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Abstract 

 
The present paper deals with the behavior of the parallel model system of two non-identical units, 
warm standby models have been developed by in view of all random variables are independent. 
Initially priority unit is working and the non-priority unit is warm standby. Two repairmen are 
always available with the system to carry out the system operation as soon as possible, skilled 
repairmen carry out phase-1 repair while ordinary repairmen carry out a phase-2 repair. The main 
unit is take two phases for his repair while the repair of the ordinary unit is completed in one phase. 
The statistical measures of the model are analyzed probabilistically by applying the regenerative 
point technique the distribution of failure and repair time of the system taken as a geometric 
distribution with different parameters. 

 
Keywords: Geometric distribution, Steady state transition probability, MTSF, 
Availability, Busy period, and Cost-benefit analysis. 
 

1. Introduction 
 
The configuration of the stochastic model is very complex with the development of modern system 
models, minimizing the high maintenance cost and increasing the system efficiency by reducing 
the frequency of failures. The design and model of industrial systems such as communication 
systems, satellite systems, power plant systems mechanical engineering, aeronautical engineering 
software engineering, and gaming systems are more complex to design in the current scenario. 
Using the different probabilistic measures of a two-unit system model with various kinds of repair 
policy deals with the system model involving various general human failures. Kumar and Kadyan 
[1] analyzed a non-identical parallel unit system with a single repairman visit whenever the 
original unit requires a repair facility, to repair the original unit with immediate effect and the 
duplicate unit is replaced by a similar new one. The various reliability characteristic such as study 
state availability, MTSF, and busy period and profit analysis of the system model are estimated by 
applying the semi-Markov approach. Sureria at el. [2] analyzed a computer system model 
whenever a system failed, priority is given to software replacement against hardware repair 
purpose to determine a mean sojourn time, reliability, availability, and busy period of a computer 
system of two similar units, initially one is active and the other is kept into cold standby whenever 
operative unite is failed, the cold unit is operative. The failure rate of the computer system is 
independent having an exponential distribution with different parameters while the repair and 
replacement rates distribution are taken as common. Each unit has hardware and software 
components that may have independent complete failure from the normal mode.  
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There is always a possibility that any system model during its operative condition to failure 
condition by two or more kinds of failure with single repair, post-repair, or waits for repair facility 
has been analyzed under some common assumption. Various other reliability characteristics 
models have been discussed of two identical or non-identical system models applying various 
types of repair facilities. Using discrete distribution, Bhatti at el. [3] introducing the concept of 
inspection to detect the major or minor failure, the repairman perform dual role of inspection and 
repair of the system after detect the type of failure of dissimilar operative cold standby systems. 
Ahmed at el. [4] studies a two non-identical parallel cold standby redundant unit system models 
each unit has two possible mode normal (N) and total failure (F). A repairman is always available 
to repair the system whenever it’s required for preventive maintenance, priority to repair the failed 
unit is by given initially operative unit after the repair of a unit works as well as new. The one 
parametric geometric distribution with different random variables is taken for failure and repair 
rate of the each unit. Malik [5] studied a repairable system under different weather conditions. 
Singh at el. [6] applying a probabilistic assessment of parallel system with correlated lifetime under 
different inspection method. Kumar at el. [7] analyzed a redundant system with priority and 
weibull distribution for failure and repair rate. Kumar at el. [8] introduce a repairable system of 
non-identical units with priority and conditional failure of repairman. 

