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Abstract 
 

Traditional control charts are based on the assumption that the process observations are normally 
distributed. However, in many applications, there is insufficient information to justify this 
assumption. Thus, nonparametric control charts have been designed in literature to monitor 
location parameter and scale parameter of a process. In this paper, a single nonparametric control 
chart based on modified Lepage test is proposed for simultaneously monitoring of location and 
scale parameters of any continuous process distribution. The charting statistic combines two 
nonparametric test statistics namely Baumgartner test for location and Ansari-Bradely test for 
scale. The performance of the proposed chart is examined through simulation studies in terms of 
the mean, the standard deviation, the median and some percentiles of the run length distribution. 
The average run length (ARL) performance of the proposed chart is compared with that of the 
existing nonparametric Shewhart-Cucconi (SC) and Shewhart-Lepage (SL) charts for joint 
monitoring of location and scale. 
 
Keywords: Control chart; average run length; joint monitoring; nonparametric tests; 
location parameter; scale parameter. 
 

1. Introduction 
 
Control charts are the most important statistical process control tool used to monitor manufacturing processes 
with the objective of detecting any change in process parameters that may affect the quality of the output. 
Shewhart 𝑋" and 𝑅or 𝑆 control charts are most popular control charts for monitoring process mean and 
process variability. These control charts are easy to implement but are based on the fundamental assumption 
that the distribution of quality characteristic is normal. In real applications, there are many situations in 
which process data come from non-normal distribution. In such situations, it is desirable to use 
nonparametric control charts. The main advantage of nonparametric control chart is that it does not assume 
any probability distribution for the characteristic of interest. A formal definition of nonparametric or 
distribution-free control chart is given in terms of its run-length distribution. The number of samples that 
need to be collected before the first out-of-signal is given by a chart is a random variable called the run-
length; the probability distribution of the run-length is referred to as run-length distribution. If the in-control 
run-length distribution is same for every continuous distribution then the chart is called as distribution-free or 
nonparametric (Chakraborti and Eryilmaz [1]). The location and scale of a process are the two main 
parameters most often monitored in nonparametric control charts. The problem of monitoring the location of 
a process is important in many applications. The location parameter could be the mean or the median or some 
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percentiles of the distribution. Many authors have developed nonparametric control charts to monitor 
location parameter of the process some of these includes Bakir [2-3], Chakraborti and Eryilmaz [1], Khilare 
and Shirke [4], Human et al. [5]. These charts are based on sign and/or rank statistics. Chakraborti et al. [6] 
and Chakraborti and Graham [7] presented an extensive overview of literature on nonparametric control 
charts and discussed their advantages. 

The problem of monitoring the scale parameter of a process is also important in many applications. For 
monitoring scale parametric of a process very few nonparametric are available in literature. Amin et al. [8] 
proposed a sign chart for process variation based on quartiles. Das [9] proposed a nonparametric control 
chart for controlling variability based on squared rank test. Das [10] developed a nonparametric control chart 
based on rank test. Das and Bhattacharya [11] proposed a control chart for controlling variability based on 
some nonparametric tests. Murakami and Matsuki [12] developed a nonparametric control chart based on 
Mood statistic for dispersion. Khilare and Shirke [13] developed a nonparametric synthetic control chart for 
process variability based on sign statistic. Zombade and Ghute [14] provided nonparametric control charts 
for process variation based on Sukhatme’s test and Mood’s test. Shirke and Barale [15] proposed a 
nonparametric cumulative sum control chart for process dispersion using in-control deciles. 

The existing nonparametric control charts are designed for monitoring location and scale by using 
separate control charts. Using two separate charts for monitoring location and scale can sometimes be 
difficult in practice for the interpretation of signals because the effect of changes in one of the parameters can 
affect the changes in other one. The joint monitoring scheme with single chart has received more attention in 
the recent literature due to simplicity and clarity. A single control chart uses a statistic that is a combination 
of two separate statistics one each for mean and variance. Joint monitoring of a process involves two 
parameters, the mean (location) and variance (scale) and typically uses an efficient statistic for monitoring 
each parameter. The control charts currently available for jointly monitoring the mean and variance are 
focused on parametric control chart. Cheng and Thaga [16] provided a review of literature on joint 
monitoring of control charts up to 2005. McCracken and Chakraborti [17] presented an overview of literature 
on joint monitoring control charts. They also discussed some of the joint monitoring schemes for multivariate 
processes, autocorrelated data, and individual observations. Most of the parametric control charts for joint 
monitoring the mean and variability of a process are based on the assumption that process distribution is 
normal. However, in many applications there is not always enough knowledge or information to support the 
assumption that process distribution is of specific shape or form such as normal. In such cases nonparametric 
control charts can be useful. The literature in the area of nonparametric joint monitoring schemes is currently 
very limited. A few nonparametric joint monitoring schemes are available in the literature. Zou and Tsung 
[18] developed EWMA control chart based on goodness-of-fit test. It has been shown that the proposed chart 
is effective for detecting changes in location, scale and shape. Mukherjee and Chakraborti [19] developed a 
single distribution-free control chart for joint monitoring of location and scale. The chart is based on 
nonparametric test for location-scale by Lepage [20] which combines the Wilcoxon rank sum (WRS) 
location statistic and with Ansari-Bradely scale statistic. Chowdhury et al. [21] proposed distribution-free 
chart based on Cucconi statistic, for joint monitoring of location and scale parameters of continuous 
distribution. Nonparametric joint monitoring scheme is an important area for research and literature in this 
area is currently very limited and thus presents a great opportunity for further research. The purpose of this 
paper is to contribute the research on nonparametric joint monitoring scheme.  

