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Abstract 
 

The aim of the paper is to develop a better estimator for the entropy function of variance of the normal 
distribution. The present paper proposes a Huntsberger type shrinkage estimator of the entropy function 
for the variance of normal distribution. This Huntsberger type shrinkage entropy estimator is based on 
test statistic, which eliminates arbitrariness of choice of shrinkage factor. For the proposed estimator risk 
expressions under LINEX loss function have been calculated. Numerical computations and graphical 
analysis is carried out for risk and relative risks for the proposed estimators. It is also compared with the 
existing best estimator for distinct degrees of asymmetry and different levels of significance. Based on the 
criteria of relative risk, it is found that the proposed Huntsberger type shrinkage estimator is better than 
the existing estimator for the entropy function of  variance of normal distribution for smaller values of 
level of significance and degrees of freedom..  

 
Keywords: Normal distribution, entropy function, shrinkage estimation, LINEX loss function,      

level of significance, relative risk. 
 
 
 

1. Introduction 
 
Normal distribution plays a vital role in theory of statistics. Its testimation and estimating its 
parameters have been acknowledged and refined by researchers. Pandey et al. [9] proposed some 
shrinkage testimators of variance under the mean square error criterion. Parsian and Farsipour [10], 
Mishra and Meulen [7], Ahmadi et al. [1], Singh et al. [14], Prakash et al [12], Prakash and Pandey 
[11] and others have studied the estimation methods under LINEX loss function in distinct contexts. 
The concept of entropy was introduced by Shannon [13] and is given as 
                                                                                                     (1) 
 where X is a random variable having probability density function f and distribution function F.                                           
For sharply peaked distribution entropy is very low and is much higher when the probability is 

H(f) E[ ln(f(X))],= -
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spread out. Many authors worked on the estimation entropy for different life distributions. Misra et 
al. [8] proposed an entropy estimator for a multivariate normal distribution while Jeevanand and 
Abdul- Sathar [4] also obtained estimators for the residual entropy function of exponential 
distribution from censored samples. Lazo and Rathee [6] and Kayal and Kumar [5] also worked in 
this direction. 
         Suppose the random variable X has the probability distribution  where interest is to 
estimate entropy function as a function of . Thomson [17] proposed a shrinkage type estimator 

 where k is constant and is designed to shrink the usual estimator  of the parameter 

 towards a natural origin  and Huntsberger [3] introduced weighted shrinkage estimator of the 
form 

                   , 

where  represents a weighted function specifying the degree of belief in In this 
paper, we shall concentrate on obtaining Huntsberger type shrinkage estimation of entropy function 
with respect to asymmetric loss function for a random sample  of size m from a normal 
distribution.  

The                              The form of normal density we consider is  

                                          (2)                                           

For the normal distribution, the entropy function can be obtained as 

                                                                                                                        (3) 

Since  is linear function of , estimating  is correspondent to estimating . 

We shall write  so that . Now we shall discuss estimation 

of . Since  is continous function of , the MLE of  is obtained by replacing  by 

its MLE  in . Then, the MLE of entropy function for the exponential distribution is  

                                                                                                                          (4)                                                                                                                         

    where  is MLE of , when  is unknown.                                                                     

It can be shown that  has distribution as 

                                                                                             (5)  

Although the SELF (squared error loss function) is commonly used for estimating various statistics 
parameters, it may not be convenient in actual situations, particularly in insurance claims, estimating 
any health statistics parameter, over-estimation and under-estimaton have distinct impacts. An 
analysis of various superior properties of asymmetric loss function over squared error loss function 
has been presented by several authors. Basu and Ebrahimi [2] derived Bayes estimators for mean 
lifetime and reliability function for the exponential model using asymmetric loss function. Srivastava 
and Tanna [16] as well as Srivastava and Shah [15] also derived estimators and studied their 
properties under asymmetric loss function.  
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        A fruitful asymmetric loss function, LINEX loss function was recommended by Varian [18] as:  
                                                                                                                 (6)                               
The magnitude and sign of ‘a’ shows the degree of asymmetry and direction respectively. When 
overestimation is more severe than underestimation then positive values of ‘a’ are taken, whereas in 
reverse situations its negative values are usually preferred and ‘b’ is constant of proportionality.   
 

