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Abstract

This paper deals with the classical and Bayesian estimation of the discrete Teissier distribution with
randomly censored data. We have obtained the maximum likelihood point and interval estimator for the
unknown parameter. Under the squared error loss function, a Bayes estimator is also computed utilising
informative and non-informative priors. Furthermore, an algorithm to generate randomly right-censored
data from the proposed model is presented. The performance of various estimation approaches is compared
through comprehensive simulation studies. Finally, the applicability of the suggested discrete model has
been demonstrated using two real datasets. The results show that the suggested discrete distribution fits
censored data adequately and can be used to analyse randomly right-censored data generated from various
domains.

Keywords: Bayesian estimation; Classical estimation; Discrete Teissier distribution; Random
censoring.

1. Introduction

In many instances, the collection of data is constrained by time or budgetary limitations, making
it difficult to obtain the whole data set. Such partial data is known as censored data. Various
censoring schemes are available in the literature to examine this partial data. Conventional
Type I and Type II censoring techniques are the most often used censoring schemes. In Type
I censoring, the event is observed only if it occurs prior to some pre-specified time, whereas,
in Type II censoring, the study continues until the predetermined number of individuals are
observed to have failed. Random censoring is an another important censoring technique in the
literature, this censoring scheme occurs when the subject under study is lost or removed from
the experiment before its failure or event of intrest. This type of censoring commonly arises in
medical time-to-event studies for example in clinical trials some patients do not complete the
course of treatment and leave before the termination point. Therefore, the subject who leaves
the study area before the event of interest occurs has a randomly censored value. The random
censoring was introduced in literature by [1], he did so as part of his doctoral dissertation. For
more details about the censoring schemes, their generalization, and analysis, one can refer to [2].

Randomly censored lifetime data frequently occur in many applications like medical science,
biology, reliability studies, etc., which need to be analysed properly to make correct inferences
and suitable research conclusions. These data are often right censored because it is not possible to
observe the patients or the items under study until their death or patients may withdraw during
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the study period. In the existing literature, the random censoring scheme is widely studied under
continuous models [see [3]].

In recent years, researchers in a variety of domains have acknowledged the distinctive sig-
nificance played by discrete distributions. In certain circumstances, discrete distributions are
more suitable than continuous distributions, even if the data is collected on a continuous scale.
Also, discrete distributions are the only choice if the number of completed cycles of operation is
used to measure the lifetime of different types of equipment [see [4],[5],[6] and references cited
therein]. Most of the discrete models in the present literature were designed to fit the count data
primarily, and in most cases, they fail to capture the diversity of the censored data. In literature, a
few studies considered a random censoring scheme for discrete models, viz. [7] , [8], [9], and
recently [10], discussed inferences of discrete inverted Nadarajah-Haghighi distribution with
complete and random censored data. Due to the fact that most of the discrete distributions do
not sufficiently portray the variety of real-world censored data, there is always a need for novel
discrete distributions that can fit censored data adequately. One of such discrete distributions is
the Discrete Teissier (DT) distribution proposed by [11], which provides the flexibility to fit the
censored data with just a single parameter. Moreover, it can also model equi-, over-, and under-
dispersed, positively skewed, negatively skewed, and increasing failure data. The probability
mass function (PMF) of DT distribution is given by,

py = P[Y = y] = exp(1) exp(αy)(exp(−eαy)− exp(α − eα(y+1))); y = 0, 1, 2, ..., α > 0. (1)

Putting θ = exp(α), the PMF (1) can be written as

py = P[Y = y] = exp(1)θy(exp(−θy)− θ exp(−θ(y+1))); y = 0, 1, 2, ..., θ > 1. (2)

The cumulative distribution function (CDF) corresponding to PMF (2) is

F(y) = 1 − θy+1 exp(1 − θ(y+1)); y = 0, 1, 2, ..., θ > 1. (3)

In this paper, we investigate the features of the DT distribution under randomly censored data.
The article is organized as follows: The maximum likelihood estimator (MLE) for the model’s
parameter under randomly right-censored data is discussed in Section 2. Section 3 deals with the
Bayesian estimation of the unknown parameter. The algorithm to generate censored data from
the proposed model is given in Section 4. We use a Monte Carlo simulation analysis in Section 5
to investigate the characteristics of the different estimates established in the previous sections.
Section 6 deals with the real data analysis to study the applications of random censoring in DT
distribution. Finally, some concluding remarks are given in Section 7.

2. Method of maximum likelihood

2.1. Point Estimation

In this part, we compute the maximum likelihood point estimator for the DT distribution’s
parameter θ in the presence of random censored data. Let yi be the ith individual lifetime. In the
presence of right-censored observations, the ith individual contributes to the likelihood function
(LF) based on a random sample (yi, di) of size n as follows:

Li = [p(yi)]
di [S(yi)]

1−di ,

where S(yi) is the survival function and di is a censoring indicator variable, that is, di = 1 for an
observed lifetime and di = 0 for a censored lifetime (i = 1, 2, ..., n). Then, for the DT distribution
under random censoring, the LF of θ is given by

L(y, θ) = exp(n)θ∑n
i=1 (yi−di+1) exp

(
−∑n

i=1 θyi+1
)

∏n
i=1

[
exp(θyi+1 − θyi )− θ

]di
. (4)
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The log likelihood (LL) function corresponding to LF (4) is

LL = n +
(
∑n

i=1 (yi − di + 1)
)

log θ − ∑n
i=1 θyi+1 + ∑n

i=1 di log
[
exp(θyi+1 − θyi )− θ

]
. (5)

Taking the partial derivative of the LL function (5) with respect to the parameter θ, we get the
following normal equation,

∂LL
∂θ

=
1
θ

[
∑n

i=1 (yi − di + 1)− ∑n
i=1 (E2 + 1)− ∑n

i=1
di(θE1 + E3)

1 − θE1

]
= 0. (6)

where E1 = exp(θyi − θyi+1), E2 = (yi + 1) θyi+1 − 1 and E3 = θyi (yi − (yi + 1) θ).
The MLE of the parameter θ can be obtained by simplifying Equation (6