In this paper, a single nonparametric Shewhart-type control chart is developed for joint monitoring of 
location and scale parameters of a continuous process distribution.  The proposed chart is based on 
nonparametric two sample modified Lepage-type test proposed by Neuhäuser [22]. The test combines the 
Baumgartner statistic and Ansari-Bradely statistic for jointly detecting location and scale changes. The in-
control and out-of-control performance of the proposed control chart is evaluated through average run length 
for the normal and double exponential distributions. The rest of the paper is organized as follows. The 
nonparametric Baumgartner and Ansari-Bradely tests for location and scale respectively are modified 
Lepage-type test proposed by Neuhäuser [22] for joint location and scale is are discussed in Section 2. A 
single nonparametric control chart for simultaneously monitoring the location parameter and the scale 
parameter of a process based on modified Lepage-type test statistic is presented in Section 3. In-control and 
out-of-control performance of the proposed control chart is studied in detail in Section 4. Performance of the 
proposed control chart is compared with the existing nonparametric charts in Section 5. Some conclusions 
are given in Section 6. 
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2.  Nonparametric Tests for Location and Scale 

 
In this section, we briefly discuss the nonparametric tests for location parameter, scale parameter and jointly 
location scale parameters. 

 
2.1 Baumgartner two sample test for location 

 
Baumgartner test is a two-sample test can be applied for location and scale parameters. Let	(𝑋!	,𝑋$, . . . , 𝑋%) 
and (𝑌!	,𝑌$, . . . , 𝑌&) denote two random samples. The observations within each sample are independent and 
identically distributed, and we assume independence between two samples. Let 𝐹	and	𝐺	be continuous 
distribution functions corresponding two populations1 and2 respectively. In location shift, model considered 
first the distribution functions are same except perhaps for change in their location; that is𝐹(𝑥) = 𝐹(𝑥 − 𝜃). 
The null hypothesis is	𝐻': 𝜃 = 0, whereas alternative is		𝐻!: 𝜃 0. Baumgartner et al. [23] proposed a 
distribution-free two-sample rank test for general alternative. For combined samples, let 𝑅!	 < 𝑅$ <	. . . < 𝑅% 
and 𝐻!	 < 𝐻$ <	. . . < 𝐻&	denote the ranks of the 𝑋 − values		and		𝑌 − values in increasing order of 
magnitude, respectively. Baumgartner et al. [23] defined a nonparametric two-sample rank statistic B as 
follows:    
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The larger value of statistic 𝐵	gives evidence to reject the null hypothesis. Baumgartner et al. [23] also 
provided asymptotic distribution of test statistic	𝐵. 

 
2.2 Ansari-Bradely test for scale 
 
The Ansari-Bradely test is a two-sample rank test applied for scale parameter. The test statistic is defined as 
follows: In the combined samples, the observations less than or equal to the median are replaced by their 
ranks in the increasing order and those larger than the median are replaced by their ranks in descending 
order. The statistic is the sum of these ranks for the 𝑌	sample. The corresponding test statistic is defined as 
(Gibbons and Chakraborti [24]), 
 𝐴𝐵 = ∑ B𝑘 − ,)!

$
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0.! 								                                                                                                                         (2) 
The mean and variance of statistic	𝐴𝐵 is given by, 
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2.3 Modified Lepage-type test for location and scale 
 
After Lepage statistic was proposed, various Lepage-type statistics have been proposed and discussed by 
many authors in the literature. One of the most famous and powerful modified Lepage-type statistic proposed 
by Neuhäuser [22] is a combination of the Baumgartner and Ansari-Bradely statistic given as: 

𝐿9 = T(4:$(()
;<=>$(()

U
$
+ T?(4:$(?()

;<=>$(?()
U
$
                                                                                                                    (3) 

where		𝐵	is Baumgartner statistic for location shift and	𝐴𝐵	is Ansari-Bradely statistic for scale shift. In this 
paper, we use𝐿9 test statistic as a charting statistic for detecting simultaneous location and scale shifts in a 
continuous process distribution.  

3. Control chart based on modified Lepage-type statistic 
 

In this Section, we develop a nonparametric control chart based on modified Lepage-type test statistic 
proposed by Neuhäuser [22] for simultaneously monitoring the location and the scale parameters of a 

¹
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continuous process. The single plotting statistic for the joint monitoring of location and scale is given by  𝐿9 
in Eq. (3) and chart is called LM chart. To adopt the idea of two sample test for control chart implementation, 
𝑚 independent observations	(𝑋!	,𝑋$, . . . , 𝑋&) from an in-control process are used as reference sample and 
compared to future sample subgroups of	𝑛 independent observations		(𝑌!	,𝑌$, . . . , 𝑌%) an arbitrary test sample. 

