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Abstract

Objective: This paper extends the analysis of imperfect preventive maintenance interspaced with
minimal repairs. The aim is to find the intervals of future scheduled maintenance actions considering
different recovery factors and costs. Methods: The optimal preventive maintenance scheduling are
obtained by minimizing the overall maintenance costs. Minimal repairs interspersed with scheduled
imperfect preventive maintenance actions are considered. The model parameters of the power law process
are estimated using the maximum likelihood estimation method and a Differential Evolution algorithm
is used to solve the maximization problem. Results: The optimal preventive maintenance periods for
different levels of maintenance restoration with respect to corrective and preventive maintenance costs
are found. Graphs are drawn to highlight the effect of future maintenance costs and the hazard function
paths. It is shown that the preventive maintenance becomes more frequent as the equipment ages and the
hazard function increases. Also, it is perceived that the scheduled maintenance intervals become shorter
as the corrective maintenance becomes more expensive. Conclusion: A hazard rate model which considers
minimal repairs interspersed with scheduled imperfect preventive maintenance provides a useful tool for
defining the optimal maintenance policy. The results obtained in this paper show that maintenance cost
varies widely according to the recovery factor of the maintenance action and that the optimal interval of
two consecutive preventive maintenance actions strongly depends on the costs.

Keywords: Reliability, imperfect maintenance, proportional age reduction model, maintenance
costs, power law model.

1. Introduction

Recently statisticians and engineers have paid a lot of attention to reliability centered maintenance
and its cost assessment. As stated by Löfsten (2000), the overall costs of maintenance, estimated
to be between 15% and 40% of production costs, and the trend toward industry automation has
forced engineers and managers to pay more attention to maintenance policies.

There are several papers in the recent literature that have attempted to estimate the failure
probability distributions implied by different maintenance policies. Researchers have developed a
wide variety of models to deal with maintenance policy optimization. Performance and condition-
based maintenance models can be found in Dui et al. (2023), Azizi and Salari (2023) and Chen
et al. (2022). Preventive maintenance policies with degradation models can be found in Wei
et al. (2023) and Li et al. (2023). Predictive maintenance models can be found in Huynh et al.
(2022) and Guo and Liang (2022) and new probability distributions have been studied, such
as in S. and Sebastian (2022). Also, maintenance models are under constantly development,
as can be found in Tijjani A. Waziri (2022) for a replacement policy, in Naveen Kumar (2022),
Shanti Parkash (2022) and Neetu Dabas (2022) for priority repair policies and in Nse Udoh (2022)
studying maintenance policies for non-repairable products. Even modern techniques, such as
Artificial-intelligence-based model can be found in Nguyen et al. (2022).

In the present study, it is analyzed the consequence of minimal corrective repairs interspersed
with imperfect schedulued preventive maintenance. Once a scheduled maintenance is performed
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on an equipment, it will be restored to a state that is between as good as new and as bad as old.
Under this assumption, the Proportional Age Reduction model was proposed in Malik (1979).
The paper’s objective is to refine the study made by Shin et al. (1996) including the cost analysis
and the possibility to change the level of the equipment’s regeneration after maintenance actions.

The remaining part of this paper is organized as follows. In Section 2 it is made a review of the
Reliability theory, it is shown the maximum likelihood estimation of the power law process under
the PAR model and it is presented the expected cost of the maintenance policy. In Section 3 it is
described the failure and maintenance actions data. Also, the maximum likelihood estimators are
calculated. In Section 4 the results is extended. It is analyzed the optimal preventive maintenance
interval under different recovery parameters. The overall cost is also analyzed. Section 5 concludes
the paper.

2. Reliability Theory

The purpose of the use of reliability theory is to assist management in decision making by using
known quantitative facts effectively and by reducing the reliance on subjective judgement (Löfsten
(2000)).

A formal definition of reliability is given by Elsayed (2021): "Reliability is the probability that a
product will operate or a service will be provided properly for a specified period of time (design life) under
the design operating conditions (such as temperature, load, volt. . . ) without failure."

As the probability theory is the foundation of the reliability engineering and of the reliability
centered maintenance, we review the following definitions that can be found in William Q. Meeker
(2021) and in in Elsayed (2021).

