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Abstract

Lindley distribution is a lifetime model with application in survival analysis and reliability theory
problems often centred around its increasing hazard rate function and flexibility over exponential
distribution. In this paper, we introduce a new generalization of the Lindley distribution referred to as
Lindley Truncated Negative binomial (LTNB) distribution. The LTNB model has increasing, decreasing
and upside-down bathtub(UBT) shapes for the hazard rate function. Various properties of the LTNB
distribution are studied including moments, quantiles, and stochastic ordering. Characterizations of the
new distribution are obtained. Maximum likelihood, Cramer-von-Mises, ordinary and weighted least
squares methods of estimation are utilized to obtain the estimators of the model parameters. A simulation
study is carried out to assess and compare the performance of different estimates. An autoregressive time
series model with the LTNB as marginal is developed. The model is fitted to bladder cancer data set to
show how the proposed model works in practice.

Keywords: Autoregressive Models, Characterizations, Lindley distribution, Maximum Likelihood,
Stochastic Ordering.

1. Introduction

As a counter-example to fiducial statistics, the Lindley distribution, first put forth by [16], is
one of the crucial lifetime distributions in the framework of Bayesian statistics. The Lindley
distribution has an increasing hazard rate function; however, in real-life situations, the models
exhibit non-monotone hazard rate shapes. For example, in the case of a serious illness condition
such as cancer, the hazard rate increases and then decreases. Similarly, in the engineering field,
the quality of production by untrained workers follows a similar pattern. As a result, many
researchers have developed models with non-monotone hazard rates over time. Models with
bathtub shapes can be found in [22]. Most often, upside-down bathtub (UBT) shape hazard rate
models are used to model medical data, such as patient data for bladder cancer and lung cancer
(see, [5] and [15]). In this paper, we introduce a generalized Lindley distribution with increasing,
decreasing and UBT shapes for the hazard rate function. A positive random variable X is said to
have Lindley distribution with the parameter α, denoted as L(α), if it has the probability density
function (pdf)

f (x) =
α2

α + 1
(1 + x)e−αx; x > 0, α > 0, (1)

The cumulative distribution function (cdf) is given by

F(x) = 1 − α + 1 + αx
α + 1

e−αx; x ≥ 0. (2)
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Ghitany[8] studied the statistical characteristics of the Lindley distribution and demonstrated its
flexibility in modelling lifetime data over exponential distribution. Generalized Lindley distri-
bution was later developed by [20], who also studied its mathematical characteristics. Weighted
Lindley distribution was introduced by [9]. An extended Lindley distribution was proposed and
investigated by [3]. In 2013, [6] introduced a generalized Lindley distribution. Later Beta Lindley
distribution was examined by [18]. The Lindley-Exponential distribution was first proposed by
[4]. Inverse Lindley distribution was extended by [23]. The Odd Lindley Burr XII distribution
was proposed by [14]. The generalized two-parameter Lindley distribution was introduced by [7].
Unit-Lindley distribution was studied in [2].
The rest of the paper is as follows: The Lindley Truncated Negative binomial (LTNB) distribu-
tion is introduced as a compounded distribution in Section 2. Section 3 discuss the statistical
properties of the LTNB distribution such as moments, quantile function, skewness, and kurtosis.
Characterizations of the LTNB distribution are obtained in section 4.In Section 5, we investigate
the stochastic ordering property of LTNB. In section 6, we use the maximum likelihood method,
least squares method, weighted least squares, and Cramer-von-Mises-estimator for estimating
the parameters of the new distribution. In section 7 we carry out a simulation study to eval-
uate the performance of Maximum likelihood estimation and other estimation methods. The
LTNB distribution is used to model remission times of bladder cancer patients in Section 8. It
is demonstrated that the LTNB distribution fits this data set better than the other well-known
competitors. In section 9, we develop a first-order autoregressive minification process with the
LTNB distribution as the marginal distribution.