The proposed LM control chart for joint monitoring of location and scale is constructed as follows: 
Step1: Collect Phase-I reference sample	𝑋 = (𝑋!	,𝑋$, . . . , 𝑋&) of size𝑚  from an in-control process. 
Step2: Let	𝑌 = (𝑌!	,𝑌$, . . . , 𝑌%) be		𝑗@A Phase-II (test) sample of size		𝑛	, 𝑗 = 1, 2, 3, . .. 
Step 3: Calculate	𝐵/ and(𝐴𝐵)/ using (1) and (2) for		𝑗@A test sample. 
Step 4: Compute means and standard deviations of	𝐵  and𝐴𝐵 statistics respectively 
Step 5: Calculate the standardized 𝐵 and𝐴𝐵statistics as 

														𝑇!/ = Z
𝐵 − 𝐸'(𝐵)
[𝑉𝑎𝑟'(𝐵)

^ 		and		𝑇$/ = Z
𝐴𝐵 − 𝐸'(𝐴𝐵)
[𝑉𝑎𝑟'(𝐴𝐵)

^ 			respectively. 

Step 6: Calculate the control chart statistic LM chart as𝑇/	 = 𝑇!/$ + 𝑇$/$ 	, 𝑗 = 1, 2, 3,			.		.		. 
Step 7: Plot		𝑇/  against an upper control limit(𝑈𝐶𝐿), 𝐻 > 0. 
Step 8: If	𝑇/ exceed	𝐻, the process is out-of-control at the		𝑗@A test sample. If not, the process is thought to be 

in-control and testing continues to the next sample. 
 

4. Performance evaluation and analysis of LM chart 
Implementation of the proposed LM chart requires the upper control limit		𝐻. Typically, in practice, it is 
determined for some specified in-control average run length		(𝐴𝑅𝐿'), say, 370 or 500. A Monte-Carlo 
simulation approach based on sufficiently large number of possible samples is used to determine		𝐻. For a 
given pair of (𝑚, 𝑛) values, a search is conducted with different values of	𝐻, and that value of 𝐻 is obtained 
for which 	𝐴𝑅𝐿'is equal to nominal (target) value. We choose 𝑚 = 30, 50, 100  for the reference sample size 
and 𝑛 = 5, 11, 25	as the test sample size and target values		𝐴𝑅𝐿' = 200, 370, 500. The results are presented 
in Table 1. 
 

Table 1: Charting constant 𝐻	for the LM chart for some standard (target) values of 𝐴𝑅𝐿! 
Reference 

 sample size (𝑚) 
Test sample 

 size (𝑛) 
 Upper control limit (𝐻) 

𝐴𝑅𝐿! = 200 𝐴𝑅𝐿! = 370 𝐴𝑅𝐿! = 500 
30 
30 
30 
50 
50 
50 
100 
100 
100 

5 
11 
25 
5 
11 
25 
5 
11 
25 

29.540 
25.050 
16.985 
14.510 
15.389 
15.798 
20.020 
20.740 
18.540 

35.242 
33.128 
22.089 
19.510 
18.712 
19.123 
29.050 
27.490 
24.450 

37.960 
37.312 
24.820 
22.390 
20.752 
20.910 
32.800 
31.305 
28.023 

 
The performance of a control chart is generally studied through its runlength distribution. If the runlength 
distribution is skewed to the right, it is useful to come across at various measures such as average run length 
(ARL), the standard deviation of run length (SDRL) and several percentiles including the first and third 
quartiles to characterize the distribution. We study the performance of the proposed LM chart both under in-
control and out-of-control setup. For the in-control setup, we simulate both the reference and the test sample 
from standard normal distribution. We choose	𝑚 = 30, 50, 100 and	𝑛 = 5, 11, 25. For a given pair of (𝑚, 𝑛) 
values, we obtain upper control limits		𝐻 for nominal (target)		𝐴𝑅𝐿' = 500 and simulate different 
characteristics of the in-control run-length distribution. The results of simulation are shown in Table 2.  
It indicates that the target 𝐴𝑅𝐿' = 500 is much larger than the median (𝑄$) for all	(𝑚, 𝑛) combinations. 
Hence, in-control run-length distribution of the LM chart is highly skewed to the right.  
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In order to investigate the out-of-control performance of the proposed LM chart, we consider the 

underlying process distributions as normal and double exponential. The double exponential distribution is 
considered as process distribution to study the effect of heavy tailed distribution on the performance of the 
LM chart. The distribution of observations from the process is considered to have mean zero and variance 
one for both the process distributions under study.  

 
Table 2: In-control performance characteristics of the LM chart for𝐴𝑅𝐿! = 500. 