 
2. Methods System description and assumptions 

The aim of the present paper deals with priority (unit-I) and non-priority (unit-II) parallel unit 
systems, each unit has two achievable modes normal (N) and total failure (F), in the beginning one 
unit is operative and another unit is reserved in warm standby. Two repairmen are always 
available with the system to repair the failed unit. A master repairman carries out the phase-I 
repair while an assistant repairman is present to take out the phase-II repair. Initially, the failure 
unit-I goes to phase-I repair while completing phase-I repair it enters into phase-II for its final 
repair by the assistant repairman, and the repair of a non-priority unit is completed in one phase 
(phase-I) repaired by the master repairman. The operation priority is given to unit-I and repair 
priority is first come first serve (FCFS) bases. All the random variables are independent and 
uncorrelated under this study. The distributions of failure and repair times are taken as a discrete 
nature having a geometric distribution with different parameters. The system model is derived 
using the Markov-chain approach and using the regenerative point technique for various 
probabilistic analyses of the system effect such as mean sojourn time, reliability, availability, mean 
time to system failure (MTSF), a busy period in the different repair facility and cost-benefit 
function have been derived. The system consists of the following assumptions: 
• The system consists of priority and non-priority units, and they are connected in parallel. 

Initially, one unit is operative (unit-I) and the other is kept on warm standby (non-priority 
unit-II). 

• Both units have two possible modes, normal (N) when the unit is operative and total 
failure (F) when the unit is in failure mode. 

• Two repairmen are always with the system to carry out the repair facility, the repair of 
unit-I is completed in two phases while the repair of unit-II is completed in one phase. The 
master repairman perform phase-I repair while the assistant repairman perform phase-II 
repair. 

• The priority unit failed than non-priority unit is loading warm standby unit into operation 
using switching device to be perfect, the repair of priority unit is completed in two phases 
(phase-I and phase-II) i.e., a failed unit first enters in phase-I for its repair and after the 
completion of phase-I repair it enters phase-II for finishing repair, and the repair of a non-
priority unit is done in one phase (phase-I). After repair of a unit is work as well as a new 
one. 
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• The system transition rate from state S!	to S"	is independent having a one parametric 
discrete geometric distribution. 

• The repair priority is first come first serve bases while the operation priority is given to 
unit-I. 

 
3. Notations and states of the system 

 
𝑁$%/𝑁$& The unit-I/ unit-II is in normal-mode and operative. 
𝐹'%/𝐹'& The unit-I/unit-II is in failure-mode and under repair by master repairman.                                  
𝐹(%/𝐹(& The unit-I/unit-II is in failure-mode and waiting for repair. 

F)%  The unit-I is in F-mode and under repair by assistant repairman. 
N*& The unit-II is in normal-mode and kept into standby. 

𝑝𝑞+/𝑟𝑠+ Probability mass function of failure rate of unit-I/unit-II. 
𝑎𝑏+/𝑐𝑑+ Probability mass function of repair rate of unit-I in phase-I/phase-II. 

mn, Probability mass function of repair rate of unit-II. 
q!", Q!" Probability mass function and cumulative density function of one step transition 

time from state S!toS". 
p!" Steady state transition probability from state S!to S". 

Ψ! Mean sojourn time in regenerative state S!. 
Z!(k) Probability that the system is operational, initially in state sojourns	S! up to time k. 

h,* Dummy variable used in geometric transformation and sign. 
© Symbol for ordinary convolution. 

 

 

Figure 1: Transitions Probability Diagram 
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Operative States 
S$ = (N$%, N*&); 		S% = (F-%, N$&);	 		S& = (F)% , N$&)	and	S. = (N$%, F-&)  

Failed States 
S/ = (F-%, F0& ); 	S1 = (F)% , F-&)	and	S2 = (F0% , F-&)	
	

4. Transition probabilities and mean sojourn times 
 

Using simple probabilistic arguments that the system transits from state S! to	S"within time interval 
(0, k), then Q!"(k)	maybe obtain the following approach: 
 
Q!"(k) = [K34% = j, K34% − K3 < 𝑘|K3 = i] 

