (exp(θ(yi+1) − θyi )− θ)
di (8)

A loss function reflects the statistical risk (error) that arises while estimating parameters. It is a
function of true and estimated parameters and is used to choose the best estimator with the lowest
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risk. The squared error loss function (SELF), which gives equal weight to overestimation and
underestimation, is one of the most often used loss functions in literature. The Bayes estimator of
a parameter under SELF is simply the expectation of that parameter with respect to its posterior
distribution.

In the case of proposed distribution, the Bayes estimator of a function of the parameter θ
under SELF, say ψ(θ) is

ψ̂(θ) = ∫∞
1 ψ(θ)P1(θ|y)dθ. (9)

The integral (9) cannot be given explicitly because the posterior distribution (8) is not in closed
form. In this case, we may use a family of Markov Chain Monte Carlo (MCMC) algorithms to
mimic draws from a posterior distribution. The Metropolis-Hastings (MH) algorithm [[12] and
[13]] is a prominent approach in MCMC that generates a chain of random samples based on a
given function, which may then be used to get Bayes estimates of interest.

To implement the MH algorithm for the proposed model, we go through the following steps:
Step 1. Set initial value of θ as θ(0) and begin with i = 1.

Step 2. Propose a move θ∗(i), with candidate proposal density g
(

θ(i−1), θ∗(i)
)

.
Step 3. Calculate the Hastings ratio

ρ
(

θ(i−1), θ∗(i)
)
=

P1

(
θ∗(i)|y

)
g
(

θ∗(i), θ(i−1)
)

P1

(
θ(i−1)|y

)
g
(

θ(i−1), θ∗(i)
) .

Step 4. Accept the proposed move θ∗(i) with probability τ = U (0, 1) ≤ min
[
1, ρ

(
θ(i−1), θ∗(i)

)]
and reject with probability 1 − τ.
Step 5. Set i = i + 1.
Step 6. Repeat steps 2-5 for all i = 1, 2, 3, ..., M where M is large, and simulate the sequence
of samples of θ(i), i = 1, 2, 3, ..., M.
Step 7. The Bayes estimator of θ under SELF is calculated as

θ̂ =
1

M − m

M

∑
i=(m+1)

θ(i),

where m is the burn-in iterations of the Markov Chain.
To compute the HPD interval for θ, let θ(m+1) ≤ θ(m+2) ≤ ... ≤ θ(M) denote the ordered

values of θm+1, θm+2, ..., θM . Then, by [14] algorithm, the 100 × (1 − γ)% HPD interval for θ is
(θ(m+i∗), θ(m. i∗+[(1−γ)(M−m)])), where i∗ is chosen so that,

θ(m+i∗+[(1−γ)(M−m)]) − θ(m+i∗) = min
m≤i≤(M−m)−[(1−γ)(M−m)]

(θ(m+i+[(1−γ)(M−m)]) − θ(m+i)).

Case 2: In non-informative prior (NIP), least or no information is available about the unknown
parameter. For the proposed model, we perform the Bayesian analysis, when θ has NIP of the
following form,

g(θ) ∝
1
θ

; θ > 1. (10)

The un-normalized posterior distribution of θ given data is computed by combining prior
distribution (10) with LF (4).

P2(θ|y) ∝ θ∑n
i=1 (yi−di)+(n−1) exp

(
−

n

∑
i=1

θyi+1

)
. ∏n

i=1 (exp(θ(yi+1) − θyi )− θ)
di . (11)

Since the posterior distribution P2(θ|y) is again in non-closure form, so the Bayes estimator of θ
is cannot be solved analytically. Therefore, using a similar algorithm as we have done in case 1,
we can obtain the required point and interval estimates.
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4. Algorithm to simulate random right censored data

In this section, we present a simple algorithm to generate the randomly right-censored data from
the proposed model [15]. The algorithm consists of the following steps:
Step 1. Fix the value of the parameter θ.
Step 2. Draw n random pseudo from Uniform(0,1) i.e. ui ∼ U(0, 1); i = 1, 2, ..., n.
Step 3. Obtain y

′
i = F−1(ui); i = 1, 2, ..., n, where F−1(•) is defined in Equation (6).

Step 4. Draw n random pseudo from ci ∼ U(0, max(y
′
i)); i = 1, 2, ..., n. This is the distribution

that controls the censorship mechanism.
Step 5. If y

′
i ≤ ci, then yi = [y

′
i] and di = 1, i = 1, 2, ..., n, else, yi = [ci] and di = 0, i = 1, 2, ..., n.

Hence, pairs of values (y1, d1), (y2, d2), ..., (yn, dn) are obtained as the random right-censored
data.

5. Simulation study

The performance of the MLE and Bayes (IP and NIP under SELF) estimator under randomly
right-censored data is investigated in this section via a simulation study. The whole study is
based on random samples drawn from the DT distribution of sizes 20, 25,...,150. The parametric
values of the parameter are taken as 1.05, 1.50, 2.0, and 3.0. To produce the needed random
variable Y from the DT distribution, we employed the conventional strategy of first drawing the
pseudo-random value X from the continuous Teissier distribution and then discretizing this value
to store Y. A random variable X may be generated by using the following formula:

Q(u) =
1
α

log
[
−W−1

(
u−1

exp(1)

)]
; 0 < u < 1,

where θ = exp(α) and W−1 denotes the Lambert function and its value can be easily obtained
by the inbuilt R-function lambertWm1 available in the package lamW. The method described in
Section 4 is utilized to produce the required random right-censored data. All simulation results
are based on 2000 replicates for the different sample sizes considered for each parameter setting.
We have calculated the mean-squared error (MSE) and the average absolute bias (AB) for MLE
and Bayes point estimates and average width (AW) of 95% ACI and HPD intervals with their
respective coverage probability (CP) based on these 2000 values, and the resulting findings are
shown in Figures 1-3. Notably, when Bayesian estimation is used, an estimate for the parameter
of the DT distribution is made using an exponential prior as an IP and a uniform prior as a NIP.
Under exponential prior, the value of the hyper-parameter is calculated so that the expectation
of the related prior density of the unknown parameter is equal to its actual parametric value.
In this estimation scenario, we drew 51,000 MCMC samples for the parameter of the proposed
distribution using the MH algorithm, excluding the first 11,000 samples as a burn-in phase to
eliminate the effect of initial values. Additionally, to nullify the autocorrelation between successive
draws, every tenth observation has been preserved. We have finally calculated the posterior
quantities of interest by using generated posterior samples.

The following are some important inferences that are drawn from Figures 1-3:
• The MLE and Bayes estimator of the unknown parameters show the consistency property,

i.e., the MSE reduces as the sample size rises.
• As n becomes larger, the average AB approaches zero.
• The Bayes estimator with IP performs better as compared to the MLE and Bayes estimator

with NIP.
• The AW of HPD intervals under IP is lesser than those obtain under ACI and HPD with

NIP.
• For large values of the parameter θ, all estimation methods produce nearly similar results.

A similar trend is observed when sample size n becomes large.
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Figure 1: The MLE and Bayes estimate for (i) θ =1.05 (ii) θ =1.50 (iii) θ =2.0 (iv) θ =3.0.
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Figure 2: The classical AW and CP for (i) θ =1.05 (ii) θ =1.50 (iii) θ =2.0 (iv) θ =3.0.

6. Application to random censored data

Here, we examine two real datasets to demonstrate the applicability of the DT model to censored
data. These data sets along with their fitting are described as follows:

The first data set (I): This data set consists of failure times for Epoxy Insulation Specimens
at the voltage level 57.5 Kv [see [16], pp. 335]. The failure times, in minutes, for the insulation
specimens are given below (censoring times are indicated with asterisks)
510, 1000*, 252, 408, 528, 690, 900*, 714, 348, 546, 174, 696, 294, 234, 288, 444, 390, 168, 558, 288.
Using Kolmogorov-Smirnov (K-S) statistics, we now evaluate the suitability of the DT distribution
for modelling the above data. The K-S statistic and associated p-values of 0.17219 and 0.5936
indicate that the proposed model with MLE and associated standard error (SE) in parenthesis
is 1.00195 (0.00018) sufficiently reflects the diversity of the data. Figure 4 (upper left panel)
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Figure 3: The HPD AW and CP for (i) θ =1.05 (ii) θ =1.50 (iii) θ =2.0 (iv) θ =3.0.

depicts the unique existence of MLE, whereas Figure 4 (upper right panel) demonstrates that
the suggested model captures the data accurately. In addition, Table 1 displays the ACI, Bayes
estimates, HPD interval with NIPs, and K-S statistics with its p-value.

The second data set (II): This data come from a nine-month study on the effect of known
carcinogens DES and DMBA in the induction of mammary tumors in female rats [see [16], pp.
339]. After treatment, the times to tumor appearance for the animals were noted. The censored
observations are indicated by asterisks. The data values are
57*, 67*, 88, 94, 100, 107, 113, 123, 123, 125, 129, 129, 129, 136, 136, 143, 144, 191, 191, 192, 211, 218,
266*, 266*.
For this data, the MLE (SE) of the parameter θ is 1.00658(0.00058). Now, using this estimate for
the considered data, the K-S statistics and associated p-value are 0.2354 and 0.1396, respectively.
This well-known goodness-of-fit measure indicates that the suggested discrete model is adequate
for modelling the given censored data. The unique existence of the MLE can be verified by Figure
4 (lower left panel). Graphically, from Figure 4 (lower right panel), we can conclude that the DT
model closely follows the pattern of this censored data. Also, we have obtained the ACI, Bayes
estimates and HPD interval with NIPs, and the K-S statistics with its p-value, and they can be
viewed in Table 1.

Table 1: Classical and Bayesian estimates of censored data set I and II .

Data set Estimates K-S P-value

I

MLE (SE) 1.00193 (0.00018)
0.17219 0.5936

ACI [1.00158, 1.00228]
Bayes (SE) 1.00199 (0.00028)

0.1596 0.68790
HPD [1.00148, 1.00246]

II

MLE (SE) 1.00658(0.00058)
0.23549 0.13960

ACI [1.00546, 1.00773]
Bayes (SE) 1.00660 (0.00061)

0.23465 0.14220
HPD [1.00549, 1.00766]
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Figure 4: The –LL and CDFs plots for data set I and II.

7. Conclusion

In this article, the one-parameter DT distribution introduced by [11] was studied, taking into
account the use of right-censored data. We use both classical and Bayesian methods to estimate
the unknown parameter of the DT distribution. Furthermore, an algorithm to produce randomly
right-censored data is also provided. An extensive simulation study is presented for the assess-
ment of the various estimation procedures under censored data. Finally, the uselfuness of the
proposed model is illustrated with two examples considering right censored real data sets. The
study suggested that the proposed model can be used to analyse randomly right-censored data
generated from various domains. Moreover, the DT distribution has the potential to attract more
comprehensive applications in a variety of fields. A future plan of action regarding the current
study might be an examination of the other types of censored data using the proposed model.
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Abstract

In this paper, we proposed a four parameter Gompertz Exponentiated Inverse Rayleigh Distribution. 
The proposed distribution is an extention of the Exponentiated Inverse Rayleigh Distribution which 
was compounded with the Gompertz generated family of distribution. Several of its statistical and 
mathematical properties including quantiles, median, moments, skewness and kurtosis are derived. Also, 
the reliability and hazard rate functions are derived. To estimate the new model parameters, the maximum 
likelihood technique is used. To evaluate the effectiveness of the estimators in this model, a simulation 
study was carried out and the result of the simulation study indicated that the model is consistent since 
the value of the mean square error decrease as sample size increases. Finally, the usefulness of the proposed 
distribution is illustrated with two datasets and it is discovered that this model is more adaptable when 
compared to well-known models..

Keywords: Maximum likelhood estimation; Skewness; Kurtosis; Probability density function;
Cummulative probability distribution.

1. Introduction

The classical distributions frequently do not offer an appropriate match to some real data sets in
real-world circumstances. In order to create novel distributions, researchers devised numerous
generators by inserting one or more parameters. The newly generated distributions are more
adaptable than the classical distributions.

"Gompertz[10] introduced a continuous probability distribution known as the Gompertz
probability distribution (GD). The GD is employed to explore nature of human mortality by
determining the value of life’s unexpected events. Several branches of statistics have used the
Gompertz distribution where survival time is necessary such as in demography Vaupel [18],
Preston et al [16] and in actuary Willemse and Koppelaar[19); in gerontology, medicine, biology,
and related sciences Economos [7], Brown and Forbes [6]." In this article, the Gompertz family of
distributions is used to create a novel model. Some authors that have employed the Gompertz
Family of distributions include : Halid and Sule [12], " Alizadeh et al. [4], and Abdal-Hameed et
al. [1]". Halid and Sule [12] defined the cummulative density function (CDF) of the Gompertz
family of distribution as:

FX(x) = 1 − e
(

φ
η

)
[1−(1−G(x))−η ] (1)

and the corresponding PDF to (1) is given by

fX(x) = φg(x) [1 − G(x)]−η−1 e
(

φ
η {1−[1−G(x)]−η}

)
(2)

where φ and η are the extra shape parameters
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The article is broken down into the following sections: In Section 2, the new distribution GEIR’s
derivation is described. In Section 3, the mathematical characteristics of the new distribution are
explained and the Maximum likelihood estimation of the distribution is used to estimate the
parameters. In Section 4, we presented and explored the new distribution’s practical applicability.
Finally, Section 5 displays the concluding remarks.

2. Derivation of Gompertz Exponentiated Inverse Rayleigh Distribution

In this section, we derived the Gompertz Exponentiated Inverse Rayleigh (GEIR) distribution.
Rao and Mbwambo [17], introduced the CDF and PDF of Exponentiated Inverse Rayleigh (EIR)
Distribution as

GX(x) = 1 −
(

1 − e
ξ
x

)α
; x ≥ 0, ξ > 0, α > 0 (3)

The corresponding pdf is given as:

gX(x) =
2αξ2

x3 e−
(

ξ
x

)2
(

e−
(

ξ
x

)2
)α−1

; x ≥ 0, ξ > 0, α > 0 (4)

putting equation (3) into (1) we have the CDF of Gompertz Exponentiated Inverse Rayleigh
(GEIR)

FX(x) = 1 − e
(

φ
η

)[
1−(1−exp(−(ξ/x)2))

−ηα
]

x ≥ 0, ξ > 0, α > 0, η > 0, φ > 0 (5)

Figure 1: CDF plot of GEIR distribution for different parameter values

Now, putting (3)and (4) into (2), we now obtained the PDF of the proposed GEIR distribution
given by

fX(x) = 2φξ2x−3e−
(

ξ
x

)2
[

1 − e−
(

ξ
x

)2
]−αη−1

e

φ
η

1−
[

1−e−
(

ξ
x
)2]−αη


(6)

where η and α are shape parameters, φ and ξ are scale parameters.
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Figure 2: PDF plot of GEIR distribution for different parameter values

3. Properties of GEIR Distribution

3.1. Linear Mixture of GEIR

Given the CDF and PDF of GEIR distribution ( 5) and (6), the expressions

e

φ
η

1−
[

1−e−
(

ξ
x
)2]−ηα


=

∞

∑
k

(−1)k

m!

 φ

η

1 −
[

1 − e−
(

ξ
x

)2
]−ηα


k

=
∞

∑
k

(−1)k

m!

(
φ

η

)k
1 −

[
1 − e−

(
ξ
x

)2
]−ηα


k

1 −
[

1 − e−
(

ξ
x

)2
]−ηα


k

= 2φαξ2x−3e−
(

ξ
x

)2 ∞

∑
k

∞

∑
m

(−1)
m!

k+m ( k
m

)[
1 − e−

(
ξ
x

)2
]−ηα(m+1)−1

f (x) =
∞

∑
k

∞

∑
m

(−1)
m!

k+m ( k
m

)
2φαξ2x−3e−

(
ξ
x

)2
[

1 − e−
(

ξ
x

)2
]−ηα(m+1)−1

[
1 − e−

(
ξ
x

)2
]−ηα(m+1)−1

=
∞

∑
k

k

∑
m

∞

∑
n

(−1)
m!

k+m+n ( k
m

)(
−ηα(m + 1)− 1

n

)
e−n

(
ξ
x

)2

So therefore, the PDF of GEIR distribution can be expressed as

f (x) = ωk,m,n2 (n + 2) φαξ2x−3

(
e−
(

ξ
x

)2
)n+1

where

ωk,m =
∞

∑
k

k

∑
m

∞

∑
n

(−1)
m! (n + 2)

(
k
m

)(
−ηα(m + 1)− 1

n

)
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and the CDF of GEIR distribution can be expressed as

F(x) = ωk,m,n φα

(
e−
(

ξ
x

)2
)n+2

where gn+1(x) is the PDF of Gompertz Exponentiated Inverse Rayleigh distribution with shape
parameter n+2

3.2. Survival Function

According to Ieren and Balogun [13],"the survival function discribes the probability that a unit, or
component, or individual will not fail at a given time". A survival function is generally expressed
as

S(x) = 1 − F(x; φ, α, η, ξ) (7)

Therefore the survival function of GEIR distribution is derived by substituting (5) into (7) which
resulted to

SX(x) = e

φ
η

1−
[

1−e−
(

ξ
x
)2]−αη


(8)

Figure 3: GEIR distribution survival plot for various parameter values

3.3. Hazard Function

The hazard function is given as

h(x) =
f (x)

1 − F(x)
(9)

The hazard function for GEIR distribution is derived by substituting (5) and (6) into (9) and it
resulted into
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hX(x) =

2φξ2x−3e−
(

ξ
x

)2
[

1 − e−
(

ξ
x

)2
]−αη−1

e

φ
η

1−
[

1−e−
(

ξ
x
)2]−ηα



e

φ
η

1−
[

1−e−
(

ξ
x
)2]−ηα


(10)

hX(x) = 2φξ2x−3e−
(

ξ
x

)2
[

1 − e−
(

ξ
x

)2
]−αη−1

(11)

Figure 4: Hazard plot of GEIR distribution for different parameter values

3.4. Cumulative Hazard Function

From this definition, the cumulative hazard function, HX(x), of a continuous random variable, X,
which follows the GEIR distribution is obtained.

HX(x) = −log[SX(x)] (12)

substituting equation (8) into (12), we obtain

HX(x) = −log

e

φ
η

1−
[

1−e−
(

ξ
x
)2]−ηα


 (13)

HX(x) = − φ

η

1 −
[

1 − e−
(

ξ
x

)2
]−ηα

 (14)

3.4.1 Reversed Hazard Function

The reversed hazard function can be obtained by applying the formula below:

τ(x) =
f (x)
F(x)

(15)
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Hence, we obtain the reversed hazard function by substituting (5) and (6) in (15)

τ(x) =

2φξ2x−3e−
(

ξ
x

)2
[

1 − e−
(

ξ
x

)2
]−αη−1

e

φ
η

1−
[

1−e−
(

ξ
x
)2]−αη



1 − e
(

φ
η

)
[1−(1−exp(−(ξ/x)2))

−ηα]
(16)

3.5. Quantile Function, Median, Skewness and Kurtosis

The pth quantile of the GEIR distribution is derived as

QX(p) =
ξ√

− log
(

1 −
[
1 − η

φ log(1 − p)
]− 1

ηα

) (17)

" we have the first three", Q11 = Q(1/4) and Q3 = Q(3/4), that is by substituting value of p=0.25
and p=0.75 in Xp, respectively."Also Quantile is also used in finding the skewness and kurtosis of
the distribution."

3.5.1 Median

Substitute p=0.5 in (17), we have

Me = QX(0.5) =
ξ√

− log
(

1 −
[
1 − η

φ log(0.5)
]− 1

ηα

) (18)

3.5.2 Skewness and Kurtosis

According to Galton [9] and Moors[15] "we can obtain the skewness (Sk) and kurtosis (Ku)
measures, respectively for GEIR distribution using the following expression"

”Sk =
Q( 3

4 ) + Q( 1
4 )− 2Q( 1

2 )

Q( 3
4 )− Q( 1

4 )
” (19)

and

”Ku =
Q( 7

8 )− Q( 5
8 ) + Q( 3

8 )− Q( 1
8 )

Q( 6
8 )− Q( 2

8 )
” (20)

3.5.3 Moment

In this section, we consider the moment of the GEIR distribution. Let X = (x1, x2, . . . ,xn) be a
sample drawn from GEIR distribution with pdf, then the rth moment µ

′
r can be written as

µ
′
r=
∫ ∞

0
xr f (x)dx

µ
′
r=
∫ ∞

0
xrωk,m,n2 (n + 2) φαξ2x−3

(
e−
(

ξ
x

)2
)n+1

dx

after some mathematical derivations, we obtained the rth moment as

=ωk,m,n2 (n + 2) (n+1)(r/2−1)φαξ2Γ(1− r
2
) r< 2
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3.6. Maximum Likelihood Estimation

Due to its consistency, asymptotic efficiency, and invariance property, the Maximum Likelihood
Estimation (MLE) method is frequently used to estimate unknown parameter(s). Let x1, x2, . . . , xn
be random sample of size n drawn from GEIR distribution, then the likelihood can be expressed
as :

L(φ, ξ, η, α) = 2n φ2ξ2n
n

∑
i=1

x−3e
−∑n

i=1

(
ξ2

x2

)
n

∏
i=1

[
1 − e−

ξ2

x2

]−1−ηα

e
−∑n

i=1

 φ
η

1−

1−e
− ξ2

x2

−αη
(21)

and the log-likelihood of expression (21) can be expressed as

l = log L = n ln
(

φαξ2
)
− ηα

n

∑
i=1

ln
(

1 − e−
ξ2

x2

)
− ξ2

n

∑
i=1

(
1
x2

)
+

φ

η

n

∑
i=1

(
1 −

(
1 − e−

ξ2

x2

)−ηα
)

−3
n

∑
i=1

ln(x)−
n

∑
i=1

ln
(

1 − e−
ξ2

x2

)
(22)

Differentiating (22) with respect to φ, ξ, α and η, if equated to zero, we obtain the following
estimating equations

∂l
∂φ

=
n
φ
+

1
η

n

∑
i=1

1 −
[

1 − e−
(

ξ
x

)2
]−ηα

 (23)

∂l
∂ξ

=
2n
ξ

− 2ηαξ
n

∑
i=1

 e−
ξ2

x2

x2
(

1 − e−
ξ2

x2

)
− 2ξ

n

∑
i=1

(
2
x2

)
+ 2φαξ

n

∑
i=1


(

1 − e−
ξ2

x2

)−ηα

e−
ξ2

x2

x2
(

1 − e−
ξ2

x2

)


−2ξ
n

∑
i=1

− e−
ξ2

x2

x2
(

1 − e−
ξ2

x2

)
 (24)

∂l
∂η

= −α
n

∑
i=1

ln
(

1 − e−
ξ2

x2

)
+

αφ

η

n

∑
i=1

[(
1 − e−

ξ2

x2

)−ηα

ln
(

1 − e−
ξ2

x2

)]
− φ

η2

n

∑
i=1

(
1 −

(
1 − e−

ξ2

x2

)−ηα
)

(25)

∂l
∂α

=
n
α
− η

n

∑
i=1

ln
(

1 − e−
ξ2

x2

)
+ φ

n

∑
i=1

[(
1 − e−

ξ2

x2

)−ηα

ln
(

1 − e−
ξ2

x2

)]
(26)

The maximum likelihood estimator θ̂ = (φ̂, ξ̂, η̂, α̂) of θ = (φ, ξ, η, α) is obtained by solving the
nonlinear system of equations (23) - (26). "In this study, we used the Newton Raphson technique,
a nonlinear optimization procedure, to numerically optimize the log-likelihood function shown
in" (22). The asymptotic distribution of the element of the 4 × 4 observed information matrix of
GEIR distribution can be expressed as

√
n(θ̂ − θ) ∼ N4(0, Σ−1) (27)

where Σ is the expected information matrix. Thus, the expected information matrix is expressed
as

Σ−1 = −E


∂2l
∂φ2

∂2l
∂φ∂ξ

∂2l
∂φ∂η

∂2l
∂φ∂α

∂2l
∂φ∂ξ

∂2l
∂ξ2

∂2l
∂η∂ξ

∂2l
∂α∂ξ

∂2l
∂φ∂η

∂2l
∂η∂ξ

∂2l
∂η2

∂2l
∂η∂α

∂2l
∂φ∂α

∂2l
∂α∂ξ

∂2l
∂η∂α

∂2l
∂α2

 (28)
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The solutions to be obtained by solving (28) will yield the asymptotic variance and covariances of
the parameters φ̂, ξ̂ , α̂ and η̂. Using (28), the approximate 100(1 − λ)% confidence intervals for
φ, ξ, α and η can be expressed as
φ̂ ± Z λ

2

√
Σ̂11,ξ̂ ± Z λ

2

√
Σ̂22, η̂ ± Z λ

2

√
Σ̂33, α̂ ± Z λ

2

√
Σ̂44

where Z λ
2

is the upper λth percentile of the standard normal distribution. where

d2

dη2 =
n

∑
i=1


2φ

(
1 −

(
1 − e−

ξ2

x2

)−ηα
)

η3

 (29)

d2

dφ2 = − n
φ2 (30)

d2

dα2 = − n
α2 (31)
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 (32)

"

∂2

∂ξ∂φ
=

n

∑
i=1


2n
(

1 − e−
ξ2

x2

)−ηα

ηαξe−
ξ2

x2

x2
(

1 − e−
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)
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 (33)

∂2

∂α∂φ
= 0 (34)

∂2

∂η∂φ
= −

n

∑
i=1


(

1 −
(

1 − e−
ξ2

x2

)−ηα
)

η2

 (35)

∂2

∂η∂α
= 0 (36)
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∂2

∂η∂ξ
= −

n

∑
i=1


2nφ

(
1 − e−

ξ2

x2

)−ηα

ηαξe−
ξ2

x2

x2
(

1 − e−
ξ2

x2

)
η2

 (37)

∂2

∂α∂ξ
= 0 (38)

4. Data Analysis

4.1. Simulation Studies

"In this section, we simulated data set for sizes" n = 30,100,200 and 500 that follows Gom-
pertz "Exponentiated Inverse Rayleigh distribution using different parameter values for the four
parameters" φ, η, α and ξ "using the quantile function (inverse transformation method of simula-
tion). We considered the following combinations for the parameters" (φ, η, α, ξ) = ((0.5,1,1,0.8),
(1.5,0.6,1.2,1.5), (0.5,0.5,0.5,0.5 ) and (1,0.5,0.5,1))at different sample sizes n = 30, 100, 200, and 500.
The results presented in Table 1 displayed the true values of (φ, η, α, ξ) and estimated values of
(φ, η, α, ξ) with the standard errors. The results are replicated 10,000 times and the average result
were presented in the Table 1.

Table 1: The MLE estimates and their MSE for different parameter values

φ η α ξ MSEφ MSEη MSEα MSEξ

30 φ = 0.5
η = 1
α = 1

ξ = 0.8

0.4164 0.6713 1.0835 0.6710 5.9423 9.5783 15.4494 0.1593
100 0.5453 1.4859 0.6865 0.7407 2.7936 7.6042 3.5094 0.1109
200 0.4947 0.9795 1.0074 0.7908 2.6984 5.3368 5.4865 0.0784
500 0.4410 1.3019 0.8647 0.7593 1.2450 3.6662 2.4340 0.0556
30 φ = 1.5

η = 0.6
α = 1.2
ξ = 1.5

1.1616 0.7094 0.8432 1.2341 16.8549 10.3031 12.2263 0.2242
100 1.0910 1.0760 0.8447 1.3581 8.7396 8.6236 6.7624 0.1484
200 1.0830 0.6560 1.2001 1.4536 5.4328 3.2944 6.0152 0.1018
500 0.8998 0.7517 1.2599 1.4447 5.4193 4.5324 7.5899 0.0701
30 φ = 0.5

η = 0.5
α = 0.5
ξ = 0.5

1.8939 1.3197 0.1331 0.4055 14.6817 10.2453 1.0298 0.0964
100 0.4297 0.5878 0.4620 0.4533 3.1636 4.3259 3.3989 0.0672
200 0.4996 0.5109 0.4939 0.4895 4.1287 4.2278 4.0834 0.0474
500 0.5095 0.7248 0.4092 0.4760 1.5357 2.1832 1.2322 0.0317
30 φ = 1

η = 0.5
α = 0.5
ξ = 1

1.3023 0.5704 0.3324 0.8097 27.7198 12.1465 7.0727 0.1621
100 0.9354 0.7846 0.3940 0.9009 4.7474 3.9884 1.9979 0.1091
200 0.9282 0.5241 0.5117 0.9699 4.5882 2.5960 2.5287 0.0763
500 0.9232 0.7251 0.4500 0.9601 5.0199 3.9469 2.4472 0.0514

4.2. Data Description

"The strength data was originally reported by Badar and Priest [5] where the strength is measured
in GPA for single carbon fibers and impregnated 1000-carbon fiber tows at gauge lengths of
20 mm. These data set were fitted to GEIR distribution, the Half- Logistics Inverse Rayleigh
(HLIR) distribution by Almarashi et al [3] and the Type II Topp-Leone Inverse Rayleigh (T2TLIR)
distribution by Mohammed and Yahia [14]. Other distributions that have been fitted to these
same data are the Transmuted Inverse Rayleigh distribution (TIR) by Ahmad et al [2], the Odd
Frechet Inverse Rayleigh (OFIR) distribution by Elgarhy and Alrajhi [8], one parameter Inverse
Rayleigh (IR) by Trayer [20]."
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Data I: carbon fibers Strength (20mm) Data set

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027,
2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382,
2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648,
2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090,
3.096, 3.128, 3.233, 3.433, 3.585, 3.585.

Figure 5: Empirical and theoretical plot of Carbon

Table 2 shows the summary statistics of the GEIR, HLIR, T2TLIR, TIR, OFIR, and IR distribu-
tions. These five distributions are fitted to data 1 using maximum likelihood estimation.

Sule Omeiza Bashiru and Halid Omobolaji Yusuf
ON GOMPERTZ EXPONENTIATED INVERSE RAYLEIGH DISTRIBUTION

RT&A, No 1 (72) 
Volume 18, March 2023

421



Data II: Patients receiving an analgesic dataset

"The data set is taken from Gross and Clark [11] which consists of 20 observations of patients
receiving an analgesic " 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3,
1.6, 2.0

Figure 6: Empirical and theoretical plot for Patients receiving an analgesic

Table 3: Estimates and Goodness-of-fit measures based on AIC, BIC, HQIC, K-S values for
Patients receiving an analgesic
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5. Conclusion

In this study, a proposed four parameter distributions are added to Gompterz family of distri-
bution called Gompterz exponentiated Inverse Rayleigh (GEIR). Some structural mathematical
properties; Moment, Order Statistic, Skewness and kurtosis of the derived model are obtained.
A simulation study is carried out to estimate the behaviour of the shape and scale parameters,
also maximum likelihood estimation method was employed to estimate the parameters of the
distribution and simulation studies were performed to assess the flexibility of the proposed
distribution. For the simulated dataset, the result presented in Table (1), from the result, we
observed that the estimated values gotten are close to the predefined parameters and that as n
increases the MSE reduces which confirms to the law of large numbers.

However, application of two real-life data set shows that the GEIR has strong and better fit than
other competing models i.e., the data sets were fitted to the Half- Logistics Inverse Rayleigh (HLIR)
distribution and the Type II Topp-Leone Inverse Rayleigh (T2TLIR). Other distributions that have
been fitted to these same data are the Transmuted Inverse Rayleigh distribution (TIR), the Odd
Frechet Inverse Rayleigh (OFIR) distribution, exponentiated inverse Rayleigh distribution (EIR),
Weibul Rayleigh (WR), Gamma Rayleigh (GR) , one parameter Inverse Rayleigh (IR) distributions
using goodness of fit and information criterion.
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Abstract 
 

The article describes the application of the simulation modeling of tasks of the interference theory of 
reliability (SSI - stress - strength interference reliability model) in the MATLAB programming 
language. It points to the possibility of creating your own purpose-built models designed to predict 
the evolution of the reliability of the technical system during the user's interactive activity. Reliability 
simulation by changing load and resistance parameters makes it possible to find acceptable reliability 
parameters. 
 
Keywords: reliability, MATLAB programming, failure 
 
 

1. Introduction 
 

Systems simulation is currently one of the most progressive means to investigate the 
operation of complex systems, which can be applied to most technical problems showing the nature 
of service processes. Simulation modelling of processes nowadays forms the basis of scientific 
research in several scientific fields. Even though modelling methods and simulation tools were 
developed based on different scientific disciplines, knowledge and methods of system simulation 
can be transferred from one discipline to another and applied in several scientific fields. The 
theoretical basis for the management of such a specific area is the knowledge from various scientific 
disciplines, which enter the research process and thus enable the research of the given area.  
From the research possibilities of the given methods, it follows that computer simulation and 
modeling of systems has a primary position, which allows us to: 

• describe and express processes whose analytical solution we do not know, 
• to simplify the solution of complex mathematical problems, 
• shorten time-consuming experiments, 
• carry out experiments of new projects, 
• quickly and efficiently analyze changes and assess their consequences, 
• examine many failure states and assess their variants. 

It is most appropriate to use the following procedure to examine the systems defined in this 
way: 
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1. We will determine the properties of system elements and the relationships between them and the 
environment through analysis. We select and consider only those that are essential from the point 
of view of the function of the system and the objectives of the investigation. We will neglect the 
unimportant features of the system. 
2. We will acquire specific knowledge of the necessary statistical characteristics (e.g. the reliability 
of machines and equipment, which allow us to express the probability of the occurrence of random 
failures - failure-free, their groups, subgroups and requirements for restoring their operability - 
repairability). In this way, we can express the basic states out of several possible ones in which the 
system element is located. 
3. We will describe the system theoretically. We create an idea about the system of the so-called 
theoretical model. We assign the modeled system to a different system based on similarity, according 
to certain criteria - called a model, or computer model. 
4. We transform the system or its subsystem into a computer simulation model that imitates the 
current idea of the simulated system and its movement by implementing a simulation program on 
the computer. 
5. We will perform simulation experiments with the simulation model, which allow us to monitor 
the values of important parameters of the model, implement changes in the studied model and 
determine their effects on the function of the system. 
6. Based on the evaluation of the simulation experiments, we will propose or implement changes in 
the investigated system 

 
The inference theory of reliability originates from a concept based on the comparison of the 

mutual connection of the selected reliability quantity. It is understood and described by 
deterministic principles and is based on determining and respecting the values of reliability 
indicators [1]. The approaches described by the inference theory of reliability are based on the 
assumption that a failure or a failure function occurs when the resistance limit of the object is 
exceeded, i.e. ability to withstand stress. An element of a technical system can fulfil its function if it 
must be sufficiently resistant to all loads that may act on it. From the internal and external 
environment that influence such an element. 

 
This is an assessment approach that is based on the deliberate oversizing of the object with 

the expression of the safety factor against failure (SF - safety factor) or safety level (SM - safety 
margin). If the stress R exceeds the strength value S of the element given by the structural design, a 
failure will occur.  

 

                                                         𝑆𝐹 = !
"
 𝑜𝑟 𝑆𝐹 = !#$%

"#&'
                                                              (1) 

    
                                                             𝑆𝑀 = !#$%("#&'

!#$%
                                                                  (2) 

Where: 
SF – safety factor 
SM – safety margin 
L – stress 
R – strength 
 
Numerical values of the required or acceptable SF and SM depend on the technical 

department, type of product, consequences of the failure on safety, risks, etc. They are determined 
by standards and regulations.  
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The concept of stochastic description assumes that stress as well as resistance to failure are 

generally of a random nature with a certain law of distribution of the probability of occurrence. They 
can occur in a wide range of values, with the possibility of non-overlapping or interference. 

 
For a better characteristic of resistance to failure, we can express reliability as follows: 

                                                          𝑆𝑀 = "()

*+!
",+#

"-
$
"
                                                                          (3) 

 
and LR (Loading roughness) 
 
                                                         𝐿𝑅 = +#

*+!
",+#

"-
$
"
                                                                            (4) 

 
The SM factor characterizes the relative distance between the mean stress and resistance 

values. The LR factor characterizes the impact of the standard deviation of stress on safety. The input 
values of stress L and strength R are random in nature. This can be obtained from an experimental 
measurement, or they are determined by other methods / e.g. by expert estimate/. The result is either 
a non-parametric distribution of the obtained data, which we can statistically process in the form of 
a histogram or convert it to a usable parametric distribution. Both cases provide us with the 
possibility of generating input quantities and assessing the occurrence of decisive events for the 
statistical expression of failure rate or failure-freeness of elements using the interference method. 

 

 
         Figure 1: Deterministic concept of load and resistance simulation 

 
 

2. Possibilities of reliability simulation 
 

The simulation in figure 1 presents a situation that occurs very often, especially when 
applying high values of coefficients with small variances of R and L. Stress and resistance are very 
far from each other with medium values, they have a small variance, a low LR value and a high SM 
value. If it is possible to influence the variances and standard deviations of stress and resistance 
quantities and to move the mean values of both quantities as far as possible from each other, these 
quantities cannot interfere with each other, and then there is a high probability that the object will 
not fail during its entire life. Since the quantities R and L do not interfere with each other, the element 
is reliable. If there is a situation where the distributions of stress and resistance overlap, there is 
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mutual interference and thus the possibility of a malfunction - the system thus becomes unstable, 
and a malfunction may occur. The SM and LR factors enable a deterministic analysis of the mutual 
interference of stress and strength and the possibility of failure. The interference theory of reliability 
is based on the analysis of regularities and properties of two random variables that characterize the 
elementary properties of reliability, as a distribution function. We will call the distribution function 
of the random variable X the real function of the real variable F(x) defined by the relation: 

 
F(x) = P(X < x) = P(X ∈ (−∞, x)) for any x ∈ R.                               (5)  
The distribution function has the following properties: 
1. for each x ∈ R: 0 ≤ F(x) ≤ 1, 
2. for each x1, x2 ∈ R: if x1 < x2, then F(x1) ≤ F(x2) 
3. lim x→−∞ F(x) = 0, lim x→∞ F(x) = 1 

 
Both the stress and the resistance are random variables, characterized by quantities or 

random processes. The mechanical structure Mk, which is subjected to operational load at the time, 
will be reliable if the operational stress L with a certain probability does not exceed the resistance R 
(bearing capacity, permissible stress, etc.). Quantities characterizing operational stress (load) and 
resistance (bearing capacity) of the structure can be expressed by probability densities and 
distribution functions. Let fL(L) denote the probability density for the stress random variable L and 
fS (R) the probability density for the fault resistance random variable S. Let's denote the distribution 
function for the random stress variable L by FL(L) and FR(R) the distribution function for the random 
variable S against failure. The quantities L and R are random, and we assume that they have a 
specific probability distribution law (continuous or discrete). They can influence each other 
(interfere) [3,4]. 

 
Figure 2: Interference of operating load and permissible stress 

 
The simulation model of load probability density and resistance must follow the following steps: 

1. Determining the appropriate number of simulations. 
2. To analyze the input data of the distribution parameters of the probability density functions 

of the operating load and the resistance of the assessed system element. 
3. Determine input parameters of histograms or probability distributions. 
4. Generate the level of operational load and resistance. 
5. Statistically process a set of values in the form of values of probability density functions and 

distribution functions. 
6. Graphically display the courses of probability density functions and distribution functions. 
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Statistically process the generated data into the form of values of probability density functions 
and distribution functions, and by plotting them we get an idea of their interference. 

Calculate 
- probability of failure     PF = n / N,  
- probability of reliability    PR = 1 - PF 
7. Determine the minimum value of the resistance function and the maximum value of the load 

function, i.e. the interference interval of the generated values. 
8. Graphically show the mutual dependence of L and R values. 
9. Calculate the size of the area under the graph line. 
10. Determine the resulting of reliability. 
 

 
Figure 3: Load and resistance probability density distribution functions 

 
The boundary between the failure and reliability areas is given by the condition R≥L and is 

expressed by a red line. 
Basic conditions for SSI reliability modeling: 

• The parameters for stress and force are statistically independent. 
• Dynamic parameters for loading forces and stress are described by the Poisson distribution. 
• Random strength degradation is described by a distribution. 
• Random strength degradation and deterministic loading force. 

 
Stress L and strength  R are time-dependent random variables. The load values may have 

the character of an increasing gradient, while the resistance tends to decrease due to external factors 
dependent on the environment. 

    
Figure 4: Graphic representation the probability of failure 
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Figure 5: PDF curve 

 
The MATLAB simulation language and its graphics make it possible to create interactive 

programs, the environment of which allows the user to dialogically change the parameters of the 
distributions and to judge what load and resistance values are acceptable for the structural design 
application [5]. The program in the basic window offers the option of choosing the number of 
simulations, the type of load distribution and the resistance of the element under investigation and 
the distribution parameters. If, from the input data used, the simulation results indicate that the 
required fault-free parameters do not meet, the simulations can be carried out by changing the 
parameters until an acceptable level of interference is reached. 

 

 
 

Figure 6: Analysis of the impact of changes in stress and strength parameters 
 

   
Figure 7: Analysis 3D model  
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3. Conclusion 

 
The interference stress-strength reliability assessment model is a model for predicting the 

probability of failure for various engineering systems. For an objective modeling result, it is 
necessary to have known probability distributions of stress and strength available. Failure or failure 
is defined as the ratio of stress > strength. If both stress and strength distributions are acceptable, the 
simulation provides an analytical solution that provides an accurate result. The technical perfection 
of all means of computer simulation and modelling often does not allow the creation of a suitable 
simulation model and its correct application without deep knowledge of the nature of the 
investigated phenomena or systems [6,7]. The quality of the system determination depends on the 
solver of the model and the obtained input data necessary for its determination. A simulation model 
or any forecast is a very complex process. A complex part of the methodology, requiring good 
knowledge of the simulation process, is the processing of algorithms for individual events and 
program events. Nevertheless, let's know even the most complex algorithm is created from simple 
algorithms. Such a simulation model makes it possible to eliminate the imperfections of calculation 
methods.  

It uses the results for few measurements of experimental methods in an appropriate way, 
can apply the results to determine the reliability of elements of diverse systems and determine the 
interference of different probability density distributions of randomly variable functions of 
operational loads and resistances. 
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Abstract 
 

In this study, acceptance sampling techniques are effective for reducing the cost and time of the 
submitted lots. In this hectic environment, a high level of product reliability and quality 
assurance is expected. Use the abbreviated life tests in the acceptance sampling plan as a result. 
To make a choice on the product, sampling plans with time-truncated life tests are used. This 
study uses percentiles under the exponentiated Rayleigh distribution to build a skip lot 
sampling plan of the SkSP-R type for a life test. A truncated life test may be carried out to 
determine the minimum sample size to guarantee a specific percentage life time of products.  In 
particular, this paper highlights the construction of the Skip lot Sampling Plan of the type 
SkSP-R by considering the Singe Sampling Plan (SSP) and Double Sampling plan(DSP) as 
reference plans for life tests based on percentiles of Exponentiated Rayleigh Distribution 
(ERD). Calculations are made for various quality levels to determine the minimum sample size, 
prescribed ratio, and operational characteristic values. The proposed sampling plan, which is 
appropriate for the manufacturing industries for the selection of samples, is also analyzed in 
terms of its parameters and metrics. Illustrations are provided to help you comprehend the plan. 
In addition, it addresses the feasibility of the new strategy. 
 
Keywords: Exponentiated Rayleigh Distribution, Percentiles, Life tests, Single Sampling 
Plan, SkSP –R. 
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I. Introduction 

The term used to define the collection of statistical instruments used by quality engineering 
professionals is Statistical Quality Control (SQC). Acceptance sampling is one of the main fields 
of statistical quality control. Acceptance sampling is a technique that deals with the procedures 
by which the acceptance or rejection decision is based on sample inspection. Between no 
inspection and 100% inspection, acceptance sampling is the "middle of the road" method. Two 
key classifications of acceptance plans are available: by attributes and variables. There is a 
possibility, therefore, of rejecting a good lot (the risk of the producer) and accepting a poor lot 
(the risk of the consumer). Skip-lot sampling proposals are intended to decrease the cost of 
inspection. 

Samples can be drawn from just a fraction of the submitted lots under the skip-lot 
sampling inspection. The main aim of the skip-lot sampling plan is to reduce the pace of 
inspection of samples, thus reducing the overall cost of inspection. Dodge [6] initially suggested 
the Skip-lot sampling plan, requiring a single decision or review to assess the acceptability or 
non-acceptability of the lot. These plans are called Skip-lot sampling plans of type SkSP-1.   The 
time-truncated acceptance sample technique has fascinated enormous writers such as Epstein 
[7], Sobel and Tischendr [16], Goode and Kao [8], Gupta and Groll [9], Kantam et al. [10,11], 
Baklizi [3], Tsai and Wu [18], Balakrishnan et al . [4], Aslam and Shahbaz [2], Rao et.al. [15], 
Aslam et al. [1], Pradeepa Veerakumari and Ponneeswari [13], Pradeepa Veerakumari et.al [14], 
Suganya and Pradeepa Veerakumari [17]. 

Balamurali et.al., [5] introduce new skip-lot sampling plan of resampling, it is named as 
SkSP-R. The SkSP-R plan is a sampling technique based on the concept of the continuous 
sampling procedure and the resampling scheme for continuous bulk product flow consistency 
inspection.  As a percentile-based comparative plan with Exponential Rayleigh Distribution, the 
paper focuses on developing a SkSP-R life-test plan with a single sampling plan. Rayleigh 
Exponential Distribution is an important distribution and reliability study of life studies. It has 
some of the basic structural properties and exhibits great consistency in mathematics Most 
properties of the distribution of Exponentiated Rayleigh are similar to those of gamma, Weibull 
and exponential distribution. The functions of ERD for distribution and density are in 
comparable forms. This is easily applied to the truncated plans as a consequence. The ERD 
distribution's cumulative function is given by, 

 

   𝐹(𝑡; 𝜏, 𝜃) = *1 − 𝑒!"/$(&/')!.
)

, t >0, 1/τ >0, θ>0          (1) 
                                  

Where, τ and θ are the scale and shape parameters respectively. Its probability density 
function is the first derivative of any cumulative distribution function. The likelihood density 
function of ERD can therefore be written as, 

 

  𝑓(𝑡; 𝜏, 𝜃) = 𝜃*1 − 𝑒!"/$(&/')!.
)!"

0 &
'!
𝑒!"/$(&/')! 	2          (2) 

 

 
SSP were suggested by Pradeepa Veerakumari and Ponneeswari [13] for life research 

based on the ERD percentiles. Subsequently, Skip-lot sampling plans for life testing based on the 
percentiles of ERD were developed by Pradeepa Veerakumari et.al [14]. 

II. Skip-lot Sampling Plan SkSP-R 
 

When opposed to a single sampling plan, the skip-lot sampling plan (SkSP) offers a smaller 
sample size during the inspection. To minimise the inspection cost, skip-lot sampling plans have 
been commonly used in industries. In order to establish the sampling plan that is designated as 
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SkSP-R, the lot resubmission considered under the resampling method was introduced. In 
circumstances where resampling is allowed on lots not approved during the original inspection, 
the desired sampling plan may be used. Therefore, if the idea of the resampling concept is 
implemented, a skip-lot sampling strategy is supposed to be more successful. In order to decide 
the optimal parameters of the sampling plan, the optimum combination of plan parameters was 
derived to protect both the manufacturer and the user. With the aid of the reference attribute 
sampling method, the Skip-lot Sampling Plan-R demonstrates that it is similar to the SkSP-2 
plan developed by Perry [12]. 
 

III. Operating procedure for SkSP-R 

i. Use the reference plan to start a standard inspection. During the usual inspection, the 
lots are inspected in the order of application, one by one. 

ii. On normal inspection, discontinue normal inspection when 'i' consecutive lots are 
admitted, and turn to skipping inspection. 

iii. Inspect just a fraction of 'f' of the randomly picked lots during skipping inspection. Until 
a sampled lot is refused, the skipping inspection is continued. 

iv. If a lot is rejected after 'k' has been approved consecutively by sampled lots, then go to 
the immediate next lot for the resampling procedure as in step (5) below. 

v. Carry out the inspection using the reference plan during the resampling process. If the 
lot is approved, then proceed to skip the inspection. Resampling is performed on non-
acceptance of the lot for 'm' times and the lot is rejected. If, it has not been approved on 
resubmission (m-1). 

vi. If a lot is rejected in a resampling system, then return to regular inspection in phase (1) 
immediately. 

vii. Replace or correct all non-conforming units discovered in the rejected lots with 
conforming units. 

The proposed plan was developed with a reference plan and defined by four parameters, 
namely 'f ' - the fraction of lots inspected in the skipping inspection mode, ' i '   - the usual 
inspection clearance number, ' k ' - the sampling inspection clearance number, and ' m ' - the 
number of times the lots are submitted for resampling. 
 

IV. Operating procedure of SkSP-R with SSP as a reference plan based on 
percentiles of ERD 

Step 1: A random sample of size n is drawn and a random sample of size is drawn and 
positioned on a time test. 

Step 2: The number of defects d is counted and the approval number c is compared. 

i. If d>c , then the lot is refused. 
ii. If d≤c, then the lot is approved. 

Step 3: If d>c, terminate the test and reject the lot if it is obtained before the stated time. 
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V. Operating characteristic function for SkSP-R using Single Sampling Plan 

 

 The OC function is the most commonly used tool for calculating the effectiveness of the 
sampling plan and from which the likelihood of acceptance is extracted. It provides the 
likelihood that it is possible to accept the lot. SSP OC feature for life tests based on the ERD 
percentiles is as follows, 

 

    𝐿(𝑝) = ∑ 6𝑛𝑖 9
*
+,- 𝑝+(1 − 𝑝).!+                                (3) 

 

Where 𝑃 = 𝐹(𝑡, 𝛿-) represents the failure probability at time t given a determined 100qth 
percentile of the lifetime 𝑡/- and p depends only on 𝛿- = 𝑡/𝑡/-. In Table 3, Pradeepa Veerakumari 
(2016), the OC values are tabulated. 

For the lot value p, the OC function of SkSP-R is given by, 

The operating feature function for the SkSP-R plan is given as per Balamurali.et.al 
(2014), 

 𝑃0(𝑝)
123("!1)2"312#(2"!	2#)("!5$)
1("!2")("!2#("!5$)32"	("3152#)

           (4) 

 

Then, the Average Sample number is 

 
   𝐴𝑆𝑁	(𝑝) = 𝐴𝑆𝑁	(𝑅)𝐹                           (5) 
 

Where, R- represents the Average Sample number of the reference plan, P represents the 
probability of acceptance of the reference plan. 
 
5.1 Illustration  

Suppose that the life time of the electric goods follows ERD. Skip lot sampling plan of type 
SkSP-3 with SSP as reference plan based on 50th percentile is applied for testing. The parameters 
for the life testing is as follows: θ=2, t=40hrs, t0.50=20hrs, c=0, α=0.05 and β=0.05 then η = 1.56712 
from the equation and the ratio is found to be t/t0.50 =2.00 by applying the minimum sample size 
according to the requirements is n=5 and the corresponding OC values L(p) for the Single 
Sampling plan for the life tests based on percentiles of ERD (n,c, t/t0.50 = 5,2,1.22) with  𝑃∗ = 0.95. 
L(p) is the P value for SkSP-R with SSP for life tests based on the percentiles of ERD as reference 
plan. For i=1,k=3 and f=1/3; the probability of acceptance L(p) values of SkSP-R with SSP for life 
tests based on percentiles of ERD are found from eqn. 4 as, 

 

t / t00.50 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

 0.0237 0.4685 0.8460 0.9552 0.9864 0.9957 0.9985 0.9995 0.9998 

 
From the illustrations, it is indicated that the actual 50th percentile is almost equal to the required 
50th percentile (t/ t0.50=1.00) the producer’s risk is approximately 0.9808 (1-0.0192). Also the 
producer’s risk is nearly equal to 0.05 or less and the actual producer risk is large or nearly equal 
to 2.15 times of the required percentile. For the purpose of convenience OC values of the table are 
constructed and tabulated with parameters i=1, k=3, f=1/3 and c=2 in Table 1.1. 

)( pL
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Table 1.1 : Gives the OC values for sampling plan (n,c = 2, t/t0.50) for a given P* under ERD when θ=2 

P* t / t00.50 
t / to0.50 

0.7 0.9 1 1.5 2 2.5 3 3.5 4 
0.75 0.7 0.4655 0.8770 0.9711 0.9928 0.9981 0.9994 0.9998 0.9999 1.0000 
0.75 0.9 0.4864 0.8696 0.9664 0.9909 0.9974 0.9992 0.9997 0.9999 1.0000 
0.75 1 0.4710 0.8570 0.9612 0.9891 0.9968 0.9990 0.9997 0.9999 1.0000 
0.9 0.7 0.2283 0.7741 0.9437 0.9851 0.9958 0.9988 0.9996 0.9999 0.9999 
0.9 0.9 0.1618 0.6956 0.9151 0.9751 0.9924 0.9976 0.9992 0.9997 0.9999 
0.9 1 0.3376 0.8004 0.9443 0.9837 0.9950 0.9983 0.9993 0.9997 1.0000 

0.95 0.7 0.1276 0.6919 0.9206 0.9782 0.9938 0.9981 0.9994 0.9998 0.9999 
0.95 0.9 0.1155 0.6446 0.8987 0.9698 0.9907 0.9970 0.9990 0.9996 0.9999 
0.95 1 0.0921 0.5938 0.8770 0.9615 0.9876 0.9958 0.9985 0.9995 0.9998 
0.99 0.7 0.0237 0.4685 0.8460 0.9552 0.9864 0.9957 0.9985 0.9995 0.9998 
0.99 0.9 0.0259 0.4366 0.8198 0.9437 0.9817 0.9938 0.9978 0.9992 0.9997 
0.99 1 0.0110 0.3168 0.7495 0.9173 0.9715 0.9899 0.9963 0.9986 0.9994 

Table 1.2 : Minimum sample size for the 50th percentile of ERD to exceed the given value  t0.50 

P* C 
t / t0.50 

0.7 0.9 1 1.5 2 2.5 3 3.5 4 
0.75 0 4 3 3 2 2 1 1 1 1 
0.75 1 9 6 4 2 2 2 2 2 2 
0.75 2 14 7 5 3 3 3 3 3 3 
0.75 3 19 9 6 5 4 4 4 4 4 
0.9 0 10 5 3 1 1 1 1 1 1 
0.9 1 17 8 6 3 3 2 2 2 2 
0.9 2 23 11 9 4 4 4 3 3 3 
0.9 3 30 14 11 5 5 4 4 4 4 
0.9 10 71 35 28 14 12 12 11 11 11 

0.95 0 13 6 4 2 2 1 1 1 1 
0.95 1 21 9 8 3 3 2 2 2 2 
0.95 2 28 14 11 6 5 4 3 3 3 
0.95 3 36 17 13 6 4 4 4 4 4 
0.99 0 20 10 6 3 3 2 1 1 1 
0.99 1 29 13 10 4 3 3 2 2 2 
0.99 2 39 17 14 6 4 4 3 3 3 
0.99 3 45 21 17 7 5 5 4 4 4 

 

Table 1.3 : Gives the ratio d0.50 for accepting the lot with the procedure’s risk of 0.05 when θ=2 

P* C 
t / t0.50 

0.7 0.9 1 1.5 2 2.5 3 3.5 4 
0.75 0 0.4411 0.4412 0.4421 0.4935 0.6021 0.6021 0.6021 0.6021 0.6021 
0.75 1 0.5022 0.5691 0.6538 0.8637 0.8637 0.8637 0.8637 0.8637 0.8637 
0.75 2 0.5426 0.6816 0.7764 0.8178 1.0061 1.0061 1.0061 1.0061 1.0061 
0.75 3 0.5640 0.7283 0.8644 0.9499 1.1016 1.1016 1.1016 1.1016 1.1016 
0.9 0 0.3185 0.3838 0.4411 0.6039 0.6021 0.6021 0.6021 0.6021 0.6021 
0.9 1 0.4242 0.5415 0.5692 0.7241 0.7242 0.8637 0.8637 0.8637 0.8637 
0.9 2 0.4656 0.5842 0.6492 0.8570 0.8573 1.0061 1.0061 1.0061 1.0061 
0.9 3 0.4898 0.6229 0.6761 0.9499 0.9500 1.1016 1.1016 1.1016 1.1016 

0.95 0 0.2977 0.3654 0.4080 0.6039 0.4935 0.6022 0.6021 0.6021 0.6021 
0.95 1 0.3998 0.5023 0.5204 0.7230 0.7230 0.8637 0.8655 0.8637 0.8637 
0.95 2 0.4402 0.5537 0.6029 0.7224 0.7762 1.0061 1.0061 1.0061 1.0061 
0.95 3 0.4689 0.5845 0.6564 0.9519 1.1017 1.1016 1.1016 1.1016 1.1016 
0.99 0 0.2675 0.3280 0.3653 0.4421 0.4408 0.4935 0.6022 0.6022 0.6022 
0.99 1 0.3600 0.4508 0.4866 0.6539 0.7264 0.7242 0.8637 0.8637 0.8637 
0.99 2 0.4038 0.5095 0.5536 0.7766 1.0089 0.8573 1.0060 1.0060 1.0060 
0.99 3 0.4356 0.5467 0.5949 0.8644 0.9494 0.9499 1.1017 1.1017 1.1017 
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VI. Operating procedure of SkSP-R with DSP as a reference plan based on 

percentiles of ERD 

The modus operandi of SkSP-R with DSP as a reference plan based on percentiles of ERD are as 
follows: 
Step 1: A random sample of size n1 is drawn and put on a life test. 