𝑚 𝑛 𝐻 𝐴𝑅𝐿' 𝑆𝐷𝑅𝐿' 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
30 
30 
30 
50 
50 
50 
100 
100 
100 

5 
11 
25 
5 
11 
25 
5 
11 
25 

37.960 
37.312 
24.820 
22.390 
20.752 
20.910 
32.800 
31.305 
28.023 

501.0 
499.7 
500.4 
499.5 
501.4 
501.3 
500.6 
500.1 
502.9 

500.5 
499.2 
499.9 
499.0 
500.9 
500.8 
500.1 
499.6 
502.4 

26 
27 
26 
27 
26 
26 
26 
26 
26 

146 
145 
144 
143 
144 
143 
144 
145 
147 

350 
346 
347 
344 
351 
348 
348 
345 
349 

694 
692 
695 
691 
698 
692 
696 
694 
695 

1484 
1493 
1481 
1508 
1499 
1502 
1506 
1499 
1508 

 
4.1 Performance analysis of LM chart under normal distribution 

 
In order to investigate the out-of-control performance of the proposed LM chart, we consider the underlying 
process distribution as normal; samples are taken from 𝑁(𝜃, 𝜆) distribution, with in-control samples coming 
from		𝑁(0, 1)distribution. To examine the effects of shifts in process parameters, 30 combinations 
of	(𝜃, 𝜆)values are considered with	𝜃 = 0, 0.25, 0.5,1.0,1.5,2.0 and 𝜆 = 1.0,1.25,1.5,1.75,2.0. 

Tables 3 and 4 present the performance characteristics of the LM chart when underlying process 
distribution is normal with combinations of the reference and test sample sizes		𝑚 = 50, 100  and 𝑛 = 5. 

The results in Table 3 and Table 4 indicate that the out-of-control run-length distributions are also 
skewed to right. It is observed that, for a fixed	𝑚, 𝑛 and a given 𝐴𝑅𝐿', the out-of-control ARL values as well 
as the percentiles all decrease sharply with increasing shift in the  location and also with the increasing shift 
in the scale. It indicates that the proposed LM chart is effective in detecting shifts in location and/or in the 
scale. The proposed LM chart detect shift in the scale more quickly than that in the location. For example, 
from Table 3, we observe that for 25% increase in location when scale is in-control, the ARL decreases by 
68%, whereas for a 25% increase in a scale when the location is in-control, ARL decreases by 78%. Finally, 
when location and scale increases by 25% the ARL decreased by 88%. The pattern is same for SDRL; it 
decreases for an increase in the shift in both parameters, but decreases more for a shift in scale. For example, 
from Table 3, for 25% increase in location, the SDRL decreases by 68% but for 25% increase in scale, the 
SDRL decreases by 78%. 

 
Table 3: Performance characteristics of the LM chart for the normal distribution. 

	(𝐴𝑅𝐿!		 = 500,𝑚 = 50	𝑎𝑛𝑑	𝑛 = 5). 
𝜃 λ ARL SDRL 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
0.0 1.0 499.5 499.0 27 143 344 691 1508 
0.25 1.0 160.3 159.8 9 46 111 223 478 
0.5 1.0 42.4 41.9 3 13 30 59 126 
1.0 1.0 5.9 5.4 1 2 4 8 16 
1.5 1.0 1.9 1.3 1 1 1 2 5 
2.0 1.0 1.2 0.5 1 1 1 1 2 
0.0 1.25 108.1 107.6 6 31 76 150 322 
0.25 1.25 58.4 57.9 3 17 41 81 175 
0.5 1.25 24.1 23.6 2 7 17 33 72 
1.0 1.25 5.7 5.1 1 2 4 8 16 
1.5 1.25 2.2 1.7 1 1 2 3 6 
2.0 1.25 1.3 0.7 1 1 1 2 3 
0.0 1.5 43.0 42.5 3 13 30 60 127 
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0.25 1.5 30.6 30.1 2 9 21 42 90 
0.5 1.5 16.6 16.1 1 5 12 23 48 
1.0 1.5 5.5 4.9 1 2 4 7 15 
1.5 1.5 2.5 1.9 1 1 2 3 6 
2.0 1.5 1.5 0.9 1 1 1 2 3 
0.0 1.75 22.8 22.3 2 7 16 31 68 
0.25 1.75 18.8 18.2 1 6 13 26 55 
0.5 1.75 12.7 12.2 1 4 9 17 37 
1.0 1.75 5.3 4.8 1 2 4 7 15 
1.5 1.75 2.7 2.2 1 1 2 4 7 
2.0 1.75 1.7 1.1 1 1 1 2 4 
0.0 2.0 14.5 14.0 1 5 10 20 42 
0.25 2.0 13.1 12.6 1 4 9 18 39 
0.5 2.0 9.9 9.4 1 3 7 13 29 
1.0 2.0 5.1 4.6 1 2 4 7 14 
1.5 2.0 2.9 2.3 1 1 2 4 8 
2.0 2.0 1.9 1.3 1 1 1 2 4 

 
 

Table 4: Performance characteristics of the LM chart for normal distribution. 
(𝐴𝑅𝐿!		 = 500, 𝑚 = 100	𝑎𝑛𝑑	𝑛 = 5). 