Q$%(k) = 1 − q,4%																															Q%&(k) =
asJ1 − (bs),4%L

1 − bs  

Q%/(k) =
rbJ1 − (bs),4%L

1 − bs 																	Q%1(k) =
arJ1 − (bs),4%L

1 − bs  

Q&$(k) =
csJ1 − (ds),4%L

1 − ds 																	Q&1(k) =
rdJ1 − (sd),4%L

1 − sd  

Q&.(k) =
rcJ1 − (sd),4%L

1 − sd 																	Q/1(k) = 1 − b,4% 

Q1$(k) =
cmJ1 − (dn),4%L

1 − dn 															Q1&(k) =
mdJ1 − (dn),4%L

1 − dn  

Q1.(k) =
cnJ1 − (dn),4%L

1 − dn 																Q.$(k) =
mqJ1 − (nq),4%L

1 − nq  

Q.%(k) =
mpJ1 − (nq),4%L

1 − nq 															Q.2(k) =
pnJ1 − (nq),4%L

1 − nq  

Q2%(k) = 1 − n,4% 
        
Similarly, using pij = lim

,→∞
Qij(k), the steady state transition probability is: 

p$% = p/1 = p2% = 1, 	p%& =
as

1 − bs , 	p%/ =
rb

1 − bs , 	p%1 =
ar

1 − bs , 	p&$ =
cs

1 − ds , p&1 =
rd

1 − ds , 	p&.

=
rc

1 − ds , p1$ =
cm

1 − dn , p1& =
md

1 − dn , 	p1. =
cn

1 − dn , 	p.$ =
mq

1 − nq , p.%

=
mp

1 − nq 	and		p.2 =
pn

1 − nq 

	 
We can easily verify that 
p%& + p%/ + p%1 = 1, p&$ + p&1 + p&. = 1, p1$ + p1& + p1. = 1	and		p.$ + p.% + p.2 = 1 
 

5. Mean sojourn time 
 

The expected time a system spends in one state before moving onto another state is known as the 
mean sojourn time  Ψ!  in state  𝑆6; i=0,1,2,3,4,5,6 is defined as: 

Ψ! = E[K!] =SP[K! ≥ K]
∞

,7%

 

So that 
Ψ$ =

8
9
,Ψ% =

:*
%;:*

,Ψ& =
<*
%;<*

,Ψ/ =
:
=	

, Ψ1 =
<3
%;<3

,Ψ. =
93
%;93

	and	Ψ2 =
3
>

 

 
6. Reliability of the system and mean time to system failure (MTSF) 

 
The system originally starts operational from state	S! ∈ E. Then the system reliability,	R!(k); i = 0, 1, 
2, 5; have the following set of convolution equations is given by: 
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R$(k) = q, +Sq$%(u)©R%(k − 1 − u)
,;%

?7$

 

R$(k) = Z$(k) + q$%(k − 1)©R%(k − 1) 
Similarly, 
R%(k) = Z%(k) + q%&(k − 1)©R&(k − 1) 
R&(k) = Z&(k) + q&$(k − 1)©R$(k − 1) + q&.(k − 1)©R.(k − 1) 
R.(k) = Z.(k) + q.$(k − 1)©R$(k − 1) 
where, 
Z%(k) = b,s,; 				Z&(k) = d,s,	and	Z.(k) = q,n, 
Using the geometric transformation of the above set of equations, get the algebraic solutions for 
R$∗ (h). We get 
R$∗ (h) =

A!(C)
E!(C)

                                                                    

where, 
N%(h) = Z$∗(h) + hq$%∗ Z%∗(h) + h&q$%∗ q%&∗ Z&∗(h) + h/q$%∗ q%&∗ q&.∗ Z.∗(h) 
D%(h) = 1 − h/q$%∗ q%&∗ q&$∗ − h1q$%∗ q%&∗ q&.∗ q.$∗  
The MTSF is given by: 
E(K$) = lim

*→$
R$∗ (h) =

A!($)
E!($)

  

To determine N%(0)	and	D%(0), we apply the results 
Z!∗(0) = Ψ!	and	q!"(0) = p!" 
We get, 

MTSF =
Ψ$ +Ψ% + p%&Ψ& + p%&p&.Ψ.