Let f (t) be a real function such that

f (t) ≥ 0 ∀t ≥ 0

and ∫ ∞

0
f (s)ds = 1.

Then, f (t) is a failure probability density function. The probability of failure up to time t is given
by

F(t) =
∫ t

0
f (s)ds, (1)

so that the reliability function is given by

C(t) = 1 − F(t) =
∫ ∞

t
f (s)ds. (2)

The following function

h(t) = lim
∆t→0

C(t)− C(t + ∆t)
∆tC(t)

=
1

C(t)

[
− d

dt
C(t)

]
=

f (t)
C(t)

(3)

is called the hazard function. Considering that only minimal repairs are performed when the
equipment fails, the expected number of failures in [0, t] is given by

H(t) =
∫ t

0
h(s)ds. (4)

The reliability function can be also calculated by

C(t) = e
∫ t

0 h(s)ds, (5)
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and the expectation of T is defined as the mean time to failure (MTTF):

MTTF =
∫ ∞

0
C(s)ds =

∫ ∞

0
s f (s)ds. (6)

As an example, the Weibull distribution is given by the following probability density function

f (t; α, β) = αβtβ−1 exp{−αtβ}1{t>0}, (7)

for fixed parameters α and β, scale and shape, respectively. A plot of the probability density
function f (t), the reliability function 5, the hazard function 3 and cumulative distribution function
1 for the Weibull distributions with different parameters are shown in Figure 1.
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Figure 1: Probability functions for the Weibull distribution

2.1. Maintenance policy cost

Following Pham (2003), maintenance can be defined as actions to control the deterioration process
leading to failure of a system - called preventive maintenance, and to restore the system to its
operational state through corrective actions after a failure - called corrective maintenance. The
behavior of the equipment after a repair depends on the type of repair carried out.

As stated by Huynh et al. (2022), maintenance is an effective solution to improve not only
the system availability, but also the system safety, the product quality, as well as the customer
satisfaction. An appropriate preventive maintenance policy is an effective way to save cost by
reducing the probability of failure (Li et al. (2023)).

Unscheduled or corrective maintenance refers to maintenance actions carried out after the
occurrence of component’s failure. Suppose that the equiment are minimally repaired at failure
and the effect of imperfect preventive maintenance is modeled according to the Proportional Age
Reduction (PAR) criterion. In the case of perfect maintenance, the action restores the equipment
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to be as new. The PAR approach introduced by Malik (1979), assumes that each preventive
maintenance action reduces the age of the equipment by a quantity proportional to the operating
time elapsed form the most recent scheduled maintenance.

The failure pattern in each maintenance cycle is described by a Non-homogeneous Poisson
process in which the age of the equipment in the k-th maintenance cycle is reduced by a fraction
ρ of the most recent scheduld maintenance action τk−1. The hazard function (3) at a time t is

h(t) = h(t − ρτk−1), τk−1 < t < τk. (8)

The following are the hypotheses assumed by Shin et al. (1996) to model minimal repairs
interspersed with scheduled imperfect preventive maintenance actions:

1. Suppose that l units are observed until Ti, i = 1, ..., l.

2. Suppose that each equipment i is subjected to mi scheduled maintenance actions at τi,1 <
τi,mi ≤ Ti.

3. The i-th equipment experiences ri,k failures during the k-th preventive maintenance cycle
(k = 1, ..., mi + 1)

4. Let ti,k,j be the time of the j-th failure of the i-th equipment that occurs in the k-th mainte-
nance cycle.

Pham and Wang (1996) presents another interesting approach to imperfect maintenance via
quasi-renewal process.

The maintenance model here adopted considers that the preventive action is executed periodi-
cally at a prespecified times and different policies for treat the failures may be employed.

Let

• cp be the preventive maintenance cost;

• cm be the corrective maintenance cost.

Adapting the maintenance policy for repairable equipments of Pham (2003), the maintenance
expected cost per unit time for the period [tm+1, tm+2] is given by

V1(tm+1, tm+2) =
cm H(tm+1, tm+2) + cp

tm+2 − tm+1
, (9)

where H(tm+1, tm+2) =
∫ tm+2

tm+1
h(s)ds.