Step 2:  The number of defectives d1is counted and a comparison is made with the acceptance 
number c. 
i. If d1>c1, then reject the lot.  
ii. If d1≤ c1, then accept the lot. 
Step 3:  If d1<c2, is obtained before the specified time t0, terminate the test, and reject the lot. 
Step 4: If c1< d1 ≤ r1, take a second sample of size n2 from the remaining lot and put them on test 
for time t0and count the number of non-conformities (d2).  
Step 5:  
If d1+d2 ≤ r1, accept the lot.  
 If d1+d2 > r1, reject the lot. 
 

VII. Operating characteristic function for SkSP-R using Double Sampling Plan 
 
OC function is the most applied technique to measure the efficiency of the sampling plan and 
from where the probability of acceptance is derived. It provides the probability that the lot can 
be accepted. The OC function of DSP for life tests based on the percentiles of ERD is as follows, 
 
𝐿(𝑝) = ∑ 6

𝑛"
𝑑"9

*%
7% 𝑝7%(1 − 𝑝).%!7% . ∑ 6

𝑛"
𝑑"9𝑝

7%(1 − 𝑝).%!7%*!
7%3*%&% . ∑ 6

𝑛$
𝑑$9 𝑝

7!(1 − 𝑝).!!7!*!!7!
7!,-         (6) 

 
Where 𝑃 = 𝐹(𝑡, 𝛿-) represents the failure probability at time t given a determined 100qth 

percentile of the lifetime 𝑡/- and p depends only on 𝛿- = 𝑡/𝑡/-. The ASN Value of DSP is calculated 
from the equation, 
   𝐴𝑆𝑁 = 𝑛"𝑝" + (𝑛" + 𝑛$)(1 − 𝑝") = 𝑛" + 𝑛$(1 − 𝑝")         (7) 

 
The OC   function of SkSP-R for the lot quality p is given by, 

   𝑃0(𝑝)
123("!1)2"312#(2"!	2#)("!5$)
1("!2")("!2#("!5$)32"	("3152#)

           (8)
 Then, the Average Sample number is 

    𝐴𝑆𝑁	(𝑝) = 𝐴𝑆𝑁	(𝑅)𝐹                          (9) 
Where ASN (R) represents the Average Sample number of the reference plan; P 

represents the probability of acceptance of the reference plan. 

7.1 Illustration 

Presume that the lifetime of the electric goods follows ERD. Skip lot sampling plan of type SkSP-R 
with DSP as a reference plan based on the 10th percentile is applied for testing. The parameters for 
the life testing is as follows: θ=2, t=40hrs, t0.50=20hrs, c1=0,c2=1, α=0.01 and β=0.05 then η = 0.871929 
from the equation and the ratio is found to be t/t0.50 =2.00 by applying the minimum sample size 
according to the requirements is n1=9,n2=11 and the corresponding OC values  for the 
Double Sampling plan for the life tests based on percentiles of ERD  𝑛", 𝑛$, 𝑐", 𝑐$, 𝑡 𝑡-."H =
(9,11,0,1,0.9379) with P* = 0.99.  L (p) is the P value for SkSP-R with DSP for life tests as a reference 
plan defined on the percentiles of ERD. For i=1,k=3, and f=1/5; the probability that SkSP-R with 
DSP will consider L(p) values for life tests based on percentiles of ERD is found from Equation 8 
For, 
 

)( pL
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𝑡/𝑡!.#!  1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

 0.0398 0.3764 0.6235 0.9123 0.9668 0.9978 0.9993 0.9997 0.9999 
 
From the illustrations, it is indicated that the actual 10th percentile is almost equal to the 

required 10th percentile 𝑡/𝑡-."-  the producer’s risk is approximately 0.9602 (1-0.0398). Moreover, 
the producer’s risk is closely equal to 0.05 or less and the actual producer risk is large or nearly 
equal to 2 times the required percentile. For the purpose of convenience OC values of the table 
are constructed and tabulated with parameters i=1,k=3, f=1/5 and c1=0,c2 =1 in Table 2. 

 
Table 2: Gives the OC values for Sampling Plan (𝑛", 𝑛$, 𝑐", 𝑐$, 𝑡 𝑡-."H = (9,11,0,1,0.9379)  for a given P* under 

ERD when θ=2 

P* t / t00.50 
𝑡!.#/𝑡!.#!  

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

0.75 0.7 0.5839 0.8364 0.7766 0.9265 0.9736 0.9897 0.9957 0.9980 0.9990 

0.75 0.9 0.4318 0.8912 0.7603 0.9209 0.9715 0.9888 0.9953 0.9978 0.9996 

0.75 1 0.4797 0.8460 0.7440 0.9153 0.9694 0.9880 0.9949 0.9976 0.9995 

0.9 0.7 0.2276 0.6008 0.7277 0.9097 0.9673 0.9872 0.9946 0.9975 0.9992 

0.9 0.9 0.2755 0.6557 0.7114 0.9042 0.9652 0.9863 0.9942 0.9973 0.9991 

0.9 1 0.2234 0.6105 0.6951 0.8986 0.9631 0.9855 0.9938 0.9971 0.9990 

0.95 0.7 0.3713 0.0653 0.6788 0.8930 0.9610 0.9846 0.9935 0.9969 0.9999 

0.95 0.9 0.1191 0.6201 0.6625 0.8874 0.9589 0.9838 0.9931 0.9968 0.9998 

0.95 1 0.1670 0.5250 0.6462 0.8819 0.9569 0.9829 0.9928 0.9966 0.9997 

0.99 0.7 0.0149 0.4702 0.6299 0.8763 0.9548 0.9821 0.9924 0.9964 0.9997 

0.99 0.9 0.0628 0.3154 0.6136 0.8707 0.9527 0.9813 0.9920 0.9963 0.9996 

0.99 1 0.0107 0.3605 0.5973 0.8651 0.9506 0.9804 0.9917 0.9961 0.9996 

VIII. Conclusion 

In this study, life testing plans based on percentiles of ERD for Skip-lot Sampling plan of type-R 
with Single Sampling Plan and Double Sampling Plan as reference plan are developed. Skip-lot 
Sampling plan of type-R with SSP and DSP as reference plan requires minimum sample size and 
also has better operating characteristics values. Thus, results in reduction of inspection cost and 
better efficient. The proposed plan can be further extended to other sampling plans for instance 
SkSP and other probability distribution. 
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Abstract 
 

In this paper, the modified SMF system is used in the real MPS problem. This problem occurs in 
the production planning process where the decision maker plays an important role in making 
decisions in an uncertain environment. As researchers, we are trying to find the best solution for 
the final decision maker. SMF analyzed FLP production equipment using data actually collected 
from chocolate production companies. The problem of MPS incompatibility has been described. The 
aim of this article is to find the best UOP with high satisfaction and nonsense as the main thing. 
Since there are so many decisions to make, the best UOP table is defined in terms of insensitivity 
and satisfaction to find a solution with a high UOP level and a high level of satisfaction. OF 
indicates that a high UOP will not lead to a high level of satisfaction. The results of this work 
suggest that the best decision is based on the negative impact on the FS of the MPS. In addition, a 
high level of UOP is achieved when the blur is low. 

 
Keywords: Linear Programming, Uncertainty, Fuzzy constraint, Mix-Product Selection.  
 
Abbreviations: 
MPS : mix product selection  
FLP : fuzzy linear programming  
SMF : s-curve membership function  
FO : fuzzy outcome  
FS : fuzzy system  
UOP : units of product  
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 1. Introduction  
 
Non-SMF conversion function is used for problems related to FLP. The function S can be applied 
and tested for its effectiveness by applied pressure. In this example, the S function is applied to 
make a decision after binary, such as the number of technologies and equipment, of which MPS is 
complex. Solutions thus obtained can provide the decision maker and the coordinator for the final 
implementation. The wording described in this article is just one of the three FPS words that 
actually have an application. The above FPS term is considered to be the real-life situation when it 
comes to making chocolate. Data for this problem are provided in the database of Choco man Inc, 
USA. Choco man manufactures chocolate bars, candies and wafer using a variety of ingredients 
and formulas. The goal is to use the modified S function as a system to get the best UOP through 
the FLP system [1-3] 
Compared with this FLP system. The recommended method is based on its relationship with the 
decision maker, developer and researcher to find satisfactory solutions for the FLP problem. In the 
decision-making process using the FLP model, modifications and source software can be complex, 
rather than providing exact numbers as in the net LP model. For example, machine hours, work, 
requirements, etc. and manufacturing, which is not always good, due to insufficient information 
and uncertainty among potential importers in the environment. Therefore, they should be 
considered as non-essential components and the FLP problem can be solved by using the FLP 
method. The problem of non-compliant MPS has been described. The aim of this article is to find 
the best UOP with high satisfaction and nonsense as the main thing. This problem is considered 
because all the parameters such as technology and hardware changes are uncertain. This is 
considered to be a major overall problem that includes 29 barriers and 8 barriers. Since there are so 
many decisions to make, the best UOP table is described for uncertainty and satisfaction to find a 
solution. with the highest UOP level and the highest satisfaction. It should be borne in mind that a 
high UOP does not mean it will lead to a high level of satisfaction. The best UOP was calculated at 
the satisfaction level using the FLP method. OF indicates that a high POU will not lead to a high 
level of satisfaction. The results of this work suggest that the best decision is based on the negative 
impact on the FS of the MPS. In addition, high levels of UOP are obtained when blur is low in the 
system [4-25]. 

2. Methodology of MF 
 
A general model of classical LP is formulated as,  

 standard formulation;  
Subject to,  

 (1) 
 
Where  and  are the m-part vector,  is the m-part vector, and  is  matrix. Since we 
live in an uncertain environment, the number of objective functions , the number of matrix 
technologies  and the variability of assets  are complex. Therefore, an infinite number can 
be displayed, so that the problem can be solved by the FLP system. FLP problems are designed as 
follows: 

 The Fuzzy formulation;  

Subject to,  

 (2) 

                                   
where  is the vector of the decision change; are zero numbers; The function of 

( )Max w dy=

; 0By c y£ ³

d y d B n m´
( )d

( )B ( )d

*( )Max w d y=

* *; 0B y c y£ ³

x * * *, &B c d
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addition and multiplication is explained by fact that in-depth numbers are derived from the 
extension principles of Li [26]; Njikọ Inequalities are provided by some relationship and work 
objectives,  must take into account the given LP problem. The approach of Mohammed [27] is   
being considered to solve the problem of FLP 2 depletion., which means that the solution will 
probably be to some satisfaction. First, design the team function for the zero parameter of 

. Here, non-existent team functions, such as logic, are used.  represents the work of 

members;  and  is the numerical function of matrix  for ,  

is the numerical variable for and  are the integers of purpose point  for 
. 

Then, with the appropriate change in the concept of agreement between the non-  numbers; 

and  & , words for ,  and will be obtained. When an agreement between ; The 

solution and will be [28]; 

 (3) 

for all  
Therefore, we can obtain; 

 (4)  
                                                                         
Where  in  are distinct functions [29] of  respectively. Equation 
(2) would be,  

 Fuzzy formulation; 
Subject to,  

 (5) 
 
First, create a group function for the complex part of . Here, non-uniform functions are 
used as S-curve function [30].  represents the work of members and , where  is the 

coefficient of matrix  for ,  and  is the material variable for 

. Group function is also obtained for  and beard time,  to  for . 
Similarly, we can create team work for a number of non-core technologies and their production 
[31]. Due to the high cost of production and the need to meet certain production and demand 
conditions, the problem of inefficiency arises in the manufacturing process. This problem also 
arises in the production of chocolate when deciding on the combination of ingredients to create 
different types of products. This is called here the choice of product mix  [32]). 
 

3. The Fuzzy MPS 
 
There are products that can be made by mixing different ingredients and using k type processing. 
It is expected that the infrastructure will be massive. There are also some restrictions by the retail 
department, such as the requirement for the product mix, the requirement of the main product 
line, as well as the minimum and maximum query for each product. Not everything that is needed 
in these circumstances is obvious. It is important to achieve maximum UOP and satisfaction using 
the FLP method. Since the number of technologies and equipment changes is running high, the 
results of the UOP would be foolish. FLP problem, customized in size. 2 can be written: 
 

w

* * *, &B c d klvb

kvc lvd B 1,2,.... & 1,2,....k n n m= = kc
1,2,....k n= ld w

1,2,....l m=
*
klb

*
kc

*
kld l *

klb
*
kc

*
ld

*
klb

*
kc

*
ld

l kl kv vd vb vc= = =
1,2,.... & 1,2,....k n l m= =

( ), ( )& ( )D pd v B pb v c pc v= = =

[0,1]vÎ , &pd pb pc , &vd vb vc

( ) [ ( )]Max w pd v y=

( ) [ ( )] ; 0Max w pd v y y= ³
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B 1,2,....29k = 1,2,3,....8l = kc
1,2,....29k = kb kc b kc c

*
kc

442



 
Mahesh M. Janolkar, Kirankumar L. Bondar, Pandit U.Chopade 
APPLICATION OF FUZZY LINEAR PROGRAMMING APPROACH  
FOR SOLVING MIX-PRODUCTION SELECTION PROBLEM 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

 
 

Subject to,  

 

 

 
(6) 

where ,  are fuzzy parameters. 
 

3.1 Fuzzy Resource Variable  

For an interval, , 

 
 

 

 
(7) 

 

 
 

 
 

                                                                                                                  
Since  is a non-trivial material change in size. 7, it is found . Therefore 

 
 

(8) 

                                                          

3.2 Fuzzy Constraints  

The products, materials and equipment requirements are shown in Tables 1 as well as 2, 
respectively. Tables 3 as well as 4 provide the mix size and use the required material to make each 
product. 

Table 1: Products Demand 

Items 
Fuzzy Interval 

units 

Milk Chocolate, (200 gram) [450-575) Gram 
Milk Chocolate, (50 gram) [750-950) Gram 

Crunchy Chocolate, (200 gram) [350-450) Gram 
Crunchy Chocolate, (50 gram) [550-700) Gram 

Chocolate with Nuts (200 gram) [250-325) Gram 
Chocolate with Nuts (50 gram) [450-575) Gram 

Chocolate Candy [150-200) Gram 
Wafer [350-450) Gram 
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Table 2: Material and Ease of Access 

Raw Material  Fuzzy Interval (x1000 
units) 

Coco (Kilo Gram) [75-125) Kilo Gram 
Milk (Kilo Gram) [90-150) Kilo Gram 
Nuts (Kilo Gram) [45-75) Kilo Gram 
Sugar (Kilo Gram) [150-450) Kilo Gram 
Flour (Kilo Gram) [15-25) Kilo Gram 

Aluminum Foil (Kilo Gram) [375-625) Kilo Gram 
Paper (Per Feet Square) [375-625) Per Feet Square 
Plastic (Per Feet Square) [375-625) Per Feet Square 

Cooking (Ton per H) [750-1250) Ton Per H 
Mixing (Ton per H) [150-250) Ton Per H 

Forming (Ton per H) [1125-1875) Ton Per H 
Grinding (Ton per H) [150-250) Ton Per H 

Wafer Making (Ton per H) [75-125) Ton Per H 
Cutting (H) [300-350) H 

Packaging 1 (H) [300-500) H 
Packaging 2 (H) [900-1500) H 

Labor (H) [750-1250) H 
 
There are two unclear barriers such as access to the equipment and restrictions on the capacity of 
the equipment. These barriers are inevitable for any object and property depending on the 
consumption of the property, to trade and acquire property. These selections are based on the FLP 
resolution of Choco man Inc. Decision changes for the FPSP are defined as: 
 

 250 grams of chocolate milk to be produced (in 1000) 

 250 grams of chocolate milk to be produced (per 1000) 

 Chocolate Crispy of 250 grams to be produced (in 1000) 

 100 grams of Chocolate Crispy to be produced (in 1000) 

 Chocolate with 250 grams of fruit to produce (in 1000) 

 Chocolate contains 100 grams per gram to produce (in 1000) 

 Chocolate candies will be produced (in 1000 packages) 

 Chocolate wafer production (in 1000 packages) 
 

 (9) 

 (10) 

 (11) 

 
The required product line is key. Total sales of confectionery products and wafers should not 
exceed 15% (uncertain value) of total confectionery product. 
 
  

1y =

2y =

3y =

4y =

5y =

6y =

7y =

8y =

1 20.6y y£

3 40.6y y£

5 60.6y y£
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Table 3: Mixing Proportions 

Material 
Required per 

1000 units 

Product types (Fuzzy interval) 

AMC 150 AMC 50 ACC 150 
ACC 

50 
ACN 150 ACN 50 Candy Wafer 

Coco  
(Kilo Gram) 

[60-90) [20-45) [105-130) [25-60) [150-250) [0-0) [1200-1400) [150-300) 

Milk  
(Kilo Gram) 

[0-0) [0-0) [60-90) [0-0) [78-101) [35-80) [230-500) [0-0) 

Nuts  
(Kilo Gram) 

[325-456) [78-105) [230-280) [34-87) [0-0) [0-0) [110-230) [73-130) 

Sugar  
(Kilo Gram) 

[172-201) [0-0) [78-99) [0-0) [321-436) [103-120) [0-0) [54-90) 

Flour  
(Kilo Gram) 

[0-0) [0-0) [120-150) [0-0) [450-487) [245-298) [1001-1200) [540-670) 

Aluminum Foil  
(Kilo Gram) 

[110-165) [78-95) [0-0) [0-0) [330-420) [110-154) [0-0) [0-0) 

Paper  
(Per Feet 
Square) 

[156-185) [0-0) [190-245) [0-0) [100-150) [56-89) [0-0) [0-0) 

Plastic  
(Per Feet 
Square) 

[0-0) [0-0) [170-240) [40-82) [510-725) [120-179) [0-0) [0-0) 

 
Table 4: Facility Usage 

Facility Usage 
Required Per 

1000 Units 

Product types (fuzzy interval) 

AMC 150 AMC 50 ACC 150 ACC 50 ACN 150 ACN 50 Candy Wafer 

Cooking  
(Ton per H) 

[0.60-0.90) 
[0.20-
0.45) 

[0.105-
0.130) 

[0.25-
0.60) 

[0.150-
0.250) 

[0-0) 
[0.1200-
0.1400) 

[0.150-
0.300) 

Mixing  
(Ton per H) 

[0-0) [0-0) [0.60-0.90) [0-0) 
[0.78-
0.101) 

[0.35-0.80) 
[0.230-
0.500) 

[0-0) 

Forming  
(Ton per H) 

[0.325-
0.456) 

[0.78-
0.105) 

[0.230-
0.280) 

[0.34-
0.87) 

[0-0) [0-0) 
[0.110-
0.230) 

[0.73-
0.130) 

Grinding  
(Ton per H) 

[0.172-
0.201) 

[0-0) [0.78-0.99) [0-0) 
[0.321-
0.436) 

[0.103-
0.120) 

[0-0) 
[0.54-
0.90) 

Wafer Making 
(Ton per H) 

[0-0) [0-0) 
[0.120-
0.150) 

[0-0) 
[0.450-
0.487) 

[0.245-
0.298) 

[0.1001-
0.1200) 

[0.540-
0.670) 

Cutting (H) 
[0.110-
0.165) 

[0.78-
0.95) 

[0-0) [0-0) 
[0.330-
0.420) 

[0.110-
0.154) 

[0-0) [0-0) 

Packaging 1 (H) 
[0.156-
0.185) 

[0-0) 
[0.190-
0.245) 

[0-0) 
[0.100-
0.150) 

[0.56-0.89) [0-0) [0-0) 

Packaging 2 (H) [0-0) [0-0) 
[0.170-
0.240) 

[0.40-
0.82) 

[0.510-
725) 

[0.120-
0.179) 

[0-0) [0-0) 

Labor (H) 
[0.325-
0.456) 

[0.78-
0.105) 

[0.230-
0.280) 

[0.34-
0.87) 

[0-0) [0-0) 
[0.110-
0.230) 

[0.73-
0.130) 
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Table 5: Optimal UOP with a satisfaction degree 

Number Satisfaction degree (𝜽) Optimal UOP  

1 7.562 2438.54 
2 14.076 2500.51 
3 15.2145 2615.83 
4 16.1148 2651.25 
5 18.057 2701.67 
6 24.8497 2845.48 
7 28.9782 2848.79 
8 30.3968 2889.39 
9 31.7572 2923.44 
10 42.6513 2955.9 
11 50.0115 2965.11 
12 52.1911 3001.89 
13 52.8741 3057.48 
14 59.6383 3152.55 
15 63.3374 3160.55 
16 63.538 3180.37 
17 64.8241 3204.67 
18 70.4424 3250.39 
19 85.5813 3277.92 
20 95.4286 3344.58 

4. Results 
 
The FPS problem is solved by using MATLAB and its LP application. It provides complexity and a 
degree of satisfaction. The LP application has two extras in addition to the non-existent. There is an 
output , the best UOP. 

Table 6: The vagueness as well as objective value  with  

Vagueness 𝜷 UOP  
1 2465.54 
3 2533.72 
5 2568.99 
7 2631.09 
9 2730.54 
11 2740.35 
13 2778.95 
15 2784.04 
17 2833.00 
19 3011.15 
21 3037.45 
23 3080.78 
25 3223.61 
27 3239.79 
29 3282.03 
31 3352.45 
33 3368.74 
35 3438.1 
37 3446.69 

*( )w

*w
b *w 50%q =

*w
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Table 7: Optimal UOP  

 Vagueness  

 1 3 5 7 
7.562 2421.27 2478.47 2594.46 2488.84 
14.076 2514.88 2502.54 2673.13 2509.44 
15.2145 2638.86 2623.91 2765.32 2574.27 
16.1148 2639.8 2632.57 2780.56 2604.7 
18.057 2668.82 2675.98 2797.33 2618.06 
24.8497 2686.3 2680.99 2919.95 2621.45 
28.9782 2753.94 2747.67 2930.67 2652.31 
30.3968 2827.54 2773.03 3028.05 2723.29 
31.7572 2870.88 2807.2 3189.58 2753.75 
42.6513 2957.06 2847.5 3230.2 2810.63 
50.0115 2960.57 3010.7 3234.95 2838.32 
52.1911 2981.24 3017.36 3248.8 2843.2 
52.8741 3078.7 3080.9 3297.06 3039.16 
59.6383 3079.57 3086.95 3298.37 3157.71 
63.3374 3132.07 3162.39 3334.88 3206.49 
63.538 3273.09 3202.78 3415.55 3315.88 
64.8241 3443.79 3348.41 3426.19 3411.56 
70.4424 3479.39 3434.25 3470.15 3476.37 

 
Different standards of Chocolate production are transferred to the toolbox. The answer can be 
listed in the following tables. From Table 5, it can be seen that a high level of satisfaction provides 
a high UOP. But the best solution to the above problem is at a satisfaction rate of 50%, or 2833 
minutes. From the tables below, we conclude that within the objective,  is an ever-increasing 
function. Increased [33]. 

Table 8: Optimal UOP  

 Vagueness  

 9 11 13 15 
7.562 2517.93 2511.75 2700.82 2626.7 
14.076 2555.17 2562 2817.03 2713.6 
15.2145 2610.27 2712.45 2818.6 2730.28 
16.1148 2694.71 2735.65 2917.06 2735.94 
18.057 2704.95 2778.61 3015.94 2814.01 
24.8497 2768.05 2785.92 3017.65 2843.42 
28.9782 2803.52 2982.47 3019.4 2857.43 
30.3968 2912.9 3162.64 3200.54 2919.49 
31.7572 2959.22 3205.75 3210.48 2936.06 
42.6513 3006.57 3238.42 3211.28 3082.57 
50.0115 3106.2 3252.29 3236.27 3155.49 
52.1911 3110.49 3312.54 3276.6 3166.6 
52.8741 3155.25 3326.07 3285.56 3215.15 
59.6383 3206.75 3341.22 3292.6 3306.44 
63.3374 3367.82 3383.69 3312.35 3339.97 
63.538 3432.71 3393.02 3319.99 3353.86 
64.8241 3461.5 3394.43 3341.83 3462.87 
70.4424 3478.85 3435.72 3421.66 3493.17 

 

*w
*w b
q

*w

*w
*w b
q
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Table 9: Optimal UOP  

 Vagueness  

 17 19 21 23 
7.562 2560.71 2591.74 2598.75 2569.53 
14.076 2577.5 2681.47 2671.48 2712.04 
15.2145 2827.45 2695.28 2725.3 2774.99 
16.1148 2857.61 2745.12 2898.84 2857.97 
18.057 2877.99 2760.14 2919.28 2910.07 
24.8497 3081.74 2770.16 2962.64 2962.97 
28.9782 3093.67 2858.84 2989.96 2977.2 
30.3968 3157.45 3063.62 3018.63 2983.99 
31.7572 3202.92 3087.9 3020.53 2988.83 
42.6513 3279.76 3093.95 3025.39 3012.8 
50.0115 3289.08 3100.34 3089.09 3119.28 
52.1911 3329.94 3206.97 3105.94 3133.89 
52.8741 3339.61 3249.02 3118.94 3212.27 
59.6383 3343.42 3287.02 3159.21 3267.98 
63.3374 3362.92 3361.71 3185.11 3331.74 
63.538 3373.1 3417.77 3275.53 3457.72 
64.8241 3440.06 3434.14 3397.49 3486.65 
70.4424 3492.01 3471.26 3495.27 3498.94 

 

Table 10: Optimal UOP  

 Vagueness  

 25 27 29 31 
7.562 2557.26 2509.77 2624.58 2522.45 
14.076 2639.95 2531.72 2637.73 2547.82 
15.2145 2727.12 2561.53 2645.54 2584.66 
16.1148 2785.23 2610.31 2745.36 2750.06 
18.057 2845.05 2680.12 2766.93 2756.62 
24.8497 2879.51 2758.1 2778.77 2762.94 
28.9782 2937.4 2800.6 2817.91 2832.69 
30.3968 2967.17 2840.55 2893.03 2886.01 
31.7572 3057.98 2846.94 2961.62 2938.18 
42.6513 3110.12 2866.61 3012.12 3001.32 
50.0115 3128.99 2880.25 3060.57 3044.8 
52.1911 3139.91 2957.15 3075.73 3135.83 
52.8741 3240.09 3012.5 3126.45 3297.11 
59.6383 3259.24 3066.82 3170.93 3305.56 
63.3374 3263.83 3118.69 3292.42 3313.34 
63.538 3378.55 3132.87 3296.45 3384.03 
64.8241 3422.86 3324.07 3375.38 3404.9 
70.4424 3483.18 3350.47 3470.84 3428.67 

 

  

*w
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q
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Table 11: Optimal UOP  

 Vagueness  

 33 35 37 39 
7.562 2522.48 2523.96 2533.43 2519.95 
14.076 2532.12 2608.62 2618.64 2611.46 
15.2145 2571.52 2618.64 2717.62 2615.81 
16.1148 2712.13 2739.13 2749.95 2652.37 
18.057 2916.79 2771.39 2778.74 2857.52 
24.8497 2943.77 2797.06 2979.54 2891.37 
28.9782 3088.17 2828.98 3023.91 2963.05 
30.3968 3126.97 2886.21 3082.34 3010.27 
31.7572 3130.92 2887.8 3171.68 3020.85 
42.6513 3144.28 2901.63 3220.44 3041.08 
50.0115 3183.95 2934.68 3236.11 3068.4 
52.1911 3202.9 3052.3 3264.69 3102 
52.8741 3213.79 3204.34 3330.91 3109.29 
59.6383 3342.85 3264.08 3393.05 3214.24 
63.3374 3361.04 3270.6 3426.9 3242.07 
63.538 3403.39 3377.37 3432.62 3352.56 
64.8241 3406.28 3467.32 3455.09 3392.32 
70.4424 3492.01 3471.26 3495.27 3498.94 

4.1 UOP w* for different vagueness values 

Reasonable solutions and some uncertainties in the zero parameter of the technical rate and the 
hardware change are . Thus, the results for the 50% satisfaction level for  and the 

principles corresponding to  are shown in Table 6. OFs of UOP reduce  imprecision and 
increase of the nonlinear parameter of the number of technologies. and asset exchange. This is 
clearly shown in Table 6. Table 6 is very important for the decision maker when choosing UOP so 
that the result is a perfect level. 
 

4.2 Output for  

The results in the table below show that when the inaccuracy of the increase results in a small 
UOP. 

Table 12: w.r.to  

Satisfaction degree (𝜽) Vagueness (𝜷) Optimal UOP (w*) 
7.562 1 2500.51 
14.076 3 2615.83 
15.2145 5 2651.25 
16.1148 7 2701.67 
18.057 9 2845.48 
24.8497 11 2848.79 
28.9782 13 2889.39 
30.3968 15 2923.44 
31.7572 17 2955.9 
42.6513 19 2965.11 
50.0115 21 3001.89 
52.1911 23 3057.48 
52.8741 25 3152.55 

*w
*w b
q

50%= 1 39b£ £
*w b

*, &wq b

*w &b q
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59.6383 27 3180.37 
63.3374 29 3204.67 
63.538 31 3250.39 
64.8241 33 3277.92 
70.4424 35 3338.54 
83.3374 37 3344.58 

 
It is also seen that SMF has a variety of standards that provide possible solutions with some 
satisfaction. Also, the link between ,  is provided in Tables 7, 8, 9, 10 and 11. This is clearly 
shown in Table 6. Table 6 is very important for the decision maker when choosing UOP so that the 
result is a perfect level. From Tables 7, 8, 9, 10 and 11, we find that for each type of satisfaction , 
the optimal UP  decreases as the endpoint increases between 1 and 37. Similarly, with any 
positive value, the optimal UOP increases. as the degree of satisfaction increases. Table 12 is the 
result of the diagonal pattern of  in Table 6. The results of this result show that: when the 
inaccuracies are low , UOP  is best. reached the lowest satisfaction level, 

,  and . When the odds are high at , UOP  is best 
reached with high satisfaction level, i.e.,  

5. Selection of Parameter  and Decision Making 
 
In order for the decision maker to get the best results for the UOP , the researcher creates a 
production table. From the table above, the decision maker can select the negative value according 
to his preference. Hair volume is divided into  in three parts, namely short, medium and high. 
It can be slightly modified if the input data for the number of technologies and hardware changes. 
It can be called a bunch of empty vanities. The decision can be made by the decision maker by 
choosing the best UOP for  and providing solutions for its implementation. 

 

5.1 Discussion 

The results show that the POU minimum is 2,755.4 with a maximum of 3,034.9. It can be seen that 
when the understanding is between 0 and 1, the maximum value of w * 3 034.9 is obtained by the 
minimum value. Similarly, when over 39, the minimum gain of w * 2,755.4 and the maximum gain 
are obtained. Since the solution for MPS nonsense is the most satisfying solution with a high 
satisfaction degree, it is important to choose a blur between the minimum value and the maximum 
value of w *. The well-distributed value of w * belongs to a group of musicians. 

6. Conclusion 
 
The purpose of this research project was to find the most effective UOP for MPS problems that 
have not been identified. SMF was recently developed as a framework for the task of solving the 
above problems effectively. The decision-making process and its implementation will be easier if 
the decision maker and consultant can work with the analyst to get the best and most satisfactory 
results. There are two more cases to consider in future work of the running technology that is not 
negative and that the dynamic assets are running and not complicated. FS mathematical 
relationships can be developed for MPS problems to find satisfying solutions. The decision maker, 
researcher and practitioner can apply their knowledge and experience to get the best results. 

*w q

q
*w

*w
1,3&5b = *w 7.5%q =

14.1%q = 15.2%q = 33,35&37b = *w
64.8%, 70.4%& 83.3%.q q q= = =

b

*w

*w
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Abstract 

 
The present paper deals with the behavior of the parallel model system of two non-identical units, 
warm standby models have been developed by in view of all random variables are independent. 
Initially priority unit is working and the non-priority unit is warm standby. Two repairmen are 
always available with the system to carry out the system operation as soon as possible, skilled 
repairmen carry out phase-1 repair while ordinary repairmen carry out a phase-2 repair. The main 
unit is take two phases for his repair while the repair of the ordinary unit is completed in one phase. 
The statistical measures of the model are analyzed probabilistically by applying the regenerative 
point technique the distribution of failure and repair time of the system taken as a geometric 
distribution with different parameters. 

 
Keywords: Geometric distribution, Steady state transition probability, MTSF, 
Availability, Busy period, and Cost-benefit analysis. 
 

1. Introduction 
 
The configuration of the stochastic model is very complex with the development of modern system 
models, minimizing the high maintenance cost and increasing the system efficiency by reducing 
the frequency of failures. The design and model of industrial systems such as communication 
systems, satellite systems, power plant systems mechanical engineering, aeronautical engineering 
software engineering, and gaming systems are more complex to design in the current scenario. 
Using the different probabilistic measures of a two-unit system model with various kinds of repair 
policy deals with the system model involving various general human failures. Kumar and Kadyan 
[1] analyzed a non-identical parallel unit system with a single repairman visit whenever the 
original unit requires a repair facility, to repair the original unit with immediate effect and the 
duplicate unit is replaced by a similar new one. The various reliability characteristic such as study 
state availability, MTSF, and busy period and profit analysis of the system model are estimated by 
applying the semi-Markov approach. Sureria at el. [2] analyzed a computer system model 
whenever a system failed, priority is given to software replacement against hardware repair 
purpose to determine a mean sojourn time, reliability, availability, and busy period of a computer 
system of two similar units, initially one is active and the other is kept into cold standby whenever 
operative unite is failed, the cold unit is operative. The failure rate of the computer system is 
independent having an exponential distribution with different parameters while the repair and 
replacement rates distribution are taken as common. Each unit has hardware and software 
components that may have independent complete failure from the normal mode.  
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There is always a possibility that any system model during its operative condition to failure 
condition by two or more kinds of failure with single repair, post-repair, or waits for repair facility 
has been analyzed under some common assumption. Various other reliability characteristics 
models have been discussed of two identical or non-identical system models applying various 
types of repair facilities. Using discrete distribution, Bhatti at el. [3] introducing the concept of 
inspection to detect the major or minor failure, the repairman perform dual role of inspection and 
repair of the system after detect the type of failure of dissimilar operative cold standby systems. 
Ahmed at el. [4] studies a two non-identical parallel cold standby redundant unit system models 
each unit has two possible mode normal (N) and total failure (F). A repairman is always available 
to repair the system whenever it’s required for preventive maintenance, priority to repair the failed 
unit is by given initially operative unit after the repair of a unit works as well as new. The one 
parametric geometric distribution with different random variables is taken for failure and repair 
rate of the each unit. Malik [5] studied a repairable system under different weather conditions. 
Singh at el. [6] applying a probabilistic assessment of parallel system with correlated lifetime under 
different inspection method. Kumar at el. [7] analyzed a redundant system with priority and 
weibull distribution for failure and repair rate. Kumar at el. [8] introduce a repairable system of 
non-identical units with priority and conditional failure of repairman. 

 
2. Methods System description and assumptions 

The aim of the present paper deals with priority (unit-I) and non-priority (unit-II) parallel unit 
systems, each unit has two achievable modes normal (N) and total failure (F), in the beginning one 
unit is operative and another unit is reserved in warm standby. Two repairmen are always 
available with the system to repair the failed unit. A master repairman carries out the phase-I 
repair while an assistant repairman is present to take out the phase-II repair. Initially, the failure 
unit-I goes to phase-I repair while completing phase-I repair it enters into phase-II for its final 
repair by the assistant repairman, and the repair of a non-priority unit is completed in one phase 
(phase-I) repaired by the master repairman. The operation priority is given to unit-I and repair 
priority is first come first serve (FCFS) bases. All the random variables are independent and 
uncorrelated under this study. The distributions of failure and repair times are taken as a discrete 
nature having a geometric distribution with different parameters. The system model is derived 
using the Markov-chain approach and using the regenerative point technique for various 
probabilistic analyses of the system effect such as mean sojourn time, reliability, availability, mean 
time to system failure (MTSF), a busy period in the different repair facility and cost-benefit 
function have been derived. The system consists of the following assumptions: 
• The system consists of priority and non-priority units, and they are connected in parallel. 

Initially, one unit is operative (unit-I) and the other is kept on warm standby (non-priority 
unit-II). 

• Both units have two possible modes, normal (N) when the unit is operative and total 
failure (F) when the unit is in failure mode. 

• Two repairmen are always with the system to carry out the repair facility, the repair of 
unit-I is completed in two phases while the repair of unit-II is completed in one phase. The 
master repairman perform phase-I repair while the assistant repairman perform phase-II 
repair. 

• The priority unit failed than non-priority unit is loading warm standby unit into operation 
using switching device to be perfect, the repair of priority unit is completed in two phases 
(phase-I and phase-II) i.e., a failed unit first enters in phase-I for its repair and after the 
completion of phase-I repair it enters phase-II for finishing repair, and the repair of a non-
priority unit is done in one phase (phase-I). After repair of a unit is work as well as a new 
one. 
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• The system transition rate from state S!	to S"	is independent having a one parametric 
discrete geometric distribution. 

• The repair priority is first come first serve bases while the operation priority is given to 
unit-I. 

 
3. Notations and states of the system 

 
𝑁$%/𝑁$& The unit-I/ unit-II is in normal-mode and operative. 
𝐹'%/𝐹'& The unit-I/unit-II is in failure-mode and under repair by master repairman.                                  
𝐹(%/𝐹(& The unit-I/unit-II is in failure-mode and waiting for repair. 

F)%  The unit-I is in F-mode and under repair by assistant repairman. 
N*& The unit-II is in normal-mode and kept into standby. 

𝑝𝑞+/𝑟𝑠+ Probability mass function of failure rate of unit-I/unit-II. 
𝑎𝑏+/𝑐𝑑+ Probability mass function of repair rate of unit-I in phase-I/phase-II. 

mn, Probability mass function of repair rate of unit-II. 
q!", Q!" Probability mass function and cumulative density function of one step transition 

time from state S!toS". 
p!" Steady state transition probability from state S!to S". 

Ψ! Mean sojourn time in regenerative state S!. 
Z!(k) Probability that the system is operational, initially in state sojourns	S! up to time k. 

h,* Dummy variable used in geometric transformation and sign. 
© Symbol for ordinary convolution. 

 

 

Figure 1: Transitions Probability Diagram 
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Operative States 
S$ = (N$%, N*&); 		S% = (F-%, N$&);	 		S& = (F)% , N$&)	and	S. = (N$%, F-&)  

Failed States 
S/ = (F-%, F0& ); 	S1 = (F)% , F-&)	and	S2 = (F0% , F-&)	
	

4. Transition probabilities and mean sojourn times 
 

Using simple probabilistic arguments that the system transits from state S! to	S"within time interval 
(0, k), then Q!"(k)	maybe obtain the following approach: 
 
Q!"(k) = [K34% = j, K34% − K3 < 𝑘|K3 = i] 

Q$%(k) = 1 − q,4%																															Q%&(k) =
asJ1 − (bs),4%L

1 − bs  

Q%/(k) =
rbJ1 − (bs),4%L

1 − bs 																	Q%1(k) =
arJ1 − (bs),4%L

1 − bs  

Q&$(k) =
csJ1 − (ds),4%L

1 − ds 																	Q&1(k) =
rdJ1 − (sd),4%L

1 − sd  

Q&.(k) =
rcJ1 − (sd),4%L

1 − sd 																	Q/1(k) = 1 − b,4% 

Q1$(k) =
cmJ1 − (dn),4%L

1 − dn 															Q1&(k) =
mdJ1 − (dn),4%L

1 − dn  

Q1.(k) =
cnJ1 − (dn),4%L

1 − dn 																Q.$(k) =
mqJ1 − (nq),4%L

1 − nq  

Q.%(k) =
mpJ1 − (nq),4%L

1 − nq 															Q.2(k) =
pnJ1 − (nq),4%L

1 − nq  

Q2%(k) = 1 − n,4% 
        
Similarly, using pij = lim

,→∞
Qij(k), the steady state transition probability is: 

p$% = p/1 = p2% = 1, 	p%& =
as

1 − bs , 	p%/ =
rb

1 − bs , 	p%1 =
ar

1 − bs , 	p&$ =
cs

1 − ds , p&1 =
rd

1 − ds , 	p&.

=
rc

1 − ds , p1$ =
cm

1 − dn , p1& =
md

1 − dn , 	p1. =
cn

1 − dn , 	p.$ =
mq

1 − nq , p.%

=
mp

1 − nq 	and		p.2 =
pn

1 − nq 

	 
We can easily verify that 
p%& + p%/ + p%1 = 1, p&$ + p&1 + p&. = 1, p1$ + p1& + p1. = 1	and		p.$ + p.% + p.2 = 1 
 

5. Mean sojourn time 
 

The expected time a system spends in one state before moving onto another state is known as the 
mean sojourn time  Ψ!  in state  𝑆6; i=0,1,2,3,4,5,6 is defined as: 

Ψ! = E[K!] =SP[K! ≥ K]
∞

,7%

 

So that 
Ψ$ =

8
9
,Ψ% =

:*
%;:*

,Ψ& =
<*
%;<*

,Ψ/ =
:
=	

, Ψ1 =
<3
%;<3

,Ψ. =
93
%;93

	and	Ψ2 =
3
>

 

 
6. Reliability of the system and mean time to system failure (MTSF) 

 
The system originally starts operational from state	S! ∈ E. Then the system reliability,	R!(k); i = 0, 1, 
2, 5; have the following set of convolution equations is given by: 
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R$(k) = q, +Sq$%(u)©R%(k − 1 − u)
,;%

?7$

 

R$(k) = Z$(k) + q$%(k − 1)©R%(k − 1) 
Similarly, 
R%(k) = Z%(k) + q%&(k − 1)©R&(k − 1) 
R&(k) = Z&(k) + q&$(k − 1)©R$(k − 1) + q&.(k − 1)©R.(k − 1) 
R.(k) = Z.(k) + q.$(k − 1)©R$(k − 1) 
where, 
Z%(k) = b,s,; 				Z&(k) = d,s,	and	Z.(k) = q,n, 
Using the geometric transformation of the above set of equations, get the algebraic solutions for 
R$∗ (h). We get 
R$∗ (h) =

A!(C)
E!(C)

                                                                    

where, 
N%(h) = Z$∗(h) + hq$%∗ Z%∗(h) + h&q$%∗ q%&∗ Z&∗(h) + h/q$%∗ q%&∗ q&.∗ Z.∗(h) 
D%(h) = 1 − h/q$%∗ q%&∗ q&$∗ − h1q$%∗ q%&∗ q&.∗ q.$∗  
The MTSF is given by: 
E(K$) = lim

*→$
R$∗ (h) =

A!($)
E!($)

  

To determine N%(0)	and	D%(0), we apply the results 
Z!∗(0) = Ψ!	and	q!"(0) = p!" 
We get, 

MTSF =
Ψ$ +Ψ% + p%&Ψ& + p%&p&.Ψ.

1 − p%&p&$ − p%&p&.p.$
 

 
7. Availability analyses 

 
Let A!(k); i=0,1,2,3,4,5,6 be the probability that the system will be normal at epoch time k, when at 
the system start function from state	S! ∈ E. We observe the following recurrence relations can be 
easily developed for A!(k), using similar probabilistic arguments: 

A$(k) = q, +Sq$%(u)©A%(k − 1 − u)
,;%

?7$

 

A$(t) = Z$(k) + q$%(k − 1)©A%(k − 1) 
Similarly, 
A%(k) = Z%(k) + q%&(k − 1)©A&(k − 1) + q%/(k − 1)©A/(k − 1) + q%1(k − 1)©A1(k − 1) 
A&(k) = Z&(k) + q&$(k − 1)©A$(k − 1) + q&1(k − 1)©A1(k − 1) + q&.(k − 1)©A.(k − 1) 
A/(k) = q/1(k − 1)©A1(k − 1) 
A1(k) = q1$(k − 1)©A$(k − 1) + q1&(k − 1)©A&(k − 1) + q1.(k − 1)©A.(k − 1) 
A.(k) = Z.(k) + q.$(k − 1)©A$(k − 1) + q.%(k − 1)©A%(k − 1) + q.2(k − 1)©A2(k − 1) 
A2(k) = q2%(k − 1)©A%(k − 1)(17-23) 
where, 
Z%(k); Z&(k); and	Z.(k)	same as in reliability. 
After solving the set of algebraic equations that emerge from applying geometric transforms to the 
equations above, we have 

A$∗ (s) =
N&(s)
D&(s)

 

where, 
N&(s) = {1 − q&1∗ q1&∗ − (q.%∗ + q.2∗ q2%∗ )[q1.∗ (q%/∗ q/1∗ + q%1∗ ) + q&.∗ q1&∗ (q%/∗ q/1∗ + q%1∗ ) + q%&∗ q&.∗ +
q%&∗ q&1∗ q1.∗ ]}Z$∗ − (q$%∗ q&1∗ q1&∗ − q$%∗ )Z%∗ + [q$%∗ q%&∗ + q$%∗ q1&∗ (q%/∗ q/1∗ + q%1∗ )]Z&∗ + [q$%∗ q%&∗ (q&1∗ q1.∗ + q&.∗ ) +
q$%∗ q1.∗ (q%/∗ q/1∗ + q%1∗ ) + q$%∗ q&.∗ q1&∗ (q%/∗ q/1∗ + q%1∗ )]Z.∗   
and 
D&(s) = 1 − q$%∗ q%&∗ (q&$∗ + q&1∗ q1$∗ + q&1∗ q1.∗ q.$∗ + q&.∗ q.$∗ ) − q$%∗ (q%/∗ q/1∗ + q%1∗ )(q&$∗ q1&∗ + q&.∗ q1&∗ q.$∗ +
q1$∗ + q1.∗ q.$∗ ) − q%&∗ (q.%∗ + q.2∗ q2%∗ )(q&1∗ q1.∗ + q&.∗ ) − (q%/∗ q/1∗ + q%1∗ )(q.%∗ + q.2∗ q2%∗ )(q&.∗ q1&∗ + q1.∗ ) −
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q&1∗ q1&∗   
Now, the steady state availability i.e. the probability that the system will be active in long run is 
known as: 

A$ = lim
,→∞

A$(k) = lim
*→$

sA$
∗(s) = lim

*→$
s
N&(s)
D&(s)

 

Since,	D&(0) = 0, therefore by applying L-Hospital rule; 
A$ = lim

*→$

A"(*)
E"′ (*)

= A"($)
E"′ ($)

     

where, 
N&(0) = [1 − p&1p1& − (p%/ + p%1)(p.% + p.2)(p1. + p&.p1&) − p%&(p.% + p.2)(p&. + p&1p1.)]Ψ$ +
(1 − p&1p1&)Ψ% + [p%& + p1&(p%/ + p%1)]Ψ& + [p%&(p&1p1. + p&.) + (p%/ + p%1)(p&.p1& + p1.)]Ψ.	  
and 
D&F (0) = [(p%/ + p%1)(p&$p1& + p&.p1&p.$ + p1$ + p1.p.$) + p%&(p&$ + p&.p.$) + p%&p&1(p1$ +
p1.p.$)]Ψ$ + [p1&(p&$ + p&.) + p1$ + p1.]Ψ% + [p%& + p1&(p%/ + p%1)]Ψ& + [p%/p1&(p&$ + p&.) +
p%/(p1$ + p1.)]Ψ/ + (p%&p&1 + p%/ + p%1)Ψ1 + [(p%/ + p%1)(p&.p1& + p1.) + p%&(p&1p1. + p&.)] +
[p.2(p%/ + p%1)(p&.p1& + p1.) + p%&p.2(p&1p1. + p&.)]Ψ2  
 

8. Busy period for master repairman 
 
Let B!-(k);	i=0,1,2,3,4,5,6 be the probability that the master repairman is busy repairing the failed 
unit in phase-I at epoch time k when the system operational from the state	S! ∈ E. Now for	B$-(k), 
we have the sum of the probabilities of the following contingencies: 

B$-(k) =Sq$%(u)©B%,(k − 1 − u)
,;%

?7$

 

B$-(k) = q$%(k − 1)©B%-(k − 1) 
Similarly, 
B%-(k) = Z%-(k) + q%&(k − 1)©B&-(k − 1) + q%/(k − 1)©B/-(k − 1) + q%1(k − 1)©B1-(k − 1) 
B&-(k) = q&$(k − 1)©B$-(k − 1) + q&1(k − 1)©B1-(k − 1) + q&.(k − 1)©B.-(k − 1) 
B/-(k) = Z/-(k) + q/1(k − 1)©B1-(k − 1) 
B1-(k) = Z1-(k) + q1$(k − 1)©B$-(k − 1) + q1&(k − 1)©B&-(k − 1) + q1.(k − 1)©B.-(k − 1) 
B.-(k) = Z.-(k) + q.$(k − 1)©B$-(k − 1) + q.%(k − 1)©B%-(k − 1) + q.2(k − 1)©B2-(k − 1) 
B2-(k) = Z2-(k) + q2%(k − 1)©B%-(k − 1) 
where, 
Z%-(k) = b,s,; 		Z/-(k) = b,; 			Z1-(k) = d,n,; 				Z.-(k) = q,n,	and		Z2-(k) = n, 
Using the inverse Laplace transform of B$-∗(s), we get: 

B$-∗ = lim
*→$

s
N/(s)
D&(s)

 

here,   
D&(0) = 0 
Therefore, by L-hospital rule, we have 

B$-∗ = lim
*→$

N/(s)
D&′ (s)

=
N/(0)
D&′ (0)

 

where, 
N/(0) = (1 − p&1p1&)(Ψ% +Ψ/) + [p%&p&1 + (p%/ + p%1)]Ψ1 + [p%&(p&1p1. + p&.) + (p%/

+ p%1)(p&.p1& + p1.)](Ψ. + p.2Ψ2) 
 

9. Busy period for assistant repairman 
 

Let B$)(k)	i=0,1,2,3,4,5,6 be the probability that the master repairman is busy repairing the failed 
unit in phase-I at epoch time k when the system operational from the state	S! ∈ E. Now for	B$)(k), 
we have the sum of the probabilities of the following contingencies: 

B$)(k) =Sq$%(u)©B%)(k − 1 − u)
,;%

?7$
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B$)(k) = q$%(k − 1)©B%)(k − 1) 
Similarly, 
B%)(k) = q%&(k − 1)©B&)(k − 1) + q%/(k − 1)©B/)(k − 1) + q%1(k − 1)©B1)(k − 1) 
B&)(k) = Z&)(k) + q&$(k − 1)©B$)(k − 1) + q&1(k − 1)©B1)(k − 1) + q&.(k − 1)©B.)(k − 1) 
B/)(k) = q/1(k − 1)©B1)(k − 1) 
B1)(k) = Z1)(k) + q1$(k − 1)©B$)(k − 1) + q1&(k − 1)©B&)(k − 1) + q1.(k − 1)©B.)(k − 1) 
B.)(k) = q.$(k − 1)©B$)(k − 1) + q.%(k − 1)©B%)(k − 1) + q.2(k − 1)©B2)(k − 1) 
B2)(k) = q2%(k − 1)©B%)(k − 1) 
where, 
Z&)(k) = d,s,	and		Z1)(k) = d,n, 
Using the inverse Laplace transform of B$)∗(s) we get: 

B$)∗ = lim
*→$

s
N1(s)
D&(s)

 

here,   
D&(0) = 0 
Therefore, by L-hospital rule, we have 

B$)∗ = lim
*→$

N1(s)
D&′ (s)

=
N1(0)
D&′ (0)

 

where, 
N1(0) = [p%& + p1&(p%/ + p%1)]Ψ& + [p%&p&1 + (p%/ + p%1)]Ψ1 
 

10. Profit analysis 
 

The system model net-expected profit during the time interval (0, k) is given below: 
P(k) = Expected total revenue in (0, k) - Expected cost of repair in (0, k) 
P(k) = C$µ?8(k) − C%µ:

- (k) − C&µ:
)(k) 

WhereC$	per-unit up time revenue by the system due to the operation of unit-I and unit-II, 𝐶% and 
C& are the repair cost per-unit of time when unit is repair by master repairman and assistant 
repairman respectively. 
The expected total cost per-unit time in steady state is given by: 

P = lim
,→∞

P(k)
k  

				= C$A$ − C%B$- − C&B$) 
Where	A$ , B$-  and B$)		have been already defined. 
 

11. Conclusion 
 

This paper concludes with an analysis of stochastic modeling of various reliability measures such 
as MTSF, availability and busy period for a master repairman, assistant repairman, and profit 
analysis by different levels of performance. Let us suppose that the random variables follow a 
geometric distribution with dissimilar probability mass functions. The numerical analysis of MTSF, 
availability, and profit analysis have been studied at various levels of failure rate (q) of unit-I, and 
failure rate (s) of unit-II by fixing the values of certain parameters a=0.8, b=0.2, c=0.6, d=0.4, m=0.4 
and n=0.6. Table 1 and Figure 2 a show the variation in MTSF is decries by increasing the failure 
rate of unit-I and unit-II. The availability is linearly falling shown in Table 2 and Figure 3, for 
various values of the failure rate of unit-I and unit-II. Also putting the other parameters C0=10000, 
C1=2000, and C2=1000 the profit analysis concerning various values of failure rate (q) of unit-I, 
failure rate (s) of unit-II, and the fixing value of a, b, c, d, m, and n showed in a smooth curve in 
Figures 4 and Table 3. 
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Appendix 
 
Table 1: Effect of a, b, c, d, m and n on system performance with respect to various failure rate of unit-I and unit-II                          

Failure rate of unit-I (p) Failure rate of unit-II (r)  
a=0.8, b=0.2, c=0.6, d=0.4, m=0.4 and n=0.6 
MTSF Availability Profit Analysis 

0.02 0.01  47.66470 0.99 8117.19246 
0.04 0.02  23.79169 0.98 8044.72539 
0.06 0.03  15.86021 0.97 7966.79472 
0.08 0.04  11.91403 0.96 7885.26352 
0.10 0.05  9.562128 0.95 7801.60347 
0.12 0.06  8.007633 0.94 7716.98608 
0.14 0.07  6.909151 0.93 7632.35110 
0.16 0.08  6.096083 0.92 7548.45847 
0.18 0.09  5.473738 0.91 7465.92800 
0.20 0.10  4.985377 0.90 7385.27013 

 
Table 2: Effect of a, b, c, d, m and n on system performance with respect to various failure rate of unit-I and unit-II  

Failure rate of unit-I (p) Failure rate of unit-II (r)  

a=0.8, b=0.2, c=0.6, d=0.4, m=0.4 and n=0.6 
MTSF Availability Profit Analysis 

0.03 0.02  23.81516 0.98 8030.99201 
0.05 0.04  11.88649 0.97 7855.23332 
0.07 0.06  7.916658 0.95 7677.4412 
0.09 0.08  5.938082 0.93 7499.77873 
0.11 0.10  4.757167 0.91 7323.78275 
0.13 0.12  3.976017 0.90 7150.55723 
0.15 0.14  3.424099 0.88 6980.90371 
0.17 0.16  3.016157 0.86 6815.41137 
0.19 0.18  2.704848 0.85 6654.52024 
0.21 0.20  2.461794 0.83 6498.56645 

 
Table 3: Effect of a, b, c, d, m and n on system performance with respect to various failure rate of unit-I and unit-II                          

Failure rate of unit-I (p) Failure rate of unit-II (r)  

a=0.8, b=0.2, c=0.6, d=0.4, m=0.4 and n=0.6 
MTSF Availability Profit Analysis 

0.04 0.04  11.86965 0.97 7846.51242 
0.06 0.08  5.897579 0.94 7493.47397 
0.08 0.12  3.903218 0.91 7159.24093 
0.10 0.16  2.905934 0.88 6841.64064 
0.12 0.20  2.309357 0.85 6539.07996 
0.14 0.24  1.914567 0.82 6250.37274 
0.16 0.28  1.636242 0.79 5974.63725 
0.18 0.32  1.431696 0.77 5711.23236 
0.20 0.36  1.277211 0.74 5459.71658 
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Figure 2: MTSF vs failure rate of unit-I (p) and unit-II (r) 
 

 
 

Figure 3: Availability analysis vs failure rate of unit-I (p) and unit-II (r) 
 
 

 
 

Figure 4: Profit analysis vs failure rate of unit-I (p) and unit-II (r) 
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Abstract

We consider a single server phase type queueing model with server vacation, repair, breakdown, degrading
service, starting failure and closedown. When the arrival rate of the customer follows the Markovian
Arrival Process (MAP) and the service rate of the server follows the phase-type distribution. If no one
is in the system when the server is back from the vacation, then the server will wait until the customer
arrives. If the customer arrives at the moment with no starting failure, then he provides service, otherwise
the server immediately goes to the repair process. Here, the service rate declining until degradation fixed.
After completion of K services the degradation is addressed. During the period of service, the server
may get a breakdown at any moment, and then the server immediately goes for a repair process. After
completing the service, he switches to the close-down process, and then he goes on vacation. Using the
Matrix-Analytic method, The stationary probability vector representing the total number of customers in
the system is examined. The analysis of the busy period, the mean waiting time, and cost analysis are
discussed. A few significant performance measures are attained. Finally, some numerical examples are
given.