1 − p%&p&$ − p%&p&.p.$
 

 
7. Availability analyses 

 
Let A!(k); i=0,1,2,3,4,5,6 be the probability that the system will be normal at epoch time k, when at 
the system start function from state	S! ∈ E. We observe the following recurrence relations can be 
easily developed for A!(k), using similar probabilistic arguments: 

A$(k) = q, +Sq$%(u)©A%(k − 1 − u)
,;%

?7$

 

A$(t) = Z$(k) + q$%(k − 1)©A%(k − 1) 
Similarly, 
A%(k) = Z%(k) + q%&(k − 1)©A&(k − 1) + q%/(k − 1)©A/(k − 1) + q%1(k − 1)©A1(k − 1) 
A&(k) = Z&(k) + q&$(k − 1)©A$(k − 1) + q&1(k − 1)©A1(k − 1) + q&.(k − 1)©A.(k − 1) 
A/(k) = q/1(k − 1)©A1(k − 1) 
A1(k) = q1$(k − 1)©A$(k − 1) + q1&(k − 1)©A&(k − 1) + q1.(k − 1)©A.(k − 1) 
A.(k) = Z.(k) + q.$(k − 1)©A$(k − 1) + q.%(k − 1)©A%(k − 1) + q.2(k − 1)©A2(k − 1) 
A2(k) = q2%(k − 1)©A%(k − 1)(17-23) 
where, 
Z%(k); Z&(k); and	Z.(k)	same as in reliability. 
After solving the set of algebraic equations that emerge from applying geometric transforms to the 
equations above, we have 

A$∗ (s) =
N&(s)
D&(s)

 

where, 
N&(s) = {1 − q&1∗ q1&∗ − (q.%∗ + q.2∗ q2%∗ )[q1.∗ (q%/∗ q/1∗ + q%1∗ ) + q&.∗ q1&∗ (q%/∗ q/1∗ + q%1∗ ) + q%&∗ q&.∗ +
q%&∗ q&1∗ q1.∗ ]}Z$∗ − (q$%∗ q&1∗ q1&∗ − q$%∗ )Z%∗ + [q$%∗ q%&∗ + q$%∗ q1&∗ (q%/∗ q/1∗ + q%1∗ )]Z&∗ + [q$%∗ q%&∗ (q&1∗ q1.∗ + q&.∗ ) +
q$%∗ q1.∗ (q%/∗ q/1∗ + q%1∗ ) + q$%∗ q&.∗ q1&∗ (q%/∗ q/1∗ + q%1∗ )]Z.∗   
and 
D&(s) = 1 − q$%∗ q%&∗ (q&$∗ + q&1∗ q1$∗ + q&1∗ q1.∗ q.$∗ + q&.∗ q.$∗ ) − q$%∗ (q%/∗ q/1∗ + q%1∗ )(q&$∗ q1&∗ + q&.∗ q1&∗ q.$∗ +
q1$∗ + q1.∗ q.$∗ ) − q%&∗ (q.%∗ + q.2∗ q2%∗ )(q&1∗ q1.∗ + q&.∗ ) − (q%/∗ q/1∗ + q%1∗ )(q.%∗ + q.2∗ q2%∗ )(q&.∗ q1&∗ + q1.∗ ) −
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q&1∗ q1&∗   
Now, the steady state availability i.e. the probability that the system will be active in long run is 
known as: 

A$ = lim
,→∞

A$(k) = lim
*→$

sA$
∗(s) = lim

*→$
s
N&(s)
D&(s)

 

Since,	D&(0) = 0, therefore by applying L-Hospital rule; 
A$ = lim

*→$

A"(*)
E"′ (*)

= A"($)
E"′ ($)

     

where, 
N&(0) = [1 − p&1p1& − (p%/ + p%1)(p.% + p.2)(p1. + p&.p1&) − p%&(p.% + p.2)(p&. + p&1p1.)]Ψ$ +
(1 − p&1p1&)Ψ% + [p%& + p1&(p%/ + p%1)]Ψ& + [p%&(p&1p1. + p&.) + (p%/ + p%1)(p&.p1& + p1.)]Ψ.	  
and 
D&F (0) = [(p%/ + p%1)(p&$p1& + p&.p1&p.$ + p1$ + p1.p.$) + p%&(p&$ + p&.p.$) + p%&p&1(p1$ +
p1.p.$)]Ψ$ + [p1&(p&$ + p&.) + p1$ + p1.]Ψ% + [p%& + p1&(p%/ + p%1)]Ψ& + [p%/p1&(p&$ + p&.) +
p%/(p1$ + p1.)]Ψ/ + (p%&p&1 + p%/ + p%1)Ψ1 + [(p%/ + p%1)(p&.p1& + p1.) + p%&(p&1p1. + p&.)] +
[p.2(p%/ + p%1)(p&.p1& + p1.) + p%&p.2(p&1p1. + p&.)]Ψ2  
 

