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Abstract

We consider a single server phase type queueing model with server vacation, repair, breakdown, degrading
service, starting failure and closedown. When the arrival rate of the customer follows the Markovian
Arrival Process (MAP) and the service rate of the server follows the phase-type distribution. If no one
is in the system when the server is back from the vacation, then the server will wait until the customer
arrives. If the customer arrives at the moment with no starting failure, then he provides service, otherwise
the server immediately goes to the repair process. Here, the service rate declining until degradation fixed.
After completion of K services the degradation is addressed. During the period of service, the server
may get a breakdown at any moment, and then the server immediately goes for a repair process. After
completing the service, he switches to the close-down process, and then he goes on vacation. Using the
Matrix-Analytic method, The stationary probability vector representing the total number of customers in
the system is examined. The analysis of the busy period, the mean waiting time, and cost analysis are
discussed. A few significant performance measures are attained. Finally, some numerical examples are
given.

Keywords: Phase type Distribution, Markovian Arrival Process, Degrading Service, Server
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1. Introduction

The Markovian arrival process is one of the modelling techniques for studying point processes
that is most flexible. In order to define arrival processes that are not fundamentally renewal
processes, Neuts [13] proposed the concept of a versatile Markovian point process (VMPP). Neuts
[14] first introduced and investigated the underlying Markov structure of the MAP, which fits
perfectly into the framework of matrix-analytic methods and is one of its most notable properties.
Qi-Ming He [16] investigated the foundations of matrix analytical methodologies in order to
comprehend the idea of service and arrival process.

Chakravarthy [5] made a significant contribution to MAP. Markovian Arrival Process rep-
resents by (D0, D1) and the service times with representation (α, T) that follow phase type
distribution and whose matrices of order m and n, respectively. He described several types of
arrivals and services. The irreducible stochastic matrix D = D0 + D1 defines the generator D. If
the irreducible generator D describes the Markov process, then π is the steady state probability
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vector, and it is defined as πD = 0 and πe = 1. Based on the Markovian arrival process, the
constant λ = πD1e represents the basic customer arrival rate per unit time.

MAP/PH/1-type queueing models with degradation and phase type vacation have been
analysed by Alka et al. [6]. Degradation can be included in a service system in a number of
ways. The service rate will decrease unless the degradation is addressed. In other words, the
service rate will decrease as more services are provided. For vacation queueing models, we refer
to Doshi’s survey paper [7] and Tian and Zhang’s book [20]. Li and Tian [12] investigated the
M/M/1 model with working vacation and proposed an interruption in vacation, where the server
returns without completing the ongoing vacation due to certain conditions. Krishna Kumar et al.
[10] have analysed the several server model with server vacations under the Bernoulli schedule.
Sreenivasan et al. [18] have examined the MAP/P H/1 queueing model with N-Policy, vacation
interruption and working vacations.

One of the main queueing theory subfields has recently been queueing models with server
breakdown. Wang et al. [21] have investigated the batch arrival queueing model with multiple
vacations and the server struck with breakdown. Ayyappan and Nirmala [2] have explored
the non-Markovian queueing model and the server provides service to the customers based on
general bulk service rule with multiple vacations, breakdown and two-phase repair . Ayyappan
and Deepa [1] have studied the batch arrival and bulk service queueing model with multiple
vacations and optional repair. A single server queueing model with MAP arrival and phase type
service, vacation, instantaneous feedback and breakdown has been looked into by Ayyappan
and Thilagavathy [3]. In this model, they obtained stability condition and busy period analysis.
Senthil Vadivu et al. [17] have performed a cost function of the bulk service queueing model of a
single server with finite capacity and close-down times by using embedded Markov chain and
supplementary variable techniques.

Yang et al. [22] have discussed the Markovian model of the retrial queue with multi-server and
starting failure. They analyzed their model with the aid of the matrix geometric method. With
respect to the stability condition, the cost analysis is built to calculate the ideal number of servers,
the ideal average service rate, and the ideal average repair rate. Karpagam et al. [9] have been
analysed the batch arrival and bulk service queueing system with starting failure and additional
service. They obtained system performance measures and the stability condition. Ayyappan and
Gowthami [4] has analysed a Phase type model with impatient customers, Setup time, vacation,
feedback, Breakdown and Repair. In this article, they compute the average waiting time.

2. Description of the Model

Assume that there is a single server in a queueing model, and that customers arrive at the
system according to the MAP with representation (D0, D1), where D0 and D1 are m-dimensional
square matrices. Let D = D0 + D1 be the generator matrix, where D0 governs for no arrival at the
system and D1 governs for an arrival at the system. The stationary vector of D is denoted by π, so
we have πD = 0 and πe = 1. The arrival rate λ is given by λ = πD1e. The system is performed
on an FCFS basis. With the notation (α, T), that is of order n, the length of the server’s service is
thought to be a PH-distribution, where T0 + Te = 0 so that T0 = −Te. The average service rate
ξ is given by ξ = [α(−T)−1e]−1. The service rate decreases after each service is completed. Let
ξ be the first service rate and ξi be the ith service rate such that ξ = ξ1 ≥ ξ2 ≥ ξ3 ≥ · · · ≥ ξK,
where ξi = θiξ and 0 < θi ≤ 1 for all i = 1, 2, 3, . . . , K. After K services are completed, the
original rate of ξ is immediately applied to the degraded service rate. Because θ1 = 1, After the
degradation has been corrected, the service rate for the first customer is always ξ. The server
that customers use to access services could breakdown at any time and needs to be repaired.
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The repair procedure is based on the PH-distribution with representation (β, S) of order n2 and
S0 + Se = 0 so that S0 = −Se. If no one is present in the system when the server’s service is
completed, the close-down process begins, and then the server goes on vacation. The vacation
period is thought to be a PH-distribution with the notation (γ, V) of order n1, where V0 + Ve = 0
so that V0 = −Ve. After completion of the vacation period if no customer present in the system,
then the server is idle; otherwise the server starts the service. If a customer arrives while the
server is idle, it may experience a starting failure with probability p or no starting failure with
probability q, resulting in p+q=1. In the event of a server breakdown, the customer who is
currently providing the service from the server will remain in a frozen state until the server
gets rid of the repair process. After completion of the repair process, the server will serve a
fresh service for the current frozen customer. The breakdown and close-down time follows an
exponential distribution with the parameters σ and δ respectively. The average repair rate and
vacation rate are given by ζ and η respectively.