Keywords: Phase type Distribution, Markovian Arrival Process, Degrading Service, Server
Vacation, Breakdown, Repair, Starting failure, Close-down, Matrix-analytic method.

AMS Subject Classification (2010): 60K25, 68M30, 90B22.

1. Introduction

The Markovian arrival process is one of the modelling techniques for studying point processes
that is most flexible. In order to define arrival processes that are not fundamentally renewal
processes, Neuts [13] proposed the concept of a versatile Markovian point process (VMPP). Neuts
[14] first introduced and investigated the underlying Markov structure of the MAP, which fits
perfectly into the framework of matrix-analytic methods and is one of its most notable properties.
Qi-Ming He [16] investigated the foundations of matrix analytical methodologies in order to
comprehend the idea of service and arrival process.

Chakravarthy [5] made a significant contribution to MAP. Markovian Arrival Process rep-
resents by (D0, D1) and the service times with representation (α, T) that follow phase type
distribution and whose matrices of order m and n, respectively. He described several types of
arrivals and services. The irreducible stochastic matrix D = D0 + D1 defines the generator D. If
the irreducible generator D describes the Markov process, then π is the steady state probability
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vector, and it is defined as πD = 0 and πe = 1. Based on the Markovian arrival process, the
constant λ = πD1e represents the basic customer arrival rate per unit time.

MAP/PH/1-type queueing models with degradation and phase type vacation have been
analysed by Alka et al. [6]. Degradation can be included in a service system in a number of
ways. The service rate will decrease unless the degradation is addressed. In other words, the
service rate will decrease as more services are provided. For vacation queueing models, we refer
to Doshi’s survey paper [7] and Tian and Zhang’s book [20]. Li and Tian [12] investigated the
M/M/1 model with working vacation and proposed an interruption in vacation, where the server
returns without completing the ongoing vacation due to certain conditions. Krishna Kumar et al.
[10] have analysed the several server model with server vacations under the Bernoulli schedule.
Sreenivasan et al. [18] have examined the MAP/P H/1 queueing model with N-Policy, vacation
interruption and working vacations.

One of the main queueing theory subfields has recently been queueing models with server
breakdown. Wang et al. [21] have investigated the batch arrival queueing model with multiple
vacations and the server struck with breakdown. Ayyappan and Nirmala [2] have explored
the non-Markovian queueing model and the server provides service to the customers based on
general bulk service rule with multiple vacations, breakdown and two-phase repair . Ayyappan
and Deepa [1] have studied the batch arrival and bulk service queueing model with multiple
vacations and optional repair. A single server queueing model with MAP arrival and phase type
service, vacation, instantaneous feedback and breakdown has been looked into by Ayyappan
and Thilagavathy [3]. In this model, they obtained stability condition and busy period analysis.
Senthil Vadivu et al. [17] have performed a cost function of the bulk service queueing model of a
single server with finite capacity and close-down times by using embedded Markov chain and
supplementary variable techniques.

Yang et al. [22] have discussed the Markovian model of the retrial queue with multi-server and
starting failure. They analyzed their model with the aid of the matrix geometric method. With
respect to the stability condition, the cost analysis is built to calculate the ideal number of servers,
the ideal average service rate, and the ideal average repair rate. Karpagam et al. [9] have been
analysed the batch arrival and bulk service queueing system with starting failure and additional
service. They obtained system performance measures and the stability condition. Ayyappan and
Gowthami [4] has analysed a Phase type model with impatient customers, Setup time, vacation,
feedback, Breakdown and Repair. In this article, they compute the average waiting time.

2. Description of the Model

Assume that there is a single server in a queueing model, and that customers arrive at the
system according to the MAP with representation (D0, D1), where D0 and D1 are m-dimensional
square matrices. Let D = D0 + D1 be the generator matrix, where D0 governs for no arrival at the
system and D1 governs for an arrival at the system. The stationary vector of D is denoted by π, so
we have πD = 0 and πe = 1. The arrival rate λ is given by λ = πD1e. The system is performed
on an FCFS basis. With the notation (α, T), that is of order n, the length of the server’s service is
thought to be a PH-distribution, where T0 + Te = 0 so that T0 = −Te. The average service rate
ξ is given by ξ = [α(−T)−1e]−1. The service rate decreases after each service is completed. Let
ξ be the first service rate and ξi be the ith service rate such that ξ = ξ1 ≥ ξ2 ≥ ξ3 ≥ · · · ≥ ξK,
where ξi = θiξ and 0 < θi ≤ 1 for all i = 1, 2, 3, . . . , K. After K services are completed, the
original rate of ξ is immediately applied to the degraded service rate. Because θ1 = 1, After the
degradation has been corrected, the service rate for the first customer is always ξ. The server
that customers use to access services could breakdown at any time and needs to be repaired.
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The repair procedure is based on the PH-distribution with representation (β, S) of order n2 and
S0 + Se = 0 so that S0 = −Se. If no one is present in the system when the server’s service is
completed, the close-down process begins, and then the server goes on vacation. The vacation
period is thought to be a PH-distribution with the notation (γ, V) of order n1, where V0 + Ve = 0
so that V0 = −Ve. After completion of the vacation period if no customer present in the system,
then the server is idle; otherwise the server starts the service. If a customer arrives while the
server is idle, it may experience a starting failure with probability p or no starting failure with
probability q, resulting in p+q=1. In the event of a server breakdown, the customer who is
currently providing the service from the server will remain in a frozen state until the server
gets rid of the repair process. After completion of the repair process, the server will serve a
fresh service for the current frozen customer. The breakdown and close-down time follows an
exponential distribution with the parameters σ and δ respectively. The average repair rate and
vacation rate are given by ζ and η respectively.

Figure 1: Schematic Representation of the model

3. The QBD Process of Matrix Generation

We have described our model’s notation for the basis of generating the QBD process in this
section as follows.

Matrix Generation Notations
∙ ⊗ - Kronecker product represents the product of any two different order matrices, can refer

to the works in Steeb et al. [19].
∙ ⊕ - The Kronecker Sum represents the sum of any two of the different orders of matrices.
∙ Ik - An identity matrix of order k.
∙ e′i(m) - An m-dimensional row vector with 1 in the ith position and 0 elsewhere.
∙ e-Each entry in a column vector of appropriate dimension is 1.
∙ The customer’s arrival rate is denoted by λ and is defined by λ = πD1em
∙ The server’s service rate is denoted by ξ and is defined by

ξ = [α(−T)−1en]−1
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∙ The server’s vacation rate is denoted by η and is defined by
η = [γ(−V)−1en1 ]

−1

∙ The server’s repair rate is denoted by ζ and is defined by
ζ = [β(−S)−1en2 ]

−1

∙ Define θ = (θ1, θ2, . . . , θK)
t and ∆(θ) =


θ1 0 . . . . . .
0 θ2 . . . . . .
...

...
. . .

...
0 . . . . . . θK


∙ Let N(t) be the number of customers in the system at epoch t
∙ Let V(t) be the server’s status at epoch t

V(t) =



0, if the server is on vacation,
1, if the server is in idle,
2, if the server is in busy,
3, if the server is in repair process,
4, if the server is in closedown process.

∙ I(t) is the type of service at time t
∙ J1(t) represents the vacation process as framed by phases.
∙ J2(t) represents the repair process as framed by phases.
∙ S(t) represents the service process as framed by phases.
∙ M(t) represents the arrival process as framed by phases.

Let { N(t),V(t),I(t),J1(t),J2(t),S(t),M(t):t ≥ 0} denote the Continuous Time Markov Chain
(CTMC) with state level independent Quasi-Birth and Death process, the state space of which is
as follows:

Ω = l(0) ∪ l(q) ,
where

l(0) = {(0, 0, j1, k) : 1 ≤ j1 ≤ n1, 1 ≤ k ≤ m} ∪ {(0, 1, k) : 1 ≤ k ≤ m} ∪ {(0, 4, k) : 1 ≤ k ≤ m}

for q ≥ 1,

l(q) = {q, 0, j1, k) : 1 ≤ j1 ≤ n1, 1 ≤ k ≤ m} ∪ {(q, 2, l, j, k) : 1 ≤ l ≤ K, 1 ≤ j ≤ n, 1 ≤ k ≤ m}
∪{(q, 3, l, j2, k) : 1 ≤ l ≤ K, 1 ≤ j2 ≤ n2, 1 ≤ k ≤ m} ∪ {(q, 4, k) : 1 ≤ k ≤ m}.

The QBD process’s infinitesimal matrix generation is given by

Q =



B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .
0 0 A2 A1 A0 0 . . .
...

...
...

. . . . . . . . .
...

...
...

...
...

. . . . . . . . .


.

The entries in the block matrices of Q are defined as follows,

B00 =

V ⊕ D0 V0 ⊗ Im 0
0 D0 0

γ ⊗ δIm 0 D0 − δIm

 ,
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B01 =

In1 ⊗ D1 0 0 0
0 e′1(K)⊗ α ⊗ qD1 e′1(K)⊗ β ⊗ pD1 0
0 0 0 D1

 , B10 =


0 0 0
0 0 θ ⊗ T0 ⊗ Im
0 0 0
0 0 0

 ,

A0 =


In1 ⊗ D1 0 0 0

0 IK ⊗ In ⊗ D1 0 0
0 0 IK ⊗ In2 ⊗ D1 0
0 0 0 D1

 ,

A1 =


V ⊕ D0 e′1(K)⊗ qV0α ⊗ Im e′1(K)⊗ pV0β ⊗ Im 0

0 (∆(θ)⊗ T)⊕ D0 − σIKnm IK ⊗ (en ⊗ β)⊗ σIm 0
0 IK ⊗ S0α ⊗ Im (IK ⊗ S)⊕ D0 0

γ ⊗ δIm 0 0 D0 − δIm

 ,

A2 =


0 0 0 0
0 A22 0 0
0 0 0 0
0 0 0 0

 ,

A22 =


0 θ1T0α ⊗ Im 0 . . . 0
0 0 θ2T0α ⊗ Im . . . 0
...

...
...

. . .
...

0 0 . . . . . . θK−1T0α ⊗ Im
θKT0α ⊗ Im 0 . . . . . . 0

 .

4. Analysis of Stability Condition

We examined our model under the assumption that the system is stable.

4.1. Condition for Stableness

Let us specify the matrix A as A = A0 + A1 + A2. It clearly demonstrates that the order
of the square matrix A is n1m + Knm + Kn2m + m and this matrix is an irreducible infinitesimal
generator matrix. Let ϕ indicate the steady-state probability vector of A and it satisfying ϕA = 0
and ϕe = 1. The vector ϕ is partitioned by ϕ = (ϕ0, ϕ1, ϕ2, ϕ3)=(ϕ0, ϕ11, ϕ12, ϕ13, . . . , ϕ1K−1, ϕ1K,
ϕ21, ϕ22, ϕ23, . . . , ϕ2K−1, ϕ2K, ϕ3), where ϕ0 is of dimension n1m, ϕ1 is of dimension Knm, ϕ2 is of
dimension Kn2m, ϕ3 is of dimension m. Our model’s stability should satisfy the necessary and
sufficient condition ϕA0e < ϕA2e when the Markov Process is investigated using the Quasi-Birth-
and-Death structure. The probability vector ϕ is calculated by solving the following equations

(V ⊕ D)ϕ0 + (γ ⊗ δIm)ϕ3 = 0,

(qV0α ⊗ Im)ϕ0 + (θ1T ⊕ D − σInm)ϕ11 + (θLT0α ⊗ Im)ϕ1K + (S0α ⊗ Im)ϕ21 = 0,

(θj−1T0α ⊗ Im)ϕ1j−1 + (θjT ⊕ D − σInm)ϕ1j + (S0α ⊗ Im)ϕ2j = 0 f or 2 ≤ j ≤ K,

(pV0β ⊗ Im)ϕ0 + (en ⊗ β ⊗ σIm)ϕ11 + (S ⊕ D)ϕ21 = 0,

(en ⊗ β ⊗ σIm)ϕ1j + (S ⊕ D)ϕ2j = 0 f or 2 ≤ j ≤ K,

(D − δIn)ϕ3 = 0.

subject to normalizing condition

ϕ0en1m +
K

∑
j=1

ϕ1jenm +
K

∑
j=1

ϕ2jen2m + ϕ3em = 1.
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The stability condition ϕA0e < ϕA2e is obtained after some algebraic manipulation, which turns
out to be

ϕ0(en1 ⊗ D1em) +
K

∑
j=1

ϕ1j(en ⊗ D1em) +
K

∑
j=1

ϕ2j(en2 ⊗ D1em) + ϕ3D1em <
K

∑
j=1

ϕ1j(θjT0 ⊗ em)

4.2. Analysis of Steady-State Probability Vector

Consider the steady-state probability vector x of Q and it is divided into x = (x0, x1, x2, . . . ).
x0 has a dimension 2m + n1m while x1, x2, . . . have a dimension n1m + Knm + Kn2m + m. Then
x satisfied the condition xQ = 0 and xe = 1.

Furthermore, if the system is stable with the vector x, the following equation provides
the remaining sub vectors except for the boundary states.

xq = x1Rq−1, q ≥ 2

where the rate matrix R indicates the minimal non-negative solution of the matrix quadratic
equation as R2 A2 + RA1 + A0 = 0, as referred by Neuts [15] and satisfies the relation RA2e = A0e.

The sub vectors of x0 and x1 were calculated by solving the subsequent equations.

x0B00 + x1B10 = 0

x0B01 + x1(A1 + RA2) = 0

The normalizing condition is subject to

x0e2m+n1m + x1(I − R)−1en1m+Knm+Kn2m+m = 1

As a result, the rate matrix R could be mathematically calculated using crucial procedures
in the Latouche algorithm for logarithmic reduction of R [11].

5. Busy period Analysis

∙ The time between customers entering into an empty system and the system becoming empty
again after the first interval can be used to measure a busy period. This is the first passage
in the transition from level 1 to 0. Thus, it is the first time returns to level 0, followed by at
least one visit to a state at any other level is known as the busy cycle.

∙ We give an overview of the fundamental period before moving on to the busy period. The
QBD process takes into account the first transition time, q ≥ 2, from level q to level q-1.

∙ It is necessary to examine each of the cases q = 0, 1 that correspond to the boundary states
individually. It should be noted that for each level j with q ≥ 2, there are (n1m + Lnm +
Ln2m + m) states that correspond. Similarly, when the states are organised in lexicographic
order, the state(q, j) at level j signifies that jth state at the level q is mentioned.

∙ The variable Gjj′(v, x) represents the conditional probability that the QBD process, which
begins in the state (q, j) at time t=0 and visits the level q-1 but not before time x, can
make changes v transition to the left and enter the state (q, j′). Let us first define the joint
transform

G̃jj′(z, s) =
∞

∑
v=1

zv
∫ ∞

0
e−sxdGjj′(v, x); |z| ≤ 1, Re(s) ≥ 0

and the matrix is represented as G̃(z, s) = G̃jj′(z, s) [14]then the previously defined matrix
G̃(z, s) satisfied the equation

G̃(z, s) = z(sI − A1)
−1 A2 + (sI − A1)

−1 A0G̃2(z, s).
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∙ The matrix G = Gjj′ = G̃(1, 0), excluding the boundary states, would be used for the first
passage time. If we are already familiar with the matrix R, we can use the results to discover
the matrix G

G = −(A1 + RA2)
−1 A2.

Or else, the idea of a logarithmic reduction algorithm method [11] could be used to
determine the values of the G matrix.

Notations
∙ G(1,0)

jj′ (v, x) shows that at time t = 0, the conditional probability has been discussed for the
first time during the passage from level 1 to level 0.

∙ G(0,0)
jj′ (v, x) shows that the conditional probability has been discussed for the return time to

level 0.
∙ H1q shows the average first passage time between levels q and q-1, assuming the process is

in the state (q, j) at time t=0.
∙ ~H1 identifies the column vector containing the entries H1q.
∙ H2q shows the average number of customers expected to be served during the first passage

time from level q to q-1, assuming that the state’s first passage time has already begun (q, j).
∙ ~H2 identifies the column vector containing the entries H2q.

∙ ~H
(1,0)
1 shows the average first passage time between level 1 and level 0.

∙ ~H
(1,0)
2 shows the expected number of services finished during the first passage time from

level 1 to level 0.
∙ ~H

(0,0)
1 shows the initial return time to level 0.

∙ ~H
(0,0)
2 shows the expected number of services finished between the first return time and

level 0.
The following equations, which are given by G̃(1,0)(z, s) and G̃(0,0)(z, s), are for the boundary
levels 1 and 0 respectively.

G̃(1,0)(z, s) = z(sI − A1)
−1B10 + (sI − A1)

−1 A0G̃(z, s)G̃(1,0)(z, s),

G̃(0,0)(z, s) = (sI − B00)
−1B01G̃(1,0)(z, s).

The matrices are used to calculate the following instances because G, G̃(0,0)(1, 0) and G̃(1,0)(1, 0)
are all stochastic in nature. We can compute the instants as follows:

~H1 = − ∂

∂s
G̃(z, s)

∣∣∣
z=1,s=0

e = −[A1 + A0(I + G)]−1e,

~H2 =
∂

∂z
G̃(z, s)

∣∣∣
z=1,s=0

e = −[A1 + A0(I + G)]−1 A2e,

~H
(1,0)
1 = − ∂

∂s
G̃(1,0)(z, s)

∣∣∣
z=1,s=0

e = −[A1 + A0G]−1(A0~H1 + e),

~H
(1,0)
2 =

∂

∂z
G̃(1,0)(z, s)

∣∣∣
z=1,s=0

e = −[A1 + A0G]−1(A0~H2 + B10e),

~H
(0,0)
1 = − ∂

∂s
G̃(0,0)(z, s)

∣∣∣
z=1,s=0

e = −B−1
00 [B01~H

(1,0)
1 + e],

~H
(0,0)
2 =

∂

∂z
G̃(0,0)(z, s)

∣∣∣
z=1,s=0

e = −B−1
00 [B01~H

(1,0)
2 ].

6. System Performance Measures

∙ The average system size

Esystem =
∞

∑
q=1

qxqe
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∙ Probability of the server is busy

Pbusy =
∞

∑
q=1

K

∑
l=1

n

∑
j=1

m

∑
k=1

xq2l jk

∙ Probability of the server is in idle

Pidle =
m

∑
k=1

X01k

∙ Probability of the server is on vacation

Pvac =
∞

∑
q=0

n1

∑
j1=1

m

∑
k=1

xq0j1k

∙ Probability of the server is breakdown

Pbd =
∞

∑
q=1

K

∑
l=1

n2

∑
j2=1

m

∑
k=1

xq3l j2k

∙ Probability of the server is on closedown

Pcd =
∞

∑
q=0

m

∑
k=1

xq4k

∙ The average system size during vacation

Evac =
∞

∑
q=1

n1

∑
j1=1

m

∑
k=1

qxq0j1ken1m

∙ The average system size of the server is busy

Ebusy =
∞

∑
q=1

K

∑
l=1

n

∑
j=1

m

∑
k=1

qxq2l jkeKnm

∙ The average system size during breakdown

Ebd =
∞

∑
q=1

K

∑
l=1

n2

∑
j2=1

m

∑
k=1

qxq3l j2keKn2m

∙ The average system size when the server is close-down

Ecd =
∞

∑
q=1

m

∑
k=1

qxq4kem

7. Waiting Time Distribution

The first passage time analysis is used in this section to analyse the distribution of a cus-
tomer’s waiting time when they enter the queueing line. Let W(t) be the waiting time distribution
function, which takes into account new customers joining the queue. If the server is idle when a
customer arrives, they will get service immediately; otherwise, if the server is busy or on vacation,
they will have to wait in a queue to receive service from the server.

Let’s look at the absorption time in the state space of a Markov chain, which is given by

Ω̄ = (*) ∪ {0̄, 1̄, 2̄, . . . }
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where
0̄ = {(0, 0, j1) : 1 ≤ j1 ≤ n1} ∪ {(0, 4)}

and for q ≥ 1,

q̄ = {(q, 0, j1) : 1 ≤ j1 ≤ n1} ∪ {(q, 2, l, j) : 1 ≤ l ≤ K, 1 ≤ j ≤ n}
∪ {(q, 3, l, j2) : 1 ≤ l ≤ K, 1 ≤ j2 ≤ n2} ∪ {(q, 4)}

The state space (*)obtained by considering the states that have the server in the idle state at the
instant of arrival is as below

(*) = {(0, 1)}

Let this Markov process’s transition matrix Q̄ be

Q̄ =



0 0 0 0 0 0 . . . . . .
J0 L0 0 0 0 0 . . . . . .
J1 L10 L 0 0 0 . . . . . .
0 0 L2 L 0 0 . . . . . .
0 0 0 L2 L 0 . . . . . .
...

...
...

. . . . . .
...

...
...

...
...

...
...

. . . . . .
...

...


where

J0 =

[
V0

0

]
, L0 =

[
V 0

γ ⊗ δ −δ

]
, J1 =


0
0
0
0

 , L10 =


0 0
0 θ ⊗ T0

0 0
0 0

 ,

L =


V e′1(K)⊗ qV0α e′1(K)⊗ pV0β 0
0 ∆(θ)⊗ T − σIKn IK ⊗ (en ⊗ σβ) 0
0 IK ⊗ S0α IK ⊗ S 0

γ ⊗ δ 0 0 −δ

 ,

L2 =


0 0 0 0
0 L22 0 0
0 0 0 0
0 0 0 0

 , L22 =


0 θ1T0α 0 . . . 0
0 0 θ2T0α . . . 0
...

...
...

. . . 0
0 0 . . . 0 θK−1T0α

θKT0α 0 . . . 0 0

 .

With the aim of determining the arriving tagged customer’s waiting time distribution
W(t), where(t ≥ 0). To start, we search for the system size probability vector at the arrival epoch
in a steady state and it is indicated by Z(0) = (Z0(0), Z1(0), Z2(0), . . . ). The vector Z0(0) may
be further partitioned as follows Z0(0) = (Z00, Z04). The system size probability vector at the
arrival epoch in the steady state is as follows because the arrival process abides by the Markovian
property:

Z00 = x00

[
In1 ⊗

D1em

λ

]
, Z04 = x04

[
D1em

λ

]
,

Zq(0) = xq

[
In1+Kn+Kn2+1 ⊗

D1em

λ

]
, f or q ≥ 1

where λ denotes the fundamental arrival rate of Markovian Arrival Process.
Define Z(t) = (Z*(t), Z0(t), Z1(t), . . . ),
where
Zq(t), q ≥ 1 - vector of order 1 × (n1 + Kn + Kn2 + 1)
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Z0(t) = (Z00, Z04) - vector of order 1 × (n1 + 1)
and their components give the probability that at epoch t, the CTMC generator matrix is Q̄,
will be in the appropriate level q state. Since the tagged customer’s probability of being in the
absorbing state at epoch t is specified by Z*(t), we get W(t) = Z*(t), where t ≥ 0.
The differential equation Z′(t) = Z(t)Q̄ for t ≥ 0 becomes

Z′
*(t) = Z0(t)J0 + Z1(t)J1,

Z′
0(t) = Z0(t)L0 + Z1(t)L10,

Z′
q(t) = Zq(t)L + Zq+1(t)L2, q ≥ 1

where ′ specifies the derivative concerning t. Let’s use the method suggested by Neuts et al. [15]
to compute the LST for W(t). The row vector ω(s) specifies the Laplace-Stieltjes Transform (LST)
of the first passage time to level 1 by starting the process at state q and using Zq(0), q ≥ 1 as the
initial probability vector. Neuts et al. [15] state that we get,

ω(s) =
∞

∑
q=1

Zq(0)[(sI − L)−1L2]
q−1 (1)

With the restriction that the process begins at level q = 0, 1, let the LST of the time to
become absorbed into the state (*) be specified by φ(q, s). Similar to Neuts et al. [15], we have

(0, s) = [sI − L0]
−1 J0, (2)

φ(1, s) = [sI − L]−1L10φ(0, s) + [sI − L]−1 J1. (3)

This allows us to quickly note that the LST for the distribution of sojourn time is as follows.

W(s) = Z0(0)φ(0, s) + ω(s)φ(1, s) (4)

Expected Waiting Time

The mean waiting time is given as

E(W) = −W ′(0) = −Z0(0)φ′(0, 0)− ω′(0)en1+Kn+Kn2+1 − ω(0)φ′(1, 0) (5)

The initial term of the previous equation gives the expected time to reach the absorbing state
(*), assuming that the system is at level 0. The final two components of the previous equation
provide the expected time for accessing the absorbing state (*) if the system is resting at level
q ≥ 1. By differentiating (2) and (3) and making s=0,

Φ′(0, 0) = −[−L0]
−2 J0 (6)

Φ′(1, 0) = −[−L]−2L10Φ(0, 0) + [−L]−1L10Φ′(0, 0)− [−L]−2 J1 (7)

Using (6) and the vector Z(0) = (Z0(0), Z1(0), . . . ), it is simple to calculate the first term of (5).
From (1), we get

ω(0) =
∞

∑
q=1

Zq(0)Mq−1 (8)

where M = [−L]−1L2. As M is a stochastic matrix, we get

ω(0)en1+Kn+Kn2+1 = 1 − Z0(0)en1+1 (9)

Equations (7) and (8), as well as the vector Z(0) = (Z0(0), Z1(0), . . . ), allow us to quickly calculate
the last term of (5).
We obtain by differentiating (1) and setting s=0,

ω′(0) = (−1)
∞

∑
q=1

Z1+q(0)
q−1

∑
j=0

Mj[−L]−1Mq−j. (10)
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Due to the stochastic nature of matrix M,

(−1)ω′(0)en1+Kn+Kn2+1 =
∞

∑
q=1

Z1+q(0)
q−1

∑
j=0

Mj[−L]−1en1+Kn+Kn2+1. (11)

Let’s assess the value of (−1)ω′(0)en1+Kn+Kn2+1 using the technique described in Neuts et al.
[15] and Kao et al. [8]. We start by building a matrix M2 that is generalised inverse of I-M and
stochastic, with I − M + M2 being non-singular and M2 being stochastic. The matrix M2 can be
viewed as M2 = en1+Kn+Kn2+1m0, where m0 is the invariant probability vector of M. Additionally,
using the property MM2 = M2M = M2, we have

q−1

∑
j=0

Mj(I − M + M2) = I − Mq + qM2 f or q ≥ 1. (12)

By using (12) in (11), we obtain

(−1)ω′(0)en1+Kn+Kn2+1 =

{
x1(I − R)−1

[
In1+Kn+Kn2+1 ⊗

D1em

λ

]
− ω(0)

+ x1R(I − R)−2
[

In1+Kn+Kn2+1 ⊗
D1em

λ

]
M2

}
× [I − M + M2]

−1[−L]−1en1+Kn+Kn2+1.

(13)

Since we have calculated all the terms in (5), we can easily calculate the average waiting time.

8. Cost Analysis

Our model’s cost analysis has been created below by assuming the cost elements (per unit
time) correspond to distinct measures of the system.

TC = CHEsystem + CbusyPbusy + CidlePidle + CvacPvac + CbdPbd + CcdPcd

+
K

∑
i=1

C1iθiξ + σC2 + ζC3 + δC4

where
∙ TC - Total cost per unit time
∙ CH - Each customer’s holding cost in the system
∙ Cbusy - Cost acquired by the system during server being busy
∙ Cidle - Cost acquired due to server being idle
∙ Cvac - Cost acquired during server’s vacation period
∙ Cbd - Cost acquired by the server during breakdown time
∙ Ccd - Cost acquired by the server during close-down process
∙ C1i - Cost acquired by the server for offering ith type service, i = 1, 2, . . . , K
∙ C2 - Cost acquired when the server caused by breakdowns
∙ C3 - Cost acquired in carrying out the repair process
∙ C4 - Cost acquired in carrying out the close-down process

9. Numerical

In this section, we are using numerical and graphical representations to analyze model
behavior. The mean value of the subsequent five different MAP representations is 1, which is the
same for all the various arrival processes. In published studies, these five sets of arrival values
have been used as input data (see Chakravarthy [5]).
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∙ Arrival in Erlang(ERL-A):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
∙ Arrival in Exponential(EXP-A):

D0 =
[
−1
]

, D1 =
[
1
]

∙ Arrival in Hyper-exponential(HEX-A):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
∙ Arrival in MAP-Negative Correlation(MAPNC-A):

D0 =

−1.25 1.25 0
0 −1.25 0
0 0 −2.5

 , D1 =

 0 0 0
0.0125 0 1.2375
2.4750 0 0.0250


∙ Arrival in MAP-Positive Correlation(MAPPC-A):

D0 =

−1.25 1.25 0
0 −1.25 0
0 0 −2.5

 , D1 =

 0 0 0
1.2375 0 0.0125
0.0250 0 2.4750

 .

Let’s think about the service, repair, and vacation processes as three phase type dis-
tributions. In the literature, these sets of service, vacation, and repair values have been used as
input data [5].

∙ Service in Erlang(ERL-S):

α = (1, 0), T =

[
−2 2
0 −2

]
∙ Repair in Erlang(ERL-R):

β = (1, 0), S =

[
−2 2
0 −2

]
∙ Vacation in Erlang(ERL-V):

γ = (1, 0), V =

[
−2 2
0 −2

]
∙ Service in Exponential(EXP-S):

α = [−1], T = [1]

∙ Repair in Exponential(EXP-R):

β = [−1], S = [1]

∙ Vacation in Exponential(EXP-V):

γ = [−1], V = [1]

∙ Service in Hyper-exponential(HEX-S):
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α = (0.8, 0.2), T =

[
−2.8 0

0 −0.28

]
∙ Repair in Hyper-exponential(HEX-R):

β = (0.8, 0.2), S =

[
−2.8 0

0 −0.28

]
∙ Vacation in Hyper-exponential(HEX-V):

γ = (0.8, 0.2), V =

[
−2.8 0

0 −0.28

]

9.1. Illustration 1

We investigated the consequence of the repair rate (ζ) on the average system size(Esystem). We fix
λ = 2, ξ = 6, η = 10, σ = 1, δ = 5, K = 10, θt = [1, 0.97, 0.93, 0.9, 0.87, 0.83, 0.8, 0.75, 0.7, 0.6],
p = 0.6, q = 0.4.

Table 1: Repair rate (ζ) vs Esystem - ERL-S

ERL-S
ζ ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
4 1.240013 1.428884 2.424636 1.337204 10.61745
5 1.100282 1.263127 2.098389 1.18343 8.801677
6 1.015791 1.16274 1.90369 1.090236 7.692035
7 0.959243 1.095599 1.775197 1.027872 6.946641
8 0.918743 1.047606 1.684428 0.98328 6.412992
9 0.888298 1.011625 1.617078 0.949845 6.012954

10 0.864568 0.983665 1.565214 0.923863 5.702437
11 0.845543 0.961321 1.524099 0.903103 5.454723

Table 2: Repair rate (ζ) vs Esystem - EXP-S

EXP-S
ζ ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
4 1.300513 1.477625 2.385188 1.39259 8.815389
5 1.14504 1.300952 2.072725 1.226593 7.266135
6 1.05166 1.194414 1.885579 1.126538 6.322526
7 0.989618 1.1235 1.761902 1.059955 5.692052
8 0.945487 1.073041 1.674513 1.012588 5.243369
9 0.912517 1.035369 1.609694 0.977232 4.909026

10 0.886957 1.006202 1.559813 0.949868 4.650976
11 0.866562 0.982972 1.520303 0.928081 4.446203
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Table 3: Repair rate (ζ) vs Esystem - HEX-S

HEX-S
ζ ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
4 1.558351 1.660665 2.248675 1.59979 4.230083
5 1.325099 1.423599 1.946641 1.369357 3.457511
6 1.188053 1.283658 1.765584 1.233688 3.008707
7 1.099269 1.19259 1.646429 1.145591 2.721063
8 1.037696 1.12918 1.562789 1.084356 2.523394
9 0.992794 1.082778 1.501231 1.039609 2.380326

10 0.958759 1.047505 1.454251 1.005634 2.272559
11 0.932162 1.019875 1.417352 0.979044 2.188777

With the help of tables 1, 2 and 3, we can determine that increasing the repair rate
reduces the average system size in various arrangement of services and arrivals of ERL-A, EXP-A,
HEX-A, MAPNC-A and MAPPC-A. The positive correlation arrival decreases rapidly compared
to all other arrivals.

9.2. Illustration 2

We investigated the consequence of the vacation rate (η) on the average waiting time E(W). We fix
λ = 2, ξ = 6, σ = 1, ζ = 4, δ = 5, K = 5, θt = [1, 0.9, 0.8, 0.7, 0.6], p = 0.4, q = 0.6.

Table 4: Vacation rate (η) vs E(W) - ERL-S

ERL-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 0.513310803 0.652469261 1.316678245 0.597597919 6.305631788
11 0.502141873 0.641535425 1.304722472 0.586775589 6.294830579
12 0.493006347 0.632560036 1.294845632 0.577894144 6.285940644
13 0.485401455 0.625064256 1.286552181 0.570478428 6.27849855
14 0.478976132 0.618712658 1.279491771 0.564195772 6.272178893
15 0.4734782 0.613263522 1.273409875 0.55880656 6.266746629
16 0.46872206 0.608538394 1.268117234 0.554133955 6.262027841
17 0.46456821 0.604402741 1.263470256 0.550044688 6.257891127
18 0.460909846 0.600753272 1.259358071 0.546436465 6.254235397
19 0.457663866 0.597509402 1.255693735 0.543229496 6.250981623

Table 5: Vacation rate (η) vs E(W) - EXP-S

EXP-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 0.557188985 0.69195187 1.314692759 0.63940605 5.40504825
11 0.545405475 0.680428504 1.302062559 0.627990745 5.393620067
12 0.535811233 0.671007926 1.291662266 0.618660721 5.384251971
13 0.527857453 0.663169128 1.282954639 0.610898654 5.376437568
14 0.521162512 0.656548669 1.27556107 0.604343883 5.369822843
15 0.515453367 0.650885673 1.269207338 0.598737649 5.364153128
16 0.510529823 0.645988247 1.263690113 0.593889693 5.359240685
17 0.506241951 0.641712219 1.258855539 0.589657117 5.354944174
18 0.502475357 0.637947256 1.254585115 0.585930588 5.351155205
19 0.49914132 0.634607531 1.250786132 0.58262508 5.347789301
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Table 6: Vacation rate (η) vs E(W) - HEX-S

HEX-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 0.765770257 0.873794399 1.367546979 0.829456953 2.90799282
11 0.749707796 0.858258947 1.350700199 0.814080592 2.891938923
12 0.736875156 0.84579312 1.337039635 0.801751095 2.879049871
13 0.726421715 0.835595592 1.325762738 0.791670904 2.868502654
14 0.717764748 0.827116374 1.316311418 0.783293156 2.859731284
15 0.710493246 0.819966703 1.30828648 0.77623166 2.852335034
16 0.704309955 0.813864754 1.301395404 0.770206698 2.846023015
17 0.698995159 0.808601698 1.29541931 0.765011173 2.840579451
18 0.694383327 0.804019799 1.290191394 0.760488778 2.835841216
19 0.690347624 0.799997883 1.285582472 0.756519514 2.831682906

With the help of tables 4, 5 and 6, we can determine that increasing the vacation rate
reduces the average waiting time in various arrangement of services and arrivals of ERL-A,
EXP-A, HEX-A, MAPNC-A and MAPPC-A.

9.3. Illustration 3

We examined the consequence of the vacation rate(η) on the Total cost(TC) of the system. We fix
λ = 2, ξ = 6, ζ = 4, σ = 1, δ = 5, K = 5, θt = [1, 0.9, 0.8, 0.7, 0.6], p = 0.6, q = 0.4, CH = 10,
Cvac = 2, Cidle = 1, Cbusy = 4, Cbd = 2, Ccd = 2, C11 = 3, C12 = 2.9, C13 = 2.7, C14 = 2.5,
C15 = 2.2, C2 = 1, C3 = 2, C4 = 2.

Table 7: Vacation rate (η) vs TC - ERL-S

ERL-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 99.68315738 102.0191734 114.5649299 100.8662306 220.3575308
11 99.58654131 101.9327141 114.4864353 100.7816754 220.2740852
12 99.50790684 101.8624352 114.422411 100.7129863 220.2062508
13 99.44275241 101.8042608 114.369262 100.6561557 220.150093
14 99.38794402 101.7553616 114.3244797 100.6084052 220.1028821
15 99.34123751 101.7137163 114.2862631 100.5677517 220.0626686
16 99.30098652 101.677845 114.253288 100.5327444 220.0280254
17 99.26595761 101.6466406 114.2245603 100.5022988 219.9978848
18 99.23520954 101.6192592 114.1993197 100.4755886 219.971433
19 99.20801222 101.595047 114.1769756 100.4519741 219.9480397

RT&A, No 1 (72) 
Volume 18, March 2023

478



G. Ayyappan, S. Meena
PHASE TYPE QUEUEING MODEL OF SERVER VACATION...

Table 8: Vacation rate (η) vs TC - EXP-S

EXP-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 100.2339903 102.3592967 113.45068 101.3175747 196.2037767
11 100.1280443 102.2634003 113.3608307 101.2234308 196.1105677
12 100.0424323 102.1859477 113.28795 101.1474223 196.0352852
13 99.97195226 102.122204 113.2277544 101.0848836 195.973326
14 99.91300867 102.0689027 113.1772692 101.0325998 195.9215153
15 99.86304362 102.0237237 113.134369 100.9882889 195.8775984
16 99.8201921 101.9849774 113.0974976 100.9502904 195.8399333
17 99.78306479 101.9514061 113.0654919 100.9173687 195.8072978
18 99.75060709 101.9220556 113.0374655 100.8885871 195.7787647
19 99.72200511 101.8961899 113.0127327 100.8632232 195.7536187

Table 9: Vacation rate (η) vs TC - HEX-S

HEX-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 102.3258123 103.4719568 110.0500597 102.7836354 135.054583
11 102.1616111 103.3188195 109.8998592 102.6325837 134.9021191
12 102.0324917 103.1981907 109.7806956 102.5136915 134.7822937
13 101.9288319 103.1011839 109.684308 102.4181401 134.6861809
14 101.8441297 103.0217915 109.6050482 102.3399749 134.6077393
15 101.7738585 102.9558273 109.5389409 102.2750516 134.5427562
16 101.7147844 102.9002977 109.4831181 102.2204095 134.4882179
17 101.6645447 102.8530131 109.4354652 102.1738855 134.4419202
18 101.621379 102.8123398 109.3943937 102.1338671 134.402219
19 101.5839523 102.7770377 109.3586901 102.0991312 134.3678669

With the help of tables 7, 8 and 9, we can determine that increasing the vacation rate
reduces the total cost of the system in various arrangement of services and arrivals of ERL-A,
EXP-A, HEX-A, MAPNC-A and MAPPC-A.

9.4. Illustration 4

We investigated the consequence of the breakdown rate (σ) on the average system size(Esystem). We
fix λ = 2, ξ = 6, η = 10, ζ = 4, δ = 5, K = 10, θt = [1, 0.97, 0.93, 0.9, 0.87, 0.83, 0.8, 0.75, 0.7, 0.6], p =
0.6, q = 0.4.

With the help of figures 2, 3, 4, 5 and 6, we analyze the breakdown rate versus the
average system size with the combination of arrival and service time groupings. The breakdown
rate increases then the corresponding average system size is also increases rapidly in Erlang
services and, increases gradually in Exponential services and slowly in Hyper-exponential
services but in case of MAP positive correlation arrival increases rapidly than compared to all
other arrivals.
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Figure 2: Breakdown rate(σ) vs Esystem - ERL-A
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Figure 3: Breakdown rate(σ) vs Esystem - EXP-A
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Figure 4: Breakdown rate(σ) vs Esystem - HEX-A
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Figure 5: Breakdown rate(σ) vs Esystem
- MAPNC-A
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Figure 6: Breakdown rate(σ) vs Esystem - MAPPC-A
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9.5. Illustration 5

We have examined both the vacation rate(η) and repair rate(ζ) against the average system
size(Esystem). We fix λ = 2, ξ = 6, σ = 1, δ = 5, K = 10, θt = [1, 0.97, 0.93, 0.9, 0.87, 0.83, 0.8,
0.75, 0.7, 0.6], p = 0.6, q = 0.4.

With the help of figures 7 to 11, we analyze the both vacation rate and repair rate versus
the average system size with the combination of arrival and service time groupings. Both the
vacation rate and repair rate increases then the corresponding average system size is decreases
rapidly in MAP positive correlation compared to all other arrivals.
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Figure 7: Ek/Hk/1 - Vacation rate(η) and Repair
rate(ζ) vs Esystem
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Figure 8: M/Hk/1 - Vacation rate(η) and Repair
rate(ζ) vs Esystem
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Figure 9: Hk/Hk/1 - Vacation rate(η) and Repair
rate(ζ) vs Esystem
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Figure 10: MAPNC/Hk/1 - Vacation rate(η)
and Repair rate(ζ) vs Esystem
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Figure 11: MAPPC/Hk/1 - Vacation rate(η) and
Repair rate(ζ) vs Esystem
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10. Conclusion

In our paper, customers arrive in a Markovian Arrival Process and the service process follows
a phase-type distribution with degrading service, server breakdown, vacation process in phase
type distribution, repair process in phase type distribution, starting failure and close-down. We
also perform the busy period analysis, waiting time distribution and cost analysis in our work.
Using numerical values of arrival and service times, we tabulated the repair rate versus expected
system size and the vacation rate versus the expected waiting time numerically. We compared
the breakdown rate to the expected system size, as well as the vacation and repair rates to the
expected system size, as shown by the graphical demonstrations.

References

[1] Ayyappan, G. and Deepa, T. (2018). Analysis of batch arrival bulk service queue with multiple
vacation closedown essential and optional repair, Applications and Applied Mathematics,
13(2):578–598.

[2] Ayyappan, G. and Nirmala, M. (2018). An M[X]/G(a, b)/1 queue with breakdown and
delay time to two phase repair under multiple vacation, Applications and Applied Mathematics,
13(2):639–663.

[3] Ayyappan, G. and Thilagavathy, K. (2020). Analysis of MAP/PH/1 Queueing Model
with Breakdown, Instantaneous Feedback and Server Vacation, Applications and Applied
Mathematics, 15(2):673–707.

[4] Ayyappan, G. and Gowthami, R. (2021). A MAP/PH/1 Queue with Setup time, Bernoulli
vacation, Reneging, Balking, Bernoulli feedback, Breakdown and repair, Reliability: Theory
and Applications, 16(2):191–221.

[5] Chakravarthy, S. R. (2010). Markovian arrival process, Wiley Encyclopaedia of Operations
Research and Management Science.

[6] Choudhary, A., Chakravarthy, S. R. and Sharma, D. C. (2021). Analysis of MAP/PH/1
Queueing System with Degrading Service Rate and Phase Type Vacation, Mathematics, 9,
2387.

[7] Doshi, B. T. (1986). Queueing System with vacations-A Survey, Queueing Systems, 1:29–66.
[8] Kao, E. P. C. and Narayanan, K. S. (1991). Analysis of an M/M/N queue with server’s

vacations, European Journal of Operational Research, 54(2):256–266.
[9] Karpagam, S., Ayyappan, G. and Somasundaram, B. (2020). A Bulk Queueing System with

Rework in Manufacturing Industry with Starting Failure and Single Vacation, International
Journal of Applied and Computational Mathematics, 6(6):1-22.

[10] Krishna Kumar, B., Rukumani, R. and Thangaraj, V. (2008). Analysis of MAP/P H(1), P
H(2)/2 queue with Bernoulli vacations, Journal of Applied Mathematics and Stochastic Analysis,
Article ID: 396871, 1-20.

[11] Latouche, G. and Ramaswami, V. Introduction of Matrix Analytic Methods in Stochastic
Modeling, Society for Industrial and Applied Mathematics, Philadelphia, 1999.

[12] Li, J. and Tian, N. (2007). The M/M/1 queue with working vacations and vacation interrup-
tions, The M/M/1 queue with working vacations and vacation interruptions, 16:121–127.

[13] Neuts M. F. (1979). A Versatile Markovian point process Journal of Applied Probability,
16:764–779.

[14] Neuts M. F. Matri geometric Solutions in Stochastic Models: an algorithmic approach. John
Hopkins Series in Mathematical Sciences, John Hopkins University Press, Baltimore, Md,
USA, 1981.

[15] Neuts, M. F. and Lucantoni, D. M. (1979). A Markovian Queue with N Servers Subject
toBreakdowns and Repairs, Management Science, 25(9):849–861.

[16] Qi-Ming He. Fundamentals of Matrix - Analytic Methods, Springer, New York, 2004.

RT&A, No 1 (72) 
Volume 18, March 2023

482



G. Ayyappan, S. Meena
PHASE TYPE QUEUEING MODEL OF SERVER VACATION...

[17] Senthil Vadivu, A. and Arumuganathan, R. (2015). Cost Analysis of MAP/G(a,b)/1/N
Queue with Multiple Vacations and Closedown Times, Quality Technology and Quantitative
Management, 12(4):605–626.

[18] Sreenivasan, C., Chakravarthy, S.R. and Krishnamoorthy, A. (2013). A MAP/PH/1
queue with working vacations, vacation interruptions and N-Policy, Applied Mathemati-
cal Modelling,37:3879–3893.

[19] Steeb, W. H. and Hardy, Y. Matrix Calculus and Kronecker Product: A Practical Approach to
Linear and Multilinear Algebra; World Scientific Publishing: Singapore, 2011.

[20] Tian, N. and Zhang, Z. G. Vacation Queueing Models: Theory and Applications; Springer
Publishers: New York, NY, USA, 2006.

[21] Wang, K. H. Chan, M. C. and Ke, J. C. (2007). Maximum entropy analysis of the M[x]/M/1
queueing system with multiple vacations and server breakdowns, Computers and Industrial
Engineering, 52(2):192–202.

[22] Yang, D. Y. Ke, J. C. and Wu, C. H. (2014). The multi-server retrial system with Bernoulli
feedback and starting failures, International Journal of Computer Mathematics, 92(5):954–969.

RT&A, No 1 (72) 
Volume 18, March 2023

483



                   
S. Amirtha Rani Jagulin, A. Venmani  
COMPARISON OF MAXIMUM LIKELIHOOD ESTIMATION AND BAYESIAN 
ESTIMATION ON EXPONENTIATED POWER LOMAX DISTRIBUTION 

RT&A, No 1 (72) 
Volume 18, March 2023 

 

 

 
 

COMPARISON OF MAXIMUM LIKELIHOOD 
ESTIMATION AND 

BAYESIAN ESTIMATION ON EXPONENTIATED 
POWER LOMAX DISTRIBUTION 

 
S. Amirtha Rani Jagulin1 and A. Venmani2 

• 
!,#	Department of Mathematics and Statistics, College of Science and Humanities, 

SRM Institute of Science and Technology, 
Kattankulathur, Tamil Nadu, India 

as4371@srmist. edu. in!, venmania@srmist. edu. in# 
 
 

Abstract 
 
The aim of the paper is to apply the Bayesian estimation under squared error loss function to the Exponentiated Power 
Lomax (EPOLO) distribution to estimate the parameters and then compare with maximum likelihood estimation. The 
reliability of the distribution is analyzed by computing survival and hazard function for the exponentiated power lomax 
distribution. The mean square error will help to compare the different estimates like Bayesian and maximum likelihood 
estimation to decide the best one. Bayesian estimation and the maximum likelihood estimation are discussed for the 
distribution. A simulation study is done using the R programming software to generate random values and estimate the 
parameters for different n = 15, 30, 50, 100 and parameter values taken as 0.5 and 1.5. At n=100 and c= 0.5 the mean 
square error of bayes and mle are same and survival and hazard function mean square error are decreases when the 
sample size increases, this indicates the distribution is fitted good in all areas. 
 
Keywords: Exponentiated Power Lomax (EPOLO) distribution, Bayesian estimation, Reliability, 
Mean Square Error (MSE), Monte Carlo simulation. 
 
 

1. Introduction 
 
According to El-Monsef [12], the EPOLO distribution performs superior fits than several well-
known distributions to the data such as the number of ball bearing revolutions, the lung cancer 
patient’s tumor size, and the total COVID-19 deaths in Egypt. The EPOLO (Exponentiated Power 
Lomax) distribution is an extension of the POLO (Power Lomax) distribution. By exponentiating 
the POLO cumulative distribution function to positive real power c we get this distribution. The 
CDF of the EPOLO distribution is given by          

	 
 𝐹(𝑥) = (1 − 𝛾%	 :𝛾 + 𝑥&< − 𝛼)'			𝑥 > 0; 𝛼, 𝛽, 𝛾, 𝑐	 > 	0 (1) 
 
The PDF of EPOLO distribution is given by 

			 
 𝑓(𝑥) = 	𝛼𝛽𝑐𝛾%𝑥&(!:	𝛾 + 𝑥&<(%(!(1 − 𝛾%(𝛾 + 𝑥&)(∝)'(!			𝑥	 > 	0; 	𝛼, 𝛽, 𝛾, 𝑐	 > 	0																						

 
(2) 
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When 𝑐	=𝛽=1, it will result to Lomax distribution and if 	𝑐 = 1 , then (2) will leads to POLO 
distribution. Lomax [10] has proposed by Lomax distribution is a mixture of gamma and 
exponential distributions. It is also denoted as Pareto 𝐼𝐼 distribution. Applying the Lomax 
distribution to simulate lifetime data was common. It is helpful for income modeling, business 
failure data, and biological issues. The random variable X follows a L(𝛼,𝛾) distribution, the 
cumulative distribution function (CDF) is given as 

               
	 𝐹(𝑥) = 1 − (

	𝑥
𝛾 	+ 	1)

(%											𝑥	 > 	0; 	𝛼, 𝛾	 > 	0 

	
(3)	

The probability density function (PDF) is given as 
 

                                           	 	

𝑓(𝑥) = 	
𝛼
𝛾 	F

𝑥
𝛾 	+ 	1G

(∝(!
	𝑥	 > 	0; 	𝛼, 𝛾	 > 	0	  (4)	

																			                                    
Lingappaiah [9] created different ways of estimation procedures for Lomax distribution. Myhre 
and Saunders [13] were described right censored data were subjected to Lomax distribution. 
According to Hassan [5], Lomax distribution can be utilized for dependability modeling and life 
testing. Balakrishnan and Ahsanullah [3] investigated the record moments and distribution 
properties of the Lomax distribution. Kilany [7] discussed the weighted Lomax distribution. 
Lemonte and Cordeiro [8] used the Lomax distribution to study its expansion. This paper is 
divided as follows: section 2 provides the information about the Bayesian analysis with prior, 
likelihood, posterior function and also the parameter estimation of the parameter c. Section 3, 
derivation of posterior of the maximum likelihood function using the likelihood function, section 4 
provides the knowledge about the reliability measures, survival and hazard function. Section 5, 
describes the quantile function to generate random numbers. In section 6 and 7 a simulation study 
is applied and analyzed for EPOLO distribution, section 8 gives the conclusion about the result. 
 

2. Bayesian estimation 
 

The Reverend Thomas Bayes (1701–1761), who used a subjective method to quantify probability, is 
the topic of the philosophy known as Bayesian. The most famous accomplishment of Bayes was 
never published. Richard Price updated his notes and published them after his death (1763). The 
statistician using Bayesian, he is free to interpret probability as a frequency and a level of belief or 
a function that calculated with the mathematical principles of probability, depending on which 
interpretation best fits the task. The Bayesian technique gives the option of adding earlier 
knowledge of the pertinent parameters. Mahmoud et al. [11] and Tierney [17] introduces the 
Bayesian concept and describes how it is computationally implemented using MCMC algorithms. 
Amal s.Hassan et al [2] and Shrestha and Kumar [15] analyzed Bayesian estimation takes 
parameters as probabilistic variables with random variables. The Bayesian is helpful in analysis 
since it can take the prior knowledge into account.  
In this EPOLO distribution, we have four parameters, but estimating the four parameters 
analytically is not possible, so we have estimated the shape parameter c alone here for the better 
understanding of Bayesian analysis by Hesham and Soha [6]. We assume the prior for the 
parameter c as a gamma distribution with the pdf. 
 

																														 
 𝜋(𝑐) 	∝ 	 𝑐*(!	𝑒(+'	𝑐 > 0, 𝑎, 𝑏 > 0 (5) 
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The likelihood functions of EPOLO for the random samples 𝑋1, 𝑋2… Xn of independent and 
identically distributed random variables is given by								    
               
 

𝐿	(𝛼, 𝛽, 𝜆, 𝑐) = 	 (𝛼𝛽𝑐𝛾%	), 	P𝑥&(!			:𝛾 + 𝑥&<(%(!			:1 − 𝛾%:𝛾 + 𝑥&<(%<
'(!

,

-.!

	𝑥	 > 	0;	 

𝛼, 𝛽, 𝛾, 𝑐	 > 	0				 
(6) 

                         
The likelihood only for the shape parameter c is taken as 
 
	

𝐿(
𝑥
𝑐) 	= 𝑐,P(1−

,

-.!

𝛾%(𝛾 + 𝑥&)(%)'	

	
(7) 

Using the bayes theorem the posterior is given by 
 
 

𝜋(
𝑐
𝑥) 	= 	

𝐿(𝑥𝑐)	𝜋(𝑐)	

	∫ 𝐿(𝑥𝑐)	𝜋(𝑐)𝑑𝑐
/
0

 (8) 

                                                                                      
The posterior density of the shape parameter c can be obtained as 
 
 𝜋(

𝑐
𝑥) 	= 	

[𝑏 − 𝑤],1*		
𝛤(𝑛 + 𝑎) 	𝑐,1*(!𝑒𝑥𝑝{−𝑐(𝑏	 − 	𝑤)} (

(9) 
 

Where   𝑤 = ∑ 𝑙𝑜𝑔(1 − 𝛾%,
-.! (𝛾 + 𝑥-

&)(%    
 
The Bayes estimate of �̂� , Sowbhagya [16] and Nada S. Karam [14] provides a knowledge on the 
squared error loss function, is derived as 
 
 �̂� 	= ` 𝑐	𝑓(

𝑐
𝑥

/

(/
)𝑑𝑐 (10) 

 
																																																																																					

 �̂� 	= 	
𝑛 + 𝑎	
𝑏 + 𝑤	 

(11) 

 
 

3. Maximum likelihood estimation 
 

The likelihood function is obtained by applying the product to the density function of the given 
distribution over i = 1 to n. That is, 
 
 

𝐿(𝛼, 𝛽, 𝛾, 𝑐) = (𝛼𝛽𝑐𝛾%	), 	P𝑥&(!			(𝛾 + 𝑥&)(%(!			(1 − 𝛾%(𝛾 + 𝑥&)(%)'(!
,

-.!

	

 

(12) 
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The log-likelihood function for the parameters 𝛼, 𝛽, 𝜆, and 𝑐 is 
 
 

𝑙𝑛	𝐿(𝛼, 𝛽, 𝛾, 𝑐) 	= 	𝑛	𝑙𝑜𝑔	(𝛼𝛽𝑐	𝛾%) 	+	(𝑐	 − 	1)alog	(1 − 𝛾%
,

-.!

:𝛾 + 𝑥-
&<

(%
) −	(𝛼

+ 1)alog	(𝑥-
&

,

-.!

+ 	𝛾) + (𝛽	 − 	1)a𝑙𝑜𝑔	(𝑥-

,

-.!

)	 

(13) 

 
To find the maximum likelihood estimator of the parameter �̂�		we equate the log-likelihood to zero, 
then we get, 
 
 

𝑛	𝑐	 +	a𝑙𝑜𝑔(1 − 𝛾%
,

-.!

(𝛾 + 𝑥-
&)(% = 	0		 

 
(14) 

 
 

Taking 			𝑤 = ∑ 𝑙𝑜𝑔(1 − 𝛾%,
-.! (𝛾 + 𝑥-

&)(% 
 

 �̂�	 = 	
𝑛
−𝑤 (15) 

 

 
4. Reliability Measures 

 
Survival and hazard functions referred to the cumulative distribution function (1) of EPOLO 
distribution are obtained. The examination of organism or technological unit breakdowns that take 
place after a certain time is aided by the survival function. The hazard rate is used to track the 
specific unit over the course of its lifespan distribution. The likelihood to fail or die, depending on 
the age attained, is measured by the hazard rate (HR), which is a critical factor in categorizing 
lifespan distributions.  According to Arun Kumar Rao [1] and Hare and Sharma [4] the hazard 
rates are often monotonic or non-monotonic. The possibility of being alive for a specific period of 
time or the likelihood that an important event will take place before a certain amount of time (t) is 
the definition of the survival function (x). The survival mechanism is expressed as 
 
 𝑆	(𝑥) = 	1	– g1 − 𝛾%:𝛾 +	𝑥&<

(∝
h
'
	𝑥	 > 	0; 	𝛼, 𝛽, 𝛾, 𝑐	 > 	0 (16) 

 
 
Where S(0)	=	1	and	lim	𝑥→∞	𝑆(𝑥)	=	0. 
 