2. The Shrinkage Estimator 
 
From a normal population with mean  and variance , a random sample  of size m 

is taken. Let the initial guess value for  is presumed to be available from the past knowledge 

or some other reliable origins. It is noted that MLE of  is  having variance of  . 

Here, we test the null hypothesis  against the alternative  using the test 

statistic , where  which follows - distribution with  degree of freedom 

. If  then  may be approved at  level of significance, where lower and 

upper percentile values of  distribution are  respectively with degree of freedom 

 Then by taking shrinkage factor , which is negatively associated with  

 a shrinkage entropy estimator  may be considered.   If data does not hold,  it 

may be dropped and in this case it is recommended to use , the MLE of . 

Thus, the proposed shrinkage entropy estimator  of  is  as under:                                       

                                                                         (7) 

 

3. Risk of Estimator 
 

Risk of estimator under LLF is obtained as under: 
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  ,                                                               (8)  
 

where  and I(x, n) is the cumulative distribution 

function of gamma distribution given as 

  

and

 
, , 

 
and  

  

4. Relative Risk 
 

A common way of analyzing risk of considered estimator, is to examine its work  relative to the best 

possible estimator  in this case. With this motto, we calculate risk of  as:   

               

                                        

                                      

Now, taking the transformation   and then solving the integral, we get 

                                                                                                       (9) 

where            

                              

Now, we determine relative risk of  under LLF as 

                                                                                                                      (10) 

Using (8) and (9) the expression given in (10) can be obtained. It is observed that relative risk given 
above is a function of m, a, and  
 

5. Numerical Computations And Graphical Analysis 
 

To examine the performance of , a few values of these parameters have been taken as  = 
0.01, 0.05, 0.1, m=5, 8, 11,  = 0.2(0.2)2 and a=-2, -1, 1, 1.5, 1.75 i.e. both positive and negative values, 
as a is the best essential component that determines the seriousness of over/under estimation in the 
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actual cases. Several tables and graphs for relative risk calculation are represented in Table 1, Figure 
1 to Figure 6. However our recommendations depending on all these analyses are as follows:  
 i. For  and for considered values of ‘a’,  gives better results than the existing 
estimator for all values of ‘a’ and for the whole scale of  i.e. .  
 ii. Further if we switch  to 5%, the same type of behavior noticed for relative risk (RR). However, 
magnitude of RR is smaller as computed to  values. 
iii. Taking  in order to observe the pattern for higher values of and it is found that  
still gives the better results as compared to the existing estimator whereas magnitude of relative 
risks values become lower but even though it remains above unity. 
 iv. After comparing these relative risks, a lower value of is preferred. Similarly, as ‘m’ raises there 
is a fall in RR values for distinct values of and a. However the best result of  is observed at 

 for  and  for     
It is therefore suggested to take up a smaller values of ( ) as well as m (=5 or 8) for better 
results for a, in particular    
 
                                         Table 1: Relative risk of estimator  under LLF 

α=0.0
1 

                                                                 

    m     a    0.2   0.4   0.6    0.8    1   1.2   1.4  1.6 1.8   2 

 

 

   5  

 

 

-2    1.4182    2.3334    3.5356     4.3068     4.2010    3.6270     3.0222    2.5295   2.1539    1.8697 

-1    1.2002   1.9735    3.5429     5.7055     6.5919    5.5134     4.0969    3.0576   2.3684     1.9069 

1    1.0382    1.4929   2.6592     5.1746    8.1241    7.0627     4.4323    2.7966   1.9057      1.3929 

1.5    1.0226   1.4256    2.4849    4.8294     7.8372    6.9390     4.2635     2.623    1.7512     1.2593 

1.75  1.0166   1.3967    2.4065    4.6584    7.6447     6.8323     4.1657    2.5355   1.6775     1.1972 

 

 

   8 

  

-2    0.9844  1.3487     2.3739    4.2491    5.384       4.3037     2.9433    2.0695   1.5473      1.2225 

-1   0.9594  1.2222     2.0956     4.0243    5.9406     4.8704     3.0967    2.0288   1.4387      1.0928 