Figure 1: Schematic Representation of the model

3. The QBD Process of Matrix Generation

We have described our model’s notation for the basis of generating the QBD process in this
section as follows.

Matrix Generation Notations
∙ ⊗ - Kronecker product represents the product of any two different order matrices, can refer

to the works in Steeb et al. [19].
∙ ⊕ - The Kronecker Sum represents the sum of any two of the different orders of matrices.
∙ Ik - An identity matrix of order k.
∙ e′i(m) - An m-dimensional row vector with 1 in the ith position and 0 elsewhere.
∙ e-Each entry in a column vector of appropriate dimension is 1.
∙ The customer’s arrival rate is denoted by λ and is defined by λ = πD1em
∙ The server’s service rate is denoted by ξ and is defined by

ξ = [α(−T)−1en]−1
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∙ The server’s vacation rate is denoted by η and is defined by
η = [γ(−V)−1en1 ]

−1

∙ The server’s repair rate is denoted by ζ and is defined by
ζ = [β(−S)−1en2 ]

−1

∙ Define θ = (θ1, θ2, . . . , θK)
t and ∆(θ) =


θ1 0 . . . . . .
0 θ2 . . . . . .
...

...
. . .

...
0 . . . . . . θK


∙ Let N(t) be the number of customers in the system at epoch t
∙ Let V(t) be the server’s status at epoch t

V(t) =



0, if the server is on vacation,
1, if the server is in idle,
2, if the server is in busy,
3, if the server is in repair process,
4, if the server is in closedown process.

∙ I(t) is the type of service at time t
∙ J1(t) represents the vacation process as framed by phases.
∙ J2(t) represents the repair process as framed by phases.
∙ S(t) represents the service process as framed by phases.
∙ M(t) represents the arrival process as framed by phases.

Let { N(t),V(t),I(t),J1(t),J2(t),S(t),M(t):t ≥ 0} denote the Continuous Time Markov Chain
(CTMC) with state level independent Quasi-Birth and Death process, the state space of which is
as follows:

Ω = l(0) ∪ l(q) ,
where

l(0) = {(0, 0, j1, k) : 1 ≤ j1 ≤ n1, 1 ≤ k ≤ m} ∪ {(0, 1, k) : 1 ≤ k ≤ m} ∪ {(0, 4, k) : 1 ≤ k ≤ m}

for q ≥ 1,

l(q) = {q, 0, j1, k) : 1 ≤ j1 ≤ n1, 1 ≤ k ≤ m} ∪ {(q, 2, l, j, k) : 1 ≤ l ≤ K, 1 ≤ j ≤ n, 1 ≤ k ≤ m}
∪{(q, 3, l, j2, k) : 1 ≤ l ≤ K, 1 ≤ j2 ≤ n2, 1 ≤ k ≤ m} ∪ {(q, 4, k) : 1 ≤ k ≤ m}.

The QBD process’s infinitesimal matrix generation is given by

Q =



B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .
0 0 A2 A1 A0 0 . . .
...

...
...

. . . . . . . . .
...

...
...

...
...

. . . . . . . . .


.

The entries in the block matrices of Q are defined as follows,

B00 =

V ⊕ D0 V0 ⊗ Im 0
0 D0 0

γ ⊗ δIm 0 D0 − δIm

 ,
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B01 =

In1 ⊗ D1 0 0 0
0 e′1(K)⊗ α ⊗ qD1 e′1(K)⊗ β ⊗ pD1 0
0 0 0 D1

 , B10 =


0 0 0
0 0 θ ⊗ T0 ⊗ Im
0 0 0
0 0 0

 ,

A0 =


In1 ⊗ D1 0 0 0

0 IK ⊗ In ⊗ D1 0 0
0 0 IK ⊗ In2 ⊗ D1 0
0 0 0 D1

 ,

A1 =


V ⊕ D0 e′1(K)⊗ qV0α ⊗ Im e′1(K)⊗ pV0β ⊗ Im 0

0 (∆(θ)⊗ T)⊕ D0 − σIKnm IK ⊗ (en ⊗ β)⊗ σIm 0
0 IK ⊗ S0α ⊗ Im (IK ⊗ S)⊕ D0 0

γ ⊗ δIm 0 0 D0 − δIm

 ,

A2 =


0 0 0 0
0 A22 0 0
0 0 0 0
0 0 0 0

 ,

A22 =


0 θ1T0α ⊗ Im 0 . . . 0
0 0 θ2T0α ⊗ Im . . . 0
...

...
...

. . .
...

0 0 . . . . . . θK−1T0α ⊗ Im
θKT0α ⊗ Im 0 . . . . . . 0

 .