To find out MSE for the survival rate, we need to calculate  
 
 𝑆	(𝑥)l 	= ` 𝑆	(𝑥)

/

0
𝜋	(
𝑐
𝑥)	𝑑𝑐 (17) 

 
                                                                                                             

 𝑆	(𝑥)	l = ∫ 1 − (1 − 𝛾%(𝛾 + 𝑥&/
0 )(%)' [+(3]

!"#		
5(,1*)

		𝑐,1*(!𝑒𝑥𝑝{−𝑐(𝑏	 − 	𝑤)}			𝑑𝑐                           
 

(18) 

The failure rate, also known as the hazard function h(x), is the ratio of the likelihood that an event 
will occur in a given amount of time, t, to the likelihood that it will pass off successfully. When 
expressing the hazard function it is given as, 
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ℎ(𝑥) =

𝑓(𝑥)
𝑆(𝑥) =

𝛼𝛽𝑐𝛾%	𝑥&(!	:𝛾	 + 𝑥&	<–%(!		(1	–	𝛾%	(𝛾	 +	𝑥&)(%)9	(!						
1	–	(1 − 𝛾(𝛾 + 𝑥&)(%)9 						𝑥	 > 	0;	 

 
𝛼, 𝛽, 𝛾, 𝑐	 > 	0											 

(19) 

 
To calculate the MSE of the hazard function 
 ℎ(𝑥)l	=	` ℎ(𝑥)

/

0
𝜋	(
𝑐
𝑥)	𝑑𝑐		 

(20) 
 

  
 ℎ(𝑥)& = ∫ !"#$"	%#$%	($	(%#	)$"$%		(*	+	$"	($	(	%#)$")&	$%						

*	+	(*+$($(%#)$")&
,
-

[/+0]'()		
2(3(4)

		𝑐3(4+*𝑒𝑥𝑝{−𝑐(𝑏	 −
	𝑤)}			𝑑𝑐               

 

(21) 

After finding the   S	(x)			l 𝑎𝑛𝑑	 h(x)l  using the formula then MSE is calculated to compare the errors.  
 

5. Quantile function 
 
Using the c.d.f, the quantile function can be found by solving the equation F(x) = u, 0< u < 1. 
Assume that X is a random variable with an EPOLO distribution. The equation F(Q(u)) = u defines 
the quantile function Q(u) and represents it.  
 

 𝐹(𝑥) = g1 − 𝛾%:𝛾 +	𝑥&<
(∝
h
'
𝑥 > 0; 	𝛼, 𝛽, 𝛾, 𝑐	 > 	0		

 

(24) 
 

 
 𝑢!/' 	= 	1 − 𝛾%(𝛾 + 𝑥&)(% (25) 

																																																													 
 

[(
1 − 𝑢
𝛾%

!
'	

)(!/% − 	𝛾]!/& = 	𝑥 
(26) 

                                                                                          
6. Monte Carlo simulation study 

 
The effectiveness of the parameters is tested using a simulation study, which is conducted for the 
shape parameter c of the EPOLO distribution. Mean Square Error (MSE) using the two familiar 
estimation maximum likelihood estimation and Bayesian estimation under squared error loss 
function was calculated. The following algorithm is proposed by Shrestha and Kumar [12] for the 
simulation studies. 
To simulate the random samples of x which follows the EPOLO distribution, the equation F(x) = u 
is used, where u (0, 1) follows uniform distribution and F(x) is the CDF of the EPOLO distribution. 
Fix the values of the parameters 𝛼, 𝛽, 𝛾, 𝑐. Here we fix other parameters to estimate the shape 
parameter c. 

• Determine the different sample sizes 
• Calculate �̂�		 for each of the n samples 
• Calculate the MSE for the parameter 𝑐 using the below formula  

The average squared difference between the estimator and parameter, measured by the MSE, is a 
reliable indicator of an estimator's performance. Generally speaking, any growing function of the 
absolute distance |cr- c| would be used to assess an estimator's quality. But compared to other 
distance metrics, MSE offers at least two advantages: First, it can be analyzed, and second, it has 
the interpretation. 
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𝑀𝑆𝐸(𝑐) 	=a
(�̂� − 𝑐)#

𝑛

,

-.!

	

A simulation were conducted for samples n=15, 30, 50, 100 and repeated for 1,000 times with the 
parameter c values 0.5, 1.5. 
 

7. Analyses 
 
According to Venables et al. [18], all the analysis is done using the R software. R software is free 
source software helps a lot in statistical analysis. 
 

Table 1: MSE of Maximum likelihood estimate of the shape parameter 𝑐 and 
MSE of Bayesian estimate of the shape parameter under SELF loss function is given below 

 

n c MSE 
(MLE) 

MSE 
(BAYES) 

15 
0.5 0.0229 0.0165 
1.5 0.2322 0.1087 

30 
0.5 0.0093 0.0081 
1.5 0.086 0.0635 

50 
0.5 0.0059 0.0053 
1.5 0.0489 0.0403 

100 
0.5 0.0021 0.0021 
1.5 0.034 0.0263 

    
Table 2: MSE of survival and hazard function of 𝑐 along 

with the Bayesian posterior is given below 
 

n c survival hazard 
15 0.5 0.031 1.03e-04 

1.5 0.00267 5.77e-07 
30 0.5 0.0092 2.11e-05 

1.5 0.00076 5.02e-08 
50 0.5 0.0045 7.28e-06 

1.5 0.00027 8.43e-09 
100 0.5 0.0012 9.58e-07 

1.5 5.49e-05 3.72e-10 
 

8. Conclusion 
 
In this article, we looked at the Bayesian estimates for the exponentiated power Lomax 
distribution's of shape parameter c. Based on the findings in Tables 1 and 2, we note the following:  

• For the shape parameter c, the MSE of the Bayesian and maximum likelihood estimate 
have been determined. In that MSE of Bayesian is less than MLE method that indicates the 
Bayesian estimation is a good estimator for estimating the parameters of any distribution. 
As sample size increases both will be same. 

• The survival and hazard function using the Bayesian posterior is calculated and it 
indicates the distribution is of good fit. The error decreases as the sample size increases for 
survival and hazard functions. 
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Abstract 
 

The aim of the paper is to develop a better estimator for the entropy function of variance of the normal 
distribution. The present paper proposes a Huntsberger type shrinkage estimator of the entropy function 
for the variance of normal distribution. This Huntsberger type shrinkage entropy estimator is based on 
test statistic, which eliminates arbitrariness of choice of shrinkage factor. For the proposed estimator risk 
expressions under LINEX loss function have been calculated. Numerical computations and graphical 
analysis is carried out for risk and relative risks for the proposed estimators. It is also compared with the 
existing best estimator for distinct degrees of asymmetry and different levels of significance. Based on the 
criteria of relative risk, it is found that the proposed Huntsberger type shrinkage estimator is better than 
the existing estimator for the entropy function of  variance of normal distribution for smaller values of 
level of significance and degrees of freedom..  

 
Keywords: Normal distribution, entropy function, shrinkage estimation, LINEX loss function,      

level of significance, relative risk. 
 
 
 

1. Introduction 
 
Normal distribution plays a vital role in theory of statistics. Its testimation and estimating its 
parameters have been acknowledged and refined by researchers. Pandey et al. [9] proposed some 
shrinkage testimators of variance under the mean square error criterion. Parsian and Farsipour [10], 
Mishra and Meulen [7], Ahmadi et al. [1], Singh et al. [14], Prakash et al [12], Prakash and Pandey 
[11] and others have studied the estimation methods under LINEX loss function in distinct contexts. 
The concept of entropy was introduced by Shannon [13] and is given as 
                                                                                                     (1) 
 where X is a random variable having probability density function f and distribution function F.                                           
For sharply peaked distribution entropy is very low and is much higher when the probability is 

H(f) E[ ln(f(X))],= -
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spread out. Many authors worked on the estimation entropy for different life distributions. Misra et 
al. [8] proposed an entropy estimator for a multivariate normal distribution while Jeevanand and 
Abdul- Sathar [4] also obtained estimators for the residual entropy function of exponential 
distribution from censored samples. Lazo and Rathee [6] and Kayal and Kumar [5] also worked in 
this direction. 
         Suppose the random variable X has the probability distribution  where interest is to 
estimate entropy function as a function of . Thomson [17] proposed a shrinkage type estimator 

 where k is constant and is designed to shrink the usual estimator  of the parameter 

 towards a natural origin  and Huntsberger [3] introduced weighted shrinkage estimator of the 
form 

                   , 

where  represents a weighted function specifying the degree of belief in In this 
paper, we shall concentrate on obtaining Huntsberger type shrinkage estimation of entropy function 
with respect to asymmetric loss function for a random sample  of size m from a normal 
distribution.  

The                              The form of normal density we consider is  

                                          (2)                                           

For the normal distribution, the entropy function can be obtained as 

                                                                                                                        (3) 

Since  is linear function of , estimating  is correspondent to estimating . 

We shall write  so that . Now we shall discuss estimation 

of . Since  is continous function of , the MLE of  is obtained by replacing  by 

its MLE  in . Then, the MLE of entropy function for the exponential distribution is  

                                                                                                                          (4)                                                                                                                         

    where  is MLE of , when  is unknown.                                                                     

It can be shown that  has distribution as 

                                                                                             (5)  

Although the SELF (squared error loss function) is commonly used for estimating various statistics 
parameters, it may not be convenient in actual situations, particularly in insurance claims, estimating 
any health statistics parameter, over-estimation and under-estimaton have distinct impacts. An 
analysis of various superior properties of asymmetric loss function over squared error loss function 
has been presented by several authors. Basu and Ebrahimi [2] derived Bayes estimators for mean 
lifetime and reliability function for the exponential model using asymmetric loss function. Srivastava 
and Tanna [16] as well as Srivastava and Shah [15] also derived estimators and studied their 
properties under asymmetric loss function.  
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        A fruitful asymmetric loss function, LINEX loss function was recommended by Varian [18] as:  
                                                                                                                 (6)                               
The magnitude and sign of ‘a’ shows the degree of asymmetry and direction respectively. When 
overestimation is more severe than underestimation then positive values of ‘a’ are taken, whereas in 
reverse situations its negative values are usually preferred and ‘b’ is constant of proportionality.   
 

2. The Shrinkage Estimator 
 
From a normal population with mean  and variance , a random sample  of size m 

is taken. Let the initial guess value for  is presumed to be available from the past knowledge 

or some other reliable origins. It is noted that MLE of  is  having variance of  . 

Here, we test the null hypothesis  against the alternative  using the test 

statistic , where  which follows - distribution with  degree of freedom 

. If  then  may be approved at  level of significance, where lower and 

upper percentile values of  distribution are  respectively with degree of freedom 

 Then by taking shrinkage factor , which is negatively associated with  

 a shrinkage entropy estimator  may be considered.   If data does not hold,  it 

may be dropped and in this case it is recommended to use , the MLE of . 

Thus, the proposed shrinkage entropy estimator  of  is  as under:                                       

                                                                         (7) 

 

3. Risk of Estimator 
 

Risk of estimator under LLF is obtained as under: 
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  ,                                                               (8)  
 

where  and I(x, n) is the cumulative distribution 

function of gamma distribution given as 

  

and

 
, , 

 
and  

  

4. Relative Risk 
 

A common way of analyzing risk of considered estimator, is to examine its work  relative to the best 

possible estimator  in this case. With this motto, we calculate risk of  as:   

               

                                        

                                      

Now, taking the transformation   and then solving the integral, we get 

                                                                                                       (9) 

where            

                              

Now, we determine relative risk of  under LLF as 

                                                                                                                      (10) 

Using (8) and (9) the expression given in (10) can be obtained. It is observed that relative risk given 
above is a function of m, a, and  
 

5. Numerical Computations And Graphical Analysis 
 

To examine the performance of , a few values of these parameters have been taken as  = 
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actual cases. Several tables and graphs for relative risk calculation are represented in Table 1, Figure 
1 to Figure 6. However our recommendations depending on all these analyses are as follows:  
 i. For  and for considered values of ‘a’,  gives better results than the existing 
estimator for all values of ‘a’ and for the whole scale of  i.e. .  
 ii. Further if we switch  to 5%, the same type of behavior noticed for relative risk (RR). However, 
magnitude of RR is smaller as computed to  values. 
iii. Taking  in order to observe the pattern for higher values of and it is found that  
still gives the better results as compared to the existing estimator whereas magnitude of relative 
risks values become lower but even though it remains above unity. 
 iv. After comparing these relative risks, a lower value of is preferred. Similarly, as ‘m’ raises there 
is a fall in RR values for distinct values of and a. However the best result of  is observed at 

 for  and  for     
It is therefore suggested to take up a smaller values of ( ) as well as m (=5 or 8) for better 
results for a, in particular    
 
                                         Table 1: Relative risk of estimator  under LLF 

α=0.0
1 

                                                                 

    m     a    0.2   0.4   0.6    0.8    1   1.2   1.4  1.6 1.8   2 

 

 

   5  

 

 

-2    1.4182    2.3334    3.5356     4.3068     4.2010    3.6270     3.0222    2.5295   2.1539    1.8697 

-1    1.2002   1.9735    3.5429     5.7055     6.5919    5.5134     4.0969    3.0576   2.3684     1.9069 

1    1.0382    1.4929   2.6592     5.1746    8.1241    7.0627     4.4323    2.7966   1.9057      1.3929 

1.5    1.0226   1.4256    2.4849    4.8294     7.8372    6.9390     4.2635     2.623    1.7512     1.2593 

1.75  1.0166   1.3967    2.4065    4.6584    7.6447     6.8323     4.1657    2.5355   1.6775     1.1972 

 

 

   8 

  

-2    0.9844  1.3487     2.3739    4.2491    5.384       4.3037     2.9433    2.0695   1.5473      1.2225 

-1   0.9594  1.2222     2.0956     4.0243    5.9406     4.8704     3.0967    2.0288   1.4387      1.0928 

 1   0.9493  1.0861     1.7061      3.2695    5.6045     4.9869     2.9165   1.7353    1.1407     0.8166 

1.5 0.9502  1.0664    1.6375      3.0932    5.3591      4.8641    2.8201    1.6510    1.0697     0.7563 

1.75 0.9509  1.0580    1.6064     3.0095    5.2275      4.7898    2.7692    1.6097   1.0358    0.7279 

 

 

  11 

  -2  0.9615  1.0777   1.7002     3.2243    4.8735      3.9475    2.4526    1.5938     1.1345     0.872 

  -1 0.9634  1.0316   1.5541     2.9483    4.8576       4.1132   2.4478    1.5165     1.0407     0.7778 

   1 0.9715  0.983     1.3555     2.4472     4.3008       3.9708   2.2651    1.3114    0.8494      0.6054 

  1.5 0.9736 0.9764  1.3197    2.3413      4.117        3.8711    2.2019    1.2593   0.8058       0.5681 

1.75 0.9745 0.9738  1.3034   2.2913      4.0237       3.8159   2.1695     1.2339    0.7849      0.5504 

α= 
0.05 

 

m 5, 1%= a = 2
1I ( )s

f 0.2 2£ f £

a
1%a =

10%a = a 2
1I ( )s

a

a 2
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 5  

 

-2   1.4071  1.8922  2.2377   2.3004       2.1503      1.9251  1.7058      1.5193   1.3679       1.2466 

-1   1.2576  1.7852  2.4289  2.8421        2.7907       2.4451  2.0534     1.7221  1.4656       1.2712 

 1   1.1105  1.4803  2.1447  2.9731        3.3998        3.0605  2.3984     1.8212  1.4072       1.1213 

1.5  1.0933  1.4267   2.05    2.8825       3.3938         3.1        2.4085     1.7949  1.3598       1.0644 

1.75  1.0864  1.4029 2.0043 2.8294       3.3726       3.1043   2.4045      1.777    1.3339      1.0353 

 

 

   8 

  -2   1.0733   1.3764   1.9092   2.4083   2.4372      2.0694   1.6564      1.3379   1.1146       0.96 

  -1   1.0421   1.2813   1.7875   2.4168   2.6348      2.2633   1.7518      1.3543   1.0839     0.9028 

   1   1.0163   1.1634   1.5537   2.1943   2.6789      2.4327   1.8167       1.3106   0.9792      0.768 

  1.5  1.0134   1.1445  1.5057   2.1206   2.6324       2.4297   1.8097      1.2887   0.9488      0.734 

1.75  1.0123   1.1362  1.4832   2.0833   2.6063       2.4223   1.8035      1.2768   0.9334    0.7174 

               -2    1.0267   1.1768   1.5449   2.0735   2.2885       1.9517   1.4932      1.1549   0.9373    0.7999 

               -1   1.0187   1.1351    1.4549   1.9908   2.3257       2.0333   1.5248      1.1407   0.8974    0.7464 

  11          1   1.0111   1.0846    1.3150   1.78       2.2286        2.0732  1.5306     1.0868    0.8091     0.6410 

             1.5   1.01       1.0764    1.2877   1.7272   2.1801        2.0596  1.5219      1.07      0.7869      0.6161 

           1.75   1.0095   1.0728   1.2749   1.7013   2.1535         2.0498  1.5162     1.0612   0.7759     0.6040 

 

5.1. Graphs of Relative Risk for  

                                   

Figure 1: For α=0.01 

2
1I ( )s
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   Figure 2: For α=0.05 

 

                            
   Figure 3: For m=5 

 
                                                           

                       
Figure 4: For m=8 
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Figure 5: For α=0.01 

                      

             
Figure 6: For α=0.1 

 

 

6. Conclusion 
 
In this paper, a Huntsberger Type shrinkage entropy estimator for normal distribution have been 
proposed and its properties have been investigated under LINEX Loss function. On the basis of 
relative risk, it is concluded that the proposed estimator gives better results for smaller values of 
level of significance and degrees of freedom.  
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Abstract 

Lifetime distributions have played a significant role in lifetime data analysis. Despite the numerous 
distributions in literature, there have been several motivations for developing new ones. In this paper, 
a new lifetime distribution is proposed. Some important functions of the new distribution, such as 
probability density, cumulative distribution, survival, hazard, and quantile are derived in closed 
form. Some distributional properties such as moments, moment generating function, linear 
representation, probability weighted moments, etc. are obtained.  Some estimators such as the least 
square estimator (LSE), the weighted least square estimator (WLSE), the Anderson-Darling 
estimator (ADE) and the Cramer-von Mises estimator (CvME) are investigated for three unknown 
parameters. The efficiency of the estimators is checked via Monte Carlo simulation based on the bias 
and mean square error criteria. The usability of the new distribution is investigated with two real 
data sets and empirical results obtained reveal that the new distribution offers a promising fit for the 
data sets under study. 

Keywords: Bur distribution, log-logistic distribution, parameter estimation, quantile 

1. INTRODUCTION

Statistical distributions have played a significant role in lifetime data analysis. Despite the numerous 
distributions in literature, there have been several motivations for developing new ones. In all, the 
central goal has remained to develop a more flexible and tractable distribution in fitting real-world 
problems. In the last decades, researchers have introduced different methodologies for generating 
new statistical distributions which are hoped to provide a better fit than the existing distributions in 
lifetime data analysis. Some of these methods are the Beta-G family by [7], Marshall-Olkin extended 
family by [11], Transmuted-G family by [14], Kumaraswamy-G family by [5], Transformer (T-X) 
family by [2], Weibull-G family by [4], Odd Burr-G family by [1], Type II Topp-Leone generated 
family by [6], etc. 
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Recently, [13] introduced the Inverse Burr-G family of distributions using the idea of [15]. By 
considering the inverse Burr as the generator, they defined the cumulative distribution function of 
the inverse Burr-G family of distribution as 

        (1) 

where  and  are the shape parameters and   is the baseline distribution which depends 
on a parameter vector . 
The corresponding density function associated with (1) is given by 

   (2) 

In this paper, we employed the technique defined in (1) and consider in particular, the case where 
the baseline distribution  follows the log-logistic distribution. 
The cumulative distribution function (cdf) and probability density function (pdf) of the log-logistic 
distribution with shape parameter  are respectively defined as 

 (3) 
and 

      (4) 

Inserting (3) and (4) into (1) and (2), we define the cdf and pdf of a new statistical distribution as 

     (5) 
and 

     (6) 
Suppose a random variable X has the density function in (6), then we say that X follows the Inverse 
Burr Log-Logistic (“IBLL” for short) distribution with shape parameters ,  and  
The motivation of this paper is to develop a tractable distribution that spans all the various forms of 
the hazard rate properties and provides a consistently better fit than most available statistical 
distribution in the literature. 
The rest sections of the paper are structured as follows. In Section 2, we discuss in detail, some basic 
mathematical properties of the proposed distribution. Section 3 presents some methods of 
estimation of the unknown parameters of the proposed distribution. The asymptotic behavior of 
unknown parameters through a Monte Carlo simulation study are investigated in Section 4. In 
Section 5, we illustrate the applicability of the proposed distribution in lifetime data analysis two 
data sets and compared its fit alongside with fit attain by some existing non-nested distributions. 
Finally, in Section 6, we gave a concluding remark. 

2. MATHEMATICAL PROPERTIES OF THE IBLL DISTRIBUTION

In this Section, some of the mathematical properties of the IBLL distribution are discussed. These 
include survival, hazard, quantile functions, the linear representation of the distribution, moments, 
moment generating function, probability weighted moment, Rényi entropy and distribution of order 
statistics.  
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2.1 Survival, Hazard and Quantile Functions 

The survival, hazard and quantile functions of the IBLL distribution are respectively derived from 
(5) and (6) as follows. 

             (7)

            (8) 

and 

        (9) 

The quantile function in (9) is derived by simply inverting the distribution function in (5). This is 
one of the most important properties of any distribution, as it allows for generating random numbers 
from the distribution for the simulation study. Substituting  in (9), we obtain the median of
the IBLL distribution as  

       (10) 

Some graphical presentations of the pdf and hazard function of the IBLL distribution are displayed 
in Figures 1 and 2 respectively. 

Figure 1: Density Plots of the IBLL Distribution 

Figure 2: Hazard Plots of the IBLL Distribution 
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Figure 1 shows that the density plot of the IBLL distribution accommodates decreasing, left-skewed, 
right-skewed and symmetric shapes, while the plots displayed in Figure 2 indicates that the hazard 
function of the IBLL distribution exhibits a decreasing, increasing, upside down bathtub and 
decreasing-increasing-decreasing hazard properties.  

2.2 Linear Representation 

The linear representation of the density and distribution functions allow for easy derivation of some 
properties such as the moments, probability weighted moment, moment generating function, 
distribution of order statistics, etc. The following lemmas will guide us in the derivation of the linear 
representation of the density and distribution functions of the IBLL distribution. 

Lemma 1: 
For any positive real non-integer , consider the generalized binomial series expansion (see 
[12]). 

Lemma 2: 
For any real parameter , the convergent series holds. 

 

Applying the result on power series raised to a positive integer, with  that is, 

 

so that, 

 

where (see [8]). 

Now, applying the above two lemmas in (5), 

so that (5) now becomes, 

  (11) 

where, 
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and is the distribution function of the log-logistic distribution with  
 as the power parameter. 

Differentiating (11), we obtain its associated density function as 

     (12) 

where  is the density function 
of the log-logistic distribution with   as the power parameter. 
Other useful properties such as the moments and moment generating function can be directly 
obtained from (12). 

2.3 The Moments and Moment Generating Function 

Let X be a continuous random variable following a known probability distribution with density 
function , then the ordinary moment of X is defined as 

     (13) 

Substituting (6) into (12), the ordinary moment of the IBLL distribution is obtained as 

       (14) 

using lemma 1, 

Substituting this expression into (14), we have 

   (15) 

Further simplification of (15) and invoking the beta function, yields 

          (16) 

When  in (16) we obtain the mean of X. The variance, skewness and kurtosis of X can be 
computed from (16), using the following mathematical relationships. 
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variance , 

skewness

kurtosis

where    and  are the first four ordinary moments of the IBLL distribution. 

The  incomplete moment of X is obtained from (16) as 

          (17) 

where and are respectively 

the beta function of the second kind and the incomplete beta function of the second kind. 
The moment generating function of X is define using the Maclaurin series expansion of the 

exponential function as 

         (18) 

Inserting (16) into (18), we define the moment generating function of IBLL distribution as 

          (19) 

Table 1 presents the numerical computation of the mean, variance, skewness and kurtosis of the 
IBLL distribution at varying values of the parameters. 

         Table 1: Moments of the IBLL Distribution at varying values of the Parameters 
    

0.5 6 6 3.2316 11.9924 0.4073 1.5944 
8 2.7794 12.6009 0.6770 1.7675 

8 6 4.3219 10.0142 -0.1784 1.7717 
8 4.1435 11.8485 -0.0735 1.5029 

1.0 6 6 3.3973 2.5320 1.1591 5.3969 
8 3.6548 2.8901 0.8689 4.6926 

8 6 2.9264 1.1707 2.0539 10.003 
8 3.1257 1.3177 1.8620 8.8985 
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From Table 1, we observed that the IBLL distribution is positively skewed ( ), negatively 

skewed  and approximately symmetric . This result is consistent with the plots 

of the density function displayed in Figure 1. Also, at some selected values of the parameters, the 
IBLL distribution is both leptokurtic  and platykurtic . 

Figure 3 displays the plot of the skewness and kurtosis of IBLL distribution for  

Figure 3: The Skewness and Kurtosis for IBLL Distribution

2.4 The Probability Weighted Moments 

The probability weighted moments (PWMs) are generally used to construct the estimator of the 
parameters as well as the quantiles of a known statistical distribution whose cdf is invertible. For a 
random variable X, [9] defined the  PWMs as 

     (20) 

combining (5) and (6), we have 

            (21) 

applying the lemmas in (21), we have 
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Substituting these expressions into (21), we have 

 (22) 

By inserting (22) into (20) and further simplification, we obtain the PWMs of the IBLL distribution 
as 

 

(23) 

From (23), we remark that the PWMs of the inverse Burr log-logistic distribution can be expressed 
as a linear combination of the log-logistic densities. 

2.5 Distribution of Order Statistics 

Let  be random samples of size n from a known probability distribution. Suppose 

 denotes the  order statistics, then the density function of  is defined by 

     (24) 

Inserting (5) and (6) into (24), we define the order statistics of the density of IBLL distribution as 
follows. 

   (25) 

We further simplify (25) using a similar approach in (21) as 

         (26) 

Substituting (26) into (24), we have 

     (27) 

where 

 

(27) is readily the order statistics of the density function of IBLL distribution. 

An expression for the  moment of the order statistics of the density of IBLL distribution is 
obtained using (27) as 
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     (28) 

Again, we show that the  moment of the order statistics of the density of IBLL distribution 
can be expressed as a linear combination of the log-logistic densities. 

2.6 Rényi Entropy 

The entropy of a random variable X represents the measure of randomness associated with the 
random variable X. The Rényi entropy of X is defined by 

      (29) 

The Rényi entropy of a random variable X following the IBLL distribution is derived by inserting (6) 
into (29) as 

   (30) 

Applying the lemmas in (30), we have 

 

Substituting these expressions into (30), we have 

       (31) 

Evaluating the integral function in (31) yields, 

         (32) 

where, 

 

3. METHODS OF PARAMETER ESTIMATION

In this section, five estimators, i.e., maximum likelihood, least squares, weighted least squares, 
Anderson-Darling, and Cramer-von Mises, in order to estimate the unknown parameters of the IBLL 

distribution are investigated.  Let be a random sample from the 

distribution,  represent the associated order statistics and indicates the 

observed values of  for  where  The likelihood and log-likelihood 

functions are obtained, respectively, by, 
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            (33) 

and 

            (34) 

Then, the maximum likelihood estimator (MLE) of  is obtained by 
𝛯"! = 𝑎𝑟𝑔𝑚𝑎𝑥

"
ℓ(𝛯).           (35) 

Let us give the following functions that give us the four different estimators: 

               (36) 

                    (37) 

              (38) 

and 

               (39) 

Then, the least square estimator (LSE), the weighted least square estimator (WLSE), the Anderson-
Darling estimator (ADE) and the Cramer-von Mises estimator (CvME) of the  are achieved, 
respectively, by 
𝛯"# = 𝑎𝑟𝑔𝑚𝑖𝑛

"
𝑄$%(𝛯),                   (40) 

𝛯"& = 𝑎𝑟𝑔𝑚𝑖𝑛
"

𝑄'$%(𝛯),           (41) 

𝛯"(( = 𝑎𝑟𝑔𝑚𝑖𝑛
"

𝑄)*(𝛯)           (42) 

and 
𝛯"+ = 𝑎𝑟𝑔𝑚𝑖𝑛

"
𝑄,-.(𝛯).           (43) 

All of the maximization and minimization problems in Equations (35), (40), (41), (42), and (43) can 
be obtained by optim function in the R software. 

4. SIMULATION EXPERIMENTS

In this section, the bias and mean square errors (MSEs) of the estimators are calculated with 5000 
reputations based on the Monte Carlo simulation. The quantile function given in Equation (9) is used 

to generate data from the distribution by taking  instead of  where  is 
the standard uniform distribution. Eight parameters setting are chosen based on Table 1 as 
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The sample size  is selected in the simulation experiment. The 
simulation results are given in Tables 2-3. It can be inferred from Tables 2 and 3 that as sample the 
size increases, bias and MSEs for all estimators decrease and converge to zero. When the sample size 
increases, the bias and MSE values of the estimators converge. Although the bias and MSE of the 
estimators converge with each other when the sample size increases, generally the LSE in bias gives 
better results than the others. 

Table 2: Average bias for all estimators 
MLE LSE WLSE ADE CvME 

n Α Β λ Α β λ α β λ α β λ α β λ 
50 0.9375 4.1957 0.0704 0.5942 0.2506 0.0135 1.0350 7.8711 0.1362 1.2633 1.1027 0.0256 0.8859 0.2643 0.0002 
100 0.7669 1.2045 0.0116 0.5610 0.0525 -0.0018 0.7021 3.3303 0.0527 0.8007 1.1953 0.0228 0.6974 0.1023 -0.0068
150 0.7121 0.2743 -0.0095 0.4901 0.0965 0.0011 0.5846 1.3907 0.0236 0.6546 0.7200 0.0108 0.5870 0.1106 -0.0029

S1 200 0.6581 -0.0165 -0.0167 0.4909 -0.0139 -0.0032 0.5050 0.6594 0.0090 0.5543 0.4239 0.0035 0.5754 -0.0416 -0.0077
250 0.6475 -0.2638 -0.0238 0.5789 -0.2129 -0.0129 0.4872 0.2729 -0.0004 0.5208 0.1843 -0.0032 0.6399 -0.2247 -0.0160
500 0.5943 -0.5326 -0.0327 0.3437 0.1976 0.0017 0.4036 -0.1782 -0.0143 0.4037 -0.1478 -0.0131 0.3731 0.1995 0.0003 
1000 0.5817 -0.6845 -0.0380 0.2675 0.0253 -0.0040 0.3801 -0.3884 -0.0218 0.3547 -0.3211 -0.0187 0.2826 0.0241 -0.0047
50 1.1512 4.9371 0.0428 0.3964 0.0485 0.0064 1.1587 10.6314 0.1139 1.4767 0.3899 -0.0102 0.6971 0.1149 -0.0078
100 0.9526 1.6496 -0.0035 0.5254 -0.1075 -0.0100 0.8302 5.5053 0.0471 0.9739 1.0317 0.0011 0.6672 -0.0897 -0.0162
150 0.8626 0.3856 -0.0203 0.4366 -0.1390 -0.0078 0.6930 2.9162 0.0208 0.7759 0.9129 0.0003 0.5498 -0.1608 -0.0130

S2 200 0.8322 -0.2357 -0.0301 0.4681 -0.3456 -0.0151 0.6290 1.0993 0.0021 0.6780 0.5895 -0.0046 0.5559 -0.3655 -0.0193
250 0.8124 -0.5348 -0.0359 0.5519 -0.5409 -0.0222 0.6234 0.4238 -0.0090 0.6521 0.2444 -0.0114 0.6099 -0.5278 -0.0246
500 0.7788 -1.1148 -0.0479 0.3783 0.0574 -0.0067 0.5499 -0.5278 -0.0268 0.5343 -0.4227 -0.0236 0.4093 0.0538 -0.0083
1000 0.7426 -1.2944 -0.0518 0.3472 -0.1384 -0.0121 0.5063 -0.8184 -0.0333 0.4556 -0.6417 -0.0276 0.3623 -0.1365 -0.0128
50 0.6404 6.6985 0.1097 0.6121 0.0227 0.0017 1.0037 11.7552 0.1591 1.4091 0.9300 0.0156 0.9293 0.1141 -0.0063
100 0.3057 3.7878 0.0679 0.4339 0.4604 0.0109 0.4177 7.2752 0.1038 0.6287 1.8584 0.0394 0.6244 0.5242 0.0068 
150 0.2074 2.3201 0.0453 0.4792 0.2701 0.0040 0.2730 4.4954 0.0717 0.3839 1.9209 0.0406 0.5920 0.2946 0.0011 

S3 200 0.1603 1.6798 0.0345 0.4903 0.1043 -0.0018 0.1926 3.0110 0.0533 0.2641 1.8022 0.0377 0.5702 0.1333 -0.0036
250 0.1602 1.1944 0.0254 0.5091 -0.0343 -0.0059 0.1992 2.0675 0.0389 0.2532 1.4024 0.0295 0.5717 -0.0091 -0.0073
500 0.1270 0.4670 0.0100 0.1819 0.5339 0.0128 0.1055 0.8581 0.0196 0.1325 0.7466 0.0169 0.2199 0.5181 0.0112 
1000 0.1233 0.1356 0.0015 0.1057 0.5177 0.0119 0.0784 0.3467 0.0079 0.0893 0.3217 0.0071 0.1247 0.5136 0.0113 
50 0.7510 7.9644 0.0905 0.3044 -0.0100 0.0053 1.0016 17.0148 0.1599 1.4711 0.6111 -0.0013 0.6719 0.0439 -0.0061
100 0.3105 5.8365 0.0692 0.3377 0.1576 0.0021 0.4839 12.2917 0.1128 0.7972 1.4888 0.0181 0.5115 0.2013 -0.0031
150 0.3283 3.4028 0.0406 0.4856 -0.0614 -0.0064 0.3546 8.6056 0.0796 0.5630 1.8400 0.0227 0.6109 -0.0267 -0.0097

S4 200 0.2099 2.9491 0.0373 0.4213 -0.0560 -0.0062 0.2381 6.0182 0.0632 0.3530 2.4052 0.0327 0.5157 -0.0249 -0.0085
250 0.2275 1.8875 0.0244 0.4184 -0.1450 -0.0077 0.2428 4.3372 0.0472 0.3183 2.2085 0.0290 0.4790 -0.0962 -0.0089
500 0.1828 0.7228 0.0081 0.1918 0.2020 0.0015 0.1329 1.6237 0.0218 0.1614 1.3081 0.0179 0.2385 0.1780 -0.0003
1000 0.1476 0.2229 0.0007 0.1720 0.4073 0.0044 0.0791 0.6492 0.0096 0.0887 0.6102 0.0088 0.1914 0.4067 0.0038 
50 0.6470 5.5044 0.2278 0.5451 0.4398 0.0442 0.9605 8.6682 0.3141 1.0958 1.4447 0.0834 0.8335 0.4091 0.0121 
100 0.3333 2.5247 0.1206 0.4569 0.2635 0.0169 0.4849 4.1211 0.1599 0.5393 1.7448 0.0941 0.6018 0.3162 0.0062 

S5 150 0.2436 1.4603 0.0759 0.4206 0.2336 0.0163 0.3433 2.2477 0.1053 0.3757 1.3905 0.0772 0.5227 0.2319 0.0067 
200 0.1539 1.0055 0.0589 0.4435 0.0369 -0.0027 0.2277 1.4496 0.0796 0.2551 1.1010 0.0633 0.5127 0.0303 -0.0101
250 0.1581 0.6795 0.0412 0.4363 -0.0472 -0.0088 0.2019 1.0266 0.0603 0.2300 0.8008 0.0485 0.4926 -0.0507 -0.0145
500 0.0856 0.3212 0.0204 0.1461 0.5693 0.0383 0.0978 0.4501 0.0300 0.1111 0.4035 0.0262 0.1750 0.5688 0.0352 
1000 0.0604 0.1184 0.0067 0.0730 0.3805 0.0257 0.0541 0.1913 0.0133 0.0625 0.1720 0.0115 0.0878 0.3796 0.0242 
50 0.6140 7.6142 0.2150 0.3106 0.2057 0.0289 0.9251 12.6867 0.3072 1.1159 1.0707 0.0333 0.5886 0.2560 0.0003 
100 0.3562 4.3665 0.1293 0.3879 0.1270 0.0016 0.5263 7.6389 0.1810 0.6175 2.0318 0.0689 0.5437 0.1983 -0.0100

S6 150 0.2326 2.6693 0.0876 0.3632 -0.1900 -0.0137 0.3453 4.6530 0.1209 0.3940 2.0958 0.0704 0.4666 -0.1442 -0.0223
200 0.1950 1.6498 0.0573 0.3831 -0.2584 -0.0208 0.2838 2.8226 0.0844 0.3148 1.6056 0.0552 0.4609 -0.2513 -0.0278
250 0.1257 1.4433 0.0550 0.3322 -0.1799 -0.0165 0.1810 2.2602 0.0784 0.2129 1.5243 0.0583 0.3892 -0.1762 -0.0221
500 0.1055 0.5230 0.0188 0.1714 0.4174 0.0160 0.1191 0.8336 0.0312 0.1332 0.7311 0.0268 0.2057 0.3961 0.0118 
1000 0.0716 0.2093 0.0065 0.1057 0.5346 0.0210 0.0632 0.3884 0.0160 0.0725 0.3517 0.0137 0.1214 0.5303 0.0191 
50 0.5456 7.2943 0.2396 0.5129 0.1875 0.0157 0.8056 12.7427 0.3507 1.2360 1.1529 0.0444 0.8404 0.3053 -0.0004
100 0.2945 4.1175 0.1439 0.6107 0.3300 0.0101 0.4796 7.3733 0.2060 0.6888 1.8438 0.0748 0.7686 0.4205 0.0035 
150 0.1463 2.6347 0.1066 0.5751 0.2452 0.0028 0.2828 5.0317 0.1533 0.3928 1.9872 0.0843 0.6942 0.2156 -0.0055

S7 200 0.1257 1.8119 0.0778 0.5207 0.0253 -0.0082 0.2434 2.8158 0.1010 0.2986 1.7793 0.0742 0.6036 0.0326 -0.0128
250 0.0829 1.4882 0.0665 0.3985 0.1005 -0.0025 0.1842 2.2312 0.0830 0.2281 1.5328 0.0649 0.4688 0.1045 -0.0066
500 0.0838 0.6181 0.0287 0.2951 0.2163 0.0051 0.1192 0.8505 0.0375 0.1453 0.7482 0.0323 0.3361 0.1959 0.0018 
1000 0.0161 0.3224 0.0170 0.0801 0.5628 0.0267 0.0286 0.4301 0.0217 0.0454 0.3875 0.0190 0.0986 0.5609 0.0255 
50 0.6720 8.8634 0.2082 0.3249 -0.0013 0.0092 1.0153 17.5598 0.3332 1.3750 0.9431 0.0138 0.6687 0.0618 -0.0120
100 0.2777 6.5039 0.1560 0.4394 0.2362 0.0066 0.5192 12.4466 0.2254 0.8599 1.3023 0.0289 0.6414 0.1311 -0.0095
150 0.1709 4.2887 0.1125 0.4596 0.0644 -0.0083 0.2647 9.4685 0.1790 0.4694 2.0652 0.0577 0.5743 0.1148 -0.0138

S8 200 0.1214 3.1787 0.0867 0.4665 -0.1327 -0.0159 0.2429 6.0748 0.1277 0.3481 2.4949 0.0680 0.5472 -0.0944 -0.0200
250 0.1023 2.5330 0.0718 0.3430 0.1276 -0.0047 0.1813 4.7362 0.1024 0.2613 2.3733 0.0639 0.4220 0.1297 -0.0094
500 0.0812 1.0523 0.0322 0.2729 -0.0724 -0.0093 0.1200 1.6726 0.0455 0.1514 1.3147 0.0370 0.3129 -0.0768 -0.0120
1000 0.0486 0.5072 0.0161 0.1995 0.4641 0.0092 0.0792 0.7237 0.0212 0.0927 0.6599 0.0187 0.2190 0.4620 0.0078 

50,100,150,200,250,500,1000n =

X

510



Festus Opone, Kadir Karakaya, Francis Osagiede 
THE INVERSE BURR LOG-LOGISTIC DISTRIBUTION 

RT&A, No 1 (72) 
Volume 18, March 2023 

Table 3: Average MSEs for all estimators 
MLE LSE WLSE ADE CvME 

n 
Α Β λ α β λ α β λ α β λ α β λ 

50 8.2297 164.7673 0.0863 5.0257 11.1636 0.0284 13.5481 510.6877 0.1856 11.8089 28.9090 0.0530 5.6933 10.612 0.0253 

100 4.1556 45.3542 0.0337 3.6519 7.9128 0.0172 6.0824 245.3384 0.0766 5.8939 32.5961 0.0414 3.9543 8.3217 0.0166 

150 2.8888 16.3444 0.0184 3.2908 6.6964 0.0158 3.9830 64.0081 0.0397 3.9870 21.7640 0.0294 3.5216 6.7264 0.0152 
S1 

200 2.1614 8.9423 0.0134 2.9582 5.8082 0.0143 2.8287 29.2083 0.0246 2.8786 14.9217 0.0222 3.1087 5.6329 0.0137 

250 1.7531 5.1202 0.0097 2.8691 5.1904 0.0127 2.2584 12.0601 0.0174 2.3131 9.9242 0.0166 2.9603 5.0758 0.0123 

500 1.0220 2.4029 0.0054 1.6475 6.4392 0.0127 1.1197 3.8997 0.0078 1.1672 4.0569 0.0082 1.6769 6.4718 0.0125 

1000 0.6702 1.4077 0.0035 0.8923 3.8779 0.0075 0.6056 1.7534 0.0039 0.6217 1.8678 0.0041 0.9029 3.8582 0.0074 

50 8.8167 217.3302 0.0646 3.0613 10.8334 0.0187 13.7269 786.3757 0.1495 12.2312 31.7471 0.0364 3.5605 12.515 0.0171 

100 4.4242 90.7887 0.0323 2.7898 13.0720 0.0137 6.2139 478.1817 0.0770 6.0499 44.3473 0.0340 2.9681 11.4890 0.0128 

150 3.1118 41.5761 0.0211 2.3110 10.2296 0.0116 4.1584 249.6613 0.0476 4.1946 43.6199 0.0292 2.5483 9.0402 0.0112 
S2 

200 2.5062 19.6554 0.0143 2.0040 6.8737 0.0091 3.0617 69.6146 0.0271 3.1435 31.6162 0.0230 2.1611 6.7379 0.0090 

250 2.0678 14.2230 0.0117 2.0892 7.0033 0.0093 2.5515 36.3777 0.0200 2.6280 24.2292 0.0188 2.1822 6.9496 0.0091 

500 1.3012 5.4485 0.0066 1.4503 9.4806 0.0100 1.2919 8.5585 0.0084 1.3441 9.0206 0.0090 1.4850 9.4552 0.0098 

1000 0.9071 3.5782 0.0048 0.9311 7.4636 0.0074 0.7359 4.1769 0.0048 0.7322 4.5383 0.0050 0.9446 7.5026 0.0074 

50 12.8929 251.5244 0.0902 6.4170 9.1597 0.0163 21.4541 828.8226 0.1873 17.4964 23.7414 0.0328 7.1741 8.4168 0.0140 

100 6.2261 120.4071 0.0488 5.0548 10.9579 0.0147 9.3815 515.7800 0.1039 8.4520 36.4127 0.0343 5.6795 11.9140 0.0145 

150 4.1157 58.1565 0.0294 4.7730 9.5840 0.0120 6.2919 260.9974 0.0624 5.7657 39.1557 0.0315 4.9602 9.3776 0.0117 
S3 

200 3.1126 33.9692 0.0208 4.0023 7.0750 0.0096 4.5631 137.2141 0.0415 4.3428 36.5044 0.0271 4.0819 7.1352 0.0094 

250 2.5849 21.0839 0.0155 3.5837 5.8694 0.0088 3.8436 88.9140 0.0295 3.7146 28.4078 0.0220 3.6651 5.9658 0.0086 

500 1.3443 5.8824 0.0064 2.3211 7.6789 0.0096 1.9815 14.4027 0.0119 1.9674 11.5138 0.0109 2.3334 7.5252 0.0093 

1000 0.6629 2.3354 0.0029 1.4838 6.5431 0.0074 0.9678 4.3373 0.0049 0.9659 4.1395 0.0048 1.4899 6.4957 0.0073 

50 12.7339 323.5838 0.0714 4.3827 7.9723 0.0099 21.7192 1370.9550 0.1690 17.0598 29.9717 0.0248 5.0078 7.4320 0.0083 

100 6.1949 233.2069 0.0480 3.4387 11.5590 0.0093 10.0976 1050.0127 0.1098 8.5251 41.0548 0.0258 3.5890 11.5626 0.0088 

150 4.3135 114.9577 0.0294 3.6243 11.2110 0.0084 6.6965 786.8659 0.0729 5.9103 46.8700 0.0239 3.8311 11.7176 0.0083 
S4 

200 3.2894 91.4859 0.0245 2.9855 10.5398 0.0077 5.0877 423.5659 0.0518 4.6558 63.3257 0.0259 3.1638 10.8964 0.0077 

250 2.7217 49.9875 0.0172 2.7306 8.8887 0.0071 4.2953 289.5450 0.0391 4.0458 62.1376 0.0235 2.8216 9.0300 0.0070 

500 1.3877 15.3314 0.0074 1.4374 7.0680 0.0054 2.0690 49.0908 0.0146 2.0385 29.1442 0.0125 1.4884 6.9479 0.0052 

1000 0.7350 5.9916 0.0036 1.4175 9.4144 0.0061 1.0540 11.8543 0.0062 1.0497 11.2937 0.0061 1.4281 9.4462 0.0061 

50 8.1641 195.7027 0.4446 5.0974 12.6878 0.1316 14.0401 549.4940 0.8162 11.6743 29.8464 0.2232 5.7930 11.6472 0.1094 

100 3.5454 74.3962 0.2060 3.6045 9.2761 0.0764 5.5268 251.6307 0.3654 5.0756 40.0784 0.1980 3.9402 10.0963 0.0746 
S5 

150 2.3815 34.2574 0.1209 3.3376 7.5331 0.0704 3.6924 108.0385 0.2098 3.5101 27.8111 0.1456 3.4972 7.3340 0.0670 

200 1.6541 15.8051 0.0797 2.8503 5.8383 0.0564 2.5552 36.9380 0.1343 2.4107 19.5292 0.1090 2.9013 5.6422 0.0531 

250 1.3997 9.0560 0.0595 2.5443 5.2502 0.0516 2.1205 22.5280 0.1001 2.0613 13.3906 0.0848 2.5984 5.1582 0.0496 

500 0.6750 3.4245 0.0268 1.4751 7.3287 0.0553 0.9738 5.7074 0.0412 0.9556 5.2053 0.0389 1.4930 7.3074 0.0543 

1000 0.3345 1.4597 0.0126 0.7874 4.6437 0.0347 0.4722 2.2476 0.0187 0.4699 2.1680 0.0183 0.7923 4.6257 0.0343 

50 7.8179 310.9795 0.3789 3.1524 13.3794 0.0889 13.7931 949.0247 0.7276 11.1650 34.4827 0.1613 3.5131 13.2201 0.0762 

100 3.6646 177.4051 0.2185 2.7496 14.5714 0.0580 5.8716 604.6772 0.4157 5.3194 56.4762 0.1663 3.0771 16.3857 0.0592 
S6 

150 2.2539 83.5288 0.1373 2.1236 8.1668 0.0425 3.5175 351.2598 0.2552 3.2827 57.1584 0.1426 2.2514 9.5506 0.0429 

200 1.6717 41.3850 0.0887 1.9406 7.3814 0.0383 2.6789 137.1735 0.1655 2.5211 40.1409 0.1089 2.0465 7.5400 0.0381 

250 1.3400 29.7434 0.0714 1.5852 6.9718 0.0360 2.1197 89.1849 0.1257 2.0253 33.1473 0.0929 1.6268 6.9089 0.0351 

500 0.6809 8.6834 0.0308 1.1749 9.5075 0.0411 0.9909 18.2522 0.0507 0.9762 14.8899 0.0473 1.1975 9.4081 0.0403 

1000 0.3562 3.7743 0.0154 0.8043 9.7517 0.0362 0.5063 6.3992 0.0241 0.5032 6.1113 0.0234 0.8103 9.7011 0.0358 

50 12.9186 286.8685 0.3886 6.3044 9.3243 0.0684 20.5358 896.3676 0.7858 16.6925 24.0555 0.1260 7.0636 9.8315 0.0612 

100 6.2518 140.0123 0.2125 6.1765 11.6613 0.0624 9.7176 495.3834 0.4156 8.6520 37.3454 0.1412 6.4745 13.3001 0.0617 

150 4.1932 66.0174 0.1328 5.1175 10.5405 0.0526 6.3932 326.9165 0.2768 5.8300 40.5734 0.1309 5.2672 9.7465 0.0491 
S7 

200 3.2774 37.2524 0.0905 3.9563 6.8701 0.0395 4.9175 118.5219 0.1600 4.6726 37.1928 0.1107 4.0352 6.7307 0.0383 

250 2.6473 27.0774 0.0716 3.0137 5.7995 0.0334 3.8568 94.0344 0.1251 3.7213 30.0171 0.0914 3.0889 5.7940 0.0325 

500 1.3850 7.6326 0.0304 2.2580 5.8288 0.0312 1.9551 13.9261 0.0473 1.9263 11.9486 0.0439 2.2817 5.6618 0.0302 

1000 0.6859 2.7299 0.0132 1.4708 6.8897 0.0303 0.9413 4.6254 0.0202 0.9364 4.3075 0.0194 1.4775 6.8678 0.0300 

50 13.5950 362.1085 0.3166 4.4474 9.4767 0.0446 22.7560 1438.6746 0.7077 17.3753 32.9939 0.1059 4.8009 8.7280 0.0384 

100 6.4227 265.6164 0.2145 4.3368 16.3254 0.0513 10.5993 1111.1386 0.4408 8.9670 38.2959 0.0998 4.6587 14.2683 0.0449 

150 4.3203 140.1165 0.1392 3.5661 14.5328 0.0375 6.6212 864.3592 0.3178 5.7875 48.2825 0.0983 3.7190 14.6579 0.0373 
S8 

200 3.3002 97.5383 0.1041 3.2768 10.2293 0.0329 5.2374 430.0210 0.2116 4.8011 66.7278 0.1074 3.3280 10.6299 0.0326 

250 2.7079 68.5264 0.0814 2.4830 10.6151 0.0310 4.0239 343.1026 0.1598 3.7871 63.5251 0.0945 2.6327 10.5669 0.0303 

500 1.4285 19.2085 0.0353 1.6788 6.0184 0.0197 2.1088 52.8106 0.0608 2.0804 29.9620 0.0515 1.7198 6.0311 0.0195 

1000 0.7436 7.1666 0.0165 1.5655 10.8404 0.0273 1.0989 13.4083 0.0267 1.0918 12.3481 0.0255 1.5768 10.8464 0.0271 

X
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5. Real Data Analysis

In this section, two applications to the real data sets are examined to demonstrate the applicability 
of the IBLL distribution. We compare the IBLL distribution with Log-Logistic (LL), Burr III (BIII), 
Burr XII (BXII), Weibull (W) and Lindley (L) for two data sets. The pdfs of these distributions are 
given in Table 4. The MLEs of parameters and standard (SE) of MLEs are obtained and reported in 
Tables 5-6 for two datasets. To select the best distribution some criteria and goodness of-fit statistics 
such as the estimated log-likelihood values , Akaike information criteria (AIC), Bayesian
information criteria (BIC), consistent Akaike information criteria (CAIC), Hannan–Quinn 
information criterion (HQIC), Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Cramer von 
Mises (CvM) statistics and related p values (KS-pval, AD-pval, CvM-pval) are calculated for all 
distributions. The fitted cdfs for two data sets are plotted in Figures 4 and 5. It is easily seen from 
Tables 5–6 and Figures 4–5 that the IBLL distribution gives the best modeling for both datasets, 
according to all criteria. The IBLL distribution can be used and be a good alternative in the literature 
because of its superior modeling capability. 

The first data set represents the remission times (in months) of a random sample of 128 bladder 
cancer patients and it can be found in [10]. The first data is given by 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 
13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 
2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 
7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 
36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 
4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 
12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

The second data set represents the survival times (in days) of guinea pigs injected with different 
amount of tubercle bacilli and it can be consulted detail information in [3].  The second data is given 
by 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 
61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 
129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376. 

Table 4: The pdfs list of the all distributions 
Distribution Pdf Range of the 

parameters 
IBLL  

LL  

BIII  

BXII  

W  

L  

( )X

( ) ( ) ( ){ } ( ) ( ){ }
( )21 1

3 3 3 3

1111
1 2 3 1 log 1 1 log 1

pp pp p p pf x p p p x x x x
- +- + --- é ù= + + + +ê úë û

1 2 3, , 0p p p >

( ) ( )1 1
21

1 1p pf x p x x
--= + 1 0p >

( ) ( ) ( ) ( )21 1
11

1 2 1
pp pf x p p x x

- +- + -= + 1 2, 0p p >

( ) ( ) ( )2
1 1

11
1 2 1

pp pf x p p x x
- +-= + 1 2, 0p p >

( ) ( )( ) ( )( )1 11
1 2 2 2/ / exp /p pf x p p x p x p-= - 1 2, 0p p >

( ) ( ) ( ) ( )2
1 1 11 / 1 expf x p x p p x= + + - 1 0p >
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Table 5: The modelling results for first data set 
IBLL LL BIII BXII W L 

-409.8744 -504.8603 -426.6864 -453.5166 -414.0869 -419.5299
AIC 825.7488 1011.7206 857.3729 911.0332 832.1738 841.0598 
BIC 834.3048 1014.5726 863.0769 916.7372 837.8778 843.9118 
CAIC 825.9423 1011.7523 857.4689 911.1292 832.2698 841.0916 
HQIC 829.2251 1012.8794 859.6905 913.3508 834.4913 842.2186 
KS 0.0345 0.5260 0.1017 0.2507 0.0700 0.1164 
AD 0.1184 63.3436 2.9190 13.3638 0.9577 2.7853 
CvM 0.0179 13.4609 0.4508 2.7195 0.1537 0.5191 
KS-pval 0.9980 0.0000 0.1413 0.0000 0.5570 0.0623 
AD-pval 0.9998 0.0000 0.0302 0.0000 0.3801 0.0353 
CVM-pval 0.9986 0.0000 0.0531 0.0000 0.3789 0.0355 

�̂�! 15.8105 0.7897 1.0333 2.3349 1.0478 0.1960 
�̂�" 0.4855 4.2070 0.2337 9.5607 
�̂�# 0.2312 

SE of �̂�! 3.2570 0.0556 0.0604 0.3541 0.0676 0.0123 
SE of �̂�" 0.1236 0.4054 0.0400 0.8529 
SE of �̂�# 0.0182 

Table 6: The modelling results for second data set 
IBLL LL BIII BXII W L 

-389.6891 -526.9707 -395.5659 -490.5493 -397.1477 -394.5197
AIC 785.3781 1055.9415 795.1318 985.0986 798.2953 791.0394 
BIC 792.2081 1058.2182 799.6852 989.6519 802.8487 793.3160 
CAIC 785.7311 1055.9986 795.3057 985.2725 798.4693 791.0965 
HQIC 788.0972 1056.8478 796.9445 986.9113 800.1080 791.9457 
KS 0.0871 0.7210 0.1512 0.4813 0.1465 0.1326 
AD 0.5375 57.3053 1.4907 23.5566 2.3730 1.8706 
CvM 0.0898 12.0148 0.2500 5.0353 0.4312 0.3452 
KS-pval 0.6450 0.0000 0.0745 0.0000 0.0911 0.1592 
AD-pval 0.7083 0.0000 0.1787 0.0000 0.0580 0.1085 
CVM-pval 0.6384 0.0000 0.1884 0.0000 0.0596 0.1011 

�̂�! 29.2029 0.3533 1.4165 48.7608 1.3932 0.0198 
�̂�" 1.2525 286.9916 0.0047 110.5552 
�̂�# 0.1294 

SE of �̂�! 5.8536 0.0322 0.1163 18.8737 0.1184 0.0016 
SE of �̂�" 0.5107 125.6638 0.0017 9.9344 
SE of �̂�# 0.0081 

( )X

( )X
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Figure 4: Empirical and fitted cdf plots for the first data 

Figure 5: Empirical and fitted cdf plots for the second data 

6. CONCLUSION

In this article, a new flexible distribution is introduced. The density and hazard functions of the new 
model are illustrated by various plots that are very flexible. Many properties related to the 
distribution have been obtained. Rényi entropy, which is an important measure of randomness, is 
examined. Some estimation techniques are used to investigate the parameter estimation problem. 
The performances of the estimators are examined by Monte Carlo simulation. Finally, bladder cancer 
and survival times of guinea pig data are modeled. As a result of the modeling, it was seen that the 
best distribution according to all criteria is the IBLL distribution for both data. 
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Abstract

Aim. Inferences on stress strength reliability has many applications in reliability theory. In this paper,
we made a comparative study of Simple random sampling, Ranked set sampling and Percentile ranked
set sampling by considering the estimation of stress strength reliability when the stress and strength are
independently following Exponential Intervened Poisson distribution. Methods. We used the method of
Maximum likelihood estimation for finding the estimate of stress strength reliability. The efficiency of the
proposed estimators of stress strength reliability using three sampling schemes are compared via a Monte
Carlo simulation study. Also at the end of the study a real life data set is analyzed to understand the
usefulness of the study. Results. The findings in this study are the stress strength reliability estimates
under Percentile ranked set sampling performs better than the corresponding ones under Simple random
sampling and Ranked set sampling. Conclusion. So we can conclude that making refinements in Ranked
set sampling increases the efficiency of estimators by minimizing the chance of incorrect ranking.