 1   0.9493  1.0861     1.7061      3.2695    5.6045     4.9869     2.9165   1.7353    1.1407     0.8166 

1.5 0.9502  1.0664    1.6375      3.0932    5.3591      4.8641    2.8201    1.6510    1.0697     0.7563 

1.75 0.9509  1.0580    1.6064     3.0095    5.2275      4.7898    2.7692    1.6097   1.0358    0.7279 

 

 

  11 

  -2  0.9615  1.0777   1.7002     3.2243    4.8735      3.9475    2.4526    1.5938     1.1345     0.872 

  -1 0.9634  1.0316   1.5541     2.9483    4.8576       4.1132   2.4478    1.5165     1.0407     0.7778 

   1 0.9715  0.983     1.3555     2.4472     4.3008       3.9708   2.2651    1.3114    0.8494      0.6054 

  1.5 0.9736 0.9764  1.3197    2.3413      4.117        3.8711    2.2019    1.2593   0.8058       0.5681 

1.75 0.9745 0.9738  1.3034   2.2913      4.0237       3.8159   2.1695     1.2339    0.7849      0.5504 

α= 
0.05 

 

m 5, 1%= a = 2
1I ( )s

f 0.2 2£ f £
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1%a =
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a 2
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 5  

 

-2   1.4071  1.8922  2.2377   2.3004       2.1503      1.9251  1.7058      1.5193   1.3679       1.2466 

-1   1.2576  1.7852  2.4289  2.8421        2.7907       2.4451  2.0534     1.7221  1.4656       1.2712 

 1   1.1105  1.4803  2.1447  2.9731        3.3998        3.0605  2.3984     1.8212  1.4072       1.1213 

1.5  1.0933  1.4267   2.05    2.8825       3.3938         3.1        2.4085     1.7949  1.3598       1.0644 

1.75  1.0864  1.4029 2.0043 2.8294       3.3726       3.1043   2.4045      1.777    1.3339      1.0353 

 

 

   8 

  -2   1.0733   1.3764   1.9092   2.4083   2.4372      2.0694   1.6564      1.3379   1.1146       0.96 

  -1   1.0421   1.2813   1.7875   2.4168   2.6348      2.2633   1.7518      1.3543   1.0839     0.9028 

   1   1.0163   1.1634   1.5537   2.1943   2.6789      2.4327   1.8167       1.3106   0.9792      0.768 

  1.5  1.0134   1.1445  1.5057   2.1206   2.6324       2.4297   1.8097      1.2887   0.9488      0.734 

1.75  1.0123   1.1362  1.4832   2.0833   2.6063       2.4223   1.8035      1.2768   0.9334    0.7174 

               -2    1.0267   1.1768   1.5449   2.0735   2.2885       1.9517   1.4932      1.1549   0.9373    0.7999 

               -1   1.0187   1.1351    1.4549   1.9908   2.3257       2.0333   1.5248      1.1407   0.8974    0.7464 

  11          1   1.0111   1.0846    1.3150   1.78       2.2286        2.0732  1.5306     1.0868    0.8091     0.6410 

             1.5   1.01       1.0764    1.2877   1.7272   2.1801        2.0596  1.5219      1.07      0.7869      0.6161 

           1.75   1.0095   1.0728   1.2749   1.7013   2.1535         2.0498  1.5162     1.0612   0.7759     0.6040 

 

5.1. Graphs of Relative Risk for  

                                   

Figure 1: For α=0.01 

2
1I ( )s
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   Figure 2: For α=0.05 

 

                            
   Figure 3: For m=5 

 
                                                           

                       
Figure 4: For m=8 

 

497



 
Priyanka Sahni, Rajeev Kumar 
HUNTSBERGER TYPE SHRINKAGE ENTROPY  
ESTIMATOR FOR NORMAL DISTRIBUTION 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

                  
Figure 5: For α=0.01 

                      

             
Figure 6: For α=0.1 

 

 

6. Conclusion 
 
In this paper, a Huntsberger Type shrinkage entropy estimator for normal distribution have been 
proposed and its properties have been investigated under LINEX Loss function. On the basis of 
relative risk, it is concluded that the proposed estimator gives better results for smaller values of 
level of significance and degrees of freedom.  
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