4. Analysis of Stability Condition

We examined our model under the assumption that the system is stable.

4.1. Condition for Stableness

Let us specify the matrix A as A = A0 + A1 + A2. It clearly demonstrates that the order
of the square matrix A is n1m + Knm + Kn2m + m and this matrix is an irreducible infinitesimal
generator matrix. Let ϕ indicate the steady-state probability vector of A and it satisfying ϕA = 0
and ϕe = 1. The vector ϕ is partitioned by ϕ = (ϕ0, ϕ1, ϕ2, ϕ3)=(ϕ0, ϕ11, ϕ12, ϕ13, . . . , ϕ1K−1, ϕ1K,
ϕ21, ϕ22, ϕ23, . . . , ϕ2K−1, ϕ2K, ϕ3), where ϕ0 is of dimension n1m, ϕ1 is of dimension Knm, ϕ2 is of
dimension Kn2m, ϕ3 is of dimension m. Our model’s stability should satisfy the necessary and
sufficient condition ϕA0e < ϕA2e when the Markov Process is investigated using the Quasi-Birth-
and-Death structure. The probability vector ϕ is calculated by solving the following equations

(V ⊕ D)ϕ0 + (γ ⊗ δIm)ϕ3 = 0,

(qV0α ⊗ Im)ϕ0 + (θ1T ⊕ D − σInm)ϕ11 + (θLT0α ⊗ Im)ϕ1K + (S0α ⊗ Im)ϕ21 = 0,

(θj−1T0α ⊗ Im)ϕ1j−1 + (θjT ⊕ D − σInm)ϕ1j + (S0α ⊗ Im)ϕ2j = 0 f or 2 ≤ j ≤ K,

(pV0β ⊗ Im)ϕ0 + (en ⊗ β ⊗ σIm)ϕ11 + (S ⊕ D)ϕ21 = 0,

(en ⊗ β ⊗ σIm)ϕ1j + (S ⊕ D)ϕ2j = 0 f or 2 ≤ j ≤ K,

(D − δIn)ϕ3 = 0.

subject to normalizing condition

ϕ0en1m +
K

∑
j=1

ϕ1jenm +
K

∑
j=1

ϕ2jen2m + ϕ3em = 1.
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The stability condition ϕA0e < ϕA2e is obtained after some algebraic manipulation, which turns
out to be

ϕ0(en1 ⊗ D1em) +
K

∑
j=1

ϕ1j(en ⊗ D1em) +
K

∑
j=1

ϕ2j(en2 ⊗ D1em) + ϕ3D1em <
K

∑
j=1

ϕ1j(θjT0 ⊗ em)

4.2. Analysis of Steady-State Probability Vector

Consider the steady-state probability vector x of Q and it is divided into x = (x0, x1, x2, . . . ).
x0 has a dimension 2m + n1m while x1, x2, . . . have a dimension n1m + Knm + Kn2m + m. Then
x satisfied the condition xQ = 0 and xe = 1.

Furthermore, if the system is stable with the vector x, the following equation provides
the remaining sub vectors except for the boundary states.

xq = x1Rq−1, q ≥ 2

where the rate matrix R indicates the minimal non-negative solution of the matrix quadratic
equation as R2 A2 + RA1 + A0 = 0, as referred by Neuts [15] and satisfies the relation RA2e = A0e.

The sub vectors of x0 and x1 were calculated by solving the subsequent equations.

x0B00 + x1B10 = 0

x0B01 + x1(A1 + RA2) = 0

The normalizing condition is subject to

x0e2m+n1m + x1(I − R)−1en1m+Knm+Kn2m+m = 1

As a result, the rate matrix R could be mathematically calculated using crucial procedures
in the Latouche algorithm for logarithmic reduction of R [11].

5. Busy period Analysis

∙ The time between customers entering into an empty system and the system becoming empty
again after the first interval can be used to measure a busy period. This is the first passage
in the transition from level 1 to 0. Thus, it is the first time returns to level 0, followed by at
least one visit to a state at any other level is known as the busy cycle.

∙ We give an overview of the fundamental period before moving on to the busy period. The
QBD process takes into account the first transition time, q ≥ 2, from level q to level q-1.

∙ It is necessary to examine each of the cases q = 0, 1 that correspond to the boundary states
individually. It should be noted that for each level j with q ≥ 2, there are (n1m + Lnm +
Ln2m + m) states that correspond. Similarly, when the states are organised in lexicographic
order, the state(q, j) at level j signifies that jth state at the level q is mentioned.

∙ The variable Gjj′(v, x) represents the conditional probability that the QBD process, which
begins in the state (q, j) at time t=0 and visits the level q-1 but not before time x, can
make changes v transition to the left and enter the state (q, j′). Let us first define the joint
transform

G̃jj′(z, s) =
∞

∑
v=1

zv
∫ ∞

0
e−sxdGjj′(v, x); |z| ≤ 1, Re(s) ≥ 0

and the matrix is represented as G̃(z, s) = G̃jj′(z, s) [14]then the previously defined matrix
G̃(z, s) satisfied the equation

G̃(z, s) = z(sI − A1)
−1 A2 + (sI − A1)

−1 A0G̃2(z, s).
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∙ The matrix G = Gjj′ = G̃(1, 0), excluding the boundary states, would be used for the first
passage time. If we are already familiar with the matrix R, we can use the results to discover
the matrix G

G = −(A1 + RA2)
−1 A2.

Or else, the idea of a logarithmic reduction algorithm method [11] could be used to
determine the values of the G matrix.