2. Lindley Truncated Negative binomial distribution

We propose a new generalization for Lindley distribution with relatively simple expressions for
the survival function, hazard rate function, and quantile’s. The hazard rate function is more flexi-
ble than the previous generalizations and the proposed model has a closed-form for distribution
function. In addition, the new distribution fits some real-world data sets better than existing
Lindley distribution generalizations.
In 1997, [17] developed a method of adding a tilt parameter to a distribution to extend exist-
ing distributions. Many distributions were extended and published in the literature as a result
of this technique. As a generalization of the above technique, [21] proposed a novel family of
distributions through truncated negative binomial distribution. It’s important to remember that
these distributions arise as the distribution of random minimum or random maximum. The cdf is
given by

G(z) =
γn

1 − γn [(F̄(z) + γF(z))−n − 1]; z ∈ R, γ, θ > 0, (3)

where F(.) is the cdf of baseline distribution . If F(x) follows Lindly with cdf (2) we have Lindley
Truncated Negative binomial(LTNB) distribution, LTNB(α, γ, θ), having pdf

g(z; α, γ, θ) =
α2(α + 1)θ(1 − γ)θγθ(1 + z)e−αz

(1 − γθ) [(α + 1)− (1 − γ)(α + 1 + αz)e−αz]θ+1 ; z > 0 α, γ, θ > 0. (4)

The cumulative distribution function of LTNB(α, γ, θ) is given by

G(z; α, γ, θ) =
1

1 − γθ
− γθ

1 − γθ

[
α + 1

(α + 1)− (1 − γ)(α + 1 + αz)e−αz

]θ

(5)

and hence the survival function is

Ḡ(z; α, γ, θ) =
γθ

1 − γθ

{[
α + 1

(α + 1)− (1 − γ)(α + 1 + αz)e−αz

]θ

− 1

}
(6)

Remark: The LTNB(α, γ, θ) distribution reduces to the Lindley distribution when θ = 1 and
γ −→ 1.
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Figure 1: LTNB(α, γ, θ) pdf when γ = 0.5, θ = 0.5.

Figure 2: LTNB(α, γ, θ) pdf when α = 1.

The hazard rate function of LTNB distribution is

h(z; α, γ, θ) =
α2(α + 1)θ(1 − γ)θ(1 + z)e−αz

[(α + 1)− (1 − γ)(α + 1 + αz)e−αz]
[
(α + 1)θ − [(α + 1)− (1 − γ)(α + 1 + αz)e−αz]θ

] (7)

and the reverse hazard rate function is

r(z; α, γ, θ) =
α2(α + 1)θ(1 − γ)θ(1 + z)e−αz

[(α + 1)− (1 − γ)(α + 1 + αz)e−αz]
[
[(α + 1)− (1 − γ)(α + 1 + αz)e−αz]θ − γθ(α + 1)θ

] . (8)

Figure 3 depicts hazard rate function graphs for various parameter values. The graphs
showing decreasing, non-decreasing, and UBT shapes for hazard rate function.

3. Statistical Properties

We discuss about moments, simulation, quantiles, skewness, and kurtosis in this section.
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Figure 3: LTNB(α, γ, θ) hazard rate function for various parameter values.

3.1. Moments

Let X ∼ LTNB(α, γ, θ), then its rth moment with respect to the origin is given by,

E[Xr] =
∫ ∞

0
xr α2(α + 1)θ(1 − γ)θγθ(1 + x)e−αx

(1 − γθ) [(α + 1)− (1 − γ)(α + 1 + αx)e−αx]θ+1 dx

=
∞

∑
k=0

α2(1 − γ)k+1θγθ

(1 − γθ)(α + 1)k+1

(
k + θ

θ

) ∫ ∞

0
xr(1 + x)e−αx(1+k)(α + 1 + αx)kdx.

3.2. Simulation, Quantiles and Median

In order to generate random numbers from a LTNB(α, γ, θ) distribution, we use

X =
−1
α

− 1 − 1
α

W−1(−e−(α+1) (α + 1)
1 − γ

(1 − γ((1 − γθ)Y + γθ)−1/θ)) (9)

where W−1(.) is the negative Limbert W function and Y ∼ U(0,1).
The qth quantile of the LTNB(α, γ, θ) is

X =
−1
α

− 1 − 1
α

W−1(−e−(α+1) (α + 1)
1 − γ

(1 − γ((1 − γθ)q + γθ)−1/θ)), (10)

and thus the median of LTNB(α, γ, θ) is,

X =
−1
α

− 1 − 1
α

W−1(−e−(α+1) (α + 1)
1 − γ

(1 − γ((1 − γθ)
1
2
+ γθ)−1/θ)).