Keywords: maximum likelihood estimation, percentile ranked set sampling, ranked set sampling,
stress strength reliability.

1. Introduction

The estimation of stress strength reliability has applications in a variety of fields like engineering,
healthcare, transportation etc. The stress strength reliability is defined as R = P(X < Y), where
X is the strength and Y is the applied stress against strength. Obviously the system will fail if the
applied stress exceeds the strength of the component. Many researchers are interested to work in
this area. A review of the works related to stress strength reliability until 2001 are given in Kotz
et al. [10] . Krishnamoorthy et al. [11], Kundu and Gupta [12] and Raqab et al. [20] studied the
estimation of R for the Exponential, two-parameter and three-parameter generalized Exponential
distributions respectively. Al-Mutairi et al. [3], Ghitany et al. [7] and Rezaei et al. [21] considered
the same problem in case of Lindley, power Lindley and generalized Lindley type 5, respectively.

McIntyre [14] introduced the concept of Ranked Set Sampling (RSS). The sampling units
in RSS are more representative of population than Simple Random Sampling (SRS) with same
sample size. Sengupta and Mukhuti [23] and Muttlak et al. [17] considered the estimation of
R when the distribution of stress and strength are Exponential under RSS. Hassan et al. [8]
considered the estimation of R under RSS in case of Burr type XII distribution. Akgul and Senoglu
[1], Akgul et al. [2] and Al-Omari et al. [5] addressed the same problem in case of Weibull, Lindly
and Exponentiated Pareto distribution respectively.

The main characteristic which determines the performance of RSS is the chance of committing
error in ranking. The error in ranking increases due to the incorrect measurement of sampling
observations. To control this trouble several modifications of RSS have been suggested. see,
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Samawi et al. [22] suggested Extreme Ranked Set Sampling (ERSS), Muttlak [15] developed
Median Ranked Set Sampling (MRSS), Al-Saleh and Al-Kadiri [6] introduced Double Ranked Set
Sampling (DRSS). Also Muttlak [16] and Al-Nasser [4] suggested Percentile Ranked Set Sampling
(PRSS), L Ranked Set Sampling (LRSS) respectively. Recently Zamanzade and Al-Omari [25]
suggested Neoteric Ranked Set Sampling (NRSS).

Intervened distributions has wide range of applications in many areas like life testing experi-
ments, quality control and epidemiological studies etc. Shanmugam [24] developed Intervened
Poisson distribution(IPD) to study the effect of some preventive actions or interventions in a
system. Recently a family of distributions is generated using IPD, which contain Marshall and
Olkin [13] extended families of distribution, families of distributions generated through trun-
cated negative binomial studied by Nadarajah et al. [18] and families of distributions generated
through truncated binomial distribution as sub families, see Jayakumar and Sankaran [9]. Also
they introduced Exponential Intervened Poisson (EIP) distribution, which is obtained by taking
Exponential distribution as the baseline distribution in the above family. Here we consider a
comparative study of SRS, RSS and PRSS based on the stress strength reliability estimation of EIP
distribution. That is the stress and strength are independently following EIP distribution.

A continuous random variable X on (0, ∞) is said to have an EIP distribution with parameters
λ, ρ and θ and write X ∼ EIP (λ, ρ, θ) if its probability density function is

f (x; λ, ρ, θ) =
λθe−θx

eλρ(eλ − 1)

[
(1 + ρ)eλ(1+ρ)e−θx − ρeλρe−θx

]
(1)

where λ > 0, ρ ≥ 0 and θ > 0.

The cumulative distribution function of X is

F(x) =

[
1 −

(
eλ(1+ρ)e−θx − eλρe−θx

eλρ(eλ − 1)

)]
. (2)

The corresponding survival (or reliability) and the hazard (or failure rate) functions, at any time
x > 0, are respectively given by

F̄(x) =

(
eλ(1+ρ)e−θx − eλρe−θx

eλρ(eλ − 1)

)
(3)

and

hF(x) = λθe−θx

[
1

(1 − e−λe−θx )
+ ρ

]
For a detailed view of properties of EIP distribution, we refer the interested readers to [9]. From
[9], we can see that the distribution is under dispersed and leptokurtic. According to the value of
the parameters, the distribution behave as positively skewed or negatively skewed.

The rest of this paper is organized as follows: Stress strength reliability for EIP distribution is
computed in Section 2. The ML estimation of R based on SRS is considered in section 3. When
RSS and PRSS are considered the ML estimation of R are considered in section 4 and section 5
respectively. An extensive Monte-Carlo simulation study is conducted in section 6. In section 7,
we present a real data application. Finally conclusions are given in section 8.

2. Stress Strength Reliability

Let X and Y be the stress and strength random variables independently following EIP(λ1, ρ1, θ1)
and EIP(λ2, ρ2, θ2), respectively. Then the system reliability is calculated as given below

R = P(X < Y)

=
∫ ∞

0
FX(x) fY(x)dx
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=
∫ ∞

0

(
1 −

[
eλ1(1+ρ1)e−θ1x − eλ1ρ1e−θ1x

eλ1ρ1(eλ1−1)

])
λ2θ2e−θ2x

eλ2ρ2(eλ2 − 1)

[
(1 + ρ2)eλ2(1+ρ2)e−θ2x − ρ2eλ2ρ2e−θ2x

]
dx

(4)

We can not solve the above integral directly. Therefore, we use some numerical techniques to
solve the equation.

3. Maximum Likelihood Estimation of R based on SRS

To obtain the Maximum likelihood estimates (MLE) of R first we need to find MLE’s of the
parameters. Let x1, x2, ..., xn and y1, y2, ..., ym be two independent SRS samples from EIP(λ1, ρ1, θ1)
and EIP(λ2, ρ2, θ2), respectively. Then the likelihood function based on SRS is given by,

L =
n

∏
i=1

f (xi)
m

∏
j=1

f (yj)

=

(
λ1θ1

eλ1ρ1(eλ1 − 1)

)n
e−∑n

i=1 θ1xi
n

∏
i=1

[
(1 + ρ1)eλ1(1+ρ1)e−θ1xi − ρ1eλ1ρ1e−θ1xi

]
(

λ2θ2

eλ2ρ2(eλ2 − 1)

)m
e−∑m

j=1 θ2yj
m

∏
j=1

[
(1 + ρ2)eλ2(1+ρ2)e

−θ2yj − ρ2eλ2ρ2e−θ2yj
]

The log likelihood function is given by,

log L

=n
[
log λ1 + log θ1 − λ1ρ1 − log

(
eλ1 − 1

)]
− θ1

n

∑
i=1

xi+

n

∑
i=1

log
[
(1 + ρ1)eλ1(1+ρ1)e−θ1xi − ρ1eλ1ρ1e−θ1xi

]
+ m

[
log λ2 + log θ2 − λ2ρ2 − log

(
eλ2 − 1

)]
−

θ2

m

∑
j=1

yj +
m

∑
j=1

log
[
(1 + ρ2)eλ2(1+ρ2)e

−θ2yj − ρ2eλ2ρ2e−θ2yj
]

The partial derivatives of the log likelihood function with respect to the parameters are,

∂ log L
∂λ1

=
n
λ1

− nρ1 −
neλ1

eλ1 − 1
+

n

∑
i=

(1 + ρ1)
2e−θ1xi eλ1(1+ρ1)e−θ1xi − ρ2

1e−θ1xi eλ1ρ1e−θ1xi

(1 + ρ1)eλ1(1+ρ1)e−θ1xi − ρ1eλ1ρ1e−θ1xi

∂ log L
∂ρ1

= −nλ1 +
n

∑
i=1

eλ1(1+ρ1)e−θ1xi (1 + λ1(1 + ρ1)e−θ1xi
)
− eλ1ρ1e−θ1xi (1 + λ1ρ1e−θ1xi

)
(1 + ρ1)eλ1(1+ρ1)e−θ1xi − ρ1eλ1ρ1e−θ1xi

∂ log L
∂θ1

=
n
θ1

−
n

∑
i=1

[
λ1(1 + ρ1)

2xie(
λ1(1+ρ1)e−θ1xi−θ1xi) − λ1ρ2

1xie(
λ1ρ1e−θ1xi−θ1xi)

]
(1 + ρ1)eλ1(1+ρ1)e−θ1xi − ρ1eλ1ρ1e−θ1xi

∂ log L
∂λ2

=
m
λ2

− mρ2 −
meλ2

eλ2 − 1
+

m

∑
j=

(1 + ρ2)
2e−θ2yj eλ2(1+ρ2)e

−θ2yj − ρ2
2e−θ2yj eλ2ρ2e−θ2yj

(1 + ρ2)eλ2(1+ρ2)e
−θ2yj − ρ2eλ2ρ2e−θ2yj

∂ log L
∂ρ2

= −mλ2 +
m

∑
j=1

eλ2(1+ρ2)e
−θ2yj

(
1 + λ2(1 + ρ2)e−θ2yj

)
− eλ2ρ2e−θ2yj

(
1 + λ2ρ2e−θ2yj

)
(1 + ρ2)eλ2(1+ρ2)e

−θ2yj − ρ2eλ2ρ2e−θ2yj

∂ log L
∂θ2

=
m
θ2

−
m

∑
j=1

[
λ2(1 + ρ2)

2yje
(

λ2(1+ρ2)e
−θ2yj−θ2yj

)
− λ2ρ2

2yje
(

λ2ρ2e−θ2yj−θ2yj

)]
(1 + ρ2)eλ2(1+ρ2)e

−θ2yj − ρ2eλ2ρ2e−θ2yj
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So the ML estimates of the parameters are obtained by maximizing the log-likelihood func-
tion with respect to the parameters. Which is equivalent to the simultaneous solution of
∂ log L

∂λ1
= 0, ∂ log L

∂ρ1
= 0, ∂ log L

∂θ1
= 0, ∂ log L

∂λ2
= 0, ∂ log L

∂ρ2
= 0 and ∂ log L

∂θ2
= 0. The solutions of these

equations cannot be obtained in closed form, so we used optim() function in R so f tware to
solve them numerically. Hence using the invariance property of MLE, the ML estimate of sys-
tem reliability based on SRS, namely R̂SRS, is obtained by substituting the ML estimates of
(λ1, ρ1, θ1, λ2, ρ2, θ2) in equation 4.

4. Maximum Likelihood Estimation of R based on RSS

Let X(i)ik, (i = 1, 2, ..., mx); (k = 1, 2, ..., rx) be a ranked set sample observed from EIP(λ1, ρ1, θ1)
with sample size n = mxrx, where mx is the set size and rx is the number of cycles respec-
tively. Similarly, let Y(j)jl , (j = 1, 2, ..., my); (l = 1, 2, ..., ry) be a ranked set sample observed from
EIP(λ2, ρ2, θ2) with sample size m = myry, where my is the set size and ry is the number of cycles
respectively. Then the likelihood function based on RSS is given by,

L =
rx

∏
k=1

mx

∏
i=1

f (xik)
ry

∏
l=1

my

∏
j=1

f (yjl)

=C
[

λ1θ1

eλ1ρ1 (eλ1 − 1)

]n rx

∏
k=1

mx

∏
i=1

[
1 − Aik

eλ1ρ1 (eλ1 − 1)

]i−1 [ Aik

eλ1ρ1 (eλ1 − 1)

]mx−i
e−θ1xik

(
eλ1(1+ρ1)e−θ1 xik − ρ1 Aik

)
[

λ2θ2

eλ2ρ2 (eλ2 − 1)

]m ry

∏
l=1

my

∏
j=1

[
1 −

Bjl

eλ2ρ2 (eλ2 − 1)

]j−1 [ Bjl

eλ2ρ2 (eλ2 − 1)

]my−j

e−θ2yjl

(
eλ2(1+ρ2)e

−θ2yjl − ρ2Bjl

)

where C = ∏rx
k=1 ∏mx

i=1
mx !

(i−1)!(mx−i)! ∏
ry
l=1 ∏

my
j=1

my !
(j−1)!(my−j)! , Aik =

(
eλ1(1+ρ1)e

−θ1xik − eλ1ρ1e−θ1xik
)

and Bjl =

(
eλ2(1+ρ2)e

−θ2yjl − eλ2ρ2e
−θ2yjl

)
Also f (xik) and f (yjl) are defined as,

f (xik) =
mx!

(i − 1)!(mx − i)!
[FX(xik)]

i−1 [1 − FX(xik)]
mx−i fX(xik)

f (yjl) =
my!

(j − 1)!(my − j)!

[
FY(xjl)

]j−1 [
1 − FY(xjl)

]my−j
fY(yjl)

The log likelihood function is given by,

log L =

log C + n log λ1 + n log θ1 − nλ1ρ1 − n log(eλ1 − 1) +
rx

∑
k=1

mx

∑
i=1

(i − 1) log
[

1 − Aik

eλ1ρ1 (eλ1 − 1)

]
+

rx

∑
k=1

mx

∑
i=1

(mx − i) log
[

Aik

eλ1ρ1 (eλ1 − 1)

]
−

rx

∑
k=1

mx

∑
i=1

θ1xik +
rx

∑
k=1

mx

∑
i=1

log
(

eλ1(1+ρ1)e−θ1 xik − ρ1 Aik

)
+ m log λ2 + m log θ2 − mλ2ρ2 − m log(eλ2 − 1) +

ry

∑
l=1

my

∑
j=1

(j − 1) log
[

1 −
Bjl

eλ2ρ2 (eλ2 − 1)

]

+
ry

∑
l=1

my

∑
j=1

(my − j) log
[ Bjl

eλ2ρ2 (eλ2 − 1)

]
−

ry

∑
l=1

my

∑
j=1

θ2yjl +
ry

∑
l=1

my

∑
j=1

log
(

eλ2(1+ρ2)e
−θ2yjl − ρ2Bjl

)
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Then the partial derivatives of the log likelihood function with respect to the parameters are,

∂ log L
∂λ1

=
n
λ1

− nρ1 −
neλ1

eλ1 − 1
−

rx

∑
k=1

mx

∑
i=1

(i − 1)
e−θ1xik (eλ1 − 1)

(
eλ1(1+ρ1)e

−θ1xik + ρ1 Aik

)
− Aik

(
1 + ρ1(eλ1 − 1)

)(
eλ1ρ1(eλ1 − 1)− Aik

)
(eλ1 − 1)

+
rx

∑
k=1

mx

∑
i=1

(mx − i)
e−θ1xik (eλ1 − 1)

(
eλ1(1+ρ1)e

−θ1xik + ρ1 Aik

)
− Aik

(
1 + ρ1(eλ1 − 1)

)
Aik(eλ1 − 1)

+
rx

∑
k=1

mx

∑
i=1

e−θ1xik
(

eλ1(1+ρ1)e
−θ1xik − ρ2

1 Aik

)
eλ1(1+ρ1)e

−θ1xik − ρ1 Aik

∂ log L
∂ρ1

=− nλ1 +
rx

∑
k=1

mx

∑
i=1

(i − 1)
λ1 Aik(1 − e−θ1xik )

eλ1ρ1(eλ1 − 1)− Aik
+ λ1

rx

∑
k=1

mx

∑
i=1

(mx − i)(1 − e−θ1xik )

+
rx

∑
k=1

mx

∑
i=1

λ1e−θ1xik−λ1(1+ρ1)e
−θ1xik − Aik(1 + λ1ρ1e−θ1xik )

eλ1(1+ρ1)e
−θ1xik − ρ1 Aik

∂ log L
∂θ1

=
n
θ1

+ λ1

rx

∑
k=1

mx

∑
i=1

(i − 1)
xike−θ1xik

(
eλ1(1+ρ1)e

−θ1xik + ρ1 Aik

)
eλ1ρ1(eλ1 − 1)− Aik

− λ1

rx

∑
k=1

mx

∑
i=1

(mx − i)
xike−θ1xik

(
eλ1(1+ρ1)e

−θ1xik + ρ1 Aik

)
Aik

−
rx

∑
k=1

mx

∑
i=1

xik

+ λ1ρ2
1

rx

∑
k=1

mx

∑
i=1

xike−θ1xik
(

eλ1(1+ρ1)e
−θ1xik − Aik

)
eλ1(1+ρ1)e

−θ1xik − ρ1 Aik

∂ log L
∂λ2

=
m
λ2

− mρ2 −
meλ2

eλ2 − 1
−

ry

∑
l=1

my

∑
j=1

(j − 1)
e−θ2yjl (eλ2 − 1)

(
eλ2(1+ρ2)e

−θ2xjl
+ ρ2Bjl

)
− Bjl

(
1 + ρ2(eλ2 − 1)

)
(

eλ2ρ2(eλ2 − 1)− Bjl

)
(eλ2 − 1)

+
ry

∑
l=1

my

∑
j=1

(my − j)
e−θ2yjl (eλ2 − 1)

(
eλ2(1+ρ2)e

−θ2yjl
+ ρ2Bjl

)
− Bjl

(
1 + ρ2(eλ2 − 1)

)
Bjl(eλ2 − 1)

+
ry

∑
l=1

my

∑
j=1

e−θ2yjl

(
eλ2(1+ρ2)e

−θ2yjl − ρ2
2Bjl

)
eλ2(1+ρ2)e

−θ2yjl − ρ2Bjl

∂ log L
∂ρ2

= −mλ2 +
ry

∑
l=1

my

∑
j=1

(j − 1)
λ2Bjl(1 − e−θ2yjl )

eλ2ρ2(eλ2 − 1)− Bjl
+ λ2

ry

∑
l=1

my

∑
j=1

(my − j)(1 − e−θ2yjl )

+
ry

∑
l=1

my

∑
j=1

λ2e−θ2yjl−λ2(1+ρ2)e
−θ2yjl − Bjl(1 + λ2ρ2e−θ2yjl )

eλ2(1+ρ2)e
−θ2yjl − ρ2Bjl
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∂ log L
∂θ2

=
m
θ2

+ λ2

ry

∑
l=1

my

∑
j=1

(j − 1)
yjle

−θ2yjl

(
eλ2(1+ρ2)e

−θ2yjl
+ ρ2Bjl

)
eλ2ρ2(eλ2 − 1)− Bjl

− λ2

ry

∑
l=1

my

∑
j=1

(my − j)
yjle

−θ2yjl

(
eλ2(1+ρ2)e

−θ2yjl
+ ρ2Bjl

)
Bjl

−
ry

∑
l=1

my

∑
j=1

yjl

+ λ2ρ2
2

ry

∑
l=1

my

∑
j=1

yjle
−θ2yjl

(
eλ2(1+ρ2)e

−θ2yjl − Bjl

)
eλ2(1+ρ2)e

−θ2yjl − ρ2Bjl

The the ML estimates of the unknown parameters under RSS are calculated by equating above
equations to zero and solving simultaneously. But it is difficult so solve these equations ana-
lytically, so similar to estimation of parameters in SRS, we used optim() function in R so f tware.
Then using the invariance property of MLE, the ML estimate of R based on RSS, namely R̂RSS, is
obtained by substituting the ML estimates of the parameters in equation (4).

5. Maximum Likelihood Estimation of R based on PRSS

This section deals with the ML estimation of stress strength reliability measure R based on PRSS.
Here we consider inference procedure for odd and even set sizes separately.
Case 1: Odd set size Let ax, bx, ay and by are the nearest integer values of p[mx + 1], q[mx +

1], p[my + 1] and q[my + 1], where 0 < p < 1 and q = 1 − p. Also ϑ and ω are defined as mx+1
2

and my+1
2 .

Let {X(ax)ik, i = 1, 2, ..., ϑ− 1; k = 1, 2, ..., rx}
⋃ {X(ϑ)ik, i = ϑ; k = 1, 2, ..., rx}

⋃ {X(bx)ik, i =
ϑ+ 1, ..., mx; k = 1, 2, ..., rx} be the percentile ranked set samples selected from EIP(λ1, ρ1, θ1) with
sample size n = mxrx, where mx and rx be the set size and number of cycles respectively. Similarly
let {Y(ay)jl , j = 1, 2, ..., ω − 1; l = 1, 2, ..., ry}

⋃ {Y(ω)jl , j = ω; l = 1, 2, ..., ry}
⋃ {Y(by)jl , j =

ω + 1, ..., my; l = 1, 2, ..., ry} be the percentile ranked set samples selected from EIP(λ2, ρ2, θ2)
with sample size m = myry, where my and ry be the set size and number of cycles respectively.

Then, the likelihood function is obtained as follows:

L =
rx

∏
k=1

ϑ−1

∏
i=1

f (x(ax)ik)
rx

∏
k=1

f (x(ϑ)ϑk)
rx

∏
k=1

mx

∏
i=ϑ+1

f (x(bx)ik)

ry

∏
l=1

ω−1

∏
j=1

f (y(ay)jl)
ry

∏
l=1

f (y(ω)ωl)
ry

∏
l=1

my

∏
j=ω+1

f (y(by)jl)

where

f (x(ax)) =
mx!

(ax − 1)!(mx − ax)!
[FX(xax )]

ax−1 [1 − FX(xax )]
mx−ax fX(xax )

f (x(bx)) =
mx!

(bx − 1)!(mx − bx)!
[FX(xbx )]

bx−1 [1 − FX(xbx )]
mx−bx fX(xbx )

f (x(ϑ)) =
mx!

(ϑ − 1)!(mx − ϑ)!
[FX(xϑ)]

ϑ−1 [1 − FX(xϑ)]
mx−ϑ fX(xϑ)

Similarly we can define f (y(ay)), f (y(by)) and f (y(ω)).
Case 2: Even set sizes: Here, the reliability estimator is investigated when both X and Y are
drawn based on PRSS from EIP with even set size.

Let {X(ax)ik, i = 1, 2, ..., mx
2 ; k = 1, 2, ..., rx}

⋃ {X(bx)ik, i = mx
2 + 1, ..., mx; k = 1, 2, ..., rx} and

{Y(ay)jl , j = 1, 2, ..., my
2 ; l = 1, 2, ..., ry}

⋃ {Y(by)jl , j = my
2 + 1, ..., my; l = 1, 2, ..., ry} be percentile
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ranked set samples from EIP with even set sizes.
Therefore the likelihood function is,

L =
rx

∏
k=1

mx
2

∏
i=1

f (x(ax)ik)
rx

∏
k=1

mx

∏
mx
2 +1

f (x(bx)ik)

ry

∏
l=1

my
2

∏
j=1

f (y(ay)jl)
ry

∏
l=1

my

∏
j=

my
2 +1

f (y(by)jl)

For finding the ML estimate of the parameters based on PRSS for both odd and even set
sizes, we equate the partial derivatives of the log-likelihood equation to zero and solve them
simultaneously. For this we used optim() function in R so f tware. Hence using the invariance
property of MLE, the ML estimate of system reliability based on PRSS, namely R̂PRSS, is obtained
by substituting the ML estimates in equation (4).

6. Simulation Study

In this section, we conducted a simulation study to assess the potentiality of system relia-
bility estimates based on SRS, RSS and PRSS . We generate 1000 replications of the stress
and strength random variables from EIP distribution with parameters (λ1, ρ1, θ1, λ2, ρ2, θ2) =
(.1, .5, 1, 1, 2, 1), (1, .5, 1, 1, 1, 1) and (1, .8, 2, .5, .2, 1) using SRS, RSS and PRSS. Using these true val-
ues of the parameters we obtain the stress strength reliability R as 0.2634, 0.4518 and 0.7501 respec-
tively. For selecting samples using SRS we set the sample sizes as (n, m) = (40, 40), (40, 60), (60, 60),
(60, 80) and (80, 80). Similarly for RSS and PRSS, (mx, my) = (4, 4), (4, 6), (6, 6), (6, 8), (8, 8) and
rx = ry = 10. Also we fix p = .4 for PRSS. From these generated samples we compute the
estimates of stress strength reliability. Mean square error (MSE) and Relative efficiency (RE) are
used to compare the estimated stress strength reliability measures. The results are reported in
Table 1. In this table, RE1, RE2 and RE3 is the relative efficiency of RSS over SRS, PRSS over SRS
and PRSS over RSS respectively. For all sampling methods, the MSE decreases when the sample
size increases, which indicates the consistency property of MLE. According to the values of
relative efficiencies we can say that RSS and PRSS performs better than SRS in all cases. Moreover
PRSS performs better than RSS in almost everywhere.

Table 1: Bias, MSE and RE of R̂ based on SRS, RSS and PRSS.

SRS RSS PRSS

R (mx, my) (n, m) Bias MSE Bias MSE Bias MSE RE1 RE2 RE3
0.2634 (4, 4) (40, 40) -0.0014 0.0020 -0.0083 0.0014 -0.0066 0.0012 1.47 1.69 1.15

(4, 6) (40, 60) 0.0035 0.0017 -0.0032 0.0011 -0.0078 0.0009 1.51 1.87 1.24
(6, 6) (60, 60) 0.0162 0.0011 -0.0006 0.0007 -0.0067 0.0006 1.64 1.91 1.16
(6, 8) (60, 80) -0.0003 0.0010 -0.0035 0.0006 -0.0069 0.0005 1.86 1.91 1.03
(8, 8) (80, 80) 0.0004 0.0009 -0.0038 0.0005 -0.0053 0.0004 1.97 2.12 1.08

0.4518 (4, 4) (40, 40) -0.0030 0.0025 -0.0013 0.0019 -0.0023 0.0019 1.31 1.37 1.04
(4, 6) (40, 60) -0.0200 0.0023 -0.0010 0.0015 -0.0017 0.0014 1.49 1.62 1.09
(6, 6) (60, 60) -0.0325 0.0018 -0.0007 0.0011 0.0004 0.0010 1.69 1.84 1.09
(6, 8) (60, 80) -0.0284 0.0017 -0.0004 0.0010 -0.0016 0.0009 1.74 1.95 1.12
(8, 8) (80, 80) -0.0351 0.0014 0.0004 0.0007 0.0003 0.0007 1.97 2.03 1.03

0.7502 (4, 4) (40, 40) -0.0023 0.0018 0.0049 0.0013 0.0073 0.0013 1.37 1.44 1.05
(4, 6) (40, 60) -0.0101 0.0014 0.0009 0.0010 0.0061 0.0009 1.41 1.62 1.15
(6, 6) (60, 60) 0.0012 0.0013 0.0037 0.0008 0.0064 0.0007 1.66 1.88 1.13
(6, 8) (60, 80) -0.0227 0.0013 0.0017 0.0007 0.0049 0.0005 1.82 2.32 1.28
(8, 8) (80, 80) -0.0146 0.0011 0.0015 0.0005 0.0045 0.0005 2.19 2.38 1.09
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7. Data Analysis

Here we analyzed a real life data set to illustrate the use of our proposed methodology. We
consider two real life data sets which contain times to breakdown of an insulating fluid between
electrodes recorded at different voltages see, [19]. These are the failure times (in minutes) for an
insulating fluid between two electrodes subject to a voltage of 34 kV (X) and 36 kV (Y) are given
in Table 2 and Table 3.

Table 2: Data X: (34 kV)

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.5
7.35 8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

Table 3: Data Y: (36 kV)

0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58 2.71 2.9
3.67 3.99 5.35 13.77 25.50

Now to identify the behaviour of the hazard rate function of the data, we examined total time
on test transform plot of the data sets. For this we use TTT() function in R So f tware. The total
time on test transform plots for both data sets are given in Figure1 and Figure 2. From these
figures we can say that the hazard rate function of both data sets show decreasing nature.

Figure 1: The scaled TTT plot of Data X.

Moreover the hazard rate function of EIP distribution also shows decreasing behaviour, see
[9]. So we fit EIP distribution for both data sets separately. For fitting, we first find MLE’s of
the parameters. Also we need to check the goodness of fit of the NGP distribution for the data.
For this purpose we use − log L and Kolmogorov Smirnov (KS) statistic along with p-value. The
values of the estimated parameters, − log L, KS, p value for both the data sets are reported in
Table 4.
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Figure 2: The scaled TTT plot of Data Y.

Table 4: Estimates of the parameters, -log L, KS and P values for data sets.

Data Set Sample Size λ ρ θ − log L K-S p value

X 19 0.96842829 0.54290810 0.04633776 68.54817 0.16834 0.5963
Y 15 0.9729146 0.9806698 0.1147315 36.97626 0.16411 0.7559

Figure 3: The empirical distribution function and fitted distribution functions for Data X.

From Table 4 and Figures 2 and 3, we can say that EIP distribution fits well for both data sets.
So we are choosing these data sets to select samples from EIP distribution based on SRS, RSS and
PRSS. For selecting the samples via SRS we take the sample sizes for X and Y as n = 12, m = 8.
In case of RSS and PRSS, we take mx = 4 and rx = 3 for data X and my = 2 and ry = 4 for data
Y. Also R based on n = 19 and m = 15 observations is calculated as 0.27257. The mean, bias
and MSEs of the estimates of R based on 10,000 replications of each sampling method is given in
Table 5.

From Table 5 we can say that the estimated values of R based on n = 12 and m = 8 sampling

RT&A, No 1 (72) 
Volume 18, March 2023 

524



K. Jayakumar, C. J. Rehana
STRESS STRENGTH RELIABILITY ESTIMATION

Figure 4: The empirical distribution function and fitted distribution functions for Data Y.

units using SRS, RSS and PRSS are close to the estimated value of R calculated from the entire
data set. However, in view of MSEs, we can seen that R̂PRSS and R̂RSS perform better than R̂SRS.

8. Conclusions

In this paper, the ML estimates of the stress strength reliability R based on SRS, RSS and PRSS
are obtained, when the stress and strength are independently following EIP distribution. The
performance of the proposed estimators are compared using a Monte Carlo simulation study.
From the simulation study it is clear that PRSS performs better than RSS and SRS. Also we
can see that, the efficiency of all estimates increases as the set size increases. The results from
the simulation study is supported by a real life data set. So if our aim is to choose a sampling
procedure which minimizes the error in ranking, then we can consider PRSS than RSS and SRS.
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Abstract 

The aim of the present paper is to deal with the cost-benefit analysis of a two identical 

unit cold standby system model. There are two modes of a unit say Normal(N) and Total failure(F). 

When a unit operates then any of the two types of failure minor or major may occur some fixed 

known probabilities. Two repairmen are always available with the system to repair a unit failed 

with minor or major fault respectively. Upon failure of an operative unit the cold standby unit 

starts operations instantaneously with a perfect switching device. After minor and major repair of a 

failed unit it becomes as good as new. The distributions of failure times of minor and major faults 

and each type of repair time are assumed to follow geometric distributions with different 

parameters. Using regenerative point technique with the basic tools of probabilistic argument and 

Laplace Transform various important measures of system effectiveness useful to system designers 

and operations managers have been obtained. 

Keywords: Cold standby, transition probabilities, mean sojourn time, 

regenerative pint, MTSF, geometric distribution. 

1. Introduction

The stochastic models pertaining to two-unit standby redundant systems have been 

frequently analysed in the field of reliability theory due to their wide applicability in modern 

business and industrial units. The consideration of repair is one of the important criteria to 

enhance the system effectiveness such as reliability, expected life and availability of the system etc. 

Various authors during past many decades have analysed the two identical and non-identical unit 

standby system models by using different repair policies. Some of the authors have analysed 

models by assuming two types of failure say minor and major in an operating unit and so 

accordingly they have considered two types of repair with different repair time distributions. 

Levitin et al. [7] studied a series-parallel reparable system model with two types of failure 

states-failure safe and failure dangerous. Ram and Singh [8] performed the stochastic analysis of a 

complex system model assuming that a unit can fail in n-mutually exclusive ways of total failure 

or common cause failure. Choudhary and Kumar [1] analysed a system model consisting of two 

units-one is main unit and other is supporting unit. The main unit passes through two types of 

failure-partial failure and total failure. A single repairman is always available with the system for 
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the repair of each type of failure. Gupta and Vinodiya [6] have analysed a two non-identical unit 

cold standby system model assuming two types of failure in one of the unit. They have considered 

a single repairman for the repair of each type of failures. Most recently Chaudhary and Tyagi [2] 

analysed a two non-identical unit parallel system model assuming that one of the unit can fail 

either due to hardware or due to human error. All the above system models are based on the 

continuous parametric Markov-chain. 

The purpose of the present study is to analyse a stochastic model based on discrete parametric 

Markov-chain system composed of two identical units in cold standby configuration. Two types of 

failure (minor and major) have been considered in an operating unit. Two different repairmen are 

always available with the system. One is considered to attend a failed unit due to minor fault and 

other is to attend a failed unit due to major fault. Some authors including [3-5] infact analysed the 

system models by taking geometric distributions of failure and repair times but not much work is 

done in this direction. By using regenerative point technique the following economic related 

measures of system effective are obtained -  

▪ Transition probabilities and mean sojourn times.

▪ Reliability and mean time to system failure.

▪ Point-wise and steady-state availabilities of the system and expected up time of the

system by the epoch (t-1).

▪ Expected busy period of the repairman by the epoch (t-1).

▪ Net expected profit incurred by the system by the epoch (t-1) and in steady state.

2. Model Description and Assumptions

The system under study is based on the following assumptions 

i. The system is composed of two identical units. Initially one unit is operative and other

is kept as cold standby. The cold standby never lose its operational ability in its standby

state.

ii. Each unit has two modes: Normal (N) and Total failure (F).

iii. Two types of failure minor and major may occur in an operating unit with respective

probabilities a and b. (a+b=1).

iv. Two different repairmen are always available with the system. One is ordinary

repairman for minor fault and other is skilled repairman for major fault in an operating

unit.

v. Upon either type of failure in an operating unit, the standby unit starts working

immediately with a perfect and instantaneous switching device.

vi. After each type of repair, a unit becomes as good as new.

vii. The time to failure and each type of repair time follow geometric distribution with

different parameters.
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3. Notations and States of the System

3.1 Notations used in the paper : 

xpq : p.m.f. of failure time of a unit ( )p q 1+ = . 

x
i ir s : p.m.f. of repair time of minor and major types respectively for i=1 and 2.

a,b : probability that the failed unit requires minor and major repairs. 

( a b 1+ = ). 

( ) ( )ij ijq ,Q  : p.m.f. and c.d.f. of one step or direct transition time from state iS  to jS . 

ijp : Steady state transition probability from state iS  to
jS . 

( )ij ijp Q= 

( )iZ t : Probability that the system sojourn in state iS up to the cycles 

0,1,2,……..t-1. 

i      : Mean sojourn time in state iS . 

, h  : Symbol and dummy variable used in geometric transform e. g. 

( ) ( ) ( )t
ij ij ij

t 0

GT q t q h h q t




=

  = =  

© : Symbol of ordinary convolution i.e., 

( ) ( ) ( ) ( )
t

0

A t ©B t A u B t u du= −

 

     

 :  Up-State : Failed State : Regenerative point

S1 

r2 oF ,N

S2 S0 

S4 S3 

,o sN N

p,a

2p,a,r

  p,a    1r

1r2r

 S5 

r1 oF ,N

r2 w2F ,F r1 r2F ,F r1 w1F ,F

1p,b,r
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Figure.1 Transition Diagram 
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3.2 Symbols used for the states of the system: 

oN , sN : Unit in normal mode and operative/cold standby. 

r1 w1F ,F   : Unit in total failure mode and under minor repair/waiting for minor repair.

r2 w2F ,F : Unit in total failure mode and under major repair/waiting for major repair. 

With the help of above symbols and keeping into consideration the stated assumptions, 

the possible states of the system are as follows- 

Up States:   ( )0 0 sS N , N , ( )1 r1 oS F , N , ( )2 r2 oS F , N

Failed States:  ( )3 r1 w1S F ,F , ( )4 r1 r2S F ,F , ( )5 r2 w2S F ,F

 The transition diagram of the system model alongwith the transition rates is shown in fig.1. 

We observe that all the entrance epochs into the states are regenerative epochs. 

4. Transition Probabilities

Let ( )ijQ t be the probability that the system transits from state iS to jS during time 

interval (0, t) i.e., if ijT is the transition time from state iS to jS then

( )ij ijQ t P T t =  

By considering the elementary probabilistic arguments we have, 

 ( ) ( )
t

u t 1
01

u 0

Q t apq a 1 q +

=

= = − (1) 

Similarly, 

( ) ( )
t

u t 1
02

u 0

Q t bpq b 1 q +

=

= = − (2) 

( ) ( )
t 11

10 1
1

r q
Q t 1 qs

(1 qs )

+ = −
 −

(3) 

( ) ( )
t 11

11 1
1

apr
Q t 1 qs

(1 qs )

+ = −
 −

(4) 

( ) ( )
t 11

12 1
1

bpr
Q t 1 qs

(1 qs )

+ = −
 −

(5) 

( ) ( )
t 11

13 1
1

aps
Q t 1 qs

(1 qs )

+ = −
 −

(6) 

( ) ( )
t 11

15 1
1

bps
Q t 1 qs

(1 qs )

+ = −
 −

(7) 

( ) ( )
t 12

20 2
2

r q
Q t 1 qs

(1 qs )

+ = −
 −

(8) 

( ) ( )
t 12

21 2
2

apr
Q t 1 qs

(1 qs )

+ = −
 −

(9) 

   ( ) ( )
t 12

22 2
2

bpr
Q t 1 qs

(1 qs )

+ = −
 −

(10) 

   ( ) ( )
t 12

24 2
2

bps
Q t 1 qs

(1 qs )

+ = −
 −

(11) 

   ( ) ( )
t 12

25 2
2

aps
Q t 1 qs

(1 qs )

+ = −
 −

(12) 

   ( ) ( )
t 1

31 1Q t 1 s
+ = −

 
 (13)
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( ) ( )
t 1

42 2Q t 1 s
+ = −

 
(14) 

( )
( )

( )
t 11 2

50 1 2
1 2

r r
Q t 1 s s

1 s s

+ = −
 −

(15) 

( )
( )

( )
t 12 1

51 1 2
1 2

r s
Q t 1 s s

1 s s

+ = −
 −

(16) 

( )
( )

( )
t 11 2

52 1 2
1 2

r s
Q t 1 s s

1 s s

+ = −
 −

(17) 

From the transient-state transition probabilities (1-17), the steady state t.p.m can be obtained as 

follows 

( )( )

00 01 02 03 04 05

10 11 12 13 14 15

20 21 22 23 24 25
ij

30 31 32 33 34 35

40 41 42 43 44 45

50 51 53 54 55 56

p p p p p p

p p p p p p

p p p p p p
p

p p p p p p

p p p p p p

p p p p p p

 
 
 
 
 =
 
 
 
 
 

( )01 01
t

lim Q t ap
→

= =

Similary, 

02p b= , 
( )

1
10

1

r q
p

1 qs
=

−
, 

( )
1

11
1

apr
p

1 qs
=

−
, 

( )
1

12
1

bpr
p

1 qs
=

−

( )
1

13
1

aps
p

1 qs
=

−
, 

( )
1

15
1

bps
p

1 qs
=

−
, 

( )
2

20
2

r q
p

1 qs
=

−
, 

( )
2

21
2

apr
p

1 qs
=

−

( )
2

22
2

bpr
p

1 qs
=

−
, 

( )
2

24
2

bps
p

1 qs
=

−
, 

( )
2

25
2

aps
p

1 qs
=

−
, 31p 1=

 42p 1= ,  
( )

1 2
50

1 2

r r
p

1 s s
=

−
, 

( )
2 1

51
1 2

r s
p

1 s s
=

−
, 

( )
1 2

52
1 2

r s
p

1 s s
=

−

We observe that the following relations hold- 

01 02p p 1+ = (18) 

10 11 12 13 15p p p p p 1+ + + + = (19) 

20 21 22 24 25p p p p p 1+ + + + = (20) 

31 42p p 1= = (21) 

50 51 52p p p 1+ + = (22) 

5. Mean Sojourn Times

Let iT be the sojourn time in state iS  (i=0,1,2,3,4,5,6) then mean sojourn time i in state iS is given 

by 

   i i i

t 1 t 1

P T t 1 P T t
 

= =

 =  − =  

In particular, 

0

q

p
 = (23) 

( )
1

1
1

qs

1 qs
 =

−
(24)
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( )
2

2
2

qs

1 qs
 =

−
(25) 

1
3

1

s

r
 = (26) 

2
4

2

s

r
 = (27) 

( )
1 2

5
1 2

s s

1 s s
 =

−
(28) 

6. Methodology For Developing Equations

In order to obtain various interesting measures of system effectiveness we developed the 

recurrence relations for reliability, availability and busy period of repairman as follows- 

6.1 Reliability of the system- 

Let us define ( )iR t as the probability that the system does not fail up to the epochs (t-1) 

when it is initially starts from state iS . To determine it, we assume the failed states 3S , 4S and

5S as absorbing state. Using the simple probabilistic reasoning in regenerative point technique 

we have the following set of convolution equations ( )iR t ;i 0,1,2= .

( ) ( ) ( ) ( ) ( )
t 1 t 1

t
0 01 1 02 2

u 0 u 0

R t q q u R t 1 u q u R t 1 u
− −

= =

= + − − + − − 

( ) ( ) ( ) ( ) ( )0 01 1 02 2Z t q t 1 R t 1 q t 1 R t 1= + − © − + − © − (29) 

Similarly, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 12 2R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −  (30)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 21 1 22 2R t Z t q t 1 R t 1 q t 1 R t 1 q t 1 R t 1= + − © − + − © − + − © −  (31) 

Where, 

( ) t
0Z t q= ,  ( ) t t

1 1Z t q s= and ( ) t t
2 2Z t q s=

6.2 Availability of the system- 

Let ( )iA t  be the probability that the system is up (operative) during the tth cycle (t-1, t),

when it initially started from state iS . Using elementary probabilistic arguments as in case of

reliability, we have the following recurrence relations- 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 01 1 02 2A t Z t q t 1 A t 1 q t 1 A t 1= + − © − + − © − (32) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 10 0 11 1 12 2A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −  (33) 

( ) ( ) ( ) ( )13 3 15 5q t 1 A t 1 q t 1 A t 1+ − © − + − © −

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 21 1 22 2A t Z t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= + − © − + − © − + − © −

( ) ( ) ( ) ( )24 4 25 5q t 1 A t 1 q t 1 A t 1+ − © − + − © − (34) 

( ) ( ) ( )3 31 1A t q t 1 A t 1= − © − (35) 

     ( ) ( ) ( )4 42 2A t q t 1 A t 1= − © − (36)
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( ) ( ) ( ) ( ) ( ) ( ) ( )5 50 0 51 1 52 2A t q t 1 A t 1 q t 1 A t 1 q t 1 A t 1= − © − + − © − + − © − (37)  

Where,
 
the values of ( )iZ t ; i=0,1,2 are same as given in section 6.1. 

6.3 Busy period of Repairman- 

Let ( )1
iB t  and ( )2

iB t be the respective probabilities that the repairman is busy in the minor 

and major repair of a failed unit during the tth  cycle (t-1, t), when it initially started from state iS . 

Then, by using simple probabilistic arguments as in case of reliability, the following recurrence 

relations can be easily developed for ( )j
iB t ; i= 0 to 5. The dichotomous variable  takes value 1 and

0 respectively for j=1 and 2. 

  ( ) ( ) ( ) ( ) ( )j j j
01 020 1 2B t q t 1 B t 1 q t 1 B t 1= − © − + − © −          (38) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j
1 10 11 121 0 1 2B t Z t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1=  + − © − + − © − + − © −

( ) ( ) ( ) ( )j j
13 15 53q t 1 B t 1 q t 1 B t 1+ − © − + − © − (39) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j
2 20 21 222 0 1 2B t 1 1 Z t q t 1 B t 1 q t 1 B t 1 q t 1 B t 1− = − + − © − + − © − + − © −

( ) ( ) ( ) ( )j j
24 25 54q t 1 B t 1 q t 1 B t 1+ − © − + − © − (40) 

   ( ) ( ) ( ) ( )j j
3 313 1B t Z t q t 1 B t 1=  + − © −  (41) 

 ( ) ( ) ( ) ( )j j
4 424 2B t Z t q t 1 B t 1= + − © −  (42) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j
5 50 515 0 1B t 1 1 Z t q t 1 B t 1 q t 1 B t 1− = − + − © − + − © − ( ) ( )j

52 2q t 1 B t 1+ − © − (43)

Where, ( ) t
3 1Z t s= , ( ) t

4 2Z t s= and ( ) t t
5 1 2Z t s s= . 

7. Analysis of Reliability and MTSF

Taking geometric transform of (29-31) and simplifying the resulting set of algebraic 

equations for ( )0R h  we get 

( )
( )

( )
1

0
1

N h
R h

D h

 =  (44) 

Where, 

( ) ( )( )* * 2 * * *
1 11 22 12 21 0N h 1 hq 1 hq h q q Z = − − −

  ( )* * 2 * * *
01 22 02 21 1hq 1 hq h q q Z + − +

 

( )2 * * * * *
01 12 02 11 2h q q hq 1 hq Z + + −

 

and 

( ) ( )( )* * 2 * *
1 11 22 12 21D h 1 hq 1 hq h q q= − − − ( )* * * 2 * *

10 01 22 02 21hq hq 1 hq h q q − − +
 

( )* 2 * * * *
20 01 12 02 11hq h q q hq 1 hq − + −
 

Taking the inverse geometric transform of (44). one can get the expression of reliability of the 

system. 

The MTSF is given by 

( ) ( ) ( )t

h 1
t 1 t 1

E T R t lim h R t
 

→
= =

= = 

( ) ( )
( )

( )
1

h 1
1

N 1
lim R h R 0 1

D 1



→
= − = −        (45)  
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Where observing ( )ij ijq 1 p =  and using results (23-28), we have 

( ) ( )( ) ( ) ( ) ( )1 11 22 12 21 0 01 22 02 21 1N 1 1 p 1 p p p 1 p 1 p p p 1= − − − + + − + +      

( ) ( )01 12 02 11 2p p p 1 p 1+ + − +  

and 

( ) ( )( ) ( )1 11 22 12 21 10 01 22 02 21D 1 1 p 1 p p p p p 1 p p p= − − − − − +   ( )20 01 12 02 11p p p p 1 p− + −  

8. Availability Analysis

On taking geometric transform of (32-37) and simplifying the resulting equations for ( )0A h , we 

get 

( )
( )

( )
2

0
2

N h
A h

D h

 = (46) 

Where,

( ) ( ) * 2 * * * 2 * * 2 * *
2 11 13 31 22 24 42 25 52N h 1 hq h q q 1 hq h q q h q q= − − − − −



  * * 2 * * * 2 * *
21 12 15 51 15 12 25hq hq h q q hq h q q− + − ( )* * 2 * * *

51 22 24 42 0hq 1 hq h q q Z+ − −


 * * 2 * * 2 * *
01 22 24 42 25 52hq 1 hq h q q h q q+ − − −



   * * 2 * * * * 2 * *
02 21 25 51 1 01 12 15 52hq hq h q q Z hq hq h q q + + + +

 

 * * 2 * * 2 * *
02 11 13 31 15 51 2hq 1 hq h q q h q q Z+ − − −



and 

( ) ( ) * 2 * * * 2 * * 2 * *
2 11 13 31 22 24 42 25 52D h 1 hq h q q 1 hq h q q h q q= − − − − −



   ( )* * 2 * * * 2 * * * * 2 * *
21 12 15 51 15 12 25 51 22 24 42hq hq h q q hq h q q hq 1 hq h q q − + − + − −



 * * * 2 * * 2 * *
10 01 22 24 42 25 52hq hq 1 hq h q q h q q− − − −
  * * 2 * *

02 21 25 51hq hq h q hq + +


 * * * 2 * *
20 01 12 15 52hq hq hq h q q− +
  * * 2 * * 2 * *

02 11 13 31 15 51hq 1 hq h q q h q q + − − −


( ) * * 2 * * * * 2 * *
50 01 12 25 15 22 24 42hq hq h q q hq 1 hq h q q− + − −


( ) * * * 2 * * 2 * *
02 25 11 13 31 21 15hq hq 1 hq h q q h q q + − − +



The steady-state availability of the system is given by 

( ) ( )
( )

( )
2

0 0
t h 1

2

N h
A lim A t lim 1 h

D h→ →
= = −

Observing ( )ij ijq 1 p = and using relations (18-22), we get ( )2D h at h=1 is zero, therefore by 

applying L. Hospital rule, we get 

( )

( )
2

0
2

N 1
A

D 1
= −



Where, 

( ) ( ) ( ) ( )2 0 0 1 1 2 2N 1 u 1 u 1 u 1= + + + + +

( )( ) ( )0 11 13 22 24 25 52 21 12 15 51u 1 p p 1 p p p p p p p p= − − − − − − + ( ) 15 12 25 51 22 24p p p p 1 p p− + − −

( ) ( )1 01 22 24 25 52 02 21 25 51u p 1 p p p p p p p p= − − − + +
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( ) ( )2 01 12 15 52 02 11 13 15 51u p p p p p 1 p p p p= + + − − −

and 

( ) ( ) ( ) ( )  ( ) ( )  ( )2 0 0 1 1 13 3 2 2 24 4 5 5D 1 u 1 u 1 p 1 u 1 p 1 u 1  = − + + + + + + + + + + + 

Where 

( ) ( ) 5 01 12 25 51 22 24 02 25 11 13 02 21 15u p p p p 1 p p p p 1 p p p p p= + − − + − − +

Now the expected-up time of the system by the epoch (t-1) is given by 

( ) ( )
t 1

up 0

x 0

t A x
−

=

 =

So that, 

( )
( )

( )
0

up

A h
h

1 h


 =

−

9. Busy Period Analysis of Repairman

On taking geometric transforms of relation (38-43) and simplifying the resulting 

equations for minor and major repair i.e., for 0,1 = we get, 

( )
( )

( )
31

0
2

N h
B h

D h

 =      and ( )
( )

( )
42

0
2

N h
B h

D h

 =

Where, 

( ) * * 2 * * 2 * *
3 01 22 24 42 25 52N h hq {1 hq h q q h q q }= − − −

  ( )* * 2 * * *
02 21 25 51 1 13 3hq hq h q q } Z hq Z + + +



( )* 2 * * * * 2 * *
01 12 25 15 22 24 42hq {h q q hq 1 hq h q q }+ + − −



( )2 * * * 2 * * 3 * * *
02 25 11 13 31 02 21 15 5h q q 1 hq h q q h q q q Z+ − − +



( ) * * 2 * *
4 02 12 15 52N h hq {hq h q q }= +

  ( )* * 2 * * 2 * * *
02 11 13 31 15 51 2 24 4hq 1 hq h q q h q q } Z hq Z + − − − +



( )* 2 * * * * 2 * *
01 12 25 15 22 24 42hq {h q q hq 1 hq h q q }+ + − −



( )2 * * * 2 * * 3 * * *
02 25 11 13 31 02 21 15 5h q q 1 hq h q q h q q q Z+ − − +



and ( )2D h is same as in availability analysis. 

In the long run the respective probabilities that the repairman is busy in the minor and 

major repair of a failed unit are respectively given by- 

( ) ( )
( )

( )
31 1

0 0
t h 1

2

N h
B lim B t lim 1 h

D h→ →
= = −

( ) ( )
( )

( )
42 2

0 0
t h 1

2

N h
B lim B t lim 1 h

D h→ →
= = −

But ( )2D h 0= at h=1, therefore by applying L. Hospital rule, we get  

( )

( )
31

0
2

N 1
B

D 1
= −


, 

( )

( )
42

0
2

N 1
B

D 1
= −


 (47)   

Where, 

( ) ( ) ( )  ( )3 1 1 13 3 5 5N 1 u 1 p 1 u 1= + + + + +

( ) ( )4 2 2 24 4 5 5N 1 u p u=  +  + 

and ( )2D 1  is same as in availability analysis. 

Now the expected busy period duration of the repairman in minor repair and major repair 
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of a failed unit by the epoch (t-1) are respectively given by - 

( ) ( )
t 1

1 1
b 0

x 0

t B x
−

=

 = , ( ) ( )
t 1

2 2
b 0

x 0

t B x
−

=

 = 

So that, 

( )
( )

( )

1
01

b

B h
h

1 h


 =

−
, ( )

( )

( )

2
02

b

B h
h

1 h


 =

−
 (48) 

10. Profit Function Analysis

We are now in the position to obtain the net expected profit incurred by the epoch (t-1) by 

considering the characteristics obtained in earlier section.  

Let us consider, 

K0     =      revenue per-unit time by the system due to its operation.  

K1     =    cost per-unit time when repairman is busy in the minor repair 

K2     =    cost per-unit time when repairman is busy in the minor repair

Then, the net expected profit incurred by the epoch (t-1) is given by 

( ) ( ) ( ) ( )1 2
0 up 1 b 2 bP t K t K t K t=  −  −           (49) 

The expected profit per-unit time in steady state is given by 

( )
( ) ( )

2

t h 1

P t
P lim lim 1 h P h

t



→ →
= = −

( )
( )

( )
( )

( )

( )
( )

( )

( )

1 2
2 2 20 0 0

0 1 2
h 1 h 1 h 1

A h B h B h
K lim 1 h K lim 1 h K lim 1 h

1 h 1 h 1 h

  

→ → →
= − − − − −

− − −

 1 2
0 0 1 0 2 0K A K B K B= − −       (50) 

11. Graphical Representation and conclusions

The curves for MTSF and profit function have been drawn for different values of failure 

parameters. Fig. 2 depicts the variation in MTSF with respect to failure rate ( p ) for different values 

of repair rate 1r  and 2r  when values of other parameters are kept fixed as a 0.8= . From the curves 

we conclude that expected life of the system decrease with increase in p . Further, it increases with 

the increase of the values of 1r  and 2r . Also to achieve at least MTSF at 475 units, we conclude from 

smooth curves that the value of p  must be less than 0.044, 0.050, 0.059 for 1r 0.6,0.75,0.95= where

2r 0.25= . Whereas from dotted curves we conclude that the value of p  must be less than 0.041, 

0.046, 0.053 for 1r 0.6,0.75,0.95= when 2r 0.20= . 

Similarly, Fig. 3 reveals the variations in profit (P) with respect to p  for varying values of 

1r and 2r , when other parameters are kept fixed as a 0.01= , 0K 175= , 1K 195=  and 2K 180= . From 

the figure, it is clearly observed from the smooth curves, that the system is profitable if the value of 

parameter p  is less than 0.038, 0.056 and 0.077 respectively for 1r 0.6,0.75,0.95=  when 2r 0.24= . 

From dotted curves, we conclude that system is profitable only if value of parameter p  is less than 

0.029, 0.044 and 0.062 respectively for 1r 0.6,0.75,0.95=  when 2r 0.22= .  
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Figure.2 Behavior of MTSF with respect to p, 1r  and 2r  

Figure.3 Behavior of Profit (P) with respect to p, 1r  and 2r  
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Abstract

In this paper, a generalization of the Exponentiated Kumaraswamy distribution referred to as the
Transmuted Exponentiated Kumaraswamy distribution is proposed. The new transmuted distribution
is developed using the quadratic rank transmutation map. The mathematical properties of the new
distribution is provided. Explicit expressions are derived for the moments, incomplete moments, moment
generating function, quantile function, entropy, mean deviation and order statistics. Survival analysis
is also performed. The distribution parameters are estimated using the method of maximum likelihood.
Simulation of random variables is performed in order to investigate the performance of the estimates. An
analysis using real life data is conducted to demonstrate the usefulness of the proposed distribution.

Keywords: Bonferroni and Lorenz curves; Hazard function; Maximum likelihood estimation;
Moments; Transmuted Exponentiated Kumaraswamy Distribution; Transmuted family.