𝜃 λ ARL SDRL 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
0.0 1.0 500.6 500.1 26 144 348 696 1506 
0.25 1.0 273.6 273.1 15 79 191 380 814 
0.5 1.0 66.4 65.9 4 20 46 91 199 
1.0 1.0 7.5 7.0 1 3 5 10 21 
1.5 1.0 2.1 1.5 1 1 2 3 5 
2.0 1.0 1.2 0.5 1 1 1 1 2 
0.0 1.25 119.9 119.4 7 35 83 166 355 
0.25 1.25 83.8 83.3 5 25 58 116 251 
0.5 1.25 33.3 32.8 2 10 23 46 98 
1.0 1.25 6.8 6.3 1 2 5 9 19 
1.5 1.25 2.4 1.9 1 1 2 3 6 
2.0 1.25 1.4 0.7 1 1 1 2 3 
0.0 1.5 48.6 48.1 3 14 34 67 145 
0.25 1.5 39.6 39.1 2 12 27 55 118 
0.5 1.5 21.5 21.0 2 7 15 30 63 
1.0 1.5 6.4 5.9 1 2 5 9 18 
1.5 1.5 2.7 2.2 1 1 2 4 7 
2.0 1.5 1.6 1.0 1 1 1 2 4 
0.0 1.75 26.3 25.8 2 8 18 36 78 
0.25 1.75 23.3 22.8 2 7 16 32 69 
0.5 1.75 15.5 15.0 1 5 11 21 45 
1.0 1.75 6.1 5.6 1 2 4 8 17 
1.5 1.75 2.9 2.4 1 1 2 4 8 
2.0 1.75 1.8 1.2 1 1 1 2 4 
0.0 2.0 16.5 16.0 1 5 12 23 49 
0.25 2.0 15.4 14.9 1 5 11 21 45 
0.5 2.0 11.8 11.3 1 4 8 16 35 
1.0 2.0 5.8 5.2 1 2 4 8 16 
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1.5 2.0 3.1 2.5 1 1 2 4 8 
2.0 2.0 2.0 1.4 1 1 1 2 5 

 
 
4.2 Performance analysis of LM chart under double exponential distribution 

 
To study the effect of heavy tailed distribution on the performance of the proposed LM chart, double 
exponential distribution is included in the study as heavy tailed process distribution. We conduct simulation 
study with data from double exponential distribution. The performance characteristics of the run-length are 
evaluated when the in-control sample is from double exponential with mean 0 and variance 1, and test 
samples are generated from the double exponential distribution with mean	𝜃 and standard deviation		𝜆.  

To examine the effects of shifts in location and scale, as in normal case, we studied 30 combinations of 
(𝜃, 𝜆)values. Table 5 and Table 6 presents the performance characteristics of the proposed LM chart when 
underlying process distribution is double exponential with combinations of reference and test samples of size 
𝑚 = 50, 100and 𝑛 = 5.   

 
Table 5: Performance characteristics of LM chart for double exponential distribution. 

(𝐴𝑅𝐿!		 = 500,𝑚 = 50	𝑎𝑛𝑑	𝑛 = 5). 
𝜃 λ ARL SDRL 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
0.0 1.0 499.6 499.1 25 143 345 693 1505 
0.25 1.0 91.5 91.0 5 27 64 127 272 
0.5 1.0 18.2 17.7 1 6 13 25 53 
1.0 1.0 3.0 2.4 1 1 2 4 8 
1.5 1.0 1.5 0.8 1 1 1 2 3 
2.0 1.0 1.1 0.4 1 1 1 1 2 
0.0 1.25 222.2 221.7 12 64 155 307 663 
0.25 1.25 59.7 59.2 4 18 42 82 178 
0.50 1.25 17.0 16.5 1 5 12 23 50 
1.0 1.25 3.6 3.0 1 1 3 5 10 
1.5 1.25 1.7 1.1 1 1 1 2 4 
2.0 1.25 1.3 0.6 1 1 1 1 2 
0.0 1.5 128.6 128.1 7 38 90 177 381 
0.25 1.5 45.5 45.0 3 14 32 63 136 
0.5 1.5 16.1 15.6 1 5 11 22 47 
1.0 1.5 4.2 3.6 1 2 3 6 11 
1.5 1.5 2.0 1.5 1 1 2 3 5 
2.0 1.5 1.4 0.8 1 1 1 2 3 
0.0 1.75 87.1 86.6 5 26 61 121 261 
0.25 1.75 37.0 36.5 2 11 26 51 110 
0.50 1.75 15.8 15.3 1 5 11 22 46 
1.0 1.75 4.7 4.2 1 2 3 6 13 
1.5 1.75 2.3 1.8 1 1 2 3 6 
2.0 1.75 1.6 1.0 1 1 1 2 4 
0.0 2.0 65.0 64.5 4 19 45 90 193 
0.25 2.0 31.8 31.3 2 10 22 44 94 
0.50 2.0 15.4 14.9 1 5 11 21 45 
1.0 2.0 5.2 4.7 1 2 4 7 14 
1.5 2.0 2.6 2.1 1 1 2 3 7 
2.0 2.0 1.8 1.2 1 1 1 2 4 

 
 
 