Notations
∙ G(1,0)

jj′ (v, x) shows that at time t = 0, the conditional probability has been discussed for the
first time during the passage from level 1 to level 0.

∙ G(0,0)
jj′ (v, x) shows that the conditional probability has been discussed for the return time to

level 0.
∙ H1q shows the average first passage time between levels q and q-1, assuming the process is

in the state (q, j) at time t=0.
∙ ~H1 identifies the column vector containing the entries H1q.
∙ H2q shows the average number of customers expected to be served during the first passage

time from level q to q-1, assuming that the state’s first passage time has already begun (q, j).
∙ ~H2 identifies the column vector containing the entries H2q.

∙ ~H
(1,0)
1 shows the average first passage time between level 1 and level 0.

∙ ~H
(1,0)
2 shows the expected number of services finished during the first passage time from

level 1 to level 0.
∙ ~H

(0,0)
1 shows the initial return time to level 0.

∙ ~H
(0,0)
2 shows the expected number of services finished between the first return time and

level 0.
The following equations, which are given by G̃(1,0)(z, s) and G̃(0,0)(z, s), are for the boundary
levels 1 and 0 respectively.

G̃(1,0)(z, s) = z(sI − A1)
−1B10 + (sI − A1)

−1 A0G̃(z, s)G̃(1,0)(z, s),

G̃(0,0)(z, s) = (sI − B00)
−1B01G̃(1,0)(z, s).

The matrices are used to calculate the following instances because G, G̃(0,0)(1, 0) and G̃(1,0)(1, 0)
are all stochastic in nature. We can compute the instants as follows:

~H1 = − ∂

∂s
G̃(z, s)

∣∣∣
z=1,s=0

e = −[A1 + A0(I + G)]−1e,

~H2 =
∂

∂z
G̃(z, s)

∣∣∣
z=1,s=0

e = −[A1 + A0(I + G)]−1 A2e,

~H
(1,0)
1 = − ∂

∂s
G̃(1,0)(z, s)

∣∣∣
z=1,s=0

e = −[A1 + A0G]−1(A0~H1 + e),

~H
(1,0)
2 =

∂

∂z
G̃(1,0)(z, s)

∣∣∣
z=1,s=0

e = −[A1 + A0G]−1(A0~H2 + B10e),

~H
(0,0)
1 = − ∂

∂s
G̃(0,0)(z, s)

∣∣∣
z=1,s=0

e = −B−1
00 [B01~H

(1,0)
1 + e],

~H
(0,0)
2 =

∂

∂z
G̃(0,0)(z, s)

∣∣∣
z=1,s=0

e = −B−1
00 [B01~H

(1,0)
2 ].

6. System Performance Measures

∙ The average system size

Esystem =
∞

∑
q=1

qxqe
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∙ Probability of the server is busy

Pbusy =
∞

∑
q=1

K

∑
l=1

n

∑
j=1

m

∑
k=1

xq2l jk

∙ Probability of the server is in idle

Pidle =
m

∑
k=1

X01k

∙ Probability of the server is on vacation

Pvac =
∞

∑
q=0

n1

∑
j1=1

m

∑
k=1

xq0j1k

∙ Probability of the server is breakdown

Pbd =
∞

∑
q=1

K

∑
l=1

n2

∑
j2=1

m

∑
k=1

xq3l j2k

∙ Probability of the server is on closedown

Pcd =
∞

∑
q=0

m

∑
k=1

xq4k

∙ The average system size during vacation

Evac =
∞

∑
q=1

n1

∑
j1=1

m

∑
k=1

qxq0j1ken1m

∙ The average system size of the server is busy

Ebusy =
∞

∑
q=1

K

∑
l=1

n

∑
j=1

m

∑
k=1

qxq2l jkeKnm

∙ The average system size during breakdown

Ebd =
∞

∑
q=1

K

∑
l=1

n2

∑
j2=1

m

∑
k=1

qxq3l j2keKn2m

∙ The average system size when the server is close-down

Ecd =
∞

∑
q=1

m

∑
k=1

qxq4kem

7. Waiting Time Distribution

The first passage time analysis is used in this section to analyse the distribution of a cus-
tomer’s waiting time when they enter the queueing line. Let W(t) be the waiting time distribution
function, which takes into account new customers joining the queue. If the server is idle when a
customer arrives, they will get service immediately; otherwise, if the server is busy or on vacation,
they will have to wait in a queue to receive service from the server.

Let’s look at the absorption time in the state space of a Markov chain, which is given by

Ω̄ = (*) ∪ {0̄, 1̄, 2̄, . . . }
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where
0̄ = {(0, 0, j1) : 1 ≤ j1 ≤ n1} ∪ {(0, 4)}

and for q ≥ 1,

q̄ = {(q, 0, j1) : 1 ≤ j1 ≤ n1} ∪ {(q, 2, l, j) : 1 ≤ l ≤ K, 1 ≤ j ≤ n}
∪ {(q, 3, l, j2) : 1 ≤ l ≤ K, 1 ≤ j2 ≤ n2} ∪ {(q, 4)}

The state space (*)obtained by considering the states that have the server in the idle state at the
instant of arrival is as below

(*) = {(0, 1)}

Let this Markov process’s transition matrix Q̄ be

Q̄ =



0 0 0 0 0 0 . . . . . .
J0 L0 0 0 0 0 . . . . . .
J1 L10 L 0 0 0 . . . . . .
0 0 L2 L 0 0 . . . . . .
0 0 0 L2 L 0 . . . . . .
...