3.3. Skewness and Kurtosis

According to [13], the distribution skewness can be calculated using the below equation

S =
Q
( 3

4
)
− 2Q( 1

2 ) + Q( 1
4 )

Q( 3
4 )− Q( 1

4 )

and according to [19], the kurtosis of the LTNB distribution is as follows

K =
Q
( 7

8
)
− Q( 5

8 ) + Q( 3
8 )− Q( 1

8 )

Q( 6
8 )− Q( 2

8 )
,
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where Q(.) is the quantile function of X as defined by (10). These metrics are less susceptible to
outliers.

4. Characterizations of LTNB distribution

Many characterization results, established in various ways, can be found in the literature. In this
section, the ratio of truncated moments and the hazard rate function are used to characterize the
LTNB distribution.

4.1. Characterizations based on two truncated moments

This section discusses how to characterise the LTNB distribution using the ratio of two truncated
moments. In our first characterization, we apply the Theorem 1 below established in [10].

Theorem 1. Let (Ω,F , P) be a given probability space and let H = [d, e] be an interval for some
d < e (d = −∞, e = ∞might as well be allowed). Let X : Ω → H be a continuous random
variable with the distribution function F and let q1 and q2 be two real functions on H such that

E[q2(X)|X ≥ x] = E[q1(X)|X ≥ x]ζ(x), x ∈ H,

is defined with some real function ζ. Assume that q1, q2 ∈ C1(H), ζ ∈ C2(H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation ζq1 = q2 has no real solution in the interior of H. Then F is uniquely determined by the
functions q1, q2 and ζ, particularly

F(x) =
∫ x

a
C| ζ

′
(u)

ζ(u)q1(u)− q2(u)
|exp(−s(u))du,

where the function s is a solution of the differential equation s
′
= ζ

′
q1

ζq1−q2
and C is the normalization

constant, such that
∫

H dF = 1.

Theorem 2. Let X be a positive real valued continuous random variable with pdf f (x).

Denote q1(x) = (1 − (1 − γ)
1 + α + αx

α + 1
e−αx)θ+1 and q2(x) = q1(x)

1 + α + αx
α + 1

e−αx for x > 0, α >

0, θ > 0, γ > 0. Then, the random variable X has pdf (4) if and only if the function ζ(.) defined in
Theorem 1 is of the form

ζ(x) =
1
2

1 + α + αx
α + 1

e−αx

Proof. Suppose the random variable X has the pdf (4). Then

(1 − F(x))E [q1(X)|X ≥ x] = C
1 + α + αx

α + 1
e−αx, x > 0

and

(1 − F(x))E [q2(X)|X ≥ x] =
C
2

(
1 + α + αx

α + 1

)2
e−2αx, x > 0

where C =
(

γθθ(1−γ)
1−γθ

)
.Further,

ζ(x)q1(x)− q2(x) = −1
2

q1(x)
1 + α + αx

α + 1
e−αx < 0, x > 0.

Conversely, if ζ is of the above form, then

s
′
(x) =

ζ
′
(x)q1(x)

ζ(x)q1(x)− q2(x)
=

α2(1 + x)
1 + α + αx

, x > 0.

Thus
s(x) = −log(

1 + α + αx
α + 1

e−αx), x > 0.

Now from Theorem 1, result follows.
■
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4.2. Characterization based on the hazard rate function

For θ = 1, we characterise the LTNB distribution using the hazard rate function.

Theorem 3. Let X be a positive real valued continuous random variable with hazard rate function
h(x). The random variable X has LTNB distribution, for θ = 1, if and only if h(x) satisfies the
differential equation

h
′
(x)− h(x)

(1 + x)(1 + α + αx)
=

α4(1 − γ)(1 + x)2e−αx

(1 + α + αx)(1 − (1−γ)(1+α+αx)e−αx

1+α )2
, x > 0.