2.2. Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) is a method of estimating the parameters of an
assumed probability density function given some observed data by maximizing a likelihood
function so that, under the assumed statistical model, the observed data is most probable. The
MLE of the model (8) is given by

L =
l

∏
i=1

{
mi+1

∏
k=1

[ ri,k

∏
j=1

h(ti,k,j − ρτi,k−1)

]
× (10)

exp

[
−

mi+1

∑
k=1

∫ τi,k

τi,k−1

h(x − ρτi,k−1)dx

]}
,

where τi,0 = 0 and τi,mi+1 = Ti (see more details in Shin et al. (1996)).
The most frequently used non-homogeneous Poisson process (NHPP) is the power law process

(Pham (2003)), whose intensity, applied in (8), is given by

h(t) =
β

α

(
t − ρτk−1

α

)β−1
. (11)
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Using (11) in (10) we have

L =

(
β

α

)n
[

l

∏
i=1

mi+1

∏
k=1

ri,k

∏
j=1

( ti,k,j − ρτi,k−1

α

)β−1
]
× (12)

exp

{
−

l

∑
i=1

mi+1

∑
k=1

[(
ti,k − ρτi,k−1

α

)β

−
(

ti,k−1 − ρτi,k−1

α

)β
]}

,

where n is the total number of failures for l units during the whole observation period. The
maximum likelihood estimation for α is given by the following analytical solution:

α =

 l

∑
i=1

mi+1

∑
k=1

[
(ti,k − ρ̂τi,k−1)

β̂ − (ti,k−1 − ρ̂τi,k−1)
β̂
]

n


1
β̂

. (13)

The estimators for β e ρ are found by maximizing the modified two-parameter loglikelihood
function:

l(β, ρ) = n ln β (14)

−n ln

{
l

∑
i=1

mi+1

∑
k=1

[
(ti,k − ρτi,k−1)

β − (ti,k−1 − ρτi,k−1)
β
]}

+n ln n + (β − 1)

×
[

l

∑
i=1

mi+1

∑
k=1

ri,k

∑
j=1

ln(ti,k,j − ρτi,k−1)

]
− n

In order to solve the maximization problem (14), which does not have analytical solution, it
is applied a Differential Evolution method. As it is described in Kienitz and Wetterau (2012),
the Differential Evolution method is a population-based search algorithm which belongs to the
class of genetic algorithms. It mimics the process of Darwinian evolution using techniques such
as inheritance, mutation, recombination, selection and crossover. The algorithm is designed to
converge to the global optimal solution. The algorithm is described in Chapter 9 of Kienitz and
Wetterau (2012).

3. Failure Data

In this paper it is considered the failure data of a central cooler system of a nuclear power plant
analyzed first by Shin et al. (1996) and discussed in Pham (2003). The data consist of n = 15
failure times and m = 3 preventive maintenance epochs - highlighted by (∗), observed over 612
days. The data are given in Table 1.

Table 1: Failure data

116 151 154* 213 263* 386 387 395 407
463 492 494 501 512* 537 564 590 609

Minimal repairs are performed at failures. No information are given with respect to the level
of recovery of the preventive maintenance actions.

The Differential Evolution method described in Kienitz and Wetterau (2012) was used to solve
the modified two-parameter loglikelihood function (14). The parameters shown in the Table 7 of
Shin et al. (1996) were exactly recovered, namely

α = 141, β = 2.91, ρ = 0.77.
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The parameters suggest that the equipment is restored to a level corresponding to 33% of
the actual age. Also, as the shape parameter β is greater that 2, it is known that the hazard rate
increases in a convex form towards infinite.

The objective is to find the scheduled maintenance interval that minimizes the overall cost
given by (9). This work also aims to analyze the impact of the recovery parameter ρ for future
maintenance actions.