...
...

. . . . . .
...

...
...

...
...

...
...

. . . . . .
...

...


where

J0 =

[
V0

0

]
, L0 =

[
V 0

γ ⊗ δ −δ

]
, J1 =


0
0
0
0

 , L10 =


0 0
0 θ ⊗ T0

0 0
0 0

 ,

L =


V e′1(K)⊗ qV0α e′1(K)⊗ pV0β 0
0 ∆(θ)⊗ T − σIKn IK ⊗ (en ⊗ σβ) 0
0 IK ⊗ S0α IK ⊗ S 0

γ ⊗ δ 0 0 −δ

 ,

L2 =


0 0 0 0
0 L22 0 0
0 0 0 0
0 0 0 0

 , L22 =


0 θ1T0α 0 . . . 0
0 0 θ2T0α . . . 0
...

...
...

. . . 0
0 0 . . . 0 θK−1T0α

θKT0α 0 . . . 0 0

 .

With the aim of determining the arriving tagged customer’s waiting time distribution
W(t), where(t ≥ 0). To start, we search for the system size probability vector at the arrival epoch
in a steady state and it is indicated by Z(0) = (Z0(0), Z1(0), Z2(0), . . . ). The vector Z0(0) may
be further partitioned as follows Z0(0) = (Z00, Z04). The system size probability vector at the
arrival epoch in the steady state is as follows because the arrival process abides by the Markovian
property:

Z00 = x00

[
In1 ⊗

D1em

λ

]
, Z04 = x04

[
D1em

λ

]
,

Zq(0) = xq

[
In1+Kn+Kn2+1 ⊗

D1em

λ

]
, f or q ≥ 1

where λ denotes the fundamental arrival rate of Markovian Arrival Process.
Define Z(t) = (Z*(t), Z0(t), Z1(t), . . . ),
where
Zq(t), q ≥ 1 - vector of order 1 × (n1 + Kn + Kn2 + 1)
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Z0(t) = (Z00, Z04) - vector of order 1 × (n1 + 1)
and their components give the probability that at epoch t, the CTMC generator matrix is Q̄,
will be in the appropriate level q state. Since the tagged customer’s probability of being in the
absorbing state at epoch t is specified by Z*(t), we get W(t) = Z*(t), where t ≥ 0.
The differential equation Z′(t) = Z(t)Q̄ for t ≥ 0 becomes

Z′
*(t) = Z0(t)J0 + Z1(t)J1,

Z′
0(t) = Z0(t)L0 + Z1(t)L10,

Z′
q(t) = Zq(t)L + Zq+1(t)L2, q ≥ 1

where ′ specifies the derivative concerning t. Let’s use the method suggested by Neuts et al. [15]
to compute the LST for W(t). The row vector ω(s) specifies the Laplace-Stieltjes Transform (LST)
of the first passage time to level 1 by starting the process at state q and using Zq(0), q ≥ 1 as the
initial probability vector. Neuts et al. [15] state that we get,

ω(s) =
∞

∑
q=1

Zq(0)[(sI − L)−1L2]
q−1 (1)

With the restriction that the process begins at level q = 0, 1, let the LST of the time to
become absorbed into the state (*) be specified by φ(q, s). Similar to Neuts et al. [15], we have

(0, s) = [sI − L0]
−1 J0, (2)

φ(1, s) = [sI − L]−1L10φ(0, s) + [sI − L]−1 J1. (3)

This allows us to quickly note that the LST for the distribution of sojourn time is as follows.

W(s) = Z0(0)φ(0, s) + ω(s)φ(1, s) (4)

Expected Waiting Time

The mean waiting time is given as

E(W) = −W ′(0) = −Z0(0)φ′(0, 0)− ω′(0)en1+Kn+Kn2+1 − ω(0)φ′(1, 0) (5)

The initial term of the previous equation gives the expected time to reach the absorbing state
(*), assuming that the system is at level 0. The final two components of the previous equation
provide the expected time for accessing the absorbing state (*) if the system is resting at level
q ≥ 1. By differentiating (2) and (3) and making s=0,

Φ′(0, 0) = −[−L0]
−2 J0 (6)

Φ′(1, 0) = −[−L]−2L10Φ(0, 0) + [−L]−1L10Φ′(0, 0)− [−L]−2 J1 (7)

Using (6) and the vector Z(0) = (Z0(0), Z1(0), . . . ), it is simple to calculate the first term of (5).
From (1), we get

ω(0) =
∞

∑
q=1

Zq(0)Mq−1 (8)

where M = [−L]−1L2. As M is a stochastic matrix, we get

ω(0)en1+Kn+Kn2+1 = 1 − Z0(0)en1+1 (9)

Equations (7) and (8), as well as the vector Z(0) = (Z0(0), Z1(0), . . . ), allow us to quickly calculate
the last term of (5).
We obtain by differentiating (1) and setting s=0,

ω′(0) = (−1)
∞

∑
q=1

Z1+q(0)
q−1

∑
j=0

Mj[−L]−1Mq−j. (10)
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Due to the stochastic nature of matrix M,

(−1)ω′(0)en1+Kn+Kn2+1 =
∞

∑
q=1

Z1+q(0)
q−1

∑
j=0

Mj[−L]−1en1+Kn+Kn2+1. (11)

Let’s assess the value of (−1)ω′(0)en1+Kn+Kn2+1 using the technique described in Neuts et al.
[15] and Kao et al. [8]. We start by building a matrix M2 that is generalised inverse of I-M and
stochastic, with I − M + M2 being non-singular and M2 being stochastic. The matrix M2 can be
viewed as M2 = en1+Kn+Kn2+1m0, where m0 is the invariant probability vector of M. Additionally,
using the property MM2 = M2M = M2, we have

q−1

∑
j=0

Mj(I − M + M2) = I − Mq + qM2 f or q ≥ 1. (12)

By using (12) in (11), we obtain

(−1)ω′(0)en1+Kn+Kn2+1 =

{
x1(I − R)−1

[
In1+Kn+Kn2+1 ⊗

D1em

λ

]
− ω(0)

+ x1R(I − R)−2
[

In1+Kn+Kn2+1 ⊗
D1em

λ

]
M2

}
× [I − M + M2]

−1[−L]−1en1+Kn+Kn2+1.