Proof. If X has pdf (4) , the above differential equation clearly holds.
Now suppose the differential equation holds then,

d
dx

{
h(x)(1 + α + αx)

1 + x

}
= α2 d

dx

{
1

1 − ( (1−γ)(1+α+αx)e−αx

1+α )

}

which implies,

h(x) =
α2(1 + x)

(1 + α + αx)
1

1 − ( (1−γ)(1+α+αx)e−αx

1+α

which is the hazard rate function of LTNB distribution.
■

5. Stochastic Ordering

Let X and Y be two random variables with distribution functions of F1 and F2, respectively, with
corresponding pdfs of f1 and f2. Then it is stated that X is less than Y in ,
i) stochastic order (denoted as X ≤st Y) if F1(x) ≥ F2(x) for all x;
ii) hazard rate order (denoted as X ≤hr Y) if (1 − F1(x)/(1 − F2(x)) is decreasing in x ≥ 0;
ii) likelihood ratio order (denoted as X ≤lr Y) if f1(x)/ f2(x) is decreasing in x ≥ 0;
iv) reverse hazard rate order (denoted as X ≤rhr Y) if F1(x)/F2(x) is decreasing in x ≥ 0.
The four orderings have a relationship with one another; for further information, see [24],

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤rhr Y =⇒ X ≤st Y. (11)

For γ2 > γ1,
let X ∼ LTNB(α, γ1, θ) and Y ∼ LTNB(α, γ2, θ). Then

fX(y)
fY(y)

=
γθ

1(1 − γθ
2)(1 − γ1) [(α + 1)− (1 − γ2)(α + 1 + αz)e−αy]

θ+1

γθ
2(1 − γθ

1)(1 − γ2) [(α + 1)− (1 − γ1)(α + 1 + αy)e−αy]θ+1

Since γ2 > γ1,

d
dx

[
fX(y)
fY(y)

]
=

γθ
1(1 − γθ

2)(1 − γ1)α
2e−αy(1 + y)(α + 1)(γ1 − γ2)

(1 − γ2)γ
θ
2(1 − γθ

1)

× [(α + 1)− (1 − γ2)(α + 1 + αy)e−αy]
θ

[(α + 1)− (1 − γ1)(α + 1 + αy)e−αy]θ+2 ,

< 0.

=⇒ fX(y)/ fY(y) is decreasing in y.
That is X ≤lr Y. From (11), the remaining ordering follows.
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6. Different methods of estimation

In this section we use maximum likelihood estimation, least squares, weighted least squares and
cramer-von-Mises estimation methods to estimate the parameters of the LTNB distribution.

6.1. Maximum likelihood Estimation

Let x1, x2, ..., xn be an observed random sample from LTNB distribution with unknown parameter
vector ν = (α, γ, θ)T . Then the log-likelihood function is

log ℓ = 2nlogα + nlogθ + nlog(1 − γ) + nθlogγ + nθlog(α + 1)− nlog(1 − γθ)− α
n

∑
i=1

xi

+
n

∑
i=1

log(1 + xi)− (θ + 1)
n

∑
i=1

log
[
(α + 1)− (1 − γ)(α + 1 + αxi)e−αxi

]
(12)

The partial derivatives are given by

∂log ℓ

∂α
=

2n
α

+
nθ

α + 1
−

n

∑
i=1

xi

−(θ + 1)
n

∑
i=1

[
1 − (1 − γ)e−αxi (1 − αxi − αx2

i )

(α + 1)− (1 − γ)(α + 1 + αxi)e−αxi

]
, (13)

∂log ℓ

∂γ
=

−n
1 − γ

+
nθ

γ
+

nθγθ−1

1 − γθ

−(θ + 1)
n

∑
i=1

[
(α + 1 + αxi)e−αxi

(α + 1)− (1 − γ)(α + 1 + αxi)e−αxi

]
, (14)

∂log ℓ

∂θ
= nlogγ +

n
θ
+ nlog(α + 1) +

nγθ logγ

1 − γθ

−
n

∑
i=1

log
[
(α + 1)− (1 − γ)(α + 1 + αxi)e−αxi

]
(15)

Set the score vector to zero,

U(ν) =

(
∂logℓ

∂α
,

∂logℓ
∂γ

,
∂logℓ

∂θ

)T
.