Table 6: Performance characteristics of LM chart for double exponential distribution 
(𝐴𝑅𝐿!		 = 500, 𝑚 = 100	𝑎𝑛𝑑	𝑛 = 5). 
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𝜃 λ ARL SDRL 𝑃B 𝑄! 𝑄$ 𝑄7 𝑃CB 
0.0 1.0 497.9 497.4 25 142 344 691 1502 
0.25 1.0 789.9 789.4 42 225 546 1098 2376 
0.5 1.0 194.6 194.1 10 56 134 269 583 
1.0 1.0 10.5 10.0 1 3 7 14 30 
1.5 1.0 2.2 1.6 1 1 2 3 5 
2.0 1.0 1.2 0.5 1 1 1 1 2 
0.0 1.25 179.6 179.1 10 52 125 249 536 
0.25 1.25 246.2 245.7 13 71 170 341 739 
0.5 1.25 91.5 91.0 5 27 64 126 272 
1.0 1.25 9.6 9.1 1 3 7 13 27 
1.5 1.25 2.5 2.0 1 1 2 3 6 
2.0 1.25 1.4 0.7 1 1 1 2 3 
0.0 1.5 91.1 90.6 5 26 64 127 272 
0.25 1.5 111.4 110.9 6 32 77 154 332 
0.5 1.5 55.5 55.0 3 16 38 77 164 
1.0 1.5 9.3 8.7 1 3 7 13 27 
1.5 1.5 2.8 2.3 1 1 2 4 7 
2.0 1.5 1.5 0.9 1 1 1 2 3 
0.0 1.75 54.4 53.9 3 16 38 75 162 
0.25 1.75 63.3 62.8 4 19 44 88 188 
0.5 1.75 37.8 37.3 2 11 26 52 112 
1.0 1.75 8.7 8.2 1 3 6 12 25 
1.5 1.75 3.1 2.5 1 1 2 4 8 
2.0 1.75 1.7 1.1 1 1 1 2 4 
0.0 2.0 36.7 36.2 2 11 26 51 109 
0.25 2.0 41.2 40.7 3 12 29 57 123 
0.5 2.0 27.9 27.4 2 8 20 39 83 
1.0 2.0 8.3 7.8 1 3 6 11 24 
1.5 2.0 3.3 2.7 1 1 2 4 9 
2.0 2.0 1.8 1.2 1 1 1 2 4 

 
From Tables 5 and 6, it is observed that when underlying process distribution is doubling exponential, 

the general pattern remains the same as in the case of normal distribution. However, the out-of-control ARL 
values for detecting a shift in the mean and/or variance under double exponential distribution are larger than 
that of the ARL values under normal process distribution.  For example, from Table 6, mean shift is 
50%		(𝜃 = 0.50) and dispersion shift is 50%		(𝜆 = 1.5), The ARL is 194.6 which is larger than 66.4 in the 
normal case of Table 4. It indicates that the proposed LM chart detects shifts in process location and scale 
slower under heavy tailed distribution. Moreover, the percentiles as well as SDRL all increase under double 
exponential distribution as compared with normal distribution.  
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5. Performance comparison with existing control charts 

 
In this section, the performance of the proposed LM chart is compared with that of the SL chart by 
Mukherjee and Chakraborti [19] and SC chart by Chowdhury et al. [21] when underlying process 
distributions are normal and double exponential. Table 7 presents the ARL performance of SC chart, SL 
chart and LM chart for normal distribution with reference sample size	𝑚 = 50, 100  and test sample of 
size	𝑛 = 5. 

 
Table7: Performance comparisons between SC, SL and LM charts for the normal distribution with	𝐴𝑅𝐿! = 500. 

𝜃 𝜆 
𝑚 = 50, 𝑛 = 5 𝑚 = 100, 𝑛 = 5 

SC chart SL chart LM chart SC chart SL chart LM chart 
0.0 1.0 497.3 499.6 499.5 509.4 513.0 500.6 
0.5 1.0 92.2 94.7 42.4 68.6 66.5 66.4 
1.0 1.0 8.5 9.3 5.9 7.7 7.7 7.5 
1.5 1.0 2.2 2.3 1.9 2.1 2.1 2.1 
2.0 1.0 1.2 1.3 1.2 1.2 1.2 1.2 
0.0 1.25 71.1 106.2 108.1 74.5 102.9 119.9 
0.5 1.25 27.6 35.4 24.1 26.2 30.9 33.3 
1.0 1.25 6.6 7.4 5.7 6.2 6.7 6.8 
1.5 1.25 2.4 2.6 2.2 2.4 2.5 2.4 
2.0 1.25 1.4 1.4 1.3 1.3 1.4 1.4 
0.0 1.5 22.8 36.82 43.0 24.3 37.5 48.6 
0.5 1.5 13.3 19.0 16.6 13.4 17.8 21.5 
1.0 1.5 5.2 6.5 5.5 5.3 6.1 6.4 
1.5 1.5 2.4 2.8 2.5 2.4 2.7 2.7 
2.0 1.5 1.5 1.6 1.5 1.5 1.6 1.6 
0.0 1.75 10.9 18.5 22.8 11.7 19.1 26.3 
0.50 1.75 8.1 12.1 12.7 8.4 12.1 15.5 
1.0 1.75 4.4 5.7 5.3 4.4 5.5 6.1 
1.5 1.75 2.5 2.9 2.7 2.4 2.8 2.9 
2.0 1.75 1.6 1.8 1.7 1.6 1.8 1.8 
0.0 2.0 6.6 11.3 14.5 7.1 11.5 16.5 
0.5 2.0 5.5 8.5 9.9 5.8 8.6 11.8 
1.0 2.0 3.7 4.9 5.1 3.8 4.8 5.8 
1.5 2.0 2.4 2.9 2.9 2.4 2.9 3.1 
2.0 2.0 1.7 1.9 1.9 1.7 1.9 2.0 

 
Examination of Table 7 that for normal distribution leads the following findings: 

• For location shifts only when the scale parameter is in-control, the proposed LM chart performs better 
than the SL and SC charts. 