(13)

Since we have calculated all the terms in (5), we can easily calculate the average waiting time.

8. Cost Analysis

Our model’s cost analysis has been created below by assuming the cost elements (per unit
time) correspond to distinct measures of the system.

TC = CHEsystem + CbusyPbusy + CidlePidle + CvacPvac + CbdPbd + CcdPcd

+
K

∑
i=1

C1iθiξ + σC2 + ζC3 + δC4

where
∙ TC - Total cost per unit time
∙ CH - Each customer’s holding cost in the system
∙ Cbusy - Cost acquired by the system during server being busy
∙ Cidle - Cost acquired due to server being idle
∙ Cvac - Cost acquired during server’s vacation period
∙ Cbd - Cost acquired by the server during breakdown time
∙ Ccd - Cost acquired by the server during close-down process
∙ C1i - Cost acquired by the server for offering ith type service, i = 1, 2, . . . , K
∙ C2 - Cost acquired when the server caused by breakdowns
∙ C3 - Cost acquired in carrying out the repair process
∙ C4 - Cost acquired in carrying out the close-down process

9. Numerical

In this section, we are using numerical and graphical representations to analyze model
behavior. The mean value of the subsequent five different MAP representations is 1, which is the
same for all the various arrival processes. In published studies, these five sets of arrival values
have been used as input data (see Chakravarthy [5]).
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∙ Arrival in Erlang(ERL-A):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
∙ Arrival in Exponential(EXP-A):

D0 =
[
−1
]

, D1 =
[
1
]

∙ Arrival in Hyper-exponential(HEX-A):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
∙ Arrival in MAP-Negative Correlation(MAPNC-A):

D0 =

−1.25 1.25 0
0 −1.25 0
0 0 −2.5

 , D1 =

 0 0 0
0.0125 0 1.2375
2.4750 0 0.0250


∙ Arrival in MAP-Positive Correlation(MAPPC-A):

D0 =

−1.25 1.25 0
0 −1.25 0
0 0 −2.5

 , D1 =

 0 0 0
1.2375 0 0.0125
0.0250 0 2.4750

 .

Let’s think about the service, repair, and vacation processes as three phase type dis-
tributions. In the literature, these sets of service, vacation, and repair values have been used as
input data [5].

∙ Service in Erlang(ERL-S):

α = (1, 0), T =

[
−2 2
0 −2

]
∙ Repair in Erlang(ERL-R):

β = (1, 0), S =

[
−2 2
0 −2

]
∙ Vacation in Erlang(ERL-V):

γ = (1, 0), V =

[
−2 2
0 −2

]
∙ Service in Exponential(EXP-S):

α = [−1], T = [1]

∙ Repair in Exponential(EXP-R):

β = [−1], S = [1]

∙ Vacation in Exponential(EXP-V):

γ = [−1], V = [1]

∙ Service in Hyper-exponential(HEX-S):
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α = (0.8, 0.2), T =

[
−2.8 0

0 −0.28

]
∙ Repair in Hyper-exponential(HEX-R):

β = (0.8, 0.2), S =

[
−2.8 0

0 −0.28

]
∙ Vacation in Hyper-exponential(HEX-V):

γ = (0.8, 0.2), V =

[
−2.8 0

0 −0.28

]

9.1. Illustration 1

We investigated the consequence of the repair rate (ζ) on the average system size(Esystem). We fix
λ = 2, ξ = 6, η = 10, σ = 1, δ = 5, K = 10, θt = [1, 0.97, 0.93, 0.9, 0.87, 0.83, 0.8, 0.75, 0.7, 0.6],
p = 0.6, q = 0.4.

Table 1: Repair rate (ζ) vs Esystem - ERL-S

ERL-S
ζ ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
4 1.240013 1.428884 2.424636 1.337204 10.61745
5 1.100282 1.263127 2.098389 1.18343 8.801677
6 1.015791 1.16274 1.90369 1.090236 7.692035
7 0.959243 1.095599 1.775197 1.027872 6.946641
8 0.918743 1.047606 1.684428 0.98328 6.412992
9 0.888298 1.011625 1.617078 0.949845 6.012954

10 0.864568 0.983665 1.565214 0.923863 5.702437
11 0.845543 0.961321 1.524099 0.903103 5.454723

Table 2: Repair rate (ζ) vs Esystem - EXP-S

EXP-S
ζ ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
4 1.300513 1.477625 2.385188 1.39259 8.815389
5 1.14504 1.300952 2.072725 1.226593 7.266135
6 1.05166 1.194414 1.885579 1.126538 6.322526
7 0.989618 1.1235 1.761902 1.059955 5.692052
8 0.945487 1.073041 1.674513 1.012588 5.243369
9 0.912517 1.035369 1.609694 0.977232 4.909026