U(ν) = 0, and solve them simultaneously to obtain the ML estimators α̂, γ̂, and θ̂. These
equations can be numerically solved using statistical software using iterative techniques like
the Newton-Raphson algorithm as they cannot be solved analytically. All of the second order
derivatives exist for the three-parameter LTNB distribution as well.

6.2. Least squares and weighted least squares estimators

Let t1 < t2 < t3 < ... < tn be the n ordered random sample from any distribution with cdf F(t).
Then we have,

E[F(ti)] =
i

n + 1
.

The least squares method minimizes

PLSE(α, γ, θ) =
n

∑
i=1

(
F(ti)−

i
n + 1

)2
(16)

with respect to the unknown parameters. Here the least squares estimates are obtained by
minimizing the following equation with respect to α, γ, θ.

PLSE(α, γ, θ) =
n

∑
i=1

(
1

1 − γθ
− γθ

1 − γθ

[
α + 1

(α + 1)− (1 − γ)(α + 1 + αx)e−αx

]θ

− i
n + 1

)2

. (17)
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Weighted least squares estimates of α, γ, θ are obtained by minimizing the following equation
with respect to α, γ, θ.

PWLSE(α, γ, θ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

(
1

1 − γθ
− γθ

1 − γθ

[
α + 1

(α + 1)− (1 − γ)(α + 1 + αx)e−αx

]θ

− i
n + 1

)2

.

(18)

6.3. Cramer-von-Mises-estimator(CME)

CME is obtained by minimizing the following equation with respect to α, γ, θ. Here F(.) is the
distribution function of LTNB distribution given by (5) .

PCME(a, b, γ, θ) =
1

12n
+

n

∑
i=1

(
F(ti)−

2i − 1
2n

)2
. (19)

7. Simulation

Monte Carlo simulation is used to evaluate the performance of the maximum likelihood estimation
procedure for estimating the LTNB parameters. From the LTNB model we generates samples
of sizes n = 100, 200, 300, 400, and 500 for various combinations of α, γ, and θ. We ran the
simulation 1000 times to determine the MLE’s and MSE’s of the parameter estimates. Table
1 displays the results. We can observe that the ML estimates are consistent. To investigate
the efficiency of least squares estimators, we took samples from the LTNB distribution with
n = 100, 200, 300, 400, and 500. We repeated the simulation 1000 times and computed the
estimates and corresponding MSE’s for the same set of parameter values using three methods.
Table 2 displays the results. Table 2 shows that least squares and CME estimators perform similarly
and both methods are giving smaller MSE’s compared to weighted least squares estimates.

8. Data Analysis

Table 3 contains data on the remission times (in months) of a random sample of 128 bladder
cancer patients provided by [15]. Table 4 displays the descriptive statistics for the data.

We will now look at the Total Time on Test (TTT) plot, a graphical method for determining
the shape of the data’s hazard rate function. The empirical TTT plot is defined as,

G(r/n) =

(
r

∑
i=1

x(1) + (n − r)x(r)

)
/

n

∑
i=1

x(i), r = 1, 2, .., n

where x(i) denote the ith order statistic of the sample. The shape of the hazard rate function would
be increasing, decreasing, bathtub-shaped, and UBT if the TTT transform is concave, convex,
convex then concave, and concave then concave (see [1]). Figure 3 depicts the data’s TTT plot.
The hazard rate function is clearly UBT.

The Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICC),
Bayesian Information Criterion (BIC), and Hannan-Quinn Information Criterion(HQIC) are
s the goodness-of-fit metrics that we take into consideration,

AIC = 2k − 2log ℓ̂,

AICC =
2kn

n − k − 1
− 2log ℓ̂,

BIC = klog n − 2log ℓ̂,

HQIC = 2klog(log n)− 2log ℓ̂,

(20)
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Table 1: MLE’s and their corresponding MSE’s of LTNB distribution parameters.

α γ θ n α̂(MSE(α̂)) γ̂(MSE(γ̂)) θ̂(MSE(θ̂))

.8 .2 1.5 100 .9196(.1598) .2055(.0266) 1.5251(.7527)

200 .8551(.0888) .1989(.0158) 1.5342(.7232)

300 .8813(.1184) .2001(.0193) 1.5428(.6812)

400 .8347(.0506) .2015(.0091) 1.5034(.6691)

500 .8171(.0382) .1986(.0064) 1.5098(.5061)

.5 .3 2 100 .5698(.0539) .2824(.0449) 1.9985(1.2211)

200 .5298(.0313) .2726(.0309) 1.9952(.9892)

300 .5202(.0230) .2836(.0245) 2.0922(.7610)

400 .5122(.0192) .2856(.0222) 2.0962(.5948)

500 .5087(.0142) .2942(.0164) 2.0962(.5484)

.3 .2 1.5 100 .3403(.0229) .2075(.0309) 1.4718(.6438)

200 .3179(.0111) .2088(.0201) 1.6118(.4881)

300 .3141(.0087) .2047(.0149) 1.5339(.2959)

400 .3109(.0065) .2026(.0112) 1.4966(.2363)

500 .3078(.0049) .2073(.0092) 1.5387(.1401)

where ℓ̂ is the likelihood function evaluated at the maximum likelihood estimates, the sample
size is n, and k is the number of parameters.
We fitted the LTNB distribution to the data and compared it to the Lindley distribution with pdf
(1) and the New Generalized Lindley distribution (NGLD) with pdf

f (x) =
e−θx

1 + θ

(
θα+1xα−1

Γ(α)
+

θβxβ−1

Γ(β)

)
,

Beta Lindely(BL) distribution having pdf,

f (x) =
θ2(θ + 1 + θx)β−1(1 + x)e−θβx

B(α, β)(θ + 1)β

(
1 − θ + 1 + θx

θ + 1
e−θx

)α−1
,

new generalized two-parameter Lindley distribution (NG2PLD) distribution having pdf,

f (x) =
θ2

θ + 1

(
1 +

θα−2xα−1

Γ(α)

)
e−θx

transmuted Lindley distribution(TLD) having pdf,

f (x) =
θ2(1 + x)e−θx

(θ + 1)

(
1 − λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)

,

and exponential distribution(ED) having pdf,

f (x) = αe−αx
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Table 2: LSE, WLSE, CVME and corresponding MSEs of parameters of LTNB distribution.

α γ θ n α̂(MSE(α̂)) γ̂(MSE(γ̂)) θ̂(MSE(θ̂))

Least squares 100 .6262(.0015) .2178(.0007) 1.5386(.0043)

.6 .2 1.5 200 .6206(.0009) .2151(.0005) 1.5408(.0045)

300 .6173(.0005) .2141(.0004) 1.5408(.0038)

400 .6162(.0005) .2136(.0003) 1.5437(.0039)

500 .6150(.0004) .2122(.0002) 1.5441(.0039)

Weighted Least squares 100 .6194(.1305) .1308(.0288) 1.3082(2.3691))

.6 .2 1.5 200 .6062(.0893) .1474(.0186) 1.3082(1.7783)

300 .5902(.0641) .1595(.0134) 1.3271(.7774)

400 .5870(.0514) .1660(.0102) 1.3618(.6277)

500 .5938(.0478) .1729(.0089) 1.3942(.5434)

CVM 100 .6261(.0015) .2178(.0008) 1.5386(.0042)

.6 .2 1.5 200 .6206(.0009) .2151(.0006) 1.5440(.0046)

300 .6172(.0005) .2141(.0004) 1.5408(.0038)

400 .6162(.0005) .2135(.0004) 1.5434(.0041)

500 .6150(.0004) .2122(.0002) 1.5441(.0039)

The table 5 lists the parameter estimates and goodness of fit statistics for bladder cancer patient
data.

The LTNB distribution is more suitable for these data since the values of −logl̂, AIC, AICC,
BIC, and HQIC for the LTNB distribution are lower than those of the other competing models.
Figure 4 displays the fitted densities.

9. Time series Models with LTNB marginals

Several researchers have developed and studied time series models with non-Gaussian marginals
(see, for example, [11], [12], and [25]). The following definition is required in order to create the
time series model with LTNB marginal distribution

Definition 9.1. A positive real valued random variable X is said to have Marshall-Olkin Lindley

Truncated Negative binomial distribution and write X d
=MOLTNB(ϑ, α, γ, θ) if it has the survival

function

F̄X(x) =
1

1 + 1
ϑ

[
((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

] . (21)

Theorem 4. The first order auto regressive (AR(1)) process given by

Xn =

{
εn w.p δ

min(Xn−1, εn) w.p 1 − δ
(22)
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Table 3: Remission times of Bladder Cancer Patient Data.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98

6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50
2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28
9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64
3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14
79.05 1.35 2.87 5.62 7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93
11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25
8.37 12.02 2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76
12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

Table 4: Descriptive Statistics of Cancer data.

Min. Q1 Median Mean Q3 Max. Var.

0.08 3.348 6.395 9.366 11.838 79.05 110.425

where 0 < δ < 1; n ≥ 1, defines a stationary AR(1) minification process with LTNB(α, γ, θ) as

marginal distribution if and only if εn’s are i.i.d MOLTNB(δ−1, α, γ, θ) with X0
d
= CL(α, γ, θ).

Proof. If {Xn} is stationary with LTNB(α, γ, θ) marginals, then

F̄εn(x) =
F̄X(x)

δ + (1 − δ)F̄X(x)

=

γθ

1−γθ

{[
α+1

(α+1)−(1−γ)(α+1+αx)e−αx

]θ
− 1
}

δ + (1 − δ) γθ

1−γθ

{[
α+1

(α+1)−(1−γ)(α+1+αx)e−αx

]θ
− 1
}

=
1

1 + δ
[

((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

] . (23)

That is, εn’s are i.i.d MOLTNB(δ−1, α, γ, θ).

Conversely, if εn’s are i.i.d MOLTNB(δ−1, α, γ, θ) with X0
d
= CL(α, γ, θ), then,

F̄X1(x) = δF̄ε1(x) + (1 − δ)F̄ε1(x)F̄X0(x)

= δ

 1

1 + δ
[

((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

]
+

(1 − δ)

 1

1 + δ
[

((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

]
 1

1 +
[

((α+1)−(1−γ)(α+1+αx)e−αx)θ−γθ(α+1)θ

γθ [(α+1)θ−((α+1)−(1−γ)(α+1+αx)e−αx)θ ]

]


=
γθ

1 − γθ

{[
α + 1

(α + 1)− (1 − γ)(α + 1 + αx)e−αx

]θ

− 1

}
.

RT&A, No 1 (72)
Volume 18, March 2023

585



A. Mohammed Shabeer, Bindu Krishnan, K. Jayakumar
LTNB distribution

Figure 4: The empirical TTT plot of the data.

Table 5: Parameter estimates and goodness of fit statistics for various models fitted to the data.

Model Estimates −logl̂ AIC AICC BIC HQIC

LTNB α̂ = 0.0617, γ̂ = 0.1218, 409.23 824.47 824.67 833.03 827.95

θ̂ = 1.5407

NGLD α̂ = 4.679, β̂ = 1.324, 412.75 831.50 831.69 840.06 834.98

θ̂ = 0.180

BL α̂ = 1.340, β̂ = 0.065, 412.80 831.60 831.80 840.16 835.08

θ̂ = 1.861

NG2PLD α̂ = 0.8303, θ̂ = 0.2942 413.37 830.73 830.83 836.44 833.05

TLD θ̂ = 0.156, λ̂ = −0.617 415.15 834.31 834.41 840.01 836.62

LD α̂ = 0.1960 419.53 841.06 841.09 843.89 842.20

ED α̂ = 0.097 426.76 855.53 855.56 858.37 856.68
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Figure 5: Estimated pdf

That is, X1
d
= LTNB(α, γ, θ).

If we assume that Xn−1
d
= LTNB(α, γ, θ), then by induction, we can establish that Xn

d
=

LTNB(α, γ, θ) . Hence the process {Xn} is stationary with LTNB marginals.
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