1. Introduction

In probability theory and Statistics, a probability distribution is a mathematical function that
provides the probabilities of the occurrence of various possible outcomes in an experiment.In
modelling our world, probability distributions helps us, thus allowing to obtain estimates of the
probability of a certain event to occur, or estimate it’s variability of happening. Many distribu-
tions have been discovered suitable for many different purposes.The recognition of the proper
distribution will allow a correct application of a model that would easily forecast the probability
of an event.
The Kumaraswamy probability distribution was developed by Kumaraswamy [11] which is
closely related to the beta distribution. It is often termed as a Beta-like distribution. But, in
some situations the Kumaraswamy distribution is simpler to use and more amenable. Since
it’s cumulative distribution function (cdf) has a closed form, it is often preferred over the Beta
distribution. Moreover, unlike the beta cdf, the cdf of Kumaraswamy distribution does not contain
the incomplete Beta function, which makes it much simple to work with and the new properties
of Kumaraswamy distribution such as the Kumaraswamy variables show closeness under expo-
nentiation and under linear transformation was studied by Mitnik [16]. In numerous areas such
as hydrology, electrical, civil, mechanical and financial engineering, Kumaraswamy distribution
has secured appreciable interest, see Mohammed [17]. Some generalized beta distributions of the
second kind having desirable application features in hydrology and meteorology was studied
by Mielke and Johnson [15] and Fletcher and Ponnambalam [7]. Several authors studied more
general properties of Kumaraswamy Distribution, see Silva et. al. [18], ZeinEldin et.al. [23],
Dey et. al. [6], Hassan and Elgarhy [8] and Simbolan et. al. [19]. Usman et. al. [22] derived a
new Weibull-Kumaraswamy distribution and studied its properties and applications. Another
distribution named Kumaraswamy- Pareto distribution was derived by Bourguignon et. al. [5]. A
bivariate Kumaraswamy (BVK) distribution with marginals being Kumaraswamy distributions
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was introduced by Barreto-Souza and Lemonte [4]. Another new three-parameter probability
model named Exponentiated Kumaraswamy distribution and its basic statistical properties and its
applications using real-life datasets were studied by Lemonte et. al. [12].Also, a three-parameter
weighted kumaraswamy distribution was proposed by Abd El-Monsef et. al. [1] for modeling
some biological data, which could accommodate increasing and decreasing hazard rate function
with bathtub shape. AL-Fattah et. al. [2] introduced the Inverted Kumaraswamy Distribution, it’s
properties and estimation.
The transmuted family of distributions has been receiving a high attention over the past few
years. A new technique for adding a new parameter to an already existing distribution that
would provide more flexibility to this distribution by Shaw and Buckley [20]. The method is
named as quadratic rank transmutation map (QRTM). It includes the parent distribution as a
special case and makes it more flexible to model different types of data. The generated family is
also called the transmuted extended distribution. This method have been considered by several
authors for different disributions, see Al-Kadim et. al. [3], Khan et. al. [10], F. Merovci [13,14] and
Sherwaia et. al. [21]. Transmuted Kumaraswamy distribution and its basic statistical properties
were discussed by Khan et. al. [9]. The new model was found to outperform some existing
baseline distributions when applied to real-life data sets.
A random variable X is said to have an Exponentiated Kumaraswamy distribution with parameters
α, β, γ > 0 if its probability density function (pdf) is given by

f (x; α, β, γ) = αβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1, 0 < x < 1, α, β, γ > 0 (1)

and the respective cdf is

F(x; α, β, γ) = [1 − (1 − xα)β]γ−1, 0 < x < 1, α, β, γ > 0 (2)

In this paper, a generalization of the Exponentiated Kumaraswamy distribution referred to as
the Transmuted Exponentiated Kumaraswamy distribution is proposed. The new transmuted
distribution is obtained using the quadratic rank transmutation map introduced by Shaw and
Buckley [20]. According to this method, transmutation maps consists of the functional compo-
sition of the cumulative distribution function of one distribution with the inverse cumulative
distribution (quantile) function of another. A comprehensive account of the mathematical proper-
ties of the new distribution is provided.
The organization of this paper is as follows: Section 2 explains the quadratic rank transmu-
tation method. In section 3, the pdf and cdf of our new model, Transmuted Exponentiated
Kumaraswamy distribution is given and provide the graphical presentation of its pdf, cdf, sur-
vival function and hazard rate function for selected values of the parameters. Section 4 provides
its statistical properties such as moments, moment generating function, characteristic function,
quantile function, incomplete moments, entropy, mean deviation and order statistics. Estimation
of parameters of the distribution is done using maximum likelihood estimation is also included
in this section. In section 5, a simulation study is included which is done to validate the estimates
and a real data analysis illustrates the practicability of the proposed distribution. Finally, the
summary and conclusions are stated in section 6.

2. Transmuted Distribution

A random variable X is said to have transmuted distribution if its cumulative distribution
function(cdf) satisfy the relation,

F(x) = G(x)[(1 + λ)− λG(x)], |λ| < 1 (3)

which on differentiation yields the corresponding pdf

f (x) = g(x)[1 + λ − 2λG(x)] (4)

where G(x) and g(x) are the cdf and pdf of the base distribution. Observe that at λ = 0, we have
the distribution of the base random variable.

RT&A, No 1 (72) 
Volume 18, March 2023 

540



Jeena Joseph, Meera Ravindran
TRANSMUTED EXPONENTIATED KUMARASWAMY DISTRIBUTION

3. Transmuted Exponentiated Kumaraswamy Distribution

Using (3) and (4) we have the cdf of Transmuted Exponentiated Kumaraswamy (TEKw) distribu-
tion

F(x; α, β, γ, λ) = (1 + λ)[1 − (1 − xα)β]γ − λ[1 − (1 − xα)β]2γ (5)

with shape parameters α, β, γ > 0 and the transmuting parameter |λ| < 1.
Hence, the pdf of TEKw distribution is given as,

f (x; α, β, γ, λ) = αβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ] (6)

where α, β, γ > 0 and |λ| < 1.

Note that the transmuted Exponentiated Kumaraswamy distribution is an extended model
to analyze more complex data and it generalizes some of the widely used distributions.The
Exponentiated Kumaraswamy distribution is clearly a special case for λ = 0.

Figure 1: Plot of the cumulative distribution function for different values of parameters.
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Figure 2: Plot of the density function for different values of parameters.
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4. Statistical Properties

4.1. Moments

Let X be a random variable with its pdf given by (6), then its rth raw moment is given by,

µ
′
r = E(Xr)

=
∫ 1

0
xr f (x)dx

=
∫ 1

0
xrαβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]dx

(7)

splitting into two parts,

= αβγ[
∫ 1

0
xr+α−1(1 − xα)β−1(1 + λ)[1 − (1 − xα)β]γ−1dx

−
∫ 1

0
2λxr+α−1(1 − xα)β−1[1 − (1 − xα)β]2γ−1dx]

Substituting u=xα, du=αxα−1 dx

and evaluating both parts using the series expansions

[1 − (1 − xα)β]γ−1 =
∞

∑
i=0

(−1)iΓγ

Γ(γ − i)i!
(1 − xα)βi

=
∞

∑
i=0

(−1)iΓγ

Γ(γ − i)i!

∞

∑
j=0

(−1)jΓ(βj + 1)
Γ(βj + 1 − j)j!

xαj

=
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓγΓ(βj + 1)
i!j!Γ(γ − i)Γ(βi − j + 1)

xαj

= Mxαj

(8)

and,

[1 − (1 − xα)β]2γ−1 =
∞

∑
i=0

(−1)iΓ2γ

Γ(2γ − i)i!
(1 − xα)βi

=
∞

∑
i=0

(−1)iΓ2γ

Γ(2γ − i)i!

∞

∑
j=0

(−1)jΓ(βi + 1)
Γ(βi + 1 − j)j!

xαj

=
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓ2γΓ(βi + 1)
i!j!Γ(2γ − i)Γ(βi − j + 1)

xαj

= Nxαj

(9)

The rth moment is given by,

E(Xr) = αβγ[
M(1 + λ)

α
B(

r
α
+ j + 1, β)− 2λN

α
B(

r
α
+ j + 1, β)]

=
αβγ

α
[M(1 + λ)B(

r
α
+ j + 1, β)− 2λNB(

r
α
+ j + 1, β)]

= βγB(
r
α
+ j + 1, β)[M + λ(M − 2N)]

(10)
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where,
B(a, b) =

∫ 1
0 ta−1(1 − t)b−1dt is the Beta function and,

M =
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓγΓ(βj + 1)
i!j!Γ(γ − i)Γ(βi − j + 1)

N =
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓ2γΓ(βi + 1)
i!j!Γ(2γ − i)Γ(βi − j + 1)

(11)

Therefore, the expected value E(X) and variance Var(X) of a transmuted exponentiated Ku-
maraswamy random variable X are respectively, given by

E(X) = βγB(
1
α
+ j + 1, β)[M + λ(M − 2N)] (12)

and

V(X) = βγB(
2
α
+ j + 1, β)[M + λ(M − 2N)]− (βγB(

1
α
+ j + 1, β)[M + λ(M − 2N)])2 (13)

4.2. Moment Generating Function

The moment generating function of TEKw(α, β, γ, λ) is given by,

MX(t) = E(etx) =
∫ 1

0
etx f (x)dx

Using the Taylor series expansion,

etx =
∞

∑
n=0

(tx)n

n!

MX(t) =
∫ 1

0

∞

∑
n=0

(tx)n

n!
f (x)dx

=
∞

∑
n=0

(tx)n

n!

∫ 1

0
xn f (x)dx

=
∞

∑
n=0

(tx)n

n!

∫ 1

0
xnαβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]dx

(14)

Splitting into two parts, and evaluating, the moment generating function of TEKw(α, β, γ, λ) is
given by,

MX(t) = βγ
∞

∑
n=0

tn

n!
B(

n
α
+ j + 1)[M + λ(M − 2N)] (15)

where B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt is the Beta function and M and N are given by (11).

4.3. Characteristic Function

The characteristic function of TEKw(α, β, γ, λ) is given by,

ϕX(t) = βγ
∞

∑
n=0

(it)n

n!
B(

n
α
+ j + 1)[M + λ(M − 2N)] (16)

where B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt is the Beta function and M and N are given by (11).
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4.4. Quantile Function

Q(p) = [1 − [1 − [
(1 + λ)−

√
(1 + λ)2 − 4λp
2λ

]1/γ]1/β]1/α (17)

Then,
Median, 2nd quartile of TEKw(α,β, γ,λ) is obtained by substituting p =1/2 in (17). If U is a
standard uniform variate, we can generate random variables using the following expression.

X = [1 − [1 − [
(1 + λ)−

√
(1 + λ)2 − 4λu
2λ

]1/γ]1/β]1/α (18)

Then the random variable X follows TEKw(α,β,γ,λ).

4.5. Incomplete Moments

The sth incomplete moment, say ϕs(t) of TEKw is,

ϕs(t) =
∫ t

0
xs f (x)dx

=
∫ t

0
xsαβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]dx

=
∫ t

0
xs+α−1αβγ(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]dx

After some algebra,

ϕs(t) = αβγ
[ M(1 + λ)

α
B(tα;

s
α
+ j + 1, β)− 2λN

α
B(tα;

s
α
+ j + 1, β)

]
= βγB(tα;

s
α
+ j + 1, β)

[
M + λ(M − 2N)

] (19)

where B(w; a, b) =
∫ w

0 ta−1(1 − t)b−1dt is the incomplete beta function.The first incomplete
moment can be obtained by substituting s=1 in (19).

4.6. Mean Deviations

The mean deviation is a measure of amount of scatter in a random variable. Let X follow
TEKw(α,β,γ,λ) with mean µ and median M.

• Mean Deviation from the mean is given by,

δ1(x) =
∫ +∞

−∞
|x − µ| f (x)dx = 2µF(µ)− 2ϕ(µ) (20)

• Similarly, the Mean Deviation from the median is,

δ2(x) =
∫ +∞

−∞
|x − M| f (x)dx = µ − 2ϕ(M) (21)

where F(µ) can be determined from (5) and ϕ(q) =
∫ q
−∞ x f (x)dx is the first incomplete

moment.
The mean deviations about mean and median are obtained by substituting median obtained from
(17), first incomplete moment (19) with s = 1 and cdf (5) in (20) and (21).

Application of these equations can be made to obtain the Bonferroni curve, B(x) = ϕ1(X)
E(X)

and

the Lorenz curve, L(X) = ϕ1(X)
F(X)E(X)

where ϕ1(X) is the first incomplete moment from (19), F(x) is
the cdf of TEKw distribution and E(X) is the mean.
These curves are very useful in economics, reliability, medicine, insurance and demography.
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4.7. Entropy

The Renyi Entropy (Alfred Renyi) of a random variable X represents a measure of variation of the
uncertainity which is defined by,

Rp(x) =
1

1 − p
log

∫ +∞

−∞
f (x)pdx

where p > 0 and p ̸= 1
We have,

[1 − (1 − xα)β](γ−1)p =
∞

∑
i=0

Γ(γ − 1)p + 1
Γ((γ − 1)p + 1 − i)

[(1 − xα)β]i

=
∞

∑
i=0

∞

∑
j=0

(−1)i+jΓ((γ − 1)p + 1)Γ(βi + 1)
Γ((γ − 1)p + 1 − i)Γ(βi + 1 − j)

xαj

= ηxαj

(22)

and

[1 − λ[2(1 − (1 − xα)β)γ − 1]]p =
∞

∑
i=0

(−1)i

i!
Γ(p + 1)

Γ(p + 1 − i)
[λ[2(1 − (1 − xα)β)γ − 1]i

=
∞

∑
i=0

(−1)i

i!
Γ(p + 1)

Γ(p + 1 − i)
λi[2(1 − (1 − xα)β)γ − 1]i

and,

[1 − λ[2(1 − (1 − xα)β)γ − 1]]p =
∞

∑
i=0

(−1)i

i!
Γ(p + 1)

Γ(p + 1 − i)
[λ[2(1 − (1 − xα)β)γ − 1]i

=
∞

∑
i=0

(−1)i

i!
Γ(p + 1)

Γ(p + 1 − i)
λi[2(1 − (1 − xα)β)γ − 1]i

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

(−1)2i+j+k+l

i!j!k!l!
Γ(p + 1)Γ(i + 1)Γ(γj + 1)Γ(βk + 1)

Γ(p + 1 − i)Γ(i + 1 − j)Γ(γj + 1 − k)Γ(βk + 1 − l)
λi2γjxαl

= θxαl

(23)

Evaluating the above integral, Rennyi entropy is,

Rp(x) =
1

1 − p
log[αp−1(βγ)pηθB(

1
α
[(α + 1)p + 1] + j + l, (β − 1)p + 1)] (24)

where, η and θ are given by (22) and (23). The δ entropy,δ > 0,δ ̸= 1 ,say Hδ(x) is defined as,

Hp(x) =
1

p − 1
log[1 −

∫ +∞

−∞
f (x)pdx]

where p > 0 and p ̸= 1
Using (24),

Hp(x) =
1

p − 1
log[1 − αp−1(βγ)pηθB(

1
α
[(α + 1)p + 1] + j + l, (β − 1)p + 1)] (25)

where η and θ are given by (22) and (23).
The Rennyi entropy converge to the Shannon entropy when δ → 1.
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4.8. Survival Function

Survival function is the probability that a system will survive beyond a given time. Mathematically,
the survival function of TEKw(α,β,γ,λ)) is defined by:

S(x; α, β, γ, λ) = 1 − [1 − (1 − xα)β]γ[(1 + λ)− λ[1 − (1 − xα)β]γ] (26)

where α, β, γ > 0 and |λ| < 1. By choosing some arbitrary values for parameters, we provide
some possible shapes for the survival function of the TEKw as shown in Figure 3:
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α = 0.4,β=0.6,γ=0.7,λ=0.5
α = 0.5,β=1.5,γ=2.5,λ=0.9
α = 0.5,β=5.5,γ=3.2,λ=− 0.99
α = 0.6,β=0.4,γ=1.2,λ=0.8

Figure 3: Plot of the survival function for different values of parameters.

4.9. Hazard Rate Function

The hazard rate function h(x) of TEKw(α, β, γ, λ) is given as,

h(x; α, β, γ, λ) =
αβγxα−1(1 − xα)β−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]

1 − [(1 + λ)[1 − (1 − xα)β]γ − γ[1 − (1 − xα)β]2γ]
(27)

where α, β, γ > 0 and |λ| < 1.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6
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10
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x

h(
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α = 0.6,β=0.009,γ=0.002,λ=0.00015
α = 1.7,β=4.5,γ=3.1,λ=0.2
α = 6,β=9,γ=2,λ=− 0.15
α = 0.0016,β=6,γ=9.002,λ=0.9

Figure 4: Plot of the hazard rate function for different values of parameters.
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4.10. Order Statistics

Let X(1), X(2), ..., X(n) denote the order statistics of a random sample X1, X2, ..., Xn from a popula-
tion with cdf FX(x) and pdf fX(x)given by (5) and (6). The pdf of kth order statistic

fX(k)(x) =
n!

(k − 1)!(n − k)!
αβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1[(1 + λ)− 2λ[1 − (1 − xα)β]γ]

×
{
[(1 + λ)[1 − (1 − xα)β]γ − λ[1 − (1 − xα)β]2γ]k−1

}
×

{
[1 − (1 + λ)[1 − (1 − xα)β]γ + [λ[1 − (1 − xα)β]2γ]]n−k

}

4.11. Maximum Likelihood Estimation

The estimation of parameters α, β, γ and λ is done using the maximum likelihood estimation
method. Let X1, X2, ..., Xn be an observed random sample from TEKw(α, β, γ, λ) distribution with
unknown parameters α,β,γ and λ. The likelihood function is,

L(x) =
n

∏
i=1

f (xi; α, β, γ, λ)

i.e.,

L(x) =
n

∏
i=1

αβγxα−1
i (1 − xα

i )
β−1[1 − (1 − xα

i )
β]γ−1[(1 + λ)− 2λ[1 − (1 − xα

i )
β]γ]

Then the log-likelihood function is given by

lnL = nlnα + nlnβ + nlnγ + (α − 1)
n

∑
i=1

ln(xi) + (β − 1)
n

∑
i=1

ln(1 − xα
i )

+ (γ − 1)
n

∑
i=1

ln(1 − (1 − xα
i )

β) +
n

∑
i=1

ln[(1 + λ)− 2λ(1 − (1 − xα
i )

β)γ]

(28)

Therefore, the MLEs of α, β, γ, λ which maximize (28) must satisfy the following normal equations;

n
α
+

n

∑
i=1

lnxi − (β − 1)
n

∑
i=1

xα
i lnxi

1 − xα
i
+ β(γ − 1)

n

∑
i=1

(1 − xα
i )

β−1xα
i lnxi

[1 − (1 − xα
i )

β]

−2λβγ
n

∑
i=1

[1 − (1 − xα
i )

β]γ−1(1 − xα
i )

β−1xα
i lnxi

[(1 + λ)− 2λ[1 − (1 − xα
i )

β]γ]
= 0

(29)

n
β

+
n

∑
i=1

ln(1 − xα
i )− (γ − 1)

n

∑
i=1

(1 − xα
i )

βln(1 − xα
i )

[1 − (1 − xα
i )

β]

+2λγ
n

∑
i=1

[1 − (1 − xα
i )

β]γ−1(1 − xα
i )

βln(1 − xα
i )

[(1 + λ)− 2λ[1 − (1 − xα
i )

β]γ]
= 0

(30)

n
γ
+

n

∑
i=1

ln[1 − (1 − xα
i )

β]− 2λ
n

∑
i=1

[1 − (1 − xα
i )

β]γln[1 − (1 − xα
i )

β]

[(1 + λ)− 2λ[1 − (1 − xα
i )

β]γ]
= 0 (31)

n

∑
i=1

1 − 2[1 − (1 − xα
i )

β]γ

[(1 + λ)− 2λ[1 − (1 − xα
i )

β]γ]
= 0 (32)

Hence, the MLEs of the parameters are obtained by solving these nonlinear system of equations.
Solving these system of nonlinear equations are complicated, we can therefore use statistical
software to solve the equations numerically.
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5. Simulation Study and Data Analysis

5.1. Simulation Study

Considering (18), the simulation is done for two instances using different parameter values.The
chosen parameter values here are,

• α = 0.1, β = 0.5, γ = 0.8, λ = 0.01

• α = 0.8, β = 1.5, γ = 3, λ = −0.9

As the n increases, mean square error decreases for the selected parameter values given in table 1
and 2. Moreover, the bias is close to zero as the sample size increases. Thus, as the sample size
increases. the estimates become closer to the true parameter values.

Table 1: Simulation study at α = 0.1,β = 0.5,γ = 0.8,λ= 0.01

n Parameter Estimate Bias MSE

25

α
β
γ
λ

0.0188
0.7373
2.9549
-0.2509

-0.0812
0.2373
2.155

-0.2609

0.0066
0.0563
4.6439
0.0681

50

α
β
γ
λ

0.0212
0.6358
2.1147
-0.1819

-0.0788
0.1359
1.3147
-0.2929

0.0062
0.0185
1.7284

0.03681

100

α
β
γ
λ

0.1132
0.4486
0.6076
0.1659

0.0132
-0.0514
-0.1924
0.1559

0.0002
0.0026
0.0370

0.02430

500

α
β
γ
λ

0.0949
0.5348
0.8485
0.1121

-0.0051
0.0348
0.0485
0.1021

2.55e-05
0.0012
0.0024

0.01041

1000

α
β
γ
λ

0.1027
0.5112
0.7835
0.0129

0.003
0.0116
-0.0164
0.003

7.56e-06
0.0001
0.0003

8.81e-06

Table 2: Simulation study at α = 0.8,β = 1.5,γ = 3,λ= -0.9

n Parameter Estimate Bias MSE

25

α
β
γ
λ

12.3475
5.6831
0.1973
-0.2146

11.5475
4.1831
-2.8026
0.6853

133.3457
17.4990
7.8549
0.56964

50

α
β
γ
λ

5.3842
2,2110
0.3943
-0.3780

4.5842
0.7110
-2.6056
0.5219

21.0153
0.50556
6.7896
0.27241

100

α
β
γ
λ

0.4486
1.3816
8.1035
-0.4335

-0.3513
-0.1183
2.1035
0.4665

0.1234
0.0140
4.42471
0.2176

500

α
β
γ
λ

0.6669
1.5409
5.6903
-0.5098

-0.1333
0.0409
2.0577

0.39018

0.0117
0.0017
4.2344
0.1522

1000

α
β
γ
λ

0.7799
1.4994
3.0002
-0.8024

0.0027
0.0012
-0.0164
0.0055

7.51e-06
0.0001
0.0021
0.0004
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5.2. Data Analysis

In this section, we demonstrate the usefulness of the proposed Transmuted Exponentiated
Kumaraswamy TEKw(α, β, γ, λ) distribution. We fit this distribution to a real life data set and
compare the results with some recent efficient models: those corresponding to the Kumaraswamy
(Kw) distribution (Kumaraswamy [11]), Transmuted Kumaraswamy (TKw) distribution (Khan
et.al. [9]) and Exponentiated Kumaraswamy (EKw) distribution (Lemonte et.al. [12]). The
corresponding pdfs are presented below.

• The pdf of the Kw distribution is given by

f (x; α, β) = αβxα−1(1 − xα)β−1, 0 < x < 1

where α, β > 0

• The pdf of the TKw distribution is given by,

f (x; α, β, λ) = αβxα−1(1 − xα)β−1[(1 − λ) + 2λ(1 − xα)β], 0 < x < 1

where α, β > 0 and |λ| < 1.

• The pdf of EKw distribution is given by,

f (x; α, β, γ) = αβγxα−1(1 − xα)β−1[1 − (1 − xα)β]γ−1, 0 < x < 1

where α, β, γ > 0

Shasta Reservoir capacity data is used for the purpose. The reservoir is located in California,
United States. The reservoir has a height of 602 ft (183 m), a length of 3460 ft (1050 m), and a
total capacity of 4.552 million acre-ft (5.615 million dam3). The capacity of the Reservoir (after
transformation) for each February from 1991 to 2010 is given by table 3, see Simbolan et. al.
[19]. The analysis is carried out using R software.The parameters are estimated by maximum

Table 3: Shasta Reservoir Capacity Data Each February from 1991 to 2010

Year Transformed
Capacity Year Transformed

Capacity
1991 0.338936 2001 0.768007
1992 0.431915 2002 0.843485
1993 0.759932 2003 0.787408
1994 0.724626 2004 0.849868
1995 0.757583 2005 0.69597
1996 0.811556 2006 0.842316
1997 0.785339 2007 0.828689
1998 0.78366 2008 0.580194
1999 0.815627 2009 0.430681
2000 0.847413 2010 0.742563

likelihood method. Akaike information criterion (AIC), the correct Akaike information criterion
(CAIC), Bayesian information criterion (BIC), Hannan information criterion (HQIC), −2 ln L, the
Kolmogorov-Smirnov (K-S ), Cramer-von Mises and Anderson-Darling goodness-of-fit statistic
and the p-values are considered to compare the four models which are defined as follows.

AIC = −2l + 2k

BIC = −2l + k log(n)
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HQIC = −2l + k log(log(n))

CAIC = −2l + 2kn/(n − k − 1)

where, l denotes the log-likelihood function, k is the number of parameters and n is the sample
size.
The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with a
specific distribution. The test statistic is given by,

K − S statistic Dn = sup|F(x)− Fn(x)|

where Fn(x) is the empirical distribution function.

The Cramer-von Mises criterion for testing that a sample x1, x2, ..., xn has been drawn from a
specified continuous distribution F(x)is

ω2 =
∫ +∞

−∞
[Fn(x)− F(x)]2dF(x) (33)

The Anderson-Darling is used to test if a sample of data came from a population with a specific
distribution. It is a modification of the Kolmogorov-Smirnov (K-S) test and is given by,

AD = −n − 1
n

n

∑
i=1

(2i − 1)[lnF(Xi) + ln(1 − F(Xn−i+1))] (34)

where, n is the sample size, F(x) is the cdf for the specified distribution, and i is the ith sample,
calculated when the data is sorted in ascending order.
The parameter estimates based on the reservoir capacity data for the four models considered are
given by table 4.

Table 4: The MLEs and log-likelihood (l) estimate of the model parameters for reservoir capacity data.

Distribution Parameter Estimates log-likelihood
α β γ λ

Kw 6.891239 5.215555 - - 15.90481
TKw 6.2451572 5.4432386 -0.5010172 - 16.67048
EKw 24.0913041 64.7302856 0.2273644 - 17.97171

TEKw 24.8114998 83.6984162 0.1786838 -0.5454838 20.32666

The tables 5 gives the estimates of the model parameters, AIC , BIC, CAIC and the HQIC
values.

Table 5: AIC, BIC, CAIC and HQIC statistics of the fitted model in data set

Distribution -2l AIC BIC CAIC HQIC
Kw -31.80962 -27.80962 -25.62753 -27.17804 -25.53863

TKw -33.34096 -27.34096 -24.06783 -26.00763 -26.56991
EKw -35.94341 -29.94341 -26.67028 -28.61008 -29.17236

TEKw -40.65332 -32.65332 -28.28915 -30.30038 -31.62525

From table 4, it shows that the proposed Transmuted Exponentiated Kumaraswamy model has
a maximum value of log likelihood. Table 5 shows that the proposed model has a minimum
values of statistics AIC, BIC, CAIC and HQIC compared to other models. In order to compare
the distributions, we had considered the Kolmogorov-Smirnov (K-S) test, Cramer-von Mises and
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Table 6: Test statistic values and corresponding p values

Distribution
K-S Statistic

(p-value)
Anderson-Darling
Statistic (p-value)

Cramer-Von
Statistic (p-value)

Kw
0.22384
(0.1892)

0.96123
(0.01243)

0.13848
(0.03077)

TKw
0.19077
(0.3543)

0.80139
(0.03188)

0.10962
(0.0768)

EKw
0.18032
(0.4221)

0.65474
(0.07574)

0.085587
(0.1656)

TEKw 0.16457
(0.5365)

0.50999
(0.1762)

0.060932
(0.3527)

Anderson-Darling goodness-of-fit statistics for the Shastha Reservoir Capacity data. From table 6,
it is seen that Transmuted Exponentiated Kumaraswamy model has largest p-value based on K-S
Statistic, Cramer-von Mises and Anderson-Darling statistic. As the results indicate, the proposed
model performed better than other models.

6. Conclusion

In this paper, we have introduced a new generalization of the exponentiated Kumaraswamy
distribution called the transmuted exponentiated Kumaraswamy distribution. The graphical
representations of its density function,cumulative distribution function, hazard rate function and
survival function are obtained. We derived the moments, moment generating function, charac-
teristic function, entropy, mean deviations, quantile function, etc. of the proposed distribution.
Estimation of parameters of the distribution is performed using maximum likelihood method.
A simulation study is performed to validate the estimates of the model parameters. Finally,
TEKw(α,β,γ,λ) distribution is applied to a real data set and compared with other distributions.
It is empirically verified that the new TEKw model is a better model than the other competing
models.
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Abstract 
 

Traditional control charts are based on the assumption that the process observations are normally 
distributed. However, in many applications, there is insufficient information to justify this 
assumption. Thus, nonparametric control charts have been designed in literature to monitor 
location parameter and scale parameter of a process. In this paper, a single nonparametric control 
chart based on modified Lepage test is proposed for simultaneously monitoring of location and 
scale parameters of any continuous process distribution. The charting statistic combines two 
nonparametric test statistics namely Baumgartner test for location and Ansari-Bradely test for 
scale. The performance of the proposed chart is examined through simulation studies in terms of 
the mean, the standard deviation, the median and some percentiles of the run length distribution. 
The average run length (ARL) performance of the proposed chart is compared with that of the 
existing nonparametric Shewhart-Cucconi (SC) and Shewhart-Lepage (SL) charts for joint 
monitoring of location and scale. 
 
Keywords: Control chart; average run length; joint monitoring; nonparametric tests; 
location parameter; scale parameter. 
 

1. Introduction 
 
Control charts are the most important statistical process control tool used to monitor manufacturing processes 
with the objective of detecting any change in process parameters that may affect the quality of the output. 
Shewhart 𝑋" and 𝑅or 𝑆 control charts are most popular control charts for monitoring process mean and 
process variability. These control charts are easy to implement but are based on the fundamental assumption 
that the distribution of quality characteristic is normal. In real applications, there are many situations in 
which process data come from non-normal distribution. In such situations, it is desirable to use 
nonparametric control charts. The main advantage of nonparametric control chart is that it does not assume 
any probability distribution for the characteristic of interest. A formal definition of nonparametric or 
distribution-free control chart is given in terms of its run-length distribution. The number of samples that 
need to be collected before the first out-of-signal is given by a chart is a random variable called the run-
length; the probability distribution of the run-length is referred to as run-length distribution. If the in-control 
run-length distribution is same for every continuous distribution then the chart is called as distribution-free or 
nonparametric (Chakraborti and Eryilmaz [1]). The location and scale of a process are the two main 
parameters most often monitored in nonparametric control charts. The problem of monitoring the location of 
a process is important in many applications. The location parameter could be the mean or the median or some 
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percentiles of the distribution. Many authors have developed nonparametric control charts to monitor 
location parameter of the process some of these includes Bakir [2-3], Chakraborti and Eryilmaz [1], Khilare 
and Shirke [4], Human et al. [5]. These charts are based on sign and/or rank statistics. Chakraborti et al. [6] 
and Chakraborti and Graham [7] presented an extensive overview of literature on nonparametric control 
charts and discussed their advantages. 

The problem of monitoring the scale parameter of a process is also important in many applications. For 
monitoring scale parametric of a process very few nonparametric are available in literature. Amin et al. [8] 
proposed a sign chart for process variation based on quartiles. Das [9] proposed a nonparametric control 
chart for controlling variability based on squared rank test. Das [10] developed a nonparametric control chart 
based on rank test. Das and Bhattacharya [11] proposed a control chart for controlling variability based on 
some nonparametric tests. Murakami and Matsuki [12] developed a nonparametric control chart based on 
Mood statistic for dispersion. Khilare and Shirke [13] developed a nonparametric synthetic control chart for 
process variability based on sign statistic. Zombade and Ghute [14] provided nonparametric control charts 
for process variation based on Sukhatme’s test and Mood’s test. Shirke and Barale [15] proposed a 
nonparametric cumulative sum control chart for process dispersion using in-control deciles. 

The existing nonparametric control charts are designed for monitoring location and scale by using 
separate control charts. Using two separate charts for monitoring location and scale can sometimes be 
difficult in practice for the interpretation of signals because the effect of changes in one of the parameters can 
affect the changes in other one. The joint monitoring scheme with single chart has received more attention in 
the recent literature due to simplicity and clarity. A single control chart uses a statistic that is a combination 
of two separate statistics one each for mean and variance. Joint monitoring of a process involves two 
parameters, the mean (location) and variance (scale) and typically uses an efficient statistic for monitoring 
each parameter. The control charts currently available for jointly monitoring the mean and variance are 
focused on parametric control chart. Cheng and Thaga [16] provided a review of literature on joint 
monitoring of control charts up to 2005. McCracken and Chakraborti [17] presented an overview of literature 
on joint monitoring control charts. They also discussed some of the joint monitoring schemes for multivariate 
processes, autocorrelated data, and individual observations. Most of the parametric control charts for joint 
monitoring the mean and variability of a process are based on the assumption that process distribution is 
normal. However, in many applications there is not always enough knowledge or information to support the 
assumption that process distribution is of specific shape or form such as normal. In such cases nonparametric 
control charts can be useful. The literature in the area of nonparametric joint monitoring schemes is currently 
very limited. A few nonparametric joint monitoring schemes are available in the literature. Zou and Tsung 
[18] developed EWMA control chart based on goodness-of-fit test. It has been shown that the proposed chart 
is effective for detecting changes in location, scale and shape. Mukherjee and Chakraborti [19] developed a 
single distribution-free control chart for joint monitoring of location and scale. The chart is based on 
nonparametric test for location-scale by Lepage [20] which combines the Wilcoxon rank sum (WRS) 
location statistic and with Ansari-Bradely scale statistic. Chowdhury et al. [21] proposed distribution-free 
chart based on Cucconi statistic, for joint monitoring of location and scale parameters of continuous 
distribution. Nonparametric joint monitoring scheme is an important area for research and literature in this 
area is currently very limited and thus presents a great opportunity for further research. The purpose of this 
paper is to contribute the research on nonparametric joint monitoring scheme.  

In this paper, a single nonparametric Shewhart-type control chart is developed for joint monitoring of 
location and scale parameters of a continuous process distribution.  The proposed chart is based on 
nonparametric two sample modified Lepage-type test proposed by Neuhäuser [22]. The test combines the 
Baumgartner statistic and Ansari-Bradely statistic for jointly detecting location and scale changes. The in-
control and out-of-control performance of the proposed control chart is evaluated through average run length 
for the normal and double exponential distributions. The rest of the paper is organized as follows. The 
nonparametric Baumgartner and Ansari-Bradely tests for location and scale respectively are modified 
Lepage-type test proposed by Neuhäuser [22] for joint location and scale is are discussed in Section 2. A 
single nonparametric control chart for simultaneously monitoring the location parameter and the scale 
parameter of a process based on modified Lepage-type test statistic is presented in Section 3. In-control and 
out-of-control performance of the proposed control chart is studied in detail in Section 4. Performance of the 
proposed control chart is compared with the existing nonparametric charts in Section 5. Some conclusions 
are given in Section 6. 
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2.  Nonparametric Tests for Location and Scale 

 
In this section, we briefly discuss the nonparametric tests for location parameter, scale parameter and jointly 
location scale parameters. 

 
2.1 Baumgartner two sample test for location 

 
Baumgartner test is a two-sample test can be applied for location and scale parameters. Let	(𝑋!	,𝑋$, . . . , 𝑋%) 
and (𝑌!	,𝑌$, . . . , 𝑌&) denote two random samples. The observations within each sample are independent and 
identically distributed, and we assume independence between two samples. Let 𝐹	and	𝐺	be continuous 
distribution functions corresponding two populations1 and2 respectively. In location shift, model considered 
first the distribution functions are same except perhaps for change in their location; that is𝐹(𝑥) = 𝐹(𝑥 − 𝜃). 
The null hypothesis is	𝐻': 𝜃 = 0, whereas alternative is		𝐻!: 𝜃 0. Baumgartner et al. [23] proposed a 
distribution-free two-sample rank test for general alternative. For combined samples, let 𝑅!	 < 𝑅$ <	. . . < 𝑅% 
and 𝐻!	 < 𝐻$ <	. . . < 𝐻&	denote the ranks of the 𝑋 − values		and		𝑌 − values in increasing order of 
magnitude, respectively. Baumgartner et al. [23] defined a nonparametric two-sample rank statistic B as 
follows:    
𝐵 = (!)("
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The larger value of statistic 𝐵	gives evidence to reject the null hypothesis. Baumgartner et al. [23] also 
provided asymptotic distribution of test statistic	𝐵. 

 
2.2 Ansari-Bradely test for scale 
 
The Ansari-Bradely test is a two-sample rank test applied for scale parameter. The test statistic is defined as 
follows: In the combined samples, the observations less than or equal to the median are replaced by their 
ranks in the increasing order and those larger than the median are replaced by their ranks in descending 
order. The statistic is the sum of these ranks for the 𝑌	sample. The corresponding test statistic is defined as 
(Gibbons and Chakraborti [24]), 
 𝐴𝐵 = ∑ B𝑘 − ,)!

$
D𝑍0%

0.! 								                                                                                                                         (2) 
The mean and variance of statistic	𝐴𝐵 is given by, 
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2.3 Modified Lepage-type test for location and scale 
 
After Lepage statistic was proposed, various Lepage-type statistics have been proposed and discussed by 
many authors in the literature. One of the most famous and powerful modified Lepage-type statistic proposed 
by Neuhäuser [22] is a combination of the Baumgartner and Ansari-Bradely statistic given as: 

𝐿9 = T(4:$(()
;<=>$(()

U
$
+ T?(4:$(?()

;<=>$(?()
U
$
                                                                                                                    (3) 

where		𝐵	is Baumgartner statistic for location shift and	𝐴𝐵	is Ansari-Bradely statistic for scale shift. In this 
paper, we use𝐿9 test statistic as a charting statistic for detecting simultaneous location and scale shifts in a 
continuous process distribution.  

3. Control chart based on modified Lepage-type statistic 
 

In this Section, we develop a nonparametric control chart based on modified Lepage-type test statistic 
proposed by Neuhäuser [22] for simultaneously monitoring the location and the scale parameters of a 

¹

555



 
Vijaykumar Ghadage, Vikas Ghute 
A NONPARAMETRIC CONTROL CHART  
FOR JOINT MONITORING OF LOCATION AND SCALE 

RT&A, No 1 (72) 
Volume 18, March 2023 

 
continuous process. The single plotting statistic for the joint monitoring of location and scale is given by  𝐿9 
in Eq. (3) and chart is called LM chart. To adopt the idea of two sample test for control chart implementation, 
𝑚 independent observations	(𝑋!	,𝑋$, . . . , 𝑋&) from an in-control process are used as reference sample and 
compared to future sample subgroups of	𝑛 independent observations		(𝑌!	,𝑌$, . . . , 𝑌%) an arbitrary test sample. 

The proposed LM control chart for joint monitoring of location and scale is constructed as follows: 
Step1: Collect Phase-I reference sample	𝑋 = (𝑋!	,𝑋$, . . . , 𝑋&) of size𝑚  from an in-control process. 
Step2: Let	𝑌 = (𝑌!	,𝑌$, . . . , 𝑌%) be		𝑗@A Phase-II (test) sample of size		𝑛	, 𝑗 = 1, 2, 3, . .. 
Step 3: Calculate	𝐵/ and(𝐴𝐵)/ using (1) and (2) for		𝑗@A test sample. 
Step 4: Compute means and standard deviations of	𝐵  and𝐴𝐵 statistics respectively 
Step 5: Calculate the standardized 𝐵 and𝐴𝐵statistics as 

														𝑇!/ = Z
𝐵 − 𝐸'(𝐵)
[𝑉𝑎𝑟'(𝐵)

^ 		and		𝑇$/ = Z
𝐴𝐵 − 𝐸'(𝐴𝐵)
[𝑉𝑎𝑟'(𝐴𝐵)

^ 			respectively. 

Step 6: Calculate the control chart statistic LM chart as𝑇/	 = 𝑇!/$ + 𝑇$/$ 	, 𝑗 = 1, 2, 3,			.		.		. 
Step 7: Plot		𝑇/  against an upper control limit(𝑈𝐶𝐿), 𝐻 > 0. 
Step 8: If	𝑇/ exceed	𝐻, the process is out-of-control at the		𝑗@A test sample. If not, the process is thought to be 

in-control and testing continues to the next sample. 
 

4. Performance evaluation and analysis of LM chart 
Implementation of the proposed LM chart requires the upper control limit		𝐻. Typically, in practice, it is 
determined for some specified in-control average run length		(𝐴𝑅𝐿'), say, 370 or 500. A Monte-Carlo 
simulation approach based on sufficiently large number of possible samples is used to determine		𝐻. For a 
given pair of (𝑚, 𝑛) values, a search is conducted with different values of	𝐻, and that value of 𝐻 is obtained 
for which 	𝐴𝑅𝐿'is equal to nominal (target) value. We choose 𝑚 = 30, 50, 100  for the reference sample size 
and 𝑛 = 5, 11, 25	as the test sample size and target values		𝐴𝑅𝐿' = 200, 370, 500. The results are presented 
in Table 1. 
 

Table 1: Charting constant 𝐻	for the LM chart for some standard (target) values of 𝐴𝑅𝐿! 
Reference 

 sample size (𝑚) 
Test sample 

 size (𝑛) 
 Upper control limit (𝐻) 

𝐴𝑅𝐿! = 200 𝐴𝑅𝐿! = 370 𝐴𝑅𝐿! = 500 
30 
30 
30 
50 
50 
50 
100 
100 
100 

5 
11 
25 
5 
11 
25 
5 
11 
25 

29.540 
25.050 
16.985 
14.510 
15.389 
15.798 
20.020 
20.740 
18.540 

35.242 
33.128 
22.089 
19.510 
18.712 
19.123 
29.050 
27.490 
24.450 

37.960 
37.312 
24.820 
22.390 
20.752 
20.910 
32.800 
31.305 
28.023 

 
The performance of a control chart is generally studied through its runlength distribution. If the runlength 
distribution is skewed to the right, it is useful to come across at various measures such as average run length 
(ARL), the standard deviation of run length (SDRL) and several percentiles including the first and third 
quartiles to characterize the distribution. We study the performance of the proposed LM chart both under in-
control and out-of-control setup. For the in-control setup, we simulate both the reference and the test sample 
from standard normal distribution. We choose	𝑚 = 30, 50, 100 and	𝑛 = 5, 11, 25. For a given pair of (𝑚, 𝑛) 
values, we obtain upper control limits		𝐻 for nominal (target)		𝐴𝑅𝐿' = 500 and simulate different 
characteristics of the in-control run-length distribution. The results of simulation are shown in Table 2.  
It indicates that the target 𝐴𝑅𝐿' = 500 is much larger than the median (𝑄$) for all	(𝑚, 𝑛) combinations. 
Hence, in-control run-length distribution of the LM chart is highly skewed to the right.  
  

556



 
Vijaykumar Ghadage, Vikas Ghute 
A NONPARAMETRIC CONTROL CHART  
FOR JOINT MONITORING OF LOCATION AND SCALE 

RT&A, No 1 (72) 
Volume 18, March 2023 

 
In order to investigate the out-of-control performance of the proposed LM chart, we consider the 

underlying process distributions as normal and double exponential. The double exponential distribution is 
considered as process distribution to study the effect of heavy tailed distribution on the performance of the 
LM chart. The distribution of observations from the process is considered to have mean zero and variance 
one for both the process distributions under study.  

 
Table 2: In-control performance characteristics of the LM chart for𝐴𝑅𝐿! = 500. 

𝑚 𝑛 𝐻 𝐴𝑅𝐿' 𝑆𝐷𝑅𝐿' 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
30 
30 
30 
50 
50 
50 
100 
100 
100 

5 
11 
25 
5 
11 
25 
5 
11 
25 

37.960 
37.312 
24.820 
22.390 
20.752 
20.910 
32.800 
31.305 
28.023 

501.0 
499.7 
500.4 
499.5 
501.4 
501.3 
500.6 
500.1 
502.9 

500.5 
499.2 
499.9 
499.0 
500.9 
500.8 
500.1 
499.6 
502.4 

26 
27 
26 
27 
26 
26 
26 
26 
26 

146 
145 
144 
143 
144 
143 
144 
145 
147 

350 
346 
347 
344 
351 
348 
348 
345 
349 

694 
692 
695 
691 
698 
692 
696 
694 
695 

1484 
1493 
1481 
1508 
1499 
1502 
1506 
1499 
1508 

 
4.1 Performance analysis of LM chart under normal distribution 

 
In order to investigate the out-of-control performance of the proposed LM chart, we consider the underlying 
process distribution as normal; samples are taken from 𝑁(𝜃, 𝜆) distribution, with in-control samples coming 
from		𝑁(0, 1)distribution. To examine the effects of shifts in process parameters, 30 combinations 
of	(𝜃, 𝜆)values are considered with	𝜃 = 0, 0.25, 0.5,1.0,1.5,2.0 and 𝜆 = 1.0,1.25,1.5,1.75,2.0. 

Tables 3 and 4 present the performance characteristics of the LM chart when underlying process 
distribution is normal with combinations of the reference and test sample sizes		𝑚 = 50, 100  and 𝑛 = 5. 

The results in Table 3 and Table 4 indicate that the out-of-control run-length distributions are also 
skewed to right. It is observed that, for a fixed	𝑚, 𝑛 and a given 𝐴𝑅𝐿', the out-of-control ARL values as well 
as the percentiles all decrease sharply with increasing shift in the  location and also with the increasing shift 
in the scale. It indicates that the proposed LM chart is effective in detecting shifts in location and/or in the 
scale. The proposed LM chart detect shift in the scale more quickly than that in the location. For example, 
from Table 3, we observe that for 25% increase in location when scale is in-control, the ARL decreases by 
68%, whereas for a 25% increase in a scale when the location is in-control, ARL decreases by 78%. Finally, 
when location and scale increases by 25% the ARL decreased by 88%. The pattern is same for SDRL; it 
decreases for an increase in the shift in both parameters, but decreases more for a shift in scale. For example, 
from Table 3, for 25% increase in location, the SDRL decreases by 68% but for 25% increase in scale, the 
SDRL decreases by 78%. 

 
Table 3: Performance characteristics of the LM chart for the normal distribution. 

	(𝐴𝑅𝐿!		 = 500,𝑚 = 50	𝑎𝑛𝑑	𝑛 = 5). 
𝜃 λ ARL SDRL 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
0.0 1.0 499.5 499.0 27 143 344 691 1508 
0.25 1.0 160.3 159.8 9 46 111 223 478 
0.5 1.0 42.4 41.9 3 13 30 59 126 
1.0 1.0 5.9 5.4 1 2 4 8 16 
1.5 1.0 1.9 1.3 1 1 1 2 5 
2.0 1.0 1.2 0.5 1 1 1 1 2 
0.0 1.25 108.1 107.6 6 31 76 150 322 
0.25 1.25 58.4 57.9 3 17 41 81 175 
0.5 1.25 24.1 23.6 2 7 17 33 72 
1.0 1.25 5.7 5.1 1 2 4 8 16 
1.5 1.25 2.2 1.7 1 1 2 3 6 
2.0 1.25 1.3 0.7 1 1 1 2 3 
0.0 1.5 43.0 42.5 3 13 30 60 127 
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0.25 1.5 30.6 30.1 2 9 21 42 90 
0.5 1.5 16.6 16.1 1 5 12 23 48 
1.0 1.5 5.5 4.9 1 2 4 7 15 
1.5 1.5 2.5 1.9 1 1 2 3 6 
2.0 1.5 1.5 0.9 1 1 1 2 3 
0.0 1.75 22.8 22.3 2 7 16 31 68 
0.25 1.75 18.8 18.2 1 6 13 26 55 
0.5 1.75 12.7 12.2 1 4 9 17 37 
1.0 1.75 5.3 4.8 1 2 4 7 15 
1.5 1.75 2.7 2.2 1 1 2 4 7 
2.0 1.75 1.7 1.1 1 1 1 2 4 
0.0 2.0 14.5 14.0 1 5 10 20 42 
0.25 2.0 13.1 12.6 1 4 9 18 39 
0.5 2.0 9.9 9.4 1 3 7 13 29 
1.0 2.0 5.1 4.6 1 2 4 7 14 
1.5 2.0 2.9 2.3 1 1 2 4 8 
2.0 2.0 1.9 1.3 1 1 1 2 4 

 
 

Table 4: Performance characteristics of the LM chart for normal distribution. 
(𝐴𝑅𝐿!		 = 500, 𝑚 = 100	𝑎𝑛𝑑	𝑛 = 5). 

𝜃 λ ARL SDRL 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
0.0 1.0 500.6 500.1 26 144 348 696 1506 
0.25 1.0 273.6 273.1 15 79 191 380 814 
0.5 1.0 66.4 65.9 4 20 46 91 199 
1.0 1.0 7.5 7.0 1 3 5 10 21 
1.5 1.0 2.1 1.5 1 1 2 3 5 
2.0 1.0 1.2 0.5 1 1 1 1 2 
0.0 1.25 119.9 119.4 7 35 83 166 355 
0.25 1.25 83.8 83.3 5 25 58 116 251 
0.5 1.25 33.3 32.8 2 10 23 46 98 
1.0 1.25 6.8 6.3 1 2 5 9 19 
1.5 1.25 2.4 1.9 1 1 2 3 6 
2.0 1.25 1.4 0.7 1 1 1 2 3 
0.0 1.5 48.6 48.1 3 14 34 67 145 
0.25 1.5 39.6 39.1 2 12 27 55 118 
0.5 1.5 21.5 21.0 2 7 15 30 63 
1.0 1.5 6.4 5.9 1 2 5 9 18 
1.5 1.5 2.7 2.2 1 1 2 4 7 
2.0 1.5 1.6 1.0 1 1 1 2 4 
0.0 1.75 26.3 25.8 2 8 18 36 78 
0.25 1.75 23.3 22.8 2 7 16 32 69 
0.5 1.75 15.5 15.0 1 5 11 21 45 
1.0 1.75 6.1 5.6 1 2 4 8 17 
1.5 1.75 2.9 2.4 1 1 2 4 8 
2.0 1.75 1.8 1.2 1 1 1 2 4 
0.0 2.0 16.5 16.0 1 5 12 23 49 
0.25 2.0 15.4 14.9 1 5 11 21 45 
0.5 2.0 11.8 11.3 1 4 8 16 35 
1.0 2.0 5.8 5.2 1 2 4 8 16 
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1.5 2.0 3.1 2.5 1 1 2 4 8 
2.0 2.0 2.0 1.4 1 1 1 2 5 

 
 
4.2 Performance analysis of LM chart under double exponential distribution 

 
To study the effect of heavy tailed distribution on the performance of the proposed LM chart, double 
exponential distribution is included in the study as heavy tailed process distribution. We conduct simulation 
study with data from double exponential distribution. The performance characteristics of the run-length are 
evaluated when the in-control sample is from double exponential with mean 0 and variance 1, and test 
samples are generated from the double exponential distribution with mean	𝜃 and standard deviation		𝜆.  

To examine the effects of shifts in location and scale, as in normal case, we studied 30 combinations of 
(𝜃, 𝜆)values. Table 5 and Table 6 presents the performance characteristics of the proposed LM chart when 
underlying process distribution is double exponential with combinations of reference and test samples of size 
𝑚 = 50, 100and 𝑛 = 5.   

 
Table 5: Performance characteristics of LM chart for double exponential distribution. 

(𝐴𝑅𝐿!		 = 500,𝑚 = 50	𝑎𝑛𝑑	𝑛 = 5). 
𝜃 λ ARL SDRL 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
0.0 1.0 499.6 499.1 25 143 345 693 1505 
0.25 1.0 91.5 91.0 5 27 64 127 272 
0.5 1.0 18.2 17.7 1 6 13 25 53 
1.0 1.0 3.0 2.4 1 1 2 4 8 
1.5 1.0 1.5 0.8 1 1 1 2 3 
2.0 1.0 1.1 0.4 1 1 1 1 2 
0.0 1.25 222.2 221.7 12 64 155 307 663 
0.25 1.25 59.7 59.2 4 18 42 82 178 
0.50 1.25 17.0 16.5 1 5 12 23 50 
1.0 1.25 3.6 3.0 1 1 3 5 10 
1.5 1.25 1.7 1.1 1 1 1 2 4 
2.0 1.25 1.3 0.6 1 1 1 1 2 
0.0 1.5 128.6 128.1 7 38 90 177 381 
0.25 1.5 45.5 45.0 3 14 32 63 136 
0.5 1.5 16.1 15.6 1 5 11 22 47 
1.0 1.5 4.2 3.6 1 2 3 6 11 
1.5 1.5 2.0 1.5 1 1 2 3 5 
2.0 1.5 1.4 0.8 1 1 1 2 3 
0.0 1.75 87.1 86.6 5 26 61 121 261 
0.25 1.75 37.0 36.5 2 11 26 51 110 
0.50 1.75 15.8 15.3 1 5 11 22 46 
1.0 1.75 4.7 4.2 1 2 3 6 13 
1.5 1.75 2.3 1.8 1 1 2 3 6 
2.0 1.75 1.6 1.0 1 1 1 2 4 
0.0 2.0 65.0 64.5 4 19 45 90 193 
0.25 2.0 31.8 31.3 2 10 22 44 94 
0.50 2.0 15.4 14.9 1 5 11 21 45 
1.0 2.0 5.2 4.7 1 2 4 7 14 
1.5 2.0 2.6 2.1 1 1 2 3 7 
2.0 2.0 1.8 1.2 1 1 1 2 4 

 
 
 

Table 6: Performance characteristics of LM chart for double exponential distribution 
(𝐴𝑅𝐿!		 = 500, 𝑚 = 100	𝑎𝑛𝑑	𝑛 = 5). 
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𝜃 λ ARL SDRL 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
0.0 1.0 497.9 497.4 25 142 344 691 1502 
0.25 1.0 789.9 789.4 42 225 546 1098 2376 
0.5 1.0 194.6 194.1 10 56 134 269 583 
1.0 1.0 10.5 10.0 1 3 7 14 30 
1.5 1.0 2.2 1.6 1 1 2 3 5 
2.0 1.0 1.2 0.5 1 1 1 1 2 
0.0 1.25 179.6 179.1 10 52 125 249 536 
0.25 1.25 246.2 245.7 13 71 170 341 739 
0.5 1.25 91.5 91.0 5 27 64 126 272 
1.0 1.25 9.6 9.1 1 3 7 13 27 
1.5 1.25 2.5 2.0 1 1 2 3 6 
2.0 1.25 1.4 0.7 1 1 1 2 3 
0.0 1.5 91.1 90.6 5 26 64 127 272 
0.25 1.5 111.4 110.9 6 32 77 154 332 
0.5 1.5 55.5 55.0 3 16 38 77 164 
1.0 1.5 9.3 8.7 1 3 7 13 27 
1.5 1.5 2.8 2.3 1 1 2 4 7 
2.0 1.5 1.5 0.9 1 1 1 2 3 
0.0 1.75 54.4 53.9 3 16 38 75 162 
0.25 1.75 63.3 62.8 4 19 44 88 188 
0.5 1.75 37.8 37.3 2 11 26 52 112 
1.0 1.75 8.7 8.2 1 3 6 12 25 
1.5 1.75 3.1 2.5 1 1 2 4 8 
2.0 1.75 1.7 1.1 1 1 1 2 4 
0.0 2.0 36.7 36.2 2 11 26 51 109 
0.25 2.0 41.2 40.7 3 12 29 57 123 
0.5 2.0 27.9 27.4 2 8 20 39 83 
1.0 2.0 8.3 7.8 1 3 6 11 24 
1.5 2.0 3.3 2.7 1 1 2 4 9 
2.0 2.0 1.8 1.2 1 1 1 2 4 

 
From Tables 5 and 6, it is observed that when underlying process distribution is doubling exponential, 

the general pattern remains the same as in the case of normal distribution. However, the out-of-control ARL 
values for detecting a shift in the mean and/or variance under double exponential distribution are larger than 
that of the ARL values under normal process distribution.  For example, from Table 6, mean shift is 
50%		(𝜃 = 0.50) and dispersion shift is 50%		(𝜆 = 1.5), The ARL is 194.6 which is larger than 66.4 in the 
normal case of Table 4. It indicates that the proposed LM chart detects shifts in process location and scale 
slower under heavy tailed distribution. Moreover, the percentiles as well as SDRL all increase under double 
exponential distribution as compared with normal distribution.  
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5. Performance comparison with existing control charts 

 
In this section, the performance of the proposed LM chart is compared with that of the SL chart by 
Mukherjee and Chakraborti [19] and SC chart by Chowdhury et al. [21] when underlying process 
distributions are normal and double exponential. Table 7 presents the ARL performance of SC chart, SL 
chart and LM chart for normal distribution with reference sample size	𝑚 = 50, 100  and test sample of 
size	𝑛 = 5. 

 
Table7: Performance comparisons between SC, SL and LM charts for the normal distribution with	𝐴𝑅𝐿! = 500. 