• For scale shifts only when the location parameter is in-control, the proposed LM chart is not as much 
better as the SL and SC charts. 

• For reference sample of size	𝑚 = 50, for any given shift in location parameter𝜃 with a fixed shift in 
scale parameter as	𝜆 = 1.25, the proposed LM chart performs better than the SL and SC charts. As 
shift in scale parameter 𝜆increases to 1.5 with any given shift in location parameter	𝜃, the proposed 
LM chart is efficient than the SL chart only. For scale shift of size	𝜆 = 1.25  and location shift 𝜃 =
1.5	and	2.0the proposed LM chart is efficient than the SL chart only. For scale shift	𝜆 = 2.0 and 
location shift 𝜃 = 1.5	and	2.0the proposed LM chart is equally efficient to the SL chart only.   
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• For reference sample of size	𝑚 = 100, for detecting shift in location parameter as 𝜃 = 1.5	and	2.0and 

shift in scale parameter	𝜆 = 1.5	𝑎𝑛𝑑	1.5 the proposed LM chart is equally efficient to the SL chart 
only.   

 
Table 8: Performance comparison between the SC, SL and LM charts for the double exponential distribution 

with		𝐴𝑅𝐿! = 500. 

𝜃 𝜆 𝑚 = 50, 𝑛 = 5 𝑚 = 100, 𝑛 = 5 
SC chart SL chart LM chart SC chart SL chart LM chart 

0.0 1.0 492.7 493.2 499.6 509.6 508.3 497.9 
0.5 1.0 240.0 235.2 18.2 191.0 159.2 194.6 
1.0 1.0 41.4 36.1 3.0 26.5 19.9 10.5 
1.5 1.0 7.2 5.93 1.5 4.8 4.1 2.2 
2.0 1.0 2.1 2.0 1.1 1.8 1.7 1.2 
0.0 1.25 118.0 156.8 222.2 124.5 153.2 179.6 
0.5 1.25 69.7 79.8 17.0 61.7 66.19 91.5 
1.0 1.25 20.1 19.9 3.6 14.6 14.0 9.6 
1.5 1.25 5.1 5.2 1.7 4.4 4.2 2.5 
2.0 1.25 2.1 2.2 1.3 2.0 2.0 1.4 
0.0 1.5 43.3 65.9 128.6 47.8 66.8 91.1 
0.5 1.5 29.3 42.1 16.1 29.6 36.8 55.5 
1.0 1.5 12.0 14.2 4.2 10.7 11.1 9.3 
1.5 1.5 4.5 4.7 2.0 4.0 4.1 2.8 
2.0 1.5 2.2 2.3 1.4 2.1 2.2 1.5 
0.0 1.75 22.8 35.6 87.1 24.4 36.4 54.4 
0.5 1.75 16.7 24.5 15.8 16.9 23.2 37.8 
1.0 1.75 8.5 10.4 4.7 7.9 9.2 8.7 
1.5 1.75 4.0 4.5 2.3 3.7 4.0 3.1 
2.0 1.75 2.2 2.4 1.6 2.1 2.3 1.7 
0.0 2.0 13.8 22.1 65.0 14.5 22.9 36.7 
0.5 2.0 11.1 17.0 15.4 11.3 16.6 27.9 
1.0 2.0 6.5 8.6 5.2 6.3 7.9 8.3 
1.5 2.0 3.5 4.3 2.6 3.5 3.9 3.3 
2.0 2.0 2.2 2.5 1.8 2.1 2.3 1.8 

Examination of Table 8 that for double exponential distribution leads the following findings: 
• For reference sample of size	𝑚 = 50, for location shifts only when the scale parameter is in-control, 

the proposed LM chart performs better than the SL and SC charts. For scale shifts only when the 
location parameter is in-control, the proposed LM chart is not as better as the SL and SC charts. For 
any given shift in location parameter	𝜃 with any shift in scale parameter	𝜆, the proposed LM chart 
performs better than the SL and SC charts.  

• For reference sample of size	𝑚 = 100, for detecting shift in location parameter as	𝜃 = 1.0	and	2.0  
and shift in scale parameter	𝜆 = 1.25, 1.5	and	1.75, the proposed LM chart is efficient than the to the 
SL and SC charts. For detecting shift in location parameter as 𝜃 = 1.0	and	2.0 and shift in scale 
parameter	𝜆 = 2.0, the proposed LM chart is efficient than the to the SL and SC charts.   