10 0.886957 1.006202 1.559813 0.949868 4.650976
11 0.866562 0.982972 1.520303 0.928081 4.446203

RT&A, No 1 (72) 
Volume 18, March 2023

476



G. Ayyappan, S. Meena
PHASE TYPE QUEUEING MODEL OF SERVER VACATION...

Table 3: Repair rate (ζ) vs Esystem - HEX-S

HEX-S
ζ ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
4 1.558351 1.660665 2.248675 1.59979 4.230083
5 1.325099 1.423599 1.946641 1.369357 3.457511
6 1.188053 1.283658 1.765584 1.233688 3.008707
7 1.099269 1.19259 1.646429 1.145591 2.721063
8 1.037696 1.12918 1.562789 1.084356 2.523394
9 0.992794 1.082778 1.501231 1.039609 2.380326

10 0.958759 1.047505 1.454251 1.005634 2.272559
11 0.932162 1.019875 1.417352 0.979044 2.188777

With the help of tables 1, 2 and 3, we can determine that increasing the repair rate
reduces the average system size in various arrangement of services and arrivals of ERL-A, EXP-A,
HEX-A, MAPNC-A and MAPPC-A. The positive correlation arrival decreases rapidly compared
to all other arrivals.

9.2. Illustration 2

We investigated the consequence of the vacation rate (η) on the average waiting time E(W). We fix
λ = 2, ξ = 6, σ = 1, ζ = 4, δ = 5, K = 5, θt = [1, 0.9, 0.8, 0.7, 0.6], p = 0.4, q = 0.6.

Table 4: Vacation rate (η) vs E(W) - ERL-S

ERL-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 0.513310803 0.652469261 1.316678245 0.597597919 6.305631788
11 0.502141873 0.641535425 1.304722472 0.586775589 6.294830579
12 0.493006347 0.632560036 1.294845632 0.577894144 6.285940644
13 0.485401455 0.625064256 1.286552181 0.570478428 6.27849855
14 0.478976132 0.618712658 1.279491771 0.564195772 6.272178893
15 0.4734782 0.613263522 1.273409875 0.55880656 6.266746629
16 0.46872206 0.608538394 1.268117234 0.554133955 6.262027841
17 0.46456821 0.604402741 1.263470256 0.550044688 6.257891127
18 0.460909846 0.600753272 1.259358071 0.546436465 6.254235397
19 0.457663866 0.597509402 1.255693735 0.543229496 6.250981623

Table 5: Vacation rate (η) vs E(W) - EXP-S

EXP-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 0.557188985 0.69195187 1.314692759 0.63940605 5.40504825
11 0.545405475 0.680428504 1.302062559 0.627990745 5.393620067
12 0.535811233 0.671007926 1.291662266 0.618660721 5.384251971
13 0.527857453 0.663169128 1.282954639 0.610898654 5.376437568
14 0.521162512 0.656548669 1.27556107 0.604343883 5.369822843
15 0.515453367 0.650885673 1.269207338 0.598737649 5.364153128
16 0.510529823 0.645988247 1.263690113 0.593889693 5.359240685
17 0.506241951 0.641712219 1.258855539 0.589657117 5.354944174
18 0.502475357 0.637947256 1.254585115 0.585930588 5.351155205
19 0.49914132 0.634607531 1.250786132 0.58262508 5.347789301
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Table 6: Vacation rate (η) vs E(W) - HEX-S

HEX-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 0.765770257 0.873794399 1.367546979 0.829456953 2.90799282
11 0.749707796 0.858258947 1.350700199 0.814080592 2.891938923
12 0.736875156 0.84579312 1.337039635 0.801751095 2.879049871
13 0.726421715 0.835595592 1.325762738 0.791670904 2.868502654
14 0.717764748 0.827116374 1.316311418 0.783293156 2.859731284
15 0.710493246 0.819966703 1.30828648 0.77623166 2.852335034
16 0.704309955 0.813864754 1.301395404 0.770206698 2.846023015
17 0.698995159 0.808601698 1.29541931 0.765011173 2.840579451
18 0.694383327 0.804019799 1.290191394 0.760488778 2.835841216
19 0.690347624 0.799997883 1.285582472 0.756519514 2.831682906

With the help of tables 4, 5 and 6, we can determine that increasing the vacation rate
reduces the average waiting time in various arrangement of services and arrivals of ERL-A,
EXP-A, HEX-A, MAPNC-A and MAPPC-A.

9.3. Illustration 3

We examined the consequence of the vacation rate(η) on the Total cost(TC) of the system. We fix
λ = 2, ξ = 6, ζ = 4, σ = 1, δ = 5, K = 5, θt = [1, 0.9, 0.8, 0.7, 0.6], p = 0.6, q = 0.4, CH = 10,
Cvac = 2, Cidle = 1, Cbusy = 4, Cbd = 2, Ccd = 2, C11 = 3, C12 = 2.9, C13 = 2.7, C14 = 2.5,
C15 = 2.2, C2 = 1, C3 = 2, C4 = 2.