𝜃 𝜆 
𝑚 = 50, 𝑛 = 5 𝑚 = 100, 𝑛 = 5 

SC chart SL chart LM chart SC chart SL chart LM chart 
0.0 1.0 497.3 499.6 499.5 509.4 513.0 500.6 
0.5 1.0 92.2 94.7 42.4 68.6 66.5 66.4 
1.0 1.0 8.5 9.3 5.9 7.7 7.7 7.5 
1.5 1.0 2.2 2.3 1.9 2.1 2.1 2.1 
2.0 1.0 1.2 1.3 1.2 1.2 1.2 1.2 
0.0 1.25 71.1 106.2 108.1 74.5 102.9 119.9 
0.5 1.25 27.6 35.4 24.1 26.2 30.9 33.3 
1.0 1.25 6.6 7.4 5.7 6.2 6.7 6.8 
1.5 1.25 2.4 2.6 2.2 2.4 2.5 2.4 
2.0 1.25 1.4 1.4 1.3 1.3 1.4 1.4 
0.0 1.5 22.8 36.82 43.0 24.3 37.5 48.6 
0.5 1.5 13.3 19.0 16.6 13.4 17.8 21.5 
1.0 1.5 5.2 6.5 5.5 5.3 6.1 6.4 
1.5 1.5 2.4 2.8 2.5 2.4 2.7 2.7 
2.0 1.5 1.5 1.6 1.5 1.5 1.6 1.6 
0.0 1.75 10.9 18.5 22.8 11.7 19.1 26.3 
0.50 1.75 8.1 12.1 12.7 8.4 12.1 15.5 
1.0 1.75 4.4 5.7 5.3 4.4 5.5 6.1 
1.5 1.75 2.5 2.9 2.7 2.4 2.8 2.9 
2.0 1.75 1.6 1.8 1.7 1.6 1.8 1.8 
0.0 2.0 6.6 11.3 14.5 7.1 11.5 16.5 
0.5 2.0 5.5 8.5 9.9 5.8 8.6 11.8 
1.0 2.0 3.7 4.9 5.1 3.8 4.8 5.8 
1.5 2.0 2.4 2.9 2.9 2.4 2.9 3.1 
2.0 2.0 1.7 1.9 1.9 1.7 1.9 2.0 

 
Examination of Table 7 that for normal distribution leads the following findings: 

• For location shifts only when the scale parameter is in-control, the proposed LM chart performs better 
than the SL and SC charts. 

• For scale shifts only when the location parameter is in-control, the proposed LM chart is not as much 
better as the SL and SC charts. 

• For reference sample of size	𝑚 = 50, for any given shift in location parameter𝜃 with a fixed shift in 
scale parameter as	𝜆 = 1.25, the proposed LM chart performs better than the SL and SC charts. As 
shift in scale parameter 𝜆increases to 1.5 with any given shift in location parameter	𝜃, the proposed 
LM chart is efficient than the SL chart only. For scale shift of size	𝜆 = 1.25  and location shift 𝜃 =
1.5	and	2.0the proposed LM chart is efficient than the SL chart only. For scale shift	𝜆 = 2.0 and 
location shift 𝜃 = 1.5	and	2.0the proposed LM chart is equally efficient to the SL chart only.   
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• For reference sample of size	𝑚 = 100, for detecting shift in location parameter as 𝜃 = 1.5	and	2.0and 

shift in scale parameter	𝜆 = 1.5	𝑎𝑛𝑑	1.5 the proposed LM chart is equally efficient to the SL chart 
only.   

 
Table 8: Performance comparison between the SC, SL and LM charts for the double exponential distribution 

with		𝐴𝑅𝐿! = 500. 

𝜃 𝜆 𝑚 = 50, 𝑛 = 5 𝑚 = 100, 𝑛 = 5 
SC chart SL chart LM chart SC chart SL chart LM chart 

0.0 1.0 492.7 493.2 499.6 509.6 508.3 497.9 
0.5 1.0 240.0 235.2 18.2 191.0 159.2 194.6 
1.0 1.0 41.4 36.1 3.0 26.5 19.9 10.5 
1.5 1.0 7.2 5.93 1.5 4.8 4.1 2.2 
2.0 1.0 2.1 2.0 1.1 1.8 1.7 1.2 
0.0 1.25 118.0 156.8 222.2 124.5 153.2 179.6 
0.5 1.25 69.7 79.8 17.0 61.7 66.19 91.5 
1.0 1.25 20.1 19.9 3.6 14.6 14.0 9.6 
1.5 1.25 5.1 5.2 1.7 4.4 4.2 2.5 
2.0 1.25 2.1 2.2 1.3 2.0 2.0 1.4 
0.0 1.5 43.3 65.9 128.6 47.8 66.8 91.1 
0.5 1.5 29.3 42.1 16.1 29.6 36.8 55.5 
1.0 1.5 12.0 14.2 4.2 10.7 11.1 9.3 
1.5 1.5 4.5 4.7 2.0 4.0 4.1 2.8 
2.0 1.5 2.2 2.3 1.4 2.1 2.2 1.5 
0.0 1.75 22.8 35.6 87.1 24.4 36.4 54.4 
0.5 1.75 16.7 24.5 15.8 16.9 23.2 37.8 
1.0 1.75 8.5 10.4 4.7 7.9 9.2 8.7 
1.5 1.75 4.0 4.5 2.3 3.7 4.0 3.1 
2.0 1.75 2.2 2.4 1.6 2.1 2.3 1.7 
0.0 2.0 13.8 22.1 65.0 14.5 22.9 36.7 
0.5 2.0 11.1 17.0 15.4 11.3 16.6 27.9 
1.0 2.0 6.5 8.6 5.2 6.3 7.9 8.3 
1.5 2.0 3.5 4.3 2.6 3.5 3.9 3.3 
2.0 2.0 2.2 2.5 1.8 2.1 2.3 1.8 

Examination of Table 8 that for double exponential distribution leads the following findings: 
• For reference sample of size	𝑚 = 50, for location shifts only when the scale parameter is in-control, 

the proposed LM chart performs better than the SL and SC charts. For scale shifts only when the 
location parameter is in-control, the proposed LM chart is not as better as the SL and SC charts. For 
any given shift in location parameter	𝜃 with any shift in scale parameter	𝜆, the proposed LM chart 
performs better than the SL and SC charts.  

• For reference sample of size	𝑚 = 100, for detecting shift in location parameter as	𝜃 = 1.0	and	2.0  
and shift in scale parameter	𝜆 = 1.25, 1.5	and	1.75, the proposed LM chart is efficient than the to the 
SL and SC charts. For detecting shift in location parameter as 𝜃 = 1.0	and	2.0 and shift in scale 
parameter	𝜆 = 2.0, the proposed LM chart is efficient than the to the SL and SC charts.   

 
6. Conclusions 

 
In this paper, a single nonparametric control chart based on modified Lepage-type test statistic is developed 
for joint monitoring of location and scale parameters of a continuous process distribution. Both in-control 
and out-of-control performance of the chart are studied under normal and heavy tailed double exponential 
distributions. The various performance characteristics such as mean, median and some percentiles of the run-
length distribution are examined. It is observed that the proposed LM chart maintain its designed in-control 
ARL under the considered process distributions. The chart is found to be more efficient under normal 
distribution as compared to double exponential distribution. The performance of the proposed chart is 
compared with SL chart by Mukherjee and Chakraborti [19] and SC chart by Chowdhury [21]. It is observed 
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that the proposed LM chart for joint monitoring of location and scale performs better than the SL and SC 
charts in some situations. 
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Abstract

Objective: This paper extends the analysis of imperfect preventive maintenance interspaced with
minimal repairs. The aim is to find the intervals of future scheduled maintenance actions considering
different recovery factors and costs. Methods: The optimal preventive maintenance scheduling are
obtained by minimizing the overall maintenance costs. Minimal repairs interspersed with scheduled
imperfect preventive maintenance actions are considered. The model parameters of the power law process
are estimated using the maximum likelihood estimation method and a Differential Evolution algorithm
is used to solve the maximization problem. Results: The optimal preventive maintenance periods for
different levels of maintenance restoration with respect to corrective and preventive maintenance costs
are found. Graphs are drawn to highlight the effect of future maintenance costs and the hazard function
paths. It is shown that the preventive maintenance becomes more frequent as the equipment ages and the
hazard function increases. Also, it is perceived that the scheduled maintenance intervals become shorter
as the corrective maintenance becomes more expensive. Conclusion: A hazard rate model which considers
minimal repairs interspersed with scheduled imperfect preventive maintenance provides a useful tool for
defining the optimal maintenance policy. The results obtained in this paper show that maintenance cost
varies widely according to the recovery factor of the maintenance action and that the optimal interval of
two consecutive preventive maintenance actions strongly depends on the costs.

Keywords: Reliability, imperfect maintenance, proportional age reduction model, maintenance
costs, power law model.

1. Introduction

Recently statisticians and engineers have paid a lot of attention to reliability centered maintenance
and its cost assessment. As stated by Löfsten (2000), the overall costs of maintenance, estimated
to be between 15% and 40% of production costs, and the trend toward industry automation has
forced engineers and managers to pay more attention to maintenance policies.

There are several papers in the recent literature that have attempted to estimate the failure
probability distributions implied by different maintenance policies. Researchers have developed a
wide variety of models to deal with maintenance policy optimization. Performance and condition-
based maintenance models can be found in Dui et al. (2023), Azizi and Salari (2023) and Chen
et al. (2022). Preventive maintenance policies with degradation models can be found in Wei
et al. (2023) and Li et al. (2023). Predictive maintenance models can be found in Huynh et al.
(2022) and Guo and Liang (2022) and new probability distributions have been studied, such
as in S. and Sebastian (2022). Also, maintenance models are under constantly development,
as can be found in Tijjani A. Waziri (2022) for a replacement policy, in Naveen Kumar (2022),
Shanti Parkash (2022) and Neetu Dabas (2022) for priority repair policies and in Nse Udoh (2022)
studying maintenance policies for non-repairable products. Even modern techniques, such as
Artificial-intelligence-based model can be found in Nguyen et al. (2022).

In the present study, it is analyzed the consequence of minimal corrective repairs interspersed
with imperfect schedulued preventive maintenance. Once a scheduled maintenance is performed

564

mailto:allan.jonathan@cefet-rj.br


Allan Jonathan da Silva
MAINTENANCE POLICY COSTS CONSIDERING IMPERFECT REPAIRS

on an equipment, it will be restored to a state that is between as good as new and as bad as old.
Under this assumption, the Proportional Age Reduction model was proposed in Malik (1979).
The paper’s objective is to refine the study made by Shin et al. (1996) including the cost analysis
and the possibility to change the level of the equipment’s regeneration after maintenance actions.

The remaining part of this paper is organized as follows. In Section 2 it is made a review of the
Reliability theory, it is shown the maximum likelihood estimation of the power law process under
the PAR model and it is presented the expected cost of the maintenance policy. In Section 3 it is
described the failure and maintenance actions data. Also, the maximum likelihood estimators are
calculated. In Section 4 the results is extended. It is analyzed the optimal preventive maintenance
interval under different recovery parameters. The overall cost is also analyzed. Section 5 concludes
the paper.

2. Reliability Theory

The purpose of the use of reliability theory is to assist management in decision making by using
known quantitative facts effectively and by reducing the reliance on subjective judgement (Löfsten
(2000)).

A formal definition of reliability is given by Elsayed (2021): "Reliability is the probability that a
product will operate or a service will be provided properly for a specified period of time (design life) under
the design operating conditions (such as temperature, load, volt. . . ) without failure."

As the probability theory is the foundation of the reliability engineering and of the reliability
centered maintenance, we review the following definitions that can be found in William Q. Meeker
(2021) and in in Elsayed (2021).

Let f (t) be a real function such that

f (t) ≥ 0 ∀t ≥ 0

and ∫ ∞

0
f (s)ds = 1.

Then, f (t) is a failure probability density function. The probability of failure up to time t is given
by

F(t) =
∫ t

0
f (s)ds, (1)

so that the reliability function is given by

C(t) = 1 − F(t) =
∫ ∞

t
f (s)ds. (2)

The following function

h(t) = lim
∆t→0

C(t)− C(t + ∆t)
∆tC(t)

=
1

C(t)

[
− d

dt
C(t)

]
=

f (t)
C(t)

(3)

is called the hazard function. Considering that only minimal repairs are performed when the
equipment fails, the expected number of failures in [0, t] is given by

H(t) =
∫ t

0
h(s)ds. (4)

The reliability function can be also calculated by

C(t) = e
∫ t

0 h(s)ds, (5)
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and the expectation of T is defined as the mean time to failure (MTTF):

MTTF =
∫ ∞

0
C(s)ds =

∫ ∞

0
s f (s)ds. (6)

As an example, the Weibull distribution is given by the following probability density function

f (t; α, β) = αβtβ−1 exp{−αtβ}1{t>0}, (7)

for fixed parameters α and β, scale and shape, respectively. A plot of the probability density
function f (t), the reliability function 5, the hazard function 3 and cumulative distribution function
1 for the Weibull distributions with different parameters are shown in Figure 1.
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Figure 1: Probability functions for the Weibull distribution

2.1. Maintenance policy cost

Following Pham (2003), maintenance can be defined as actions to control the deterioration process
leading to failure of a system - called preventive maintenance, and to restore the system to its
operational state through corrective actions after a failure - called corrective maintenance. The
behavior of the equipment after a repair depends on the type of repair carried out.

As stated by Huynh et al. (2022), maintenance is an effective solution to improve not only
the system availability, but also the system safety, the product quality, as well as the customer
satisfaction. An appropriate preventive maintenance policy is an effective way to save cost by
reducing the probability of failure (Li et al. (2023)).

Unscheduled or corrective maintenance refers to maintenance actions carried out after the
occurrence of component’s failure. Suppose that the equiment are minimally repaired at failure
and the effect of imperfect preventive maintenance is modeled according to the Proportional Age
Reduction (PAR) criterion. In the case of perfect maintenance, the action restores the equipment
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to be as new. The PAR approach introduced by Malik (1979), assumes that each preventive
maintenance action reduces the age of the equipment by a quantity proportional to the operating
time elapsed form the most recent scheduled maintenance.

The failure pattern in each maintenance cycle is described by a Non-homogeneous Poisson
process in which the age of the equipment in the k-th maintenance cycle is reduced by a fraction
ρ of the most recent scheduld maintenance action τk−1. The hazard function (3) at a time t is

h(t) = h(t − ρτk−1), τk−1 < t < τk. (8)

The following are the hypotheses assumed by Shin et al. (1996) to model minimal repairs
interspersed with scheduled imperfect preventive maintenance actions:

1. Suppose that l units are observed until Ti, i = 1, ..., l.

2. Suppose that each equipment i is subjected to mi scheduled maintenance actions at τi,1 <
τi,mi ≤ Ti.

3. The i-th equipment experiences ri,k failures during the k-th preventive maintenance cycle
(k = 1, ..., mi + 1)

4. Let ti,k,j be the time of the j-th failure of the i-th equipment that occurs in the k-th mainte-
nance cycle.

Pham and Wang (1996) presents another interesting approach to imperfect maintenance via
quasi-renewal process.

The maintenance model here adopted considers that the preventive action is executed periodi-
cally at a prespecified times and different policies for treat the failures may be employed.

Let

• cp be the preventive maintenance cost;

• cm be the corrective maintenance cost.

Adapting the maintenance policy for repairable equipments of Pham (2003), the maintenance
expected cost per unit time for the period [tm+1, tm+2] is given by

V1(tm+1, tm+2) =
cm H(tm+1, tm+2) + cp

tm+2 − tm+1
, (9)

where H(tm+1, tm+2) =
∫ tm+2

tm+1
h(s)ds.

2.2. Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) is a method of estimating the parameters of an
assumed probability density function given some observed data by maximizing a likelihood
function so that, under the assumed statistical model, the observed data is most probable. The
MLE of the model (8) is given by

L =
l

∏
i=1

{
mi+1

∏
k=1

[ ri,k

∏
j=1

h(ti,k,j − ρτi,k−1)

]
× (10)

exp

[
−

mi+1

∑
k=1

∫ τi,k

τi,k−1

h(x − ρτi,k−1)dx

]}
,

where τi,0 = 0 and τi,mi+1 = Ti (see more details in Shin et al. (1996)).
The most frequently used non-homogeneous Poisson process (NHPP) is the power law process

(Pham (2003)), whose intensity, applied in (8), is given by

h(t) =
β

α

(
t − ρτk−1

α

)β−1
. (11)
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Using (11) in (10) we have

L =

(
β

α

)n
[

l

∏
i=1

mi+1

∏
k=1

ri,k

∏
j=1

( ti,k,j − ρτi,k−1

α

)β−1
]
× (12)

exp

{
−

l

∑
i=1

mi+1

∑
k=1

[(
ti,k − ρτi,k−1

α

)β

−
(

ti,k−1 − ρτi,k−1

α

)β
]}

,

where n is the total number of failures for l units during the whole observation period. The
maximum likelihood estimation for α is given by the following analytical solution:

α =

 l

∑
i=1

mi+1

∑
k=1

[
(ti,k − ρ̂τi,k−1)

β̂ − (ti,k−1 − ρ̂τi,k−1)
β̂
]

n


1
β̂

. (13)

The estimators for β e ρ are found by maximizing the modified two-parameter loglikelihood
function:

l(β, ρ) = n ln β (14)

−n ln

{
l

∑
i=1

mi+1

∑
k=1

[
(ti,k − ρτi,k−1)

β − (ti,k−1 − ρτi,k−1)
β
]}

+n ln n + (β − 1)

×
[

l

∑
i=1

mi+1

∑
k=1

ri,k

∑
j=1

ln(ti,k,j − ρτi,k−1)

]
− n

In order to solve the maximization problem (14), which does not have analytical solution, it
is applied a Differential Evolution method. As it is described in Kienitz and Wetterau (2012),
the Differential Evolution method is a population-based search algorithm which belongs to the
class of genetic algorithms. It mimics the process of Darwinian evolution using techniques such
as inheritance, mutation, recombination, selection and crossover. The algorithm is designed to
converge to the global optimal solution. The algorithm is described in Chapter 9 of Kienitz and
Wetterau (2012).

3. Failure Data

In this paper it is considered the failure data of a central cooler system of a nuclear power plant
analyzed first by Shin et al. (1996) and discussed in Pham (2003). The data consist of n = 15
failure times and m = 3 preventive maintenance epochs - highlighted by (∗), observed over 612
days. The data are given in Table 1.

Table 1: Failure data

116 151 154* 213 263* 386 387 395 407
463 492 494 501 512* 537 564 590 609

Minimal repairs are performed at failures. No information are given with respect to the level
of recovery of the preventive maintenance actions.

The Differential Evolution method described in Kienitz and Wetterau (2012) was used to solve
the modified two-parameter loglikelihood function (14). The parameters shown in the Table 7 of
Shin et al. (1996) were exactly recovered, namely

α = 141, β = 2.91, ρ = 0.77.
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The parameters suggest that the equipment is restored to a level corresponding to 33% of
the actual age. Also, as the shape parameter β is greater that 2, it is known that the hazard rate
increases in a convex form towards infinite.

The objective is to find the scheduled maintenance interval that minimizes the overall cost
given by (9). This work also aims to analyze the impact of the recovery parameter ρ for future
maintenance actions.

4. Results

Let tm+1 be the actual time, when the last preventive maintenance action was performed with
ρ = 0.77. In order to calculate the optimal preventive maintenance interval which minimizes the
cost (9), we need to find

∂V1(tm+1, tm+2)

∂tm+2
=

[cmh(tm+1, tm+2)] (tm+2 − tm+1)−
[
cm H(tm+1, tm+2) + cp

]
(tm+2 − tm+1)2 = 0

= cm(tm+2 − tm+1)

(
β

α

)[(
tm+2 − ρtm+1

α

)(β−1)
]
−{

cm

[(
tm+2 − ρtm+1

α

)β

−
(
(1 − ρ)tm+1

α

)β
]
+ cp

}
. (15)

Applying the Power Law process (11), we cannot find the solution for (15) analytically. We find
the root of the nonlinear function (15) using the fzero function of Matlab, which is a combination
of bisection, secant, and inverse quadratic interpolation methods (Forsythe G. E. (1976)).

Suppose that cm = 1.25cp, the next maintenance epoch which minimizes the overall main-
tenance cost under the hypotheses that a major overhaul was performed at tm+1 = 612 days is
in tm+2 = 678 days. The next optimal scheduled maintenance actions is shown in Table 2. We
observe that the first optimal scheduled maintenance interval is 66 days. We can note that the
preventive maintenance becomes more frequent as the equipment ages and the hazard function
increases. The next intervals are the following: 64, 63, 61, 59 and 58 days. Figure 2 compares
the time between scheduled maintenance actions for cc = 0.75cp, cc = cp and cc = 1.25cp. As
expected, the scheduled maintenance interval is shorter as the corrective maintenance becomes
more expensive.

It can be analyzed in Figure 3 that higher level of recovery results in larger scheduled
maintenance intervals. It is only true for β > 2, which is the actual case. For β = 2 the optimal
preventive maintenance interval would be the same for any value of ρ. The opposite behavior
is found for 1 < β < 2. It can also be seen in Figure 3 that as the preventive maintenance
cost becomes greater than the corrective maintenance costs, that is, CM

CP < 1, the scheduled
maintenance interval increases fastly.

Table 2: Tempos de parada programada

tm+3 742
tm+4 805
tm+5 866
tm+6 925
tm+7 983
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Figure 2: Time period of the next maintenance actions
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Figure 3: Optimal preventive maintenance next interval as a function of the corrective repair cost

In Figure 4 it is exhibited the hazard rate paths. In the left panel, it is shown the in-sample
path. We can note an unorganized maintenance epochs in the original data which results in a
high value for the hazard function before the third action. In the right panel it is shown the out
of sample predicted hazard function. It is considered that the scheduled maintenance actions are
performed at the optimal interval, that is, at each 58 days. It is noteworthy that, respecting the
historical recovery factor of ρ = 0.77, in the 11-th action the hazard function finds in a lower level
than it was observed in the third maintenance interval.

Figure 4: In-sample and out of sample intensity function

In Figure 5 we fix cm = 1 and analyze the cost of the next maintenance cycle. We note that
cost varies widely according to the recovery parameter ρ.
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Figure 5: Maintenance cost

In Figure 6 it is exhibited the coupled in-sample and out of sample hazard function for
different recovery parameters ρ after the observed period of 612 days. With tm+2 = 678, and tm+n
according to Table 2, we can compare the hazard function for ρ = 0 (minimal repairs), ρ = 0.5
(intermediary repairs), ρ = 0.77 (actual policy) and ρ = 1 (perfect repairs).
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Figure 6: Hazard function

Finally,

5. Conclusion

A maintenance model under the assumption of imperfect preventive maintenance interspaced
with minimal repairs was considered. This study analyzed a real failure database available in the
literature consisting of 15 failure times and 3 unequally-spaced preventive maintenance actions.
The model parameters of the power law process were estimated using the MLE and a Differential
Evolution algorithm. The results obtained in this paper showed that maintenance cost varies
widely according to the recovery parameter. It is also clear from the results here obtained that
the optimal interval of two consecutive preventive maintenance actions strongly depends on the
costs. Hence, a proper estimation of repairs expenditures are needed. The proposed cost model
can be extended to consider random unscheduled repair costs.
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Abstract

Lindley distribution is a lifetime model with application in survival analysis and reliability theory
problems often centred around its increasing hazard rate function and flexibility over exponential
distribution. In this paper, we introduce a new generalization of the Lindley distribution referred to as
Lindley Truncated Negative binomial (LTNB) distribution. The LTNB model has increasing, decreasing
and upside-down bathtub(UBT) shapes for the hazard rate function. Various properties of the LTNB
distribution are studied including moments, quantiles, and stochastic ordering. Characterizations of the
new distribution are obtained. Maximum likelihood, Cramer-von-Mises, ordinary and weighted least
squares methods of estimation are utilized to obtain the estimators of the model parameters. A simulation
study is carried out to assess and compare the performance of different estimates. An autoregressive time
series model with the LTNB as marginal is developed. The model is fitted to bladder cancer data set to
show how the proposed model works in practice.

Keywords: Autoregressive Models, Characterizations, Lindley distribution, Maximum Likelihood,
Stochastic Ordering.

1. Introduction

As a counter-example to fiducial statistics, the Lindley distribution, first put forth by [16], is
one of the crucial lifetime distributions in the framework of Bayesian statistics. The Lindley
distribution has an increasing hazard rate function; however, in real-life situations, the models
exhibit non-monotone hazard rate shapes. For example, in the case of a serious illness condition
such as cancer, the hazard rate increases and then decreases. Similarly, in the engineering field,
the quality of production by untrained workers follows a similar pattern. As a result, many
researchers have developed models with non-monotone hazard rates over time. Models with
bathtub shapes can be found in [22]. Most often, upside-down bathtub (UBT) shape hazard rate
models are used to model medical data, such as patient data for bladder cancer and lung cancer
(see, [5] and [15]). In this paper, we introduce a generalized Lindley distribution with increasing,
decreasing and UBT shapes for the hazard rate function. A positive random variable X is said to
have Lindley distribution with the parameter α, denoted as L(α), if it has the probability density
function (pdf)

f (x) =
α2

α + 1
(1 + x)e−αx; x > 0, α > 0, (1)

The cumulative distribution function (cdf) is given by

F(x) = 1 − α + 1 + αx
α + 1

e−αx; x ≥ 0. (2)
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Ghitany[8] studied the statistical characteristics of the Lindley distribution and demonstrated its
flexibility in modelling lifetime data over exponential distribution. Generalized Lindley distri-
bution was later developed by [20], who also studied its mathematical characteristics. Weighted
Lindley distribution was introduced by [9]. An extended Lindley distribution was proposed and
investigated by [3]. In 2013, [6] introduced a generalized Lindley distribution. Later Beta Lindley
distribution was examined by [18]. The Lindley-Exponential distribution was first proposed by
[4]. Inverse Lindley distribution was extended by [23]. The Odd Lindley Burr XII distribution
was proposed by [14]. The generalized two-parameter Lindley distribution was introduced by [7].
Unit-Lindley distribution was studied in [2].
The rest of the paper is as follows: The Lindley Truncated Negative binomial (LTNB) distribu-
tion is introduced as a compounded distribution in Section 2. Section 3 discuss the statistical
properties of the LTNB distribution such as moments, quantile function, skewness, and kurtosis.
Characterizations of the LTNB distribution are obtained in section 4.In Section 5, we investigate
the stochastic ordering property of LTNB. In section 6, we use the maximum likelihood method,
least squares method, weighted least squares, and Cramer-von-Mises-estimator for estimating
the parameters of the new distribution. In section 7 we carry out a simulation study to eval-
uate the performance of Maximum likelihood estimation and other estimation methods. The
LTNB distribution is used to model remission times of bladder cancer patients in Section 8. It
is demonstrated that the LTNB distribution fits this data set better than the other well-known
competitors. In section 9, we develop a first-order autoregressive minification process with the
LTNB distribution as the marginal distribution.

2. Lindley Truncated Negative binomial distribution

We propose a new generalization for Lindley distribution with relatively simple expressions for
the survival function, hazard rate function, and quantile’s. The hazard rate function is more flexi-
ble than the previous generalizations and the proposed model has a closed-form for distribution
function. In addition, the new distribution fits some real-world data sets better than existing
Lindley distribution generalizations.
In 1997, [17] developed a method of adding a tilt parameter to a distribution to extend exist-
ing distributions. Many distributions were extended and published in the literature as a result
of this technique. As a generalization of the above technique, [21] proposed a novel family of
distributions through truncated negative binomial distribution. It’s important to remember that
these distributions arise as the distribution of random minimum or random maximum. The cdf is
given by

G(z) =
γn

1 − γn [(F̄(z) + γF(z))−n − 1]; z ∈ R, γ, θ > 0, (3)

where F(.) is the cdf of baseline distribution . If F(x) follows Lindly with cdf (2) we have Lindley
Truncated Negative binomial(LTNB) distribution, LTNB(α, γ, θ), having pdf

g(z; α, γ, θ) =
α2(α + 1)θ(1 − γ)θγθ(1 + z)e−αz

(1 − γθ) [(α + 1)− (1 − γ)(α + 1 + αz)e−αz]θ+1 ; z > 0 α, γ, θ > 0. (4)

The cumulative distribution function of LTNB(α, γ, θ) is given by

G(z; α, γ, θ) =
1

1 − γθ
− γθ

1 − γθ

[
α + 1

(α + 1)− (1 − γ)(α + 1 + αz)e−αz

]θ

(5)

and hence the survival function is

Ḡ(z; α, γ, θ) =
γθ

1 − γθ

{[
α + 1

(α + 1)− (1 − γ)(α + 1 + αz)e−αz

]θ

− 1

}
(6)

Remark: The LTNB(α, γ, θ) distribution reduces to the Lindley distribution when θ = 1 and
γ −→ 1.
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Figure 1: LTNB(α, γ, θ) pdf when γ = 0.5, θ = 0.5.

Figure 2: LTNB(α, γ, θ) pdf when α = 1.

The hazard rate function of LTNB distribution is

h(z; α, γ, θ) =
α2(α + 1)θ(1 − γ)θ(1 + z)e−αz

[(α + 1)− (1 − γ)(α + 1 + αz)e−αz]
[
(α + 1)θ − [(α + 1)− (1 − γ)(α + 1 + αz)e−αz]θ

] (7)

and the reverse hazard rate function is

r(z; α, γ, θ) =
α2(α + 1)θ(1 − γ)θ(1 + z)e−αz

[(α + 1)− (1 − γ)(α + 1 + αz)e−αz]
[
[(α + 1)− (1 − γ)(α + 1 + αz)e−αz]θ − γθ(α + 1)θ

] . (8)

Figure 3 depicts hazard rate function graphs for various parameter values. The graphs
showing decreasing, non-decreasing, and UBT shapes for hazard rate function.

3. Statistical Properties

We discuss about moments, simulation, quantiles, skewness, and kurtosis in this section.
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Figure 3: LTNB(α, γ, θ) hazard rate function for various parameter values.

3.1. Moments

Let X ∼ LTNB(α, γ, θ), then its rth moment with respect to the origin is given by,

E[Xr] =
∫ ∞

0
xr α2(α + 1)θ(1 − γ)θγθ(1 + x)e−αx

(1 − γθ) [(α + 1)− (1 − γ)(α + 1 + αx)e−αx]θ+1 dx

=
∞

∑
k=0

α2(1 − γ)k+1θγθ

(1 − γθ)(α + 1)k+1

(
k + θ

θ

) ∫ ∞

0
xr(1 + x)e−αx(1+k)(α + 1 + αx)kdx.

3.2. Simulation, Quantiles and Median

In order to generate random numbers from a LTNB(α, γ, θ) distribution, we use

X =
−1
α

− 1 − 1
α

W−1(−e−(α+1) (α + 1)
1 − γ

(1 − γ((1 − γθ)Y + γθ)−1/θ)) (9)

where W−1(.) is the negative Limbert W function and Y ∼ U(0,1).
The qth quantile of the LTNB(α, γ, θ) is

X =
−1
α

− 1 − 1
α

W−1(−e−(α+1) (α + 1)
1 − γ

(1 − γ((1 − γθ)q + γθ)−1/θ)), (10)

and thus the median of LTNB(α, γ, θ) is,

X =
−1
α

− 1 − 1
α

W−1(−e−(α+1) (α + 1)
1 − γ

(1 − γ((1 − γθ)
1
2
+ γθ)−1/θ)).

3.3. Skewness and Kurtosis

According to [13], the distribution skewness can be calculated using the below equation

S =
Q
( 3

4
)
− 2Q( 1

2 ) + Q( 1
4 )

Q( 3
4 )− Q( 1

4 )

and according to [19], the kurtosis of the LTNB distribution is as follows

K =
Q
( 7

8
)
− Q( 5

8 ) + Q( 3
8 )− Q( 1

8 )

Q( 6
8 )− Q( 2

8 )
,
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where Q(.) is the quantile function of X as defined by (10). These metrics are less susceptible to
outliers.

4. Characterizations of LTNB distribution

Many characterization results, established in various ways, can be found in the literature. In this
section, the ratio of truncated moments and the hazard rate function are used to characterize the
LTNB distribution.

4.1. Characterizations based on two truncated moments

This section discusses how to characterise the LTNB distribution using the ratio of two truncated
moments. In our first characterization, we apply the Theorem 1 below established in [10].

Theorem 1. Let (Ω,F , P) be a given probability space and let H = [d, e] be an interval for some
d < e (d = −∞, e = ∞might as well be allowed). Let X : Ω → H be a continuous random
variable with the distribution function F and let q1 and q2 be two real functions on H such that

E[q2(X)|X ≥ x] = E[q1(X)|X ≥ x]ζ(x), x ∈ H,

is defined with some real function ζ. Assume that q1, q2 ∈ C1(H), ζ ∈ C2(H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation ζq1 = q2 has no real solution in the interior of H. Then F is uniquely determined by the
functions q1, q2 and ζ, particularly

F(x) =
∫ x

a
C| ζ

′
(u)

ζ(u)q1(u)− q2(u)
|exp(−s(u))du,

where the function s is a solution of the differential equation s
′
= ζ

′
q1

ζq1−q2
and C is the normalization

constant, such that
∫

H dF = 1.

Theorem 2. Let X be a positive real valued continuous random variable with pdf f (x).

Denote q1(x) = (1 − (1 − γ)
1 + α + αx

α + 1
e−αx)θ+1 and q2(x) = q1(x)

1 + α + αx
α + 1

e−αx for x > 0, α >

0, θ > 0, γ > 0. Then, the random variable X has pdf (4) if and only if the function ζ(.) defined in
Theorem 1 is of the form

ζ(x) =
1
2

1 + α + αx
α + 1

e−αx

Proof. Suppose the random variable X has the pdf (4). Then

(1 − F(x))E [q1(X)|X ≥ x] = C
1 + α + αx

α + 1
e−αx, x > 0

and

(1 − F(x))E [q2(X)|X ≥ x] =
C
2

(
1 + α + αx

α + 1

)2
e−2αx, x > 0

where C =
(

γθθ(1−γ)
1−γθ

)
.Further,

ζ(x)q1(x)− q2(x) = −1
2

q1(x)
1 + α + αx

α + 1
e−αx < 0, x > 0.

Conversely, if ζ is of the above form, then

s
′
(x) =

ζ
′
(x)q1(x)

ζ(x)q1(x)− q2(x)
=

α2(1 + x)
1 + α + αx

, x > 0.

Thus
s(x) = −log(

1 + α + αx
α + 1

e−αx), x > 0.

Now from Theorem 1, result follows.
■
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4.2. Characterization based on the hazard rate function

For θ = 1, we characterise the LTNB distribution using the hazard rate function.

Theorem 3. Let X be a positive real valued continuous random variable with hazard rate function
h(x). The random variable X has LTNB distribution, for θ = 1, if and only if h(x) satisfies the
differential equation

h
′
(x)− h(x)

(1 + x)(1 + α + αx)
=

α4(1 − γ)(1 + x)2e−αx

(1 + α + αx)(1 − (1−γ)(1+α+αx)e−αx

1+α )2
, x > 0.

Proof. If X has pdf (4) , the above differential equation clearly holds.
Now suppose the differential equation holds then,

d
dx

{
h(x)(1 + α + αx)

1 + x

}
= α2 d

dx

{
1

1 − ( (1−γ)(1+α+αx)e−αx

1+α )

}

which implies,

h(x) =
α2(1 + x)

(1 + α + αx)
1

1 − ( (1−γ)(1+α+αx)e−αx

1+α

which is the hazard rate function of LTNB distribution.
■

5. Stochastic Ordering

Let X and Y be two random variables with distribution functions of F1 and F2, respectively, with
corresponding pdfs of f1 and f2. Then it is stated that X is less than Y in ,
i) stochastic order (denoted as X ≤st Y) if F1(x) ≥ F2(x) for all x;
ii) hazard rate order (denoted as X ≤hr Y) if (1 − F1(x)/(1 − F2(x)) is decreasing in x ≥ 0;
ii) likelihood ratio order (denoted as X ≤lr Y) if f1(x)/ f2(x) is decreasing in x ≥ 0;
iv) reverse hazard rate order (denoted as X ≤rhr Y) if F1(x)/F2(x) is decreasing in x ≥ 0.
The four orderings have a relationship with one another; for further information, see [24],

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤rhr Y =⇒ X ≤st Y. (11)

For γ2 > γ1,
let X ∼ LTNB(α, γ1, θ) and Y ∼ LTNB(α, γ2, θ). Then

fX(y)
fY(y)

=
γθ

1(1 − γθ
2)(1 − γ1) [(α + 1)− (1 − γ2)(α + 1 + αz)e−αy]

θ+1

γθ
2(1 − γθ

1)(1 − γ2) [(α + 1)− (1 − γ1)(α + 1 + αy)e−αy]θ+1

Since γ2 > γ1,

d
dx

[
fX(y)
fY(y)

]
=

γθ
1(1 − γθ

2)(1 − γ1)α
2e−αy(1 + y)(α + 1)(γ1 − γ2)

(1 − γ2)γ
θ
2(1 − γθ

1)

× [(α + 1)− (1 − γ2)(α + 1 + αy)e−αy]
θ

[(α + 1)− (1 − γ1)(α + 1 + αy)e−αy]θ+2 ,

< 0.

=⇒ fX(y)/ fY(y) is decreasing in y.
That is X ≤lr Y. From (11), the remaining ordering follows.
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6. Different methods of estimation

In this section we use maximum likelihood estimation, least squares, weighted least squares and
cramer-von-Mises estimation methods to estimate the parameters of the LTNB distribution.

6.1. Maximum likelihood Estimation

Let x1, x2, ..., xn be an observed random sample from LTNB distribution with unknown parameter
vector ν = (α, γ, θ)T . Then the log-likelihood function is

log ℓ = 2nlogα + nlogθ + nlog(1 − γ) + nθlogγ + nθlog(α + 1)− nlog(1 − γθ)− α
n

∑
i=1

xi

+
n

∑
i=1

log(1 + xi)− (θ + 1)
n

∑
i=1

log
[
(α + 1)− (1 − γ)(α + 1 + αxi)e−αxi

]
(12)

The partial derivatives are given by

∂log ℓ

∂α
=

2n
α

+
nθ

α + 1
−

n

∑
i=1

xi

−(θ + 1)
n

∑
i=1

[
1 − (1 − γ)e−αxi (1 − αxi − αx2

i )

(α + 1)− (1 − γ)(α + 1 + αxi)e−αxi

]
, (13)

∂log ℓ

∂γ
=

−n
1 − γ

+
nθ

γ
+

nθγθ−1

1 − γθ

−(θ + 1)
n

∑
i=1

[
(α + 1 + αxi)e−αxi

(α + 1)− (1 − γ)(α + 1 + αxi)e−αxi

]
, (14)

∂log ℓ

∂θ
= nlogγ +

n
θ
+ nlog(α + 1) +

nγθ logγ

1 − γθ

−
n

∑
i=1

log
[
(α + 1)− (1 − γ)(α + 1 + αxi)e−αxi

]
(15)

Set the score vector to zero,

U(ν) =

(
∂logℓ

∂α
,

∂logℓ
∂γ

,
∂logℓ

∂θ

)T
.

U(ν) = 0, and solve them simultaneously to obtain the ML estimators α̂, γ̂, and θ̂. These
equations can be numerically solved using statistical software using iterative techniques like
the Newton-Raphson algorithm as they cannot be solved analytically. All of the second order
derivatives exist for the three-parameter LTNB distribution as well.

6.2. Least squares and weighted least squares estimators

Let t1 < t2 < t3 < ... < tn be the n ordered random sample from any distribution with cdf F(t).
Then we have,

E[F(ti)] =
i

n + 1
.

The least squares method minimizes

PLSE(α, γ, θ) =
n

∑
i=1

(
F(ti)−

i
n + 1

)2
(16)

with respect to the unknown parameters. Here the least squares estimates are obtained by
minimizing the following equation with respect to α, γ, θ.

PLSE(α, γ, θ) =
n

∑
i=1

(
1

1 − γθ
− γθ

1 − γθ

[
α + 1

(α + 1)− (1 − γ)(α + 1 + αx)e−αx

]θ

− i
n + 1

)2

. (17)

RT&A, No 1 (72)
Volume 18, March 2023

581



A. Mohammed Shabeer, Bindu Krishnan, K. Jayakumar
LTNB distribution

Weighted least squares estimates of α, γ, θ are obtained by minimizing the following equation
with respect to α, γ, θ.

PWLSE(α, γ, θ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

(
1

1 − γθ
− γθ

1 − γθ

[
α + 1

(α + 1)− (1 − γ)(α + 1 + αx)e−αx

]θ

− i
n + 1

)2

.

(18)

6.3. Cramer-von-Mises-estimator(CME)

CME is obtained by minimizing the following equation with respect to α, γ, θ. Here F(.) is the
distribution function of LTNB distribution given by (5) .

PCME(a, b, γ, θ) =
1

12n
+

n

∑
i=1

(
F(ti)−

2i − 1
2n

)2
. (19)

7. Simulation

Monte Carlo simulation is used to evaluate the performance of the maximum likelihood estimation
procedure for estimating the LTNB parameters. From the LTNB model we generates samples
of sizes n = 100, 200, 300, 400, and 500 for various combinations of α, γ, and θ. We ran the
simulation 1000 times to determine the MLE’s and MSE’s of the parameter estimates. Table
1 displays the results. We can observe that the ML estimates are consistent. To investigate
the efficiency of least squares estimators, we took samples from the LTNB distribution with
n = 100, 200, 300, 400, and 500. We repeated the simulation 1000 times and computed the
estimates and corresponding MSE’s for the same set of parameter values using three methods.
Table 2 displays the results. Table 2 shows that least squares and CME estimators perform similarly
and both methods are giving smaller MSE’s compared to weighted least squares estimates.

8. Data Analysis

Table 3 contains data on the remission times (in months) of a random sample of 128 bladder
cancer patients provided by [15]. Table 4 displays the descriptive statistics for the data.

We will now look at the Total Time on Test (TTT) plot, a graphical method for determining
the shape of the data’s hazard rate function. The empirical TTT plot is defined as,

G(r/n) =

(
r

∑
i=1

x(1) + (n − r)x(r)

)
/

n

∑
i=1

x(i), r = 1, 2, .., n

where x(i) denote the ith order statistic of the sample. The shape of the hazard rate function would
be increasing, decreasing, bathtub-shaped, and UBT if the TTT transform is concave, convex,
convex then concave, and concave then concave (see [1]). Figure 3 depicts the data’s TTT plot.
The hazard rate function is clearly UBT.

The Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICC),
Bayesian Information Criterion (BIC), and Hannan-Quinn Information Criterion(HQIC) are
s the goodness-of-fit metrics that we take into consideration,

AIC = 2k − 2log ℓ̂,

AICC =
2kn

n − k − 1
− 2log ℓ̂,

BIC = klog n − 2log ℓ̂,

HQIC = 2klog(log n)− 2log ℓ̂,

(20)
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Table 1: MLE’s and their corresponding MSE’s of LTNB distribution parameters.

α γ θ n α̂(MSE(α̂)) γ̂(MSE(γ̂)) θ̂(MSE(θ̂))

.8 .2 1.5 100 .9196(.1598) .2055(.0266) 1.5251(.7527)

200 .8551(.0888) .1989(.0158) 1.5342(.7232)

300 .8813(.1184) .2001(.0193) 1.5428(.6812)

400 .8347(.0506) .2015(.0091) 1.5034(.6691)

500 .8171(.0382) .1986(.0064) 1.5098(.5061)

.5 .3 2 100 .5698(.0539) .2824(.0449) 1.9985(1.2211)

200 .5298(.0313) .2726(.0309) 1.9952(.9892)

300 .5202(.0230) .2836(.0245) 2.0922(.7610)

400 .5122(.0192) .2856(.0222) 2.0962(.5948)

500 .5087(.0142) .2942(.0164) 2.0962(.5484)

.3 .2 1.5 100 .3403(.0229) .2075(.0309) 1.4718(.6438)

200 .3179(.0111) .2088(.0201) 1.6118(.4881)

300 .3141(.0087) .2047(.0149) 1.5339(.2959)

400 .3109(.0065) .2026(.0112) 1.4966(.2363)

500 .3078(.0049) .2073(.0092) 1.5387(.1401)

where ℓ̂ is the likelihood function evaluated at the maximum likelihood estimates, the sample
size is n, and k is the number of parameters.
We fitted the LTNB distribution to the data and compared it to the Lindley distribution with pdf
(1) and the New Generalized Lindley distribution (NGLD) with pdf

f (x) =
e−θx

1 + θ

(
θα+1xα−1

Γ(α)
+

θβxβ−1

Γ(β)

)
,

Beta Lindely(BL) distribution having pdf,

f (x) =
θ2(θ + 1 + θx)β−1(1 + x)e−θβx

B(α, β)(θ + 1)β

(
1 − θ + 1 + θx

θ + 1
e−θx

)α−1
,

new generalized two-parameter Lindley distribution (NG2PLD) distribution having pdf,

f (x) =
θ2

θ + 1

(
1 +

θα−2xα−1

Γ(α)

)
e−θx

transmuted Lindley distribution(TLD) having pdf,

f (x) =
θ2(1 + x)e−θx

(θ + 1)

(
1 − λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)

,

and exponential distribution(ED) having pdf,

f (x) = αe−αx
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Table 2: LSE, WLSE, CVME and corresponding MSEs of parameters of LTNB distribution.

α γ θ n α̂(MSE(α̂)) γ̂(MSE(γ̂)) θ̂(MSE(θ̂))

Least squares 100 .6262(.0015) .2178(.0007) 1.5386(.0043)

.6 .2 1.5 200 .6206(.0009) .2151(.0005) 1.5408(.0045)

300 .6173(.0005) .2141(.0004) 1.5408(.0038)

400 .6162(.0005) .2136(.0003) 1.5437(.0039)

500 .6150(.0004) .2122(.0002) 1.5441(.0039)

Weighted Least squares 100 .6194(.1305) .1308(.0288) 1.3082(2.3691))

.6 .2 1.5 200 .6062(.0893) .1474(.0186) 1.3082(1.7783)

300 .5902(.0641) .1595(.0134) 1.3271(.7774)

400 .5870(.0514) .1660(.0102) 1.3618(.6277)

500 .5938(.0478) .1729(.0089) 1.3942(.5434)

CVM 100 .6261(.0015) .2178(.0008) 1.5386(.0042)

.6 .2 1.5 200 .6206(.0009) .2151(.0006) 1.5440(.0046)

300 .6172(.0005) .2141(.0004) 1.5408(.0038)

400 .6162(.0005) .2135(.0004) 1.5434(.0041)

500 .6150(.0004) .2122(.0002) 1.5441(.0039)

The table 5 lists the parameter estimates and goodness of fit statistics for bladder cancer patient
data.

The LTNB distribution is more suitable for these data since the values of −logl̂, AIC, AICC,
BIC, and HQIC for the LTNB distribution are lower than those of the other competing models.
Figure 4 displays the fitted densities.

9. Time series Models with LTNB marginals

Several researchers have developed and studied time series models with non-Gaussian marginals
(see, for example, [11], [12], and [25]). The following definition is required in order to create the
time series model with LTNB marginal distribution

Definition 9.1. A positive real valued random variable X is said to have Marshall-Olkin Lindley

Truncated Negative binomial distribution and write X d
=MOLTNB(ϑ, α, γ, θ) if it has the survival

function

F̄X(x) =
1

1 + 1
ϑ

[
((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

] . (21)

Theorem 4. The first order auto regressive (AR(1)) process given by

Xn =

{
εn w.p δ

min(Xn−1, εn) w.p 1 − δ
(22)
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Table 3: Remission times of Bladder Cancer Patient Data.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98

6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50
2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28
9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64
3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14
79.05 1.35 2.87 5.62 7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93
11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25
8.37 12.02 2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76
12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Table 4: Descriptive Statistics of Cancer data.

Min. Q1 Median Mean Q3 Max. Var.

0.08 3.348 6.395 9.366 11.838 79.05 110.425

where 0 < δ < 1; n ≥ 1, defines a stationary AR(1) minification process with LTNB(α, γ, θ) as

marginal distribution if and only if εn’s are i.i.d MOLTNB(δ−1, α, γ, θ) with X0
d
= CL(α, γ, θ).

Proof. If {Xn} is stationary with LTNB(α, γ, θ) marginals, then

F̄εn(x) =
F̄X(x)

δ + (1 − δ)F̄X(x)

=

γθ

1−γθ

{[
α+1

(α+1)−(1−γ)(α+1+αx)e−αx

]θ
− 1
}

δ + (1 − δ) γθ

1−γθ

{[
α+1

(α+1)−(1−γ)(α+1+αx)e−αx

]θ
− 1
}

=
1

1 + δ
[

((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

] . (23)

That is, εn’s are i.i.d MOLTNB(δ−1, α, γ, θ).

Conversely, if εn’s are i.i.d MOLTNB(δ−1, α, γ, θ) with X0
d
= CL(α, γ, θ), then,

F̄X1(x) = δF̄ε1(x) + (1 − δ)F̄ε1(x)F̄X0(x)

= δ

 1

1 + δ
[

((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

]
+

(1 − δ)

 1

1 + δ
[

((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

]
 1

1 +
[

((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

]


=
γθ

1 − γθ

{[
α + 1

(α + 1)− (1 − γ)(α + 1 + αx)e−αx

]θ

− 1

}
.
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Figure 4: The empirical TTT plot of the data.

Table 5: Parameter estimates and goodness of fit statistics for various models fitted to the data.

Model Estimates −logl̂ AIC AICC BIC HQIC

LTNB α̂ = 0.0617, γ̂ = 0.1218, 409.23 824.47 824.67 833.03 827.95

θ̂ = 1.5407

NGLD α̂ = 4.679, β̂ = 1.324, 412.75 831.50 831.69 840.06 834.98

θ̂ = 0.180

BL α̂ = 1.340, β̂ = 0.065, 412.80 831.60 831.80 840.16 835.08

θ̂ = 1.861

NG2PLD α̂ = 0.8303, θ̂ = 0.2942 413.37 830.73 830.83 836.44 833.05

TLD θ̂ = 0.156, λ̂ = −0.617 415.15 834.31 834.41 840.01 836.62

LD α̂ = 0.1960 419.53 841.06 841.09 843.89 842.20

ED α̂ = 0.097 426.76 855.53 855.56 858.37 856.68
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Figure 5: Estimated pdf

That is, X1
d
= LTNB(α, γ, θ).

If we assume that Xn−1
d
= LTNB(α, γ, θ), then by induction, we can establish that Xn

d
=

LTNB(α, γ, θ) . Hence the process {Xn} is stationary with LTNB marginals.
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Abstract 
 

Air transport is the primary module of civil aviation and because of its nature, air transport has been 
simultaneously affected by Pandemics and crises. The influence of COVID-19 was more devastating 
than the other Pandemics and crises due to its global effect. This effect has continued a long period 
that still this effect exists now with a slight trend. The aim of this study is to analyse the selected 
variables that shows the past and future trend of air transportation related to operational and 
financial status. These variables are the primary ones that can define the countries' general status in 
air transport. The forecasting results are examined by 9-months forecasting with Vector Error 
Correction Model. It is forecasted that slightly decreasing trend will proceed in the following 9-
months for passenger transportation due to fall and winter seasons. It is forecasted that slightly 
upward trend will proceed in the following 3-months and slightly decreased in the other 6-months 
for cargo transportation due to potential economic crisis in 2023. The originality of this paper is the 
first research related to analyse passenger and freight transportation together with the operational 
and financial parameters that defined in the sample of data and methodology sections. 
 
Keywords: passenger load factor, cargo load factor, vector error correction model, 
air transportation, recovery period. 
 

1. Introduction 
Air transportation is a staminal facilitator for the countries' development. Air transportation 
includes air passenger and air freight modules. Especially air passenger module is related to the 
economic status and welfare of people. Trade and tourism primarily affect the country's 
development rates, so the development of air passenger transportation increases revenues with the 
development interest of demanded services in high amounts [1]. This study forecasts the following 
three quarters (9-month period) to analyse the negative impact of COVID-19 on air transportation. 
When time passes and the COVID-19 effect has decreased, air passenger demand will probably rise, 
and the growing trend of civil aviation will rise too. Nearly all countries prohibited travel to other 
countries because of the increment in COVID-19 cases. Several strategies regarding restrictions and 
procedures have been applied in countries, so air passenger traffic numbers decreased [2]. Before 
COVID-19 emerged, the annual development rate of the civil aviation industry in 21st century has 
4.2%. More than 5000 airlines and 40 million flights clearly show that the global airline market value 
is measured by billions of dollars (USD). Furthermore, civil aviation affects the Gross Domestic 
Product (GDP) by more than 1% globally [3]. So, the importance of civil aviation is better than the 
other transportation modules. Nowadays, there have more than 1200 big-scale international airports 
globally and these airports provide the transportation of more than 4 billion passengers annually [4]. 
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Besides air passenger, air freight is described as the transportation process of products by using 

an air carrier. Air freight is evaluated as an important transportation module when these goods are 
carried globally [5]. Air transportation has a significant development trend globally, so the revenues 
and populations have increased with the alteration of industrial structure. This status has affected 
the progress of free trade which enhanced this development trend globally [6]. With the 
development of air freight transportation demand, air traffic models have also altered and turned 
into a more complicated structure [7]. The profit level of this transportation module reached 40% in 
2009, while this profit was only 5% in 2000 [8, 9]. In 2014, Boeing Company [10] forecasted that the 
air freight industry has proceeded to develop by a 4.7% per year. The forecasts show that this 
number will triple its income in 2033. The estimations specified that from 2013 to 2033, the billion 
ton-kilometers (RTKs) have risen from 207.8 to 521.8. There have several strategies for the 
sustainability of the stunning development of expanding international trade [11, 12]. So, airlines take 
place in the operation process of air freight. They enhance their strategic plans to reflect changes in 
the global competitive landscape [9; 13]. Thus, increasing theoretical researches have tried to solve 
the difficulties in the operational process in air freight since the 1990s [14]. Besides, there was a 
general supposition about the global aviation industry with an improvement trend in 2020. So, the 
status was the same as the growing years that has in a consecutive growth in air passenger, freight, 
and incomes in the latest years. Following this developing pattern, several airlines have made 
investments in purchasing and leasing more aircraft from well-known manufacturers like Airbus 
and Boeing, offering significant savings on new orders with long-term contracts [15]. 

 
In addition to these definitions related to air passenger and air freight transport, this study aims 

to analyze the 11 variables that mentioned below according to all active countries. These variables 
are; 

• Gross Domestic Product (GDP),  
• Total National Air Passenger Numbers, 
• Total International Air Passenger Numbers, 
• Total National Air Freight Numbers. 
• Total International Air Freight Numbers 
• Available Seat Kilometer for Air Passenger Transportation 
• Revenue per Passenger Kilometer for Air Passenger Transportation 
• Passenger Load Factor for Air Passenger Transportation 
• Total Available Cargo Tonne Kilometer for Air Freight Transportation 
• Revenue per Cargo Tonne Kilometer for Air Freight Transportation 
• Cargo Load Factor for Air Freight Transportation 

 
In this study, these 11 variables are gathered to figure out significant factors that define the 

operational and financial level of air transport (passenger and freight) for countries. This study also 
analyses the COVID-19 effect on air passengers and air freight transport (not affected as passenger 
transportation) as an unprecedented worldwide crisis globally.  
 

 
2. Literature Review 

 
When it is examined the related studies, first study is related to predict the relationship between the 
degree of economic shocks and the temporal recovery of the global air transport business was 
published by Gudmundson et al. [16]. According to this study's results, the global flight demand, 
particularly for passengers, will take at least 2.4 years (recovery by the end of 2022) to reach pre-
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COVID-19 levels. The most optimistic forecast for the recovery has continued approximately two 
years (recovery by the third quarter of 2022), while the most pessimistic forecast for the recovery has 
continued approximately for six years (recovery in 2026). According to the methodology related to 
passenger and freight transportation, the recovery period forecast calculated by using a univariate 
approach called ARIMAX. This study was published at the beginning of 2021, so the recovery is not 
reflecting the up-to-date data at. Second study is related to air travel was released by Truong [17]. 
Truong analyzed the quantity of both domestic and foreign flights. This study specified that 
although the number of flights during the pandemic may not have reached 2019 levels, in 2022, the 
number of flights will not far away about the demand for travel in 2019. In that research, neural 
network models for estimating domestic and international air transportation in the medium and 
long terms were developed and tested. To estimate passenger demand, economic factors following 
COVID-19 that placed restrictions on transportation were examined. In the third study, Wang and 
Gao [18] analyzed 87 research about air transportation. They took these studies between 2010 to 
2020. They used preliminary analytical techniques to analyze the input data. In the input data, three 
analyses were created and collected. This analysis revealed the relationship between the reviewed 
studies by forecasting airlines’ socioeconomic and operational characteristics in time series 
modelling, the study reviewed air transportation demand on international scale. 

 
In the fourth study, Dube et al. [19] specified that because of air travel is in full swing, general 

problems will not resolve right away. He proposed to aviation specialists that safeguarding 
passengers' health and safety, planning ticket prices, boosting efficiency, ensuring high-quality in-
flight amenities, and maintaining such safeguards is likewise essential for the development of air 
traffic. In the fifth study, Li et al. [20] specified that there was a sharp drop in passenger air travel 
because of COVID-19 for two reasons. These are the breakdown of demand and supply of 
restrictions. The study segmented passengers according to their characteristics by applying several 
simulations and predictions of demand for each segment. In the sixth study, Zhang et al. [21] 
determined econometric and subjective models related to patterns of Hong Kong's tourism revival. 
These models described how the COVID-19 Pandemic affected Hong Kong's tourism industry 
economically. They also analyzed the airline revenues due to COVID-19 effect. In the seventh and 
last study, Xuan et al. [22] forecasted the air transport recovery period. He used the vector 
autoregression approach to calculate the period of recovery. The results showed that the decisive 
factors of the recovery are gross domestic product (GDP) and air freight traffic. 