 
6. Conclusions 

 
In this paper, a single nonparametric control chart based on modified Lepage-type test statistic is developed 
for joint monitoring of location and scale parameters of a continuous process distribution. Both in-control 
and out-of-control performance of the chart are studied under normal and heavy tailed double exponential 
distributions. The various performance characteristics such as mean, median and some percentiles of the run-
length distribution are examined. It is observed that the proposed LM chart maintain its designed in-control 
ARL under the considered process distributions. The chart is found to be more efficient under normal 
distribution as compared to double exponential distribution. The performance of the proposed chart is 
compared with SL chart by Mukherjee and Chakraborti [19] and SC chart by Chowdhury [21]. It is observed 
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that the proposed LM chart for joint monitoring of location and scale performs better than the SL and SC 
charts in some situations. 

Acknowledgment 
The authors would like to thank the editor for his comments and suggestions which contributed to 
the improvement of this article.  
 
References 

[1] Chakraborti, S. and Eryilmaz, S. (2007). A nonparametric Shewhart-type signed-rank control chart 
based on runs. Communications in Statistics-Simulation and Computation, 36: 335-356. 

[2] Bakir, S. T. (2004). A distribution-free Shewhart quality control chart based on signed-ranks.Quality 
Engineering, 16: 613-623. 

[3] Bakir, S. T. (2006). Distribution-free quality control charts based on signed rank like statistics. 
Communications in Statistics-Theory and Methods, 35: 743-757. 

[4] Khilare, S. K. and Shirke, D. T. (2010). A nonparametric synthetic control chart using sign statistic. 
Communications in Statistics-Theory and Methods, 39: 3282-3293. 

[5] Human, S. W., Chakraborti, S. and Smit, C. F. (2010). Nonparametric Shewhart-type sign control chart 
based on runs. Communications in Statistics-Theory and Methods, 39: 2046-2062. 

[6] Chakraborti, S., van der Laan, P. and Bakir, S. T.  (2001). Nonparametric control charts: An overview 
and some results. Journal of Quality Technology, 33(3): 304-315. 

[7] Chakraborti, S. and Graham, M. A.  (2007). Nonparametric control charts. Encyclopedia of Statistics in 
Quality and Reliability, John Wiley: New York, 1:415-429. 

[8] Amin, R. W., Reynolds, M. R. Jr. and Bakir, S. T. (1995). Nonparametric quality control charts based 
on sign statistic. Communications in Statistics-Theory and Methods, 24: 1579-1623. 

[9] Das, N. (2008a). A nonparametric control chart for controlling variability based on squared rank test. 
Journal of Industrial and System Engineering, 2(2): 114-125.  

[10] Das, N. (2008b). Nonparametric control chart for controlling variability based on rank test. Economic 
Quality Control, 23(2): 227-242. 

[11] Das, N. and Bhattacharya, A. (2008). A new nonparametric control chart for controlling 
variability.Quality Technology and Quantitative Management, 5(4): 351-361. 

[12] Murakami, M. and Matsuki, T. (2010). A nonparametric control chart based on Mood statistic for 
dispersion.  International Journal of Advanced Manufacturing Technology, 49: 757-763.  

[13] Khilare, S. K. and Shirke, D. T. (2012). Nonparametric synthetic control chart for process variation. 
Quality and Reliability Engineering International, 28: 193-202. 

[14] Zombade, D. M. and Ghute, V. B. (2014). Nonparametric CUSUM charts for process variability. 
Journal of Academia and Industrial Research, 3(1): 53-57. 

[15] Shirke, D. T. and Barale, M. S. (2018). A nonparametric CUSUM chart for process 
dispersion.Quality and Reliability Engineering International, 34(5): 858-866. 

[16] Cheng, S. W. and Thaga, K. (2006). Single variable control charts: An overview. Quality and 
Reliability Engineering International, 22(7): 811-820. 

[17] McCracken, A. K. and Chakraborti, s. (2013). Control charts for joint monitoring of mean and 
variance: An overview. Quality Technology and Quantitative Management, 10(1): 17-36. 

[18] Zou, C. and Tsung, F. (2010). Likelihood ratio based distribution-free EWMA control charts. Journal 
of Quality Technology, 42(2): 174-196. 

[19] Mukherjee, A. and S Chakraborti, S. (2012).  A Distribution-free control chart for the joint 
monitoring of location and scale. Quality and Reliability Engineering International, 28: 335-352. 

[20] Lepage, Y. A. (1971). Combinations of Wilcoxon’s and Ansari-Bradley’s statistics, Biometrika, 58: 
213-217. 

[21] Chowdhury, S., Mukherjee, A. and Chakraborti, S. (2013). A new distribution-free control chart for 
joint monitoring of unknown location and scale parameters of continuous distributions.Quality and 
Reliability Engineering International, 30(2): 191-204. 

[22] Neuhäuser, M. (2000). An exact two-sample test based on the Baumgartner–Weiss–Schindler statistic 
and a modification of Lepage’s test.Communications Statistics- Theory and Methods, 29: 67–78. 

[23] Baumgartner, W., Weiß, P. and Schindler, H. A. (1998). A nonparametric test for the general two-
sample problem.Biometrics, 54: 1129-1135. 

[24] Gibbons and Chakraborti, S. (2003). Nonparametric Statistical Inference, 4th Edition, New York: 
Dekker 

563