8. Busy period for master repairman 
 
Let B!-(k);	i=0,1,2,3,4,5,6 be the probability that the master repairman is busy repairing the failed 
unit in phase-I at epoch time k when the system operational from the state	S! ∈ E. Now for	B$-(k), 
we have the sum of the probabilities of the following contingencies: 

B$-(k) =Sq$%(u)©B%,(k − 1 − u)
,;%

?7$

 

B$-(k) = q$%(k − 1)©B%-(k − 1) 
Similarly, 
B%-(k) = Z%-(k) + q%&(k − 1)©B&-(k − 1) + q%/(k − 1)©B/-(k − 1) + q%1(k − 1)©B1-(k − 1) 
B&-(k) = q&$(k − 1)©B$-(k − 1) + q&1(k − 1)©B1-(k − 1) + q&.(k − 1)©B.-(k − 1) 
B/-(k) = Z/-(k) + q/1(k − 1)©B1-(k − 1) 
B1-(k) = Z1-(k) + q1$(k − 1)©B$-(k − 1) + q1&(k − 1)©B&-(k − 1) + q1.(k − 1)©B.-(k − 1) 
B.-(k) = Z.-(k) + q.$(k − 1)©B$-(k − 1) + q.%(k − 1)©B%-(k − 1) + q.2(k − 1)©B2-(k − 1) 
B2-(k) = Z2-(k) + q2%(k − 1)©B%-(k − 1) 
where, 
Z%-(k) = b,s,; 		Z/-(k) = b,; 			Z1-(k) = d,n,; 				Z.-(k) = q,n,	and		Z2-(k) = n, 
Using the inverse Laplace transform of B$-∗(s), we get: 

B$-∗ = lim
*→$

s
N/(s)
D&(s)

 

here,   
D&(0) = 0 
Therefore, by L-hospital rule, we have 

B$-∗ = lim
*→$

N/(s)
D&′ (s)

=
N/(0)
D&′ (0)

 

where, 
N/(0) = (1 − p&1p1&)(Ψ% +Ψ/) + [p%&p&1 + (p%/ + p%1)]Ψ1 + [p%&(p&1p1. + p&.) + (p%/

+ p%1)(p&.p1& + p1.)](Ψ. + p.2Ψ2) 
 

9. Busy period for assistant repairman 
 

Let B$)(k)	i=0,1,2,3,4,5,6 be the probability that the master repairman is busy repairing the failed 
unit in phase-I at epoch time k when the system operational from the state	S! ∈ E. Now for	B$)(k), 
we have the sum of the probabilities of the following contingencies: 

B$)(k) =Sq$%(u)©B%)(k − 1 − u)
,;%

?7$
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B$)(k) = q$%(k − 1)©B%)(k − 1) 
Similarly, 
B%)(k) = q%&(k − 1)©B&)(k − 1) + q%/(k − 1)©B/)(k − 1) + q%1(k − 1)©B1)(k − 1) 
B&)(k) = Z&)(k) + q&$(k − 1)©B$)(k − 1) + q&1(k − 1)©B1)(k − 1) + q&.(k − 1)©B.)(k − 1) 
B/)(k) = q/1(k − 1)©B1)(k − 1) 
B1)(k) = Z1)(k) + q1$(k − 1)©B$)(k − 1) + q1&(k − 1)©B&)(k − 1) + q1.(k − 1)©B.)(k − 1) 
B.)(k) = q.$(k − 1)©B$)(k − 1) + q.%(k − 1)©B%)(k − 1) + q.2(k − 1)©B2)(k − 1) 
B2)(k) = q2%(k − 1)©B%)(k − 1) 
where, 
Z&)(k) = d,s,	and		Z1)(k) = d,n, 
Using the inverse Laplace transform of B$)∗(s) we get: 