Table 7: Vacation rate (η) vs TC - ERL-S

ERL-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 99.68315738 102.0191734 114.5649299 100.8662306 220.3575308
11 99.58654131 101.9327141 114.4864353 100.7816754 220.2740852
12 99.50790684 101.8624352 114.422411 100.7129863 220.2062508
13 99.44275241 101.8042608 114.369262 100.6561557 220.150093
14 99.38794402 101.7553616 114.3244797 100.6084052 220.1028821
15 99.34123751 101.7137163 114.2862631 100.5677517 220.0626686
16 99.30098652 101.677845 114.253288 100.5327444 220.0280254
17 99.26595761 101.6466406 114.2245603 100.5022988 219.9978848
18 99.23520954 101.6192592 114.1993197 100.4755886 219.971433
19 99.20801222 101.595047 114.1769756 100.4519741 219.9480397
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Table 8: Vacation rate (η) vs TC - EXP-S

EXP-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 100.2339903 102.3592967 113.45068 101.3175747 196.2037767
11 100.1280443 102.2634003 113.3608307 101.2234308 196.1105677
12 100.0424323 102.1859477 113.28795 101.1474223 196.0352852
13 99.97195226 102.122204 113.2277544 101.0848836 195.973326
14 99.91300867 102.0689027 113.1772692 101.0325998 195.9215153
15 99.86304362 102.0237237 113.134369 100.9882889 195.8775984
16 99.8201921 101.9849774 113.0974976 100.9502904 195.8399333
17 99.78306479 101.9514061 113.0654919 100.9173687 195.8072978
18 99.75060709 101.9220556 113.0374655 100.8885871 195.7787647
19 99.72200511 101.8961899 113.0127327 100.8632232 195.7536187

Table 9: Vacation rate (η) vs TC - HEX-S

HEX-S
η ERL-A EXP-A HEX-A MAPNC-A MAPPC-A
10 102.3258123 103.4719568 110.0500597 102.7836354 135.054583
11 102.1616111 103.3188195 109.8998592 102.6325837 134.9021191
12 102.0324917 103.1981907 109.7806956 102.5136915 134.7822937
13 101.9288319 103.1011839 109.684308 102.4181401 134.6861809
14 101.8441297 103.0217915 109.6050482 102.3399749 134.6077393
15 101.7738585 102.9558273 109.5389409 102.2750516 134.5427562
16 101.7147844 102.9002977 109.4831181 102.2204095 134.4882179
17 101.6645447 102.8530131 109.4354652 102.1738855 134.4419202
18 101.621379 102.8123398 109.3943937 102.1338671 134.402219
19 101.5839523 102.7770377 109.3586901 102.0991312 134.3678669

With the help of tables 7, 8 and 9, we can determine that increasing the vacation rate
reduces the total cost of the system in various arrangement of services and arrivals of ERL-A,
EXP-A, HEX-A, MAPNC-A and MAPPC-A.

9.4. Illustration 4

We investigated the consequence of the breakdown rate (σ) on the average system size(Esystem). We
fix λ = 2, ξ = 6, η = 10, ζ = 4, δ = 5, K = 10, θt = [1, 0.97, 0.93, 0.9, 0.87, 0.83, 0.8, 0.75, 0.7, 0.6], p =
0.6, q = 0.4.

With the help of figures 2, 3, 4, 5 and 6, we analyze the breakdown rate versus the
average system size with the combination of arrival and service time groupings. The breakdown
rate increases then the corresponding average system size is also increases rapidly in Erlang
services and, increases gradually in Exponential services and slowly in Hyper-exponential
services but in case of MAP positive correlation arrival increases rapidly than compared to all
other arrivals.
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Figure 2: Breakdown rate(σ) vs Esystem - ERL-A
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Figure 3: Breakdown rate(σ) vs Esystem - EXP-A
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Figure 4: Breakdown rate(σ) vs Esystem - HEX-A
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Figure 5: Breakdown rate(σ) vs Esystem
- MAPNC-A
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Figure 6: Breakdown rate(σ) vs Esystem - MAPPC-A
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9.5. Illustration 5

We have examined both the vacation rate(η) and repair rate(ζ) against the average system
size(Esystem). We fix λ = 2, ξ = 6, σ = 1, δ = 5, K = 10, θt = [1, 0.97, 0.93, 0.9, 0.87, 0.83, 0.8,
0.75, 0.7, 0.6], p = 0.6, q = 0.4.

With the help of figures 7 to 11, we analyze the both vacation rate and repair rate versus
the average system size with the combination of arrival and service time groupings. Both the
vacation rate and repair rate increases then the corresponding average system size is decreases
rapidly in MAP positive correlation compared to all other arrivals.
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Figure 7: Ek/Hk/1 - Vacation rate(η) and Repair
rate(ζ) vs Esystem
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Figure 8: M/Hk/1 - Vacation rate(η) and Repair
rate(ζ) vs Esystem
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Figure 9: Hk/Hk/1 - Vacation rate(η) and Repair
rate(ζ) vs Esystem
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Figure 10: MAPNC/Hk/1 - Vacation rate(η)
and Repair rate(ζ) vs Esystem

10

12

14

16

18

4

6

8

10

12
2

2.5

3

3.5

4

4.5

η

MAPPC/Hk/1

ζ

E
s
y
s
te

m

Figure 11: MAPPC/Hk/1 - Vacation rate(η) and
Repair rate(ζ) vs Esystem
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10. Conclusion

In our paper, customers arrive in a Markovian Arrival Process and the service process follows
a phase-type distribution with degrading service, server breakdown, vacation process in phase
type distribution, repair process in phase type distribution, starting failure and close-down. We
also perform the busy period analysis, waiting time distribution and cost analysis in our work.
Using numerical values of arrival and service times, we tabulated the repair rate versus expected
system size and the vacation rate versus the expected waiting time numerically. We compared
the breakdown rate to the expected system size, as well as the vacation and repair rates to the
expected system size, as shown by the graphical demonstrations.
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