 
If such a Pandemic had not happened, there was a general supposition in the worldwide 

aviation industry to anticipate an increasing development trend in 2020. This status was the same as 
the consecutive growing years for air passenger and freight transportation. The forecast reports have 
shown this trend for airlines about the investments in buying new aircraft from widely known 
aircraft manufacturers such as Airbus and Boeing by directing new order deliveries. In addition to 
the manufacturing companies in civil aviation, the connection between the tourism and 
transportation sectors has broadly been debated academically. This debate is commonly focused on 
air transportation. Despite the existence of other modules in transportation such as railway, 
maritime, road vehicles, etc., tourism issue is the most decisive one for air transportation. 
Correspondingly, tourism is the preferential factor for the development of air transportation and the 
increment of GDP related to the economic level of countries [23, 24]. 

 
Civil aviation has turned into the most important one among the other industries in its 

contribution to worldwide economic development. However, the development and continuation of 
COVID-19 will cause economic issues related to excessive tourism costs on a global scale. 
Correspondingly, the implementation of measures is also about the operation process planning in a 
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global fleet of narrow and wide-body aircraft [25]. International tourism, which stands on air 
transportation with a ratio of (58%) for arriving passengers to countries, has reached a standstill with 
important ratios of negative outcomes for tourism-linked activities and numbers of employment 
[26]. The necessity for the airlines related to stopping their flight operations has negatively affected 
the demand of passengers, so the airlines do not have enough options in the usage of airports for the 
sustainability of the flight planning strategy rather than to use aircraft for cargo flights. Besides, 
these selections are required to assist the airports and airlines by ensuring a particular field for using 
new aircraft parking positions. The crisis in the civil aviation industry is related to interminable, 
connected, and unresolved problems designated for the worldwide air transportation framework 
[27]. 

 
When benchmarking air passenger and freight transportation, air freight is more complicated 

than passenger transportation because this transportation process includes more strategies and more 
detailed processes. When compare with passenger transportation, a compound of weight and 
volume, various types of services, combinations, and network planning design are more detailed. 
The obvious differences between freight and passenger operations demonstrate that the 
multidisciplinary nature of freight transportation is more complicated than passenger transportation 
[28, 29, 11, 30]. In general, air freight transportation has higher ambiguity than passenger 
transportation because of its volume capacity. In passenger transportation passengers may cancel 
bookings, so the passengers that do not come to the aircraft have no place on the passenger list. 
Because of this, International Civil Aviation Organization (ICAO) permits airlines for selling tickets 
at more than %10 of their capacity. The booking capacity of air freight transportation is related to 
the freight forwarders' planning, and it can be assigned to the volume of cargo capacity. The cargo 
capacity volume plans the determined flights for six or twelve months [31]. The planning of the 
number of goods shipped with on-time performance is more important rather than booked 
reservations. These reservations compose elevated fluctuations due to the management of capacity. 
This situation shows freight forwarders generally do not require to give the price for unserviceable 
freights. Without punishment charges for unserviceable freights, the forwarder can fulfil the need to 
reduce risks to compete with the other companies. This status actualizes with several reservations 
in air freight that have been planned, reserved, and cancelled after the plan because cancelled flights 
are not an expense for the airlines. Consequently, the reservation process can show substantial 
volatility in air freight more than air passenger transportation [32]. 

 
It is more challenging to predict air freight capacity than air passenger capacity. Passenger 

aircraft capacity is related to its total seats, but freight capacity relies on the types and volume of 
containers and pallets named unit load devices (ULDs). The main problems with ULDs include 
variety of issues such as, pivot weight, volume, type of the product, and center of gravity [29]. For 
example, capacity has a connection with volume, and solely weight is not a determining factor. The 
basic specifications of air freight include complicated decision-making models for the management 
of air freight capacity. Transfer routes between the origin and destination (OD) pair are significant 
for air freight transportation. They serve the airline for passenger transportation. Generally, big-scale 
airlines known as full-service carriers control the process of alleged hub-and-spoke networks. 
Freight and passengers are carried from diversified origins to several hubs where freight and 
passengers are unified and afterward carry to other hubs for using wide-body aircraft. Passenger 
transportation can have a problem with inadmissible passengers. These passengers cannot embark 
to the aircraft due to the prohibitions. In air freight transportation, the freights can transfer via 
numerous midpoint airports such as origin point to destination point with a quick delivery time [31]. 

 
Airlines report the origin, stopover (transit), and destination airports for both passenger and 
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freight traffic to build the transfer route plans. These processes cover network capacity usage and 
have a connection between conceptual and empirical modelling. These models have an increasing 
trend aiming to analyse quantitative decision methods related to the operational process especially 
for air freight [14]. Furthermore, the literature review covers the information about air transportation 
with defining the decreasing trend about all active countries because of COVID-19. Also, the 
literature review shows the decreasing and increasing trend of air transportation numbers by 
making a forecast (for passenger and freight) before and after the COVID-19 Pandemic. 
 

3. Sample of Data 
 
For the 11 selected variables in this study, time series modeling was applied. The primary thing that 
affects air transportation statistics is gross domestic product (GDP). All finished products and 
services produced within the country for a particular period (often one year) are included in the 
GDP [33]. Additionally, the Federal Reserve Bank of St. Louis provided the GDP data [34] The 
study's introduction and literature review sections both include descriptions of air passenger and 
freight transportation that indicate both the domestic and international numbers involved.  
 

The six airline variables that are still in effect are: available passenger kilometers (ASK), revenue 
passenger kilometers (RPK), passenger load factor for air passenger transportation (PLF), available 
tonne kilometers (ATK), revenue tonne kilometers (RTK), and cargo load factor (CLF) for air freight 
transportation. All selected variables are used for the time series modeling analysis between January 
2016 and August 2022 due to the availability of data. 

 
First, RPK and the airline's total kilometer passenger capacity are connected. The total number 

of seats flown, and the distance are added to determine RPK. RPK reimburses all miles flown by 
paying passengers. The total distance traveled and the number of passengers who make revenue are 
multiplied to determine RPK. Because it assesses the current demand for air travel, sometimes 
known as airline "traffic." RPK determines the amount of demand for air travel regarding the labor 
force or workforce by calculating the number of passengers and distance traveled [35]. Secondly, 
ASK includes the available seat capacity of the aircraft, and it is a decisive data for the calculation of 
the airline’s transporting passenger capacity. When a seat is available for carrying, it can calculate 
for the ASK [36]. Thirdly, PLF is the last widely accepted variable. By dividing RPK by ASK, it is 
determined with the airline's capability for carrying passengers. The capacity of the passenger seats 
has an impact on the rate at which RPK and ASK are rising. It means PLF directly affects an increase 
in terms of ASK. So, PLF covers supply, demand, the total passenger numbers, and seat capacity 
[37]. 

  
Fourthly, ATK is related to the airline’s total kilometer freight capacity. It is obtained by 

multiplying the distance by the total volume of capacity flown. The number of available freights is 
significant for the evaluation of ATK and the calculation of the airline’s transporting freight capacity. 
When a compartment is available for carrying, it can calculate for ATK [38]. Fifthly, RTK covers the 
number of kilometers flown by paid freights. It is defined as the total distance traveled with the 
number of freights that generate revenue. It evaluates the actual demand for air travel as an airline's 
"capacity." RTK calculates the amount of labor or work power used to measure the level of demand 
for air travel. RTK is multiplied by the distance traveled and the freight expense [39]. LF is the final 
extensively used variable. By dividing RTK by ATK, it is computed with the airline's capacity to 
move freight. RTK and ATK both rise in response to an expansion in this freight transport capacity. 
This indicates that CLF has a direct impact on an increase in ATK. So, CLF includes total freight 
capacity, total carriage volume, total supply, and total demand [40]. 
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These factors reflect how well airlines are performing financially and operationally. IATA has 

shared these six variables since January 2016, so the period of the analysis starts from January 2016 
[41, 42]. In this study, air passenger and freight transportation variables named RPK, ASK, PLF, 
ATK, RTK, and CLF analyzed in the time series modelling [43], and they obtained from the IATA 
Air Passenger Monthly Analysis Reports [41] and Air Freight Monthly Analysis Reports [42]. 
Additionally, the air passenger and freight numbers took from the Bureau of Transportation 
Statistics (BTS) for Air Passenger Data [44] and Air Freight Data [45]. 
 

4. Methodology 
 

As previously determined, this research uses IATA-released monthly data from January 2016 
through August 2022. These factors are listed as follows: Gross Domestic Product (GDP), Domestic 
Passenger Numbers, International Passenger Numbers, Domestic Freight Numbers, International 
Freight Numbers, Available Seat Kilometer (ASK), Revenue Passenger Kilometer (RPK), Passenger 
Load Load Factor (PLF), Available Cargo Tonne Kilometers (ACTK), Revenue Tonne Kilometers 
(RTK), and Cargo Load Factor (CLF) [35, 36]. This study includes time series modeling to forecast 
PLF and CLF while analyzing the contributing variables. Therefore, endogenous factors ASK, RPK, 
GDP, domestic, and international passenger numbers are considered in the Vector Error Correction 
Model (VECM), while endogenous variables CTK, ACTK, GDP, domestic, and international cargo 
numbers are thought to affect the CLF. After the VECM model has been applied, the relationship 
between PLF, CLF, and the other endogenous variables is made known to impulse response 
functions. In time series modeling, the series that are connected to the selected variables are 
transformed with a logarithmic transformation and normalized to remove variability by subtracting 
the mean and separating the standard deviation. To avoid NaN results caused by logarithmic 
transformations with negative values, plus 1 is added to all series. The time series analysis is carried 
out using the following packages: "TSA, vars, urca, forecast, and tsDyn" in R 4.0.2. [46]. 
Understanding the stationarity and connection of the series can be accomplished by looking at the 
standardized series (Figure 1 and Figure 2). 

 
Figure 1: The standardized time series plot of comparing s_RPK, s_GDP, s_Domestic, s_International, s_PLF and 

s_ASK 
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In the period of January 2016 to August 2022, s_PLF, s_ASK, s_RPK, s_GDP, domestic, and 

international passenger number variables are shown in Figure 1. It is obvious that a major drop is 
reported in April 2020 due to COVID-19 impact on all series. Although the increase in every variable 
has slightly started and continue after May 2020. s_RPK and s_ASK variables pass their previous 
level at the beginning of 2022. Besides, other series approximately reach their previous level (slightly 
lower) at the beginning of 2022 and pass their previous level at the third quarter (July and August) 
of 2022. 

 
Figure 2: The standardized time series plot of comparing s_CTK, s_ACTK, s_GDP, s_Domestic, s_International, and 

s_CLF 
 

In the period of January 2016 to August 2022, s_CTK, s_ACTK, s_GDP, s_Domestic, 
s_International, s_CLF parameters are shown in Figure 2. The COVID-19 Pandemic's impact is 
expected to result in a major drop in all data in April 2020, except for GDP. On May 1, 2020, the GDP 
will have increased and reached its peak value. In terms of s CLF, the series barely surpassed its 
prior level, but s_Domestic and s_International reached their top level in the third quarter (July to 
September) of 2022. 
 
4.1. Unit root test and the lag-length determination 
The idea of stationarity is very important in time series analysis. The covariance between two series 
values is expressed as the number of lags in the series, and a time series has a fixed mean, variance, 
and stationarity. Once trend and seasonality modifications have been made, time series models must 
be used (not changing over time). A subjective way of assessing stationarity is to use Augmented 
Dickey-Fuller (ADF) test statistics (47; 48]. The test is applied to a new model called the ADF test 
because the lags of the dependent series are expected to be added to the right of the equation to solve 
the autocorrelation problem. A test was suggested by Dickey et al. [49] related to issues in 
autoregressive time series. Here is how this test is shown. 
 

∆𝑦(𝑡) = 𝛼 + 𝜌𝑦(𝑡 − 1) + 𝛽𝑇 +∑ d!∆𝑦(𝑡 − 𝑠) +	
"
!#$ 𝑢%         (1) 
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In the formula, ∆𝑦(𝑡) is K-dimensional vector of observed variables, 𝛼	is Kx1-dimensional 

constant vector, 𝑇 is a time trend,	u% is the error term which has 0 mean and constant variance called 
white noise.  Both the level of the series and their initial differences are tested in this procedure. In 
contrast to the alternative, the null hypothesis is that the series under examination has a unit root. 
In each example, the final prediction error (FPE) from Akaike is minimized to determine the lag-
length [50]. Additionally, the Likelihood Ratio Test (LR), Akaike Information Criteria (AIC), 
Schwarz Information Criteria (SC), and Hannan-Quinn Information Criteria (HQ) can define the 
optimum lag-length. In every test except the LR test, the smallest value indicates the ideal lag-length. 
By putting the likelihood ratio statistics to the test at the selected level of significance, the LR test is 
discovered. The proper lag-length should be long enough to prevent autocorrelation between error 
terms but short enough to prevent any loss of information regarding the interaction of the series [51]. 

 
4.2. The cointegration test 
The cointegration test determines whether there is a long-term relationship between the series after 
the stationary study between the series. Three alternative approaches are utilized in the literature to 
incorporate the cointegration test into the model. These methods were improved by Engle and 
Granger [52], Johansen and Juselius [53], and Pesaran, Shin, and Smith [54]. Johansen and Juselius' 
[53] technique was selected for this study because it allows for the examination of more than two 
variables. The absence of a cointegration vector in the series is the null hypothesis (H 0:r=0). A 
different possibility for the cointegration vector (H 0:r0) is that the time series have one (cointegrated 
series I(r)). R is a symbol for the quantity of cointegration vectors. If there is at least one cointegrated 
vector in the study, it means there is a long-term relationship between the series in the model. In 
other words, the order of these series remains constant. The VECM ought to be incorporated into 
the model because it is determined whether a long-term relationship exists at this point in the 
investigation. 

 
4.3. Vector error correction model (VECM)  
Long-term and short-term relationships between series are separated by VECM. Engle and Granger 
[46] created it to distinguish between short-term connections. It is attempted to assess whether the 
series experiences any shock over the long-term using VECM. According to Engle and Granger [52], 
the operating model for the VECM is as follows: 

 
∆𝑦(𝑡) = 𝛼𝛽′	𝑦(𝑡 − 1) + Γ$	∆𝑦(𝑡 − 1) +⋯+ Γ"&$	∆𝑦(𝑡 − 𝑝 + 1) + 𝑢%    (2) 

 
In the formula, ∆𝑦(𝑡) is K-dimensional vector of observed variables, 𝛼	is Kxr-dimensional 

coefficient matrix, 𝛽	is Kxr dimensional cointegration matrix, Γ' is kxk-dimensional short_term 
coefficient matrix, and 	u% is the error term which has 0 mean and constant variance called white 
noise.  The error correction variable (𝛽) acts to maintain the model dynamics in equilibrium and 
compels the variables to converge on the Error Correction Term (ECT), which is the long-term 
equilibrium value. When the error correction term's coefficient is statistically significant, bias is 
present. The coefficient size is a measure of how quickly the value of the long-term equilibrium is 
approaching. In actual, it is anticipated that the error correction variable will be statistically 
significant and negative. The variables in this instance are said to move in the direction of the long-
term equilibrium value. Short-term departures from equilibrium will be rectified based on the size 
of the error correction variable's coefficient [55]. The lag order is p. The maximum lag and minimal 
Akaike Information Criteria are used to choose the lag-length p in the VECM. 
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4.4. Impulse response functions and the decomposition of forecast error variance  
The estimated coefficients in VECM are quite challenging to comprehend. Impulse-response 
function (IRF) graphs, which are graphical representations of the reactions to varied shocks, are thus 
utilized to analyze the model's results. The vertical axis is used to generate the graphs of the impulse-
response functions. The amplitude and direction of other series' responses indicate an increase in 
the standard deviation's response to the pertinent series. In a 12-month period, the shock is given a 
horizontal axis. Red-dashed lines reflect confidence intervals with 2 standard errors for how the 
variables will respond, and they are crucial in establishing the data' statistical significance. Indicating 
that the reaction is statistically significant at a 95% confidence level, the bottom and higher bands 
both had the same sign. The dotted lines on the graphs show the confidence intervals, and the 
straight lines on the graphs reflect the point estimates of the effect-reaction coefficients. To verify the 
relationship between the series, the Forecast Error Variance Decomposition (FEVD) approach is 
used. A specific variable's response to its own shock and the shock from other variables are 
evaluated in the VECM model, or FEVD. FEVD breaks down a variable's fluctuation into its 
individual shocks. It simply divides the variance of each variable's forecast mistakes between its 
own shocks and those of the other variables in the VECM [56]. 

 
4.5. Forecasting 
Recursively, forecasts are made for the series’ levels. By converting VECM to a VAR in R (using the 
VARrep function), forecasts for VECM can be obtained. Since a VECM with a lag of p corresponds 
to a VAR with a lag of p + 1, the new data for a VECM with a lag of p should have p + 1 rows. 

 
5. Results 

 
ADF test results for evaluating stationarity, cointegration test results, estimated VECM model 
results (for s PLF), s PLF impulse response, forecast error variance decomposition, forecasting of s 
PLF, and forecast values for passenger load factor are shown in the results section with tables and 
figures. 

 
5.1. Unit root test and determining delay 
The unit root of the series is the null hypothesis. The time series being stationary is an alternate 
theory (or trend-stationary). As shown in Table 2, the number of s_ASK, s_GDP, s_Domestic, and s_ 
International variables all reject the null hypothesis at the 0.05 significant level. The initial difference 
between s_PLF and s_RPK is discovered stationary. As shown in Table 1, the null hypothesis is 
rejected at the 0.05 significance level. 
 

Table 1: ADF test results to show the evoluation of stationary 
 

   Variables s_PLF s_RPK (1st diff.) s_ASK s_GDP s_Domestic s_Internationa
l 

ADF test value -2.368 -6.344 -2.399 -2.497 -3.118 -2.68 
p 0.039 <0.001 0.009 <0.001 0.009 0.007 

Variables s_CLF s_CTK (1st diff.) s_ACTK s_GDP s_Domestic_c 
s_Internationa
l_c 

ADF test value -2.331 -6.491 -2.204 -2.497 -2.798 -3.724 
p 0.034 <0.001 0.018 <0.001 <0.001 <0.001 
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The AIC, HQ, SC, and FPE tests are considered to estimate lag-length. The structure of VECM 

model is used in these tests to establish the ideal lag-length for this data set, which is 10. Despite the 
small sample size and the series' structure, the lag-length is set at 2. So, to forecast s_ PLF and s_CLF, 
the cointegration test is required. It can be utilized with the series in the estimate of regressions. 

 
5.2. The test of cointegration 
r indicates the cointegration equations number. The test statistic is low for r=1 for s_PLF and r=3 for 
s_CLF models at 5% significance level, rejecting the hypothesis. Table 2 shows the cointegration's 
presence that VECM was used to find the result. 
 

Table 2: Cointegration test results 
 

                          s_PLF s_CLF 
               test  10pct  5pct  1pct                 test  10pct  5pct   1pct 
r <= 5 |   2.78  6.50  8.18 11.65 r <= 5 |    1.54  6.50  8.18  11.65 
r <= 4 |   6.63 12.91 14.90 19.19 r <= 4 |    5.13 15.66 17.95  23.52 
r <= 3 |   12.14 18.90 21.07 25.75 r <= 3 |    20.61 28.71 31.52  37.22 
r <= 2 |   19.54 24.78 27.14 32.14 r <= 2 |    50.72 45.23 48.28  55.43 
r <= 1 |   29.01 30.84 33.32 38.78 r <= 1 |    83.57 66.49 70.60  78.87 
r = 0  |    49.63 36.25 39.43 44.59 r = 0  |    143.89 85.18 90.39 104.20 

 
5.3. Vector error correction model (VECM) 
The acquired results led to the formation of a VECM with r=1 and r=3 cointegration vectors. As 
previously indicated, the model's lag length is assumed to be 2. In Table 3, the estimated VECM 
results are shown. 
 

Table 3: VECM model results with an estimation (for s_PLF) 
 

Response     s_PLF Response s_CLF 

Variables (lags) 
Estimate 
(Standard Error) Variables (lags) 

Estimate 
(Standard Error) 

s_RPK(-1) 
1.886 
(1.510) s_CTK(-1) 

-0.021 
(0.100) 

s_ASK(-1) -1.571 
(1.586) s_ACTK(-1) -0.079 

(0.130) 

s_PLF(-1) 0.888 
(0.280)** s_CLF(-1) 0.231 

(0.135). 

s_GDP(-1) 0.003 
(0.069) 

s_GDP(-1) -0.138 
(0.065)*  

s_Domestic (-1) 
-0.726 
(0.306)* s_Domestic_c(-1) 

0.071 
(0.130) 

s_International(-1) 
-0.168 
(0.470) s_International_c(-1) 

-0.202 
(0.106). 

p<0.001 p<0.001 

ECT1= 0.181 (1.424) 
ECT1=0.122 (0.042)** 
ECT2=-0.111 (0.068) 
ECT3=-0.297 (0.105)** 

.p<0.10,*p<0.05, **p<0.001, ***p<0.0001 
 
The Error Correction Term (ECT) controls how quickly long-run equilibrium returns. ECT1>0, 

ECT2>0, and ECT3>0, or at least one of them cannot be equal to 0, are necessary for a long-term 
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connection to be stable. Table 3 shows that it does meet the prerequisite for a long-term stable 
connection. The error correction model will re-establish s_PLF’s and s_CLF's long-term equilibrium 
because it is statistically significant and negative. Approximately 18% (s_PLF) and 30% (s_CLF) of 
the variances are corrected when there is a departure from equilibrium. The impulse-response 
functions are discussed in the next part to further explore the long-term impacts. 

 
5.4. Impulse response function 
For the results to be regarded as valid, both IRF confidence intervals must remain in the area above 
(or below) the zero band. As a result, conclusions from the research may only be drawn if the 
confidence intervals fall within the same range. 
 

 

 
Figure 3: s_PLF and s_CLF impulse response 
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The top graph, in the middle of the left side, demonstrates that s_PLF started to fall after being 
temporarily touched by the effect, and then the effect disappears. According to the bottom-left 
graph, the short-term influence of s_Domestic_c on s_PLF increased, while the long-term effect of 
this impact gradually declined. The bottom right-hand graph demonstrates that after being touched 
by s_ International, s_PLF started to rise, and this impact gradually subsided in long-term. The 
bottom graph in the middle left-hand column demonstrates that s_CLF started to rise after being 
negatively affected by itself for a while, and eventually the effect disappears. The bottom right-hand 
graph demonstrates that the short-term influence of s_International_c on s_CLF was followed by an 
increase before the impact disappeared. The graph on the bottom left shows that s_CLF started to 
increase after being temporarily touched by s_Domestic_c, and subsequently this impact disappears. 
After being affected by s_ GDP in the near term, s_CLF started to rise, and this impact gradually 
lessened in long-term (Figure 3). 

 
5.5. Decomposition of forecasting error variance 
By dividing the variance of forecast error, it is possible to observe the impact of independent 
variables on s_PLF and s_CLF. The variance decomposition of forecast error examines the relative 
contributions of various variables and shocks to changes in a series. To find the impact of other series 
on a shock that happens in any of the series, variance decomposition is used. It defines the 
percentage of a shock unit that happened in one series that was brought on by changes in another. 
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Figure 4: Error variance decomposition of forecasting 
 
Figure 4 shows the FEVD results, which indicate that depending on how the series is coupled 

to the shock, the key variable influencing the s_PLF can alternate between the s_GDP, s_Domestic, 
and s_International. The primary factor influencing the s_CLF can either be s_International_c, 
s_GDP, or s_ CLF by itself depending on how the specific series is tied to the shock. 

 
5.6. Forecasting 
The VECM produces projected outcomes for the next nine months. Long-term results will be more 
accurate when the model is expanded to include the s_PLF and s_CLF values for each month. The 
findings of the forecast are as follows. 
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Figure 5: The forecast of s_PLF and s_CLF 
 

In Figure 5, the red lines show the upper and lower boundaries, while the blue line show the 
conditional forecast. The s_PLF series are somewhat decreased after August whereas the s_CLF 
series are significantly raised after August that seen in the forecasting results in Figure 5. 
 

Table 4: The Forecasting Values of Passenger and Cargo Load Factor 
 

 
Date Actual 

PLF 

95% CI 
Lower 
Limit PLF 

95% CI 
Upper 
Limit PLF 

Actual 
CLF 

95% CI 
Lower Limit 
CLF 

95% CI 
Upper Limit 
CLF 

August 2022 0.818 - - 0.467 - - 

Date Forecast 
PLF 

95% CI 
Lower 
Limit PLF 

95% CI 
Upper 
Limit PLF 

Forecast 
CLF 

95% CI 
Lower Limit 
CLF 

95% CI 
Upper Limit 
CLF 

September 2022 0.804 0.731 0.876 0,475 0,443 0,508 
October 2022 0.797 0.676 0.919 0,485 0,436 0,534 
November 2022 0.801 0.654 0.948 0,483 0,424 0,542 
December 2022 0.804 0.640 0.969 0,474 0,407 0,540 
January 2023 0.804 0.623 0.986 0,469 0,395 0,542 
February 2023 0.803 0.603 1.003 0,468 0,387 0,549 
March 2023 0.802 0.586 1.019 0,469 0,380 0,559 
April 2023 0.803 0.571 1.035 0,470 0,373 0,566 
May 2023 0.804 0.558 1.050 0,468 0,365 0,572 

 
The predicted outcomes can be analyzed because model assumptions are revealed. With the 

VECM, the nine months forecasting can be applied to the analysis.  Table 4 also includes the real 
data from December for comparison's sake. Due to the fall and winter seasons, it is anticipated that 
the slightly negative trend for s_PLF will persist for the next nine months. Therefore, the impact of 
the first and fourth quarters (October to December and January to March) stands a very low level. It 
is forecasted that the slightly upward trend will proceed in the following three months and slightly 
decreased in the other 6 months for s_CLF according to the potential of economic crisis in the first 
quarter (January to March) of 2023.  
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6. Conclusion 
 

COVID-19 effect has negatively differentiated from all Pandemics and additionally crises due to its 
dissemination globally. Due to its nature, air transportation is the industry that mostly effected from 
crises and Pandemics globally. Air transportation includes air passenger and freight transportation, 
and they have different characteristics from each other. In general, air freight is more sophisticated 
than air passenger transportation because it includes more complicated processes. The calculation 
weight and volume, diversified services, combination, and reinforcement of network planning 
include more diversified specifications than passenger transportation. The significant distinctions 
between passenger and freight operations reveals that freight transportation have a more 
multidisciplinary system and higher uncertainty than passenger transportation due to the capacity 
problem related to volume. However, in passenger transportation passengers may cancel bookings, 
so the passengers that do not come to the aircraft have no place on the passenger list. Forecasting air 
freight capacity is also more complicated than forecasting air passenger capacity. Passenger aircraft 
capacity is related to total seat number in the aircraft, but freight capacity relies on the types, volume 
of containers and pallets named ULDs. Besides the differences between two modules of 
transportation, gross domestic product (GDP), total national air passenger numbers, total 
international air passenger numbers, total national air freight numbers, total international air freight 
numbers, available seat kilometer, revenue passenger kilometer, passenger load factor, available 
cargo tonne kilometer, revenue cargo tonne kilometer, and cargo load factor are the selected 
parameters for the application of time series modelling.  
 

In the methodology part related to the analysis of air passenger transportation between January 
2016 and August 2022, s_PLF, s_ASK, and s_RPK variables dramaticly decrease in April 2020 
because of the COVID-19 Pandemic except s_GDP variable. Even if the increase has gradually begun 
and will continue to rise beyond May 2020, the series has not yet returned to its prior level (slightly 
lower). In the methodology part for air freight transportation between January 2016 and August 
2022, s_CTK, s_ACTK, s_GDP, s_Domestic, s_International, s_CLF variables dramaticly decrease in 
April 2020 because of the COVID-19 Pandemic except s_GDP variable.  The series returns to its 
former level for s_CLF, s_Domestic, and s_International with the rise trend in GDP on May 2020, 
although s_ GDP value has peaked. In the forecasting of a 9-month period using VECM, it is 
predicted that the slightly downward trend for s_PLF in air passenger transportation will continue 
in the coming 9 months due to weather conditions in the fourth and first quarters, whereas the 
slightly upward trend for s_CLF in air freight transportation will continue in the coming 3 months 
and slightly decrease in the remaining 6 months due to the potential economic problems globally in 
the first quarter. In future studies, a different analysis named Multidimensional Scaling can be 
applied with the same variables for all active countries in civil aviation on yearly basis. 
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Abstract 

Aim. The purpose of this paper is to find the reliability measures and profit of a two-unit gas turbine 
power generating system incorporated with one gas turbine and one steam turbine. Effects of different 
humidity condition (humidity ≤/> 50%) are taken into consideration by fixing the range of 
temperature (5℃-25℃) for developing the model. At initial stage, both units (gas turbine and steam 
turbine) are in operative mode. If steam turbine fails, gas turbine remains in operative mode but if 
gas turbine fails, system goes to down state and when both unit fails, system fails. In this system we 
assume that failure time distribution is exponentially distributed while repair time distribution is 
arbitrary. Methods. In this paper we use the Laplace transform for mathematical analysis, and semi-
markov process and regenerative point technique to investigate reliability measures and profit of the 
system. Findings. The system is analysed in steady state and different reliability measures such as 
mean time to system failure, availability for different cycles and for different humidity conditions, 
busy period, down time of the system etc.  are calculated and the graphs have been drawn to see the 
effect of different transition rates such as failure rate and repair rate of the units for different humidity 
conditions on reliability measures and the profit for particular case is evaluated using the 
information/data collected from gas turbine power generating system located at Bawana, Delhi, India. 
Conclusion. Our finding shows that mean time to system failure and availability when both turbines 
are working decreases with increase in any one of failure rate while availability when only gas turbine 
is working increases with increase in steam turbine failure rate and profit for plant decreases with 
increase in failure rates. From this we concluded that availability for the fixed range of temperature 
(5℃-25℃) is higher when humidity is >50% as compared to when humidity is ≤50%.  Thus, a 
comprehensive study of gas turbine system may be helpful to those who are involved in power 
generating industry. 

Keywords: Gas Turbine, Steam Turbine, Failure Rate, Reliability Measures 

 
1. Introduction 

 
In this era of high competition, reliability has been widely progressed over the years to attain the 
needs and requirements of global competition. Reliability analysis of system plays pivotal role in 
deciding the productivity and profitability of the system. Gas turbine power systems are regarded 
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as key element in industrial production and any deficiency in power supplying may lead to 
significant financial detriment as large capital investments are required for industrial production. 
Several studies have been conducted so far for gas turbine power system by assuming different 
failure and repair polices. A number of researcher have studied the system of two or more 
dissimilar/similar units including [1-3] in which one unit is operation mode and another one is 
standby state by using different repairs. El-Berry [4] discussed reliability based on failure of data of 
a gas turbine power plant. Singh and Taneja [5-6] introduced a situation of gas turbine power plant 
where units are dissimilar but nature of output is same by considering effect of random/scheduled 
inspection. Farouk and Sheng [7] proposed a situation for power plant to study effect of ambient 
temperature on gas turbine. Abigail et al. [8] studied the combined cycle power plant considering 
effect of ambient temperature with post-combustion CO2 capture. Saleh et al. [9] discussed the 
performance of gas turbine in Saudi weather condition. Rajesh et al. [10-11] focused on reliability 
analysis of gas turbine power plant with effect of ambient temperature with different repair polices. 
Fernandez et al. [12] studied the effect of temperature in tropical climate on performability of gas 
turbine.  Bird and Grabe [13] discussed humidity effects on gas turbine performance. Hanachi et al. 
[14] focused on the effects of intake air humidity on monitoring of gas turbine system but they did 
not find reliability measures like Mean time to system failure, Availability, Down time, etc.   
       Taking all above into consideration, in present paper we discuss stochastic modeling of gas 
turbine system (One Gas Turbine and One Steam Turbine). Here we fix the range of temperature 
(5℃-25℃)  and develop model for two different humidity conditions (i.e. humidity less than or equal 
to 50% and humidity greater than 50%) are taken into consideration while developing model. 
Initially, system works with full capacity that is both the gas and the steam turbine are in operative 
state. If steam turbine fails, gas turbine continues to work then system is said to be working in single 
cycle but if gas turbine fails then steam turbine is put to down mode and system is said to be in down 
state. When both the gas and the steam turbine fails, the system is claimed to be in failed state. 
Different system effectiveness measures have been obtained by using semi-markov process and 
regenerative point technique. We obtained system effectiveness measures like mean time to system 
failure, availability analysis for full capacity as well as for single cycle for different humidity 
conditions. Interesting conclusions have been drawn by using assessed values on the basis of 
information/data gathered from a gas turbine power plant situated at Bawana, Delhi, India. 
 
 

2. System Description and Assumptions 
2.1. Assumptions  
 
A two-unit gas turbine system is developed under some reasonable assumptions which are as 
follows: 

• The failure time distribution is taken exponentially while repair time distribution is 
arbitrary. 

• After each repair unit is claimed to be good as new unit. 
• Repair pattern of the system rely on first come first serve. 
• Complete failure of system is claimed on failure of both the units. 

2.2. System Description of the Model 
 

State transition diagram for gas turbine system consisting of a gas and a steam turbine is shown in 
Figure 1. States 0,1,2,3,5, and 6 are the regenerative points and hence 0,1,2,3,5 and 6 are regenerative 
states. States 4 and 7 corresponds to complete failure of the system. States 0 and 1 are the states 
representing production in combined cycle when humidity is less than equal to 50% and greater 
than 50% respectively. States 2 and 5 are the states at which point only gas turbine is working, 
representing production in single cycle when humidity is less than equal to 50% and greater than 
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50% respectively. At state 3 and 6, it is required to put steam turbine in down mode as on failure of 
gas turbine it can’t work and hence we say state 3 and 6 are down state.     

  
Figure 1: State Transition Diagram of the System 

 

2.3. Notations 
 

Ogt
h1/Ost

h1          : Gas Turbine/Steam Turbine is operative when humidity ≤ 50%  

Ogt
h2/Ost

h2          : Gas Turbine/Steam Turbine is operative when humidity > 50% 

Urgt
h1 /Urst

h1          : Gas Turbine/Steam Turbine is under repair when humidity ≤ 50% 

Urgt
h2 /Urst

h2          : Gas Turbine/Steam Turbine is under repair when humidity > 50% 

URst
h1 /URst

h2         : Continuing repair from previous state of Steam Turbine when humidity is ≤/> 50% 

dst
h1/dst

h2           : Steam Turbine is put to down mode when humidity is ≤/> 50% 

Wrgt
h1 /Wrgt

h2        : Gas Turbine waiting for repair when humidity is ≤/> 50%  

λ1/λ2              : Failure rate of Gas Turbine when humidity is ≤/> 50% 

α1/α2              : Failure rate of Steam Turbine when humidity is ≤/> 50% 

g1(t)/g2(t)       : Probability density function of repair time of Gas Turbine/Steam Turbine 

G1(t)/G2(t)     : Cumulative distribution function of repair time of Gas Turbine/Steam Turbine 

h1(t)/h2(t)       : Probability density function for changing the humidity from ≤ 50% to > 50% / from   

> 50% to ≤ 50% 

qij(t),Qij(t)	       : Probability density function/Cumulative distribution function of first passage time                 

from regenerative state I to a regenerative state j or to a failed state j without visiting 

                            any other regenerative state in (0, t] 

qij
(k)(t)/Qij

(k)      : Probability density function/Cumulative distribution function of first passage time    

from regenerative state i to a regenerative state j or visiting state k one time in (0, t] 
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©/               : Laplace convolution/ Laplace Stieltjes convolution 
3. State Transition Probabilities and Mean Sojourn Time 

 
Based on state transition diagram, expression dQij = qij(t)dt for all essential combinations of i and j 
are derived and the transition probabilities pij are obtained by using Laplace transform  and using  

pij= lim
s→0

qij
* (s) . Table 1 represents the state transition probabilities of the system. 

 
Table 1: State Transition Probabilities 

dQ01 = ⅇ-(α1+λ1)th1(t)dt 
 

dQ02 = α1ⅇ-(α1+λ1)tH# 1(t)dt 
 

dQ03 = λ1ⅇ-(α1+λ1)tH# 1(t)dt 
 

dQ10 = ⅇ-(α2+λ2)th2(t)dt 
 

dQ15 =α2ⅇ-(α2+λ2)tH# 2(t)dt 
 

dQ16 = λ2ⅇ-(α2+λ2)tH# 2(t)dt 
 

dQ20 =	ⅇ-λ1tg2(t)dt 
 

dQ24 = λ1ⅇ-λ1tG#2(t)dt 
 

dQ24 
(4)	=	(1-ⅇ-λ1t)g2(t)dt 

 
dQ30  = g1(t)dt 
 

dQ51  = ⅇ-λ2tg2(t)dt 
 

dQ57  = λ2ⅇ-λ2tG#2(t)dt 
 

dQ56
(7)	= (1-ⅇ-λ1t)g2(t)dt 

 
dQ6 1 = g1(t)dt 
 

p01= h1
* (α1+λ1) 

p02= α1
α1+λ1

[1- h1
* (α1+λ1)] p03= λ1

α1+λ1
[1- h1

* (α1+λ1)] p10= h2
* (α2+λ2) 

p15= 
α2

α2+λ2
[1- h2

* (α2+λ2)] p16= 
λ2

α2+λ2
[1- h2

* (α2+λ2)] 
p20= g2

* (λ1) 

p24= 1-g2
* (λ1) p23

(4)= 1-g2
* (λ1) p30=1= p61 

p51= g2
* (λ2) p57= 1-g2

* (λ2) p56
(7)= 1-g2

* (λ2) 

 
Mean Sojourn Time (µi) is the amount of time expected to spend in state i by the system.  The 
expressions for  µi   are obtained by using µi= ∫ P[Ti>t]dt∞

0   where Ti represents stay time of the 
system in state i. Table 2 represents means sojourn time of the system. 
 

Table 2: Mean Sojourn Time 

µ0= 1
α1+λ1

[1- h1
*(α1+λ1)] µ1= 1

α2+λ2
[1- h2

*(α2+λ2)] µ2= 1
λ1

[1- g2
*(λ1)] 

µ3= ∫ G1))))
∞

0 (t)dt µ5= 1
λ2

[1- g2
*(λ2)] µ6= ∫ G1))))

∞
0 (t)dt 

 µ2
'  = ∫ G2))))

∞
0 (t)dt 

 
  

 
 

4. Mean Time to System Failure 
 

ɸi(t)	denotes the cumulative distribution function of first passage time to a failed state from 
regenerative state i. Recursive relations to obtain mean time to system failure of the system are:  
ɸ0(t)= Q01(t) ɸ1(t)+Q02(t) ɸ2(t)+Q03(t) ɸ3(t)                                                                                  (1) 
ɸ1(t)= Q10(t) ɸ0(t)+Q15(t) ɸ5(t)+Q16(t) ɸ6(t)                                                                                  (2) 
ɸ2(t)= Q20(t) ɸ0(t)+Q24(t)                                                                                                                          (3) 
ɸ3(t)= Q30(t) ɸ0(t)                                                                                                                                         (4) 
ɸ5(t)= Q51(t) ɸ1(t)+Q57(t)                                                                                                                          (5) 
ɸ6(t)= Q61(t) ɸ1(t)                                                                                                                                        (6) 
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Applying Laplace Stieltjes Transform on both sides of above relations and solve them using 
Cramer’s Rule, we get 

MTSF = lim
s→0

1-ɸ0
**(s)
s

  = N
D

                                                                                                                                             (7) 
Where, N = µ1p01+µ3p01p16+µ5p01p15+µ0p15p57+µ2p02p15p57+µ3p03p15p57+µ0p10+ µ2p02p10+µ3p03p10 
             D = p02p24p15p57+p02p10p24+p01p15p57                                                            

 
 

5. Availability in System when Humidity is ≤ 50% 
	

AHi
1(t)/ AHi

1s(t) denotes the probability that system available in full capacity/single cycle when 
humidity is ≤ 50% at any instant of time t provided it has entered regenerative state i at time t=0. By 
analyzing probabilistic arguments, we derive the expressions for availability in combined cycle as 
well as for single. The expression for combined cycle are: 
AH0

1(t) = MH0(t)+Q01(t)©AH1
1(t) + Q02(t)©AH2

1(t)+Q03(t)©AH3
1(t)                                                            (8) 

AH1
1(t) = Q10(t)©AH0

1(t) + Q15(t)©AH5
1(t)+Q16(t)©AH6

1(t)                                                                          (9) 
AH2

1(t) = Q20(t)©AH0
1(t) + Q23

(4)(t)©AH3
1(t)                                                                                                      (10) 

AH3
1(t) = Q30(t)©AH0

1(t)                                                                                                                                  (11) 
AH5

1(t) = Q51(t)©AH1
1(t) + Q56

(7)(t)©AH6
1(t)                                                                                                   (12) 

AH6
1(t) = Q61(t)©AH1

1(t)                                                                                                                                 (13) 
Solving them we get, 
AH0

1(t) = lim
s→0

sAH0
1*(s)= U1

V
                                                                                                                                   (14) 

Where, MH0(t)= ⅇ-(α1+λ1)tH# 1(t)  and  U1= µ0p10 
             V= µ0p10+µ1p01+µ2

' (p02p10+p01p15)+µ3(p03p10+p02p10p23
(4)+p01p16+p01p15p56

(7)) 
Similarly, we derive expressions for single cycle availability as: 
AH0

1s(t) = Q01(t)©AH1
1s(t) + Q02(t)©AH2

1s(t)+Q03(t)©AH3
1s(t)                                                                     (15) 

AH1
1s(t) = Q10(t)©AH0

1s(t) + Q15(t)©AH5
1s(t)+Q16(t)©AH6

1s(t)                                                                    (16) 
AH2

1s(t) = MH2(t)+Q20(t)©AH0
1s(t) + Q23

(4)(t)©AH3
1s(t)                                                                                (17) 

AH3
1s(t) = Q30(t)©AH0

1s(t)                                                                                                                               (18) 
AH5

1s(t) = Q51(t)©AH1
1s(t) + Q56

(7)(t)©AH6
1s(t)                                                                                                (19) 

AH6
1s(t) = Q61(t)©AH1

1s(t)                                                                                                                                                                   (20)                                                                                                               
Solving them we get, 
AH0

1s(t) = lim
s→0

sAH0
1s*(s)= U2

V
                                                                                                                            (21) 

Where,  MH2(t)= ⅇ-λ1tG#2(t),   U2= µ2p10p02and    V = as defined above 
 
 

6. Availability of the System when Humidity is > 50% 
 

AHi
2(t)/ AHi

2s(t) denotes the probability that is available in full capacity/single cycle when humidity 
is > 50% at any instant of time t provided it has entered regenerative state i at time t=0. By analyzing 
probabilistic arguments, we subsequently derive the expression for availability in combined as well 
as for single cycle. The following are expression for combined cycle: 
AH0

2(t) = Q01(t)©AH1
2(t) + Q02(t)©AH2

2(t)+Q03(t)©AH3
2(t)                                                                          (22) 

AH1
2(t) = MH1(t)+Q10(t)©AH0

2(t) + Q15(t)©AH5
2(t)+Q16(t)©AH6

2(t)                                                         (23) 
AH2

2(t) = Q20(t)©AH0
2(t) + Q23

(4)(t)©AH3
2(t)                                                                                                     (24) 

AH3
2(t) = Q30(t)©AH0

2(t)                                                                                                                                  (25) 
AH5

2(t) = Q51(t)©AH1
2(t) + Q56

(7)(t)©AH6
2(t)                                                                                                       (26) 

AH6
2(t) = Q61(t)©AH1

2(t)                                                                                                                                   (27) 
Solving them we get, 
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AH0
2(t) = lim

s→0
sAH0

2*(s)= U3
V

                                                                                                                             (28) 
Where,	MH1(t)= ⅇ-(α2+λ2)tH# 2(t), 		U3= µ1p01   and   V = already defined    
Similarly, we derive the recursive relations for availability in single cycle as: 
AH0

2s(t) = Q01(t)©AH1
2s(t) + Q02(t)©AH2

2s(t)+Q03(t)©AH3
2s(t)                                                                    (29) 

AH1
2s(t) = Q10(t)©AH0

2s(t) + Q15(t)©AH5
2s(t)+Q16(t)©AH6

2s(t)                                                                   (30) 
AH2

2s(t) = Q20(t)©AH0
2s(t) + Q23

(4)(t)©AH3
2s(t)                                                                                                 (31) 

AH3
2s(t) = Q30(t)©AH0

2s(t)                                                                                                                               (32) 
AH5

2s(t) = MH5(t)+Q51(t)©AH1
2s(t) + Q56

(7)(t)©AH6
2s(t)                                                                                  (33) 

AH6
2s(t) = Q61(t)©AH1

2s(t)                                                                                                                               (34) 
Solving them we get, 
AH0

2s(t) = lim
s→0

sAH0
2s*(s)= U4

V
                                                                                                                            (35) 

Where,  MH5(t)= ⅇ-λ2tG#2(t),   U4= µ5p15p01  and  V = already defined 
 
 

7. System’s Expected Down Time 
 

DHi
1(t)/DHi

2(t) denotes that the system is in down state at specific instant of time t when humidity is 
≤ /> 50%. The recursive expressions for DHi

1(t)/DHi
2(t) are given below: 

DH0
1(t) = Q01(t)©DH1

1(t) + Q02(t)©DH2
1(t)+Q03(t)©DH3

1(t)                                                                        (36) 
DH1

1(t) = Q10(t)©DH0
1(t) + Q15(t)©DH5

1(t)+Q16(t)©DH6
1(t)                                                                         (37) 

DH2
1(t) = Q20(t)©DH0

1(t) + Q23
(4)(t)©DH3

1(t)                                                                                                     (38) 
DH3

1(t) = NH3(t)+ Q30(t)©DH0
1(t)                                                                                                                  (39) 

DH5
1(t) = Q51(t)©DH1

1(t) + Q56
(7)(t)©DH6

1(t)                                                                                                    (40) 
DH6

1(t) = Q61(t)©DH1
1(t)                                                                                                                                  (41) 

DH0
1(t) = lim

s→0
sDH0

1*(s)= U5
V

                                                                                                                              (42) 
Where,  NH3(t)= G#1(t),  	U5= µ3p10(p03+p02p23

(4))   and    V = already defined 
DH0

2(t) = Q01(t)©DH1
2(t) + Q02(t)©DH2

2(t)+Q03(t)©DH3
2(t)                                                                          (43) 

DH1
2(t) = Q10(t)©DH0

2(t) + Q15(t)©DH5
2(t)+Q16(t)©DH6

2(t)                                                                         (44) 
DH2

2(t) = Q20(t)©DH0
2(t) + Q23

(4)(t)©DH3
2(t)                                                                                                        (45) 

DH3
2(t) = Q30(t)©DH0

2(t)                                                                                                                                 (46) 
DH5

2(t) = Q51(t)©DH1
2(t) + Q56

(7)(t)©DH6
2(t)                                                                                                    (47) 

DH6
2(t) = NH6(t)+ Q61(t)©DH1

2(t)                                                                                                                   (48) 
DH0

2(t) = lim
s→0

sDH0
2*(s)= U6

V
 

Where,  NH6(t)= G#1(t),				U5= µ3p01(p16+p15p56
(7))  and  V = already defined 

 
 

8. Time Period for which Repairman is Busy 
 

BHi
1(t)/BHi

2(t) denotes the probability that repairman is busy at an instant t when humidity is ≤/> 
50%. By analyzing probabilistic arguments, the recursive expressions  for BHi

1(t)/BHi
2(t)  are given 

below: 
BH0

1(t) = Q01(t)©BH1
1(t) + Q02(t)©BH2

1(t)+Q03(t)©BH3
1(t)                                                                             (49) 

BH1
1(t) = Q10(t)©BH0

1(t) + Q15(t)©BH5
1(t)+Q16(t)©BH6

1(t)                                                                            (50) 
BH2

1(t) = RH2(t)+ Q20(t)©BH0
1(t) + Q23

(4)(t)©BH3
1(t)                                                                                      (51) 

BH3
1(t) = RH3(t)+ Q30(t)©BH0

1(t)                                                                                                                    (52) 
BH5

1(t) = Q51(t)©BH1
1(t) + Q56

(7)(t)©BH6
1(t)                                                                                                      (53) 

BH6
1(t) = Q61(t)©BH1

1(t)                                                                                                                                  (54) 
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 BH0
1(t) = lim

s→0
sBH0

1*(s)= U6
V

                                                                                                                                     (55) 
Where,  RH2(t)=ⅇ-λ1tG# 2(t),					RH3(t)= G#1(t),					  
             U6= p10[p02µ2+(p03+p02p23

(4))µ3]   and  V = already defined 
BH0

2(t) = Q01(t)©BH1
2(t) + Q02(t)©BH2

2(t)+Q03(t)©BH3
2(t)                                                                           (56) 

BH1
2(t) = Q10(t)©BH0

2(t) + Q15(t)©BH5
2(t)+Q16(t)©BH6

2(t)                                                                           (57) 
BH2

2(t) = Q20(t)©BH0
2(t) + Q23

(4)(t)©BH3
2(t)                                                                                                       (58) 

BH3
2(t) = Q30(t)©BH0

2(t)                                                                                                                                   (59) 
BH5

2(t) = RH5(t)+Q51(t)©BH1
2(t) + Q56

(7)(t)©BH6
2(t)                                                                                       (60) 

BH6
2(t) = RH6(t)+ Q61(t)©BH1

2(t)                                                                                                                    (61) 
BH0

2(t) = lim
s→0

sBH0
2*(s)= U7

V
                                                                                                                               (62) 

Where, RH5(t)= e-λ2tG#2(t),						RH6(t)= G#1(t)	 
															U7= p01p15µ5+p01µ6(p16+p15p56

(7)) and   V = already defined 
 

9. Number of Visits to be Expected by Repairman 
 

VHi
1(t)/VHi

2(t) denotes the expected number of visits by the repairman when humidity is ≤/> 50%. 
By analyzing probabilistic arguments, the recursive expressions  for VHi

1(t)/VHi
2(t)  are given below: 

VH0
1(t) = Q01(t) VH1

1(t) + Q02(t) [1+VH2
1(t)]+Q03(t) [1+VH3

1(t)]                                                    (63) 
VH1

1(t) = Q10(t) VH0
1(t) + Q15(t) VH5

1(t)+Q16(t) VH6
1(t)                                                                (64) 

VH2
1(t) = Q20(t) VH0

1(t) + Q23
(4)(t) VH3

1(t)                                                                                               (65) 
VH3

1(t) = Q30(t) VH0
1(t)                                                                                                                                (66) 

VH5
1(t) = Q51(t) VH1

1(t) + Q56
(7)(t) VH6

1(t)                                                                                              (67) 
VH6

1(t) = Q61(t) VH1
1(t)                                                                                                                                (68) 

VH0
1(t) = lim

s→0
sVH0

1*(s)= U8
V

                                                                                                                               (69) 
Where,    U8= p10(p02+p03)  and  V = already defined 

VH0
2(t) = Q01(t) VH1

2(t) + Q02(t) VH2
2(t)+Q03(t) VH3

2(t)                                                                (70) 
VH1

2(t) = Q10(t) VH0
2(t) + Q15(t) [1+VH5

2(t)]+Q16(t) [1+VH6
2(t)]                                                   (71) 

VH2
2(t) = Q20(t) VH0

2(t) + Q23
(4)(t) VH3

2(t)                                                                                              (72) 
VH3

2(t) = Q30(t) VH0
2(t)                                                                                                                                 (73) 

VH5
2(t) = Q51(t) VH1

2(t) + Q56
(7)(t) VH6

2(t)                                                                                               (74) 
VH6

2(t) = Q61(t) VH1
2(t)                                                                                                                                (75) 

VH0
2(t) = lim

s→0
sVH0

2*(s)= U9
V

                                                                                                                             (76) 
Where,  U9= p01(p15+p16)   and  V = already defined 
 
 

10. Profit Analysis of the System 
 

Expected profit expressions induced per unit time in steady state for the system are: 
P = CA1*AH0

1 + CA2*AH0
2 + CA1s*AH0

1s	+	CA2s*AH0
2s- CB1*BH0

1 – CB2* BH0
2 – CV1*VH0

1	– CV2*VH0
2 – C0 

CA1/CA2      : Revenue generated per unit uptime when humidity is ≤ 50%, system works in Combined   
                    Cycle/Single Cycle 
CA1s/CA2s : Revenue generated per unit uptime when humidity is > 50%, system works in Combined        
                     Cycle/Single Cycle 
CB1/CB2    : Cost per unit time when humidity is ≤/> 50% while repairman is busy in doing repair 
CV1/CV2    : Cost per visit by repairman when humidity is ≤/> 50%  
C0                         : Other expenses in plant operation   
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11. Results and Graphical Representation of Reliability Measures 
 

Now, by considering the particular cases g1(t)=β1e-β1t,  g2(t)=β2e-β2t,  h1(t)=γ1e-γ1t, h2(t)=γ2e-γ2t and 
using information collected from gas turbine power plant we get  α1= λ1=0.001, α2= λ2=0.0014,  β1= 
β2=0.028,  γ1=0.333, γ2=0.317, CA1 = 1372000, CA2 = 1250000, CA1s = 882000, CA2s = 800000,CB1 = 12000, 
CB2 = 20500, CV1 = 8000, CV2 = 12500, C0 = 650000 and plotted different graphs according to these 
esteemed values and studied various measures of reliability through graphs as explained below: 
 

11.1. Mean Time to System Failure Vs Different Failure Rates 
 
Figure 2  illustrates the behavior of MTSF with different failure rates α1, α2,λ1,λ2.  

• MTSF decreases with increase in any one of the failure rates. 
• MTSF increases with increase in repair rates and when both repair rates (𝛽$, 𝛽%) are increased 

by same amount MTSF is higher in case of 𝛽% as compared to 𝛽$. 

 
 

Figure 2: MTSF Vs Failure rates α1, α2,λ1,λ2 

11.2. Availability in Combined Cycle Vs Failure Rate of Steam Turbine when         
Humidity is ≤ 50% 
 
Figure 3 demonstrates the availability in combined cycle when humidity is ≤ 50% and when 
humidity is > 50% 

• Both availabilities (when humidity is ≤/> 50%) of combined cycle decreases as we increase 
in any one of failure rate.  

• Both availabilities (when humidity is ≤/> 50%) in combined cycle increases with increase in 
repair rates. 

• Availability in Combined Cycle when humidity is > 50% is higher than Availability in 
Combined Cycle when Humidity is ≤ 50%. 
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Figure 3: Availability in combined cycle Vs Failure rate ∝1 
 

11.3. Availability in Single Cycle Vs Failure Rate of Steam Turbine when         
Humidity is ≤ 50% 
 
Figure 4 demonstrates the availability in single cycle when humidity is ≤ 50% and when humidity is 
> 50% 

• Availability in single cycle when humidity is ≤ 50% increases with increase in 𝛼$ but 
decreases with increase in any other failure rate while availability in single cycle when 
humidity is > 50% decreases with increase in 𝛼$,	𝜆$, 𝜆% but increases with increase in 𝛼%. 

•  Availability in single cycle when humidity is ≤ 50% decrease with increase in 𝛽$ while 
availability in single cycle when humidity is > 50% increases with increase in 𝛽$. 

 
 

Figure 4: Availability in single cycle Vs Failure rate ∝1  
 

11.4. Profit Vs Failure Rate of Steam Turbine when Humidity is ≤ 50% 
 
Figure.5  illustrates the behavior of Profit of plant with respect to failure rate 𝛼$.  

• Profit decreases with increase in any one failure rates 𝛼$, 𝛼%, 𝜆$, 𝜆%. 
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• Profit increases as we increase in repair rates and when both repair rates (𝛽$, 𝛽%) are 
increased by same amount, Profit in case of 𝛽% is higher than Profit in case of 𝛽$	(when 𝛼$ 
=	0.001 to 0.006) and Profit in case of 𝛽$ is higher than Profit in case of 𝛽%	(when  𝛼$ =	0.006 
to 0.01).    

 
      Figure 5: Profit Vs Failure rate ∝1 

 
 

12. Conclusion 
 
A stochastic model for a two-unit gas turbine system has been developed by fixing the range of 
temperature and using the idea of different humidity conditions. Various reliability measures like 
mean time to system failure, availability for combined as well as for single cycle when humidity is 
≤/> 50% have been obtained for particular cases using information gathered from gas turbine power 
plant. Simultaneous effects of failure rates of gas and steam turbines when humidity is ≤/> 50% on 
mean time to system failure have been graphically analyzed and from them we concluded that mean 
time to system failure decreases as any failure rate increases. Trends in the availability for both cycles 
and different humidity conditions i.e. when humidity is ≤/> 50% has been illustrated with respect to 
failure rate of steam turbine and various interesting results have been obtained regarding 
availability. At last, profit for plant is also depicted which decreases with increase in failure rates. 
Here we see that for this fixed range of temperature availability is higher when humidity is >50% as 
compared to when humidity is ≤50% which further impacts on profit of the plant. Furthermore, a 
comprehensive examination of gas turbine system may be helpful to those who are involved in 
power generating industry. 
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