B$)∗ = lim
*→$

s
N1(s)
D&(s)

 

here,   
D&(0) = 0 
Therefore, by L-hospital rule, we have 

B$)∗ = lim
*→$

N1(s)
D&′ (s)

=
N1(0)
D&′ (0)

 

where, 
N1(0) = [p%& + p1&(p%/ + p%1)]Ψ& + [p%&p&1 + (p%/ + p%1)]Ψ1 
 

10. Profit analysis 
 

The system model net-expected profit during the time interval (0, k) is given below: 
P(k) = Expected total revenue in (0, k) - Expected cost of repair in (0, k) 
P(k) = C$µ?8(k) − C%µ:

- (k) − C&µ:
)(k) 

WhereC$	per-unit up time revenue by the system due to the operation of unit-I and unit-II, 𝐶% and 
C& are the repair cost per-unit of time when unit is repair by master repairman and assistant 
repairman respectively. 
The expected total cost per-unit time in steady state is given by: 

P = lim
,→∞

P(k)
k  

				= C$A$ − C%B$- − C&B$) 
Where	A$ , B$-  and B$)		have been already defined. 
 

11. Conclusion 
 

This paper concludes with an analysis of stochastic modeling of various reliability measures such 
as MTSF, availability and busy period for a master repairman, assistant repairman, and profit 
analysis by different levels of performance. Let us suppose that the random variables follow a 
geometric distribution with dissimilar probability mass functions. The numerical analysis of MTSF, 
availability, and profit analysis have been studied at various levels of failure rate (q) of unit-I, and 
failure rate (s) of unit-II by fixing the values of certain parameters a=0.8, b=0.2, c=0.6, d=0.4, m=0.4 
and n=0.6. Table 1 and Figure 2 a show the variation in MTSF is decries by increasing the failure 
rate of unit-I and unit-II. The availability is linearly falling shown in Table 2 and Figure 3, for 
various values of the failure rate of unit-I and unit-II. Also putting the other parameters C0=10000, 
C1=2000, and C2=1000 the profit analysis concerning various values of failure rate (q) of unit-I, 
failure rate (s) of unit-II, and the fixing value of a, b, c, d, m, and n showed in a smooth curve in 
Figures 4 and Table 3. 
 
  

460



 
Manoj Kumar, Shiv Kumar 
STOCHASTIC ANALYSIS OF DISCRETE PARAMETRIC  
MARKOV CHAIN SYSTEM MODEL 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

 
References 

 
[1]  Kumar, J. and Kadyan, M.S., (2012). Profit analysis of a system of non-identical units with 

degradation and replacement, International journal of computer application, Vol. 40 (3): 19-25. 
[2]  Sureria, J.K., Malik, S.C. and Anand, J., (2012). Cost benefit analysis of a computer system with 

priority to software replacement over hardware repair, Applied Mathematical Sciences, Vol. 6 
(75): 3723-3734.  

[3]  J. Bhatti, A. K. Chitkara, M. K. Kakkar, (2016). Stochastic analysis of dis-similar standby 
system with discrete failure, inspection and replacement policy, Demonstratio Mathematica, 
Vol. 49(2): 224-235. 

[4]  M.A. El-Damcese, N. H. El-Sodany, (2015). Discrete Time Semi-Markov Model of a Two Non-
Identical Unit Cold Standby System with Preventive Maintenance with Three Modes, 
American Journal of Theoretical and Applied Statistics, Vol. 4 (4): 277-290. 

[5]  Malik, S.C., (2016). Stochastic Modeling of a Repairable System under Different Weather 
Conditions, Recent Advances in Mathematics Statistics and Computer Science, 155-163. 