4. Results

Let tm+1 be the actual time, when the last preventive maintenance action was performed with
ρ = 0.77. In order to calculate the optimal preventive maintenance interval which minimizes the
cost (9), we need to find

∂V1(tm+1, tm+2)

∂tm+2
=

[cmh(tm+1, tm+2)] (tm+2 − tm+1)−
[
cm H(tm+1, tm+2) + cp

]
(tm+2 − tm+1)2 = 0

= cm(tm+2 − tm+1)

(
β

α

)[(
tm+2 − ρtm+1

α

)(β−1)
]
−{

cm

[(
tm+2 − ρtm+1

α

)β

−
(
(1 − ρ)tm+1

α

)β
]
+ cp

}
. (15)

Applying the Power Law process (11), we cannot find the solution for (15) analytically. We find
the root of the nonlinear function (15) using the fzero function of Matlab, which is a combination
of bisection, secant, and inverse quadratic interpolation methods (Forsythe G. E. (1976)).

Suppose that cm = 1.25cp, the next maintenance epoch which minimizes the overall main-
tenance cost under the hypotheses that a major overhaul was performed at tm+1 = 612 days is
in tm+2 = 678 days. The next optimal scheduled maintenance actions is shown in Table 2. We
observe that the first optimal scheduled maintenance interval is 66 days. We can note that the
preventive maintenance becomes more frequent as the equipment ages and the hazard function
increases. The next intervals are the following: 64, 63, 61, 59 and 58 days. Figure 2 compares
the time between scheduled maintenance actions for cc = 0.75cp, cc = cp and cc = 1.25cp. As
expected, the scheduled maintenance interval is shorter as the corrective maintenance becomes
more expensive.

It can be analyzed in Figure 3 that higher level of recovery results in larger scheduled
maintenance intervals. It is only true for β > 2, which is the actual case. For β = 2 the optimal
preventive maintenance interval would be the same for any value of ρ. The opposite behavior
is found for 1 < β < 2. It can also be seen in Figure 3 that as the preventive maintenance
cost becomes greater than the corrective maintenance costs, that is, CM

CP < 1, the scheduled
maintenance interval increases fastly.

Table 2: Tempos de parada programada

tm+3 742
tm+4 805
tm+5 866
tm+6 925
tm+7 983
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Figure 2: Time period of the next maintenance actions
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Figure 3: Optimal preventive maintenance next interval as a function of the corrective repair cost

In Figure 4 it is exhibited the hazard rate paths. In the left panel, it is shown the in-sample
path. We can note an unorganized maintenance epochs in the original data which results in a
high value for the hazard function before the third action. In the right panel it is shown the out
of sample predicted hazard function. It is considered that the scheduled maintenance actions are
performed at the optimal interval, that is, at each 58 days. It is noteworthy that, respecting the
historical recovery factor of ρ = 0.77, in the 11-th action the hazard function finds in a lower level
than it was observed in the third maintenance interval.

Figure 4: In-sample and out of sample intensity function

In Figure 5 we fix cm = 1 and analyze the cost of the next maintenance cycle. We note that
cost varies widely according to the recovery parameter ρ.
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Figure 5: Maintenance cost

In Figure 6 it is exhibited the coupled in-sample and out of sample hazard function for
different recovery parameters ρ after the observed period of 612 days. With tm+2 = 678, and tm+n
according to Table 2, we can compare the hazard function for ρ = 0 (minimal repairs), ρ = 0.5
(intermediary repairs), ρ = 0.77 (actual policy) and ρ = 1 (perfect repairs).
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Figure 6: Hazard function

Finally,

5. Conclusion

A maintenance model under the assumption of imperfect preventive maintenance interspaced
with minimal repairs was considered. This study analyzed a real failure database available in the
literature consisting of 15 failure times and 3 unequally-spaced preventive maintenance actions.
The model parameters of the power law process were estimated using the MLE and a Differential
Evolution algorithm. The results obtained in this paper showed that maintenance cost varies
widely according to the recovery parameter. It is also clear from the results here obtained that
the optimal interval of two consecutive preventive maintenance actions strongly depends on the
costs. Hence, a proper estimation of repairs expenditures are needed. The proposed cost model
can be extended to consider random unscheduled repair costs.

References

Azizi, F. and Salari, N. (2023). A novel condition-based maintenance framework for parallel
manufacturing systems based on bivariate birth-birth-death processes. Reliability Engineering
& System Safety, 229:108798.

Chen, Y., Qiu, Q., and Zhao, X. (2022). Condition-based opportunistic maintenance policies with
two-phase inspections for continuous-state systems. Reliability Engineering & System Safety,
228:108767.

Dui, H., Wei, X., Xing, L., and Chen, L. (2023). Performance-based maintenance analysis and
resource allocation in irrigation networks. Reliability Engineering & System Safety, 230:108910.

RT&A, No 1 (72)
Volume 18, March 2023

573



Allan Jonathan da Silva
MAINTENANCE POLICY COSTS CONSIDERING IMPERFECT REPAIRS

Elsayed, E. A. (2021). Reliability engineering. WILEY SERIES IN SYSTEMS ENGINEERING AND
MANAGEMENT. Wiley, 3rd edition.

Forsythe G. E., M. A. Malcolm, C. B. M. (1976). Computer Methods for Mathematical Computations.
Prentice-Hall.

Guo, C. and Liang, Z. (2022). A predictive markov decision process for optimizing inspection and
maintenance strategies of partially observable multi-state systems. Reliability Engineering &
System Safety, 226:108683.

Huynh, K., Vu, H., Nguyen, T., and Ho, A. (2022). A predictive maintenance model for k-out-
of-n:f continuously deteriorating systems subject to stochastic and economic dependencies.
Reliability Engineering & System Safety, 226:108671.

Kienitz, J. and Wetterau, D. (2012). Financial Modelling: Theory, Implementation and Practice with
MATLAB Source. The Wiley Finance Series. Wiley.

Li, Y., Xia, T., Chen, Z., and Pan, E. (2023). Multiple degradation-driven preventive maintenance
policy for serial-parallel multi-station manufacturing systems. Reliability Engineering & System
Safety, 230:108905.

Löfsten, H. (2000). Measuring maintenance performance - in search for a maintenance productivity
index. International Journal of Production Economics, 63(1):47–58.

Malik, M. A. K. (1979). Reliable preventive maintenance scheduling. A I I E Transactions, 11(3):221–
228.

Naveen Kumar, S.C. Malik, N. N. (2022). Stochastic analysis of a repairable system of non-identical
units with priority and conditional failure of repairman. Reliability Theory & Applications,
17(1):123–133.

Neetu Dabas, R. R. (2022). Parallel system analysis with priority and inspection using semi-markov
approach. Reliability Theory & Applications, 17(2):56–66.

Nguyen, V.-T., Do, P., Vosin, A., and Iung, B. (2022). Artificial-intelligence-based maintenance
decision-making and optimization for multi-state component systems. Reliability Engineering
& System Safety, 228:108757.

Nse Udoh, Iniobong Uko, A. U. (2022). Optimal economic age replacement models for non-
repairable systems with sudden but non-constant failure rate. Reliability Theory & Applications,
17(3):108–120.

Pham, H. (2003). Handbook of Reliability Engineering. Springer London, 1st edition.
Pham, H. and Wang, H. (1996). Imperfect maintenance. European Journal of Operational Research,

94(3):425–438.
S., D. G. and Sebastian, N. (2022). A new life time distribution: Burr iii modified weibull

distribution and its application in burn in process. Reliability Theory & Applications, 17(1):76–
86.

Shanti Parkash, P. (2022). Performance modeling and dss for assembly line system of leaf spring
manufacturing plant. Reliability Theory & Applications, 17(2):403–412.

Shin, I., Lim, T., and Lie, C. (1996). Estimating parameters of intensity function and maintenance
effect for repairable unit. Reliability Engineering & System Safety, 54(1):1–10.

Tijjani A. Waziri, Bashir M. Yakasai, R. S. A. (2022). Analysis of some proposed replacement
policies. Reliability Theory & Applications, 17(1):87–103.

Wei, S., Nourelfath, M., and Nahas, N. (2023). Analysis of a production line subject to degradation
and preventive maintenance. Reliability Engineering & System Safety, 230:108906.

William Q. Meeker, Luis A. Escobar, F. G. P. (2021). Statistical Methods for Reliability Data. Wiley
Series in Probability and Statistics. Wiley, 2nd edition.

RT&A, No 1 (72)
Volume 18, March 2023

574