[6]  Singh, V. V., Poonia, P.K., (2019).  Probabilistic Assessment of Two-Unit Parallel System with 
Correlated Lifetime under Inspection Using Regenerative Point Technique, International 
Journal of Reliability, Risk and Safety: Theory and Application, Vol. 2 (1): 5-14. 

[7]  Kumar, A., Saini, M., Devi, K., (2016). Analysis of a redundant system with priority and 
weibull distribution for failure and repair, Cogent Mathematics, Vol. 3 (1). 

[8]  Kumar, N., Malik, S.C. and Nandal, N. (2022). Stochastic analysis of a repairable system of 
non-identical units with priority and Conditional failure of repairman, Reliability Theory & 
Application, No 1 (67), Vol. 17: 123-133. 

 
  

461



 
Manoj Kumar, Shiv Kumar 
STOCHASTIC ANALYSIS OF DISCRETE PARAMETRIC  
MARKOV CHAIN SYSTEM MODEL 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

 
Appendix 
 
Table 1: Effect of a, b, c, d, m and n on system performance with respect to various failure rate of unit-I and unit-II                          

Failure rate of unit-I (p) Failure rate of unit-II (r)  
a=0.8, b=0.2, c=0.6, d=0.4, m=0.4 and n=0.6 
MTSF Availability Profit Analysis 

0.02 0.01  47.66470 0.99 8117.19246 
0.04 0.02  23.79169 0.98 8044.72539 
0.06 0.03  15.86021 0.97 7966.79472 
0.08 0.04  11.91403 0.96 7885.26352 
0.10 0.05  9.562128 0.95 7801.60347 
0.12 0.06  8.007633 0.94 7716.98608 
0.14 0.07  6.909151 0.93 7632.35110 
0.16 0.08  6.096083 0.92 7548.45847 
0.18 0.09  5.473738 0.91 7465.92800 
0.20 0.10  4.985377 0.90 7385.27013 

 
Table 2: Effect of a, b, c, d, m and n on system performance with respect to various failure rate of unit-I and unit-II  

Failure rate of unit-I (p) Failure rate of unit-II (r)  

a=0.8, b=0.2, c=0.6, d=0.4, m=0.4 and n=0.6 
MTSF Availability Profit Analysis 

0.03 0.02  23.81516 0.98 8030.99201 
0.05 0.04  11.88649 0.97 7855.23332 
0.07 0.06  7.916658 0.95 7677.4412 
0.09 0.08  5.938082 0.93 7499.77873 
0.11 0.10  4.757167 0.91 7323.78275 
0.13 0.12  3.976017 0.90 7150.55723 
0.15 0.14  3.424099 0.88 6980.90371 
0.17 0.16  3.016157 0.86 6815.41137 
0.19 0.18  2.704848 0.85 6654.52024 
0.21 0.20  2.461794 0.83 6498.56645 

 
Table 3: Effect of a, b, c, d, m and n on system performance with respect to various failure rate of unit-I and unit-II                          

Failure rate of unit-I (p) Failure rate of unit-II (r)  

a=0.8, b=0.2, c=0.6, d=0.4, m=0.4 and n=0.6 
MTSF Availability Profit Analysis 

0.04 0.04  11.86965 0.97 7846.51242 
0.06 0.08  5.897579 0.94 7493.47397 
0.08 0.12  3.903218 0.91 7159.24093 
0.10 0.16  2.905934 0.88 6841.64064 
0.12 0.20  2.309357 0.85 6539.07996 
0.14 0.24  1.914567 0.82 6250.37274 
0.16 0.28  1.636242 0.79 5974.63725 
0.18 0.32  1.431696 0.77 5711.23236 
0.20 0.36  1.277211 0.74 5459.71658 
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Figure 2: MTSF vs failure rate of unit-I (p) and unit-II (r) 
 

 
 

Figure 3: Availability analysis vs failure rate of unit-I (p) and unit-II (r) 
 
 

 
 

Figure 4: Profit analysis vs failure rate of unit-I (p) and unit-II (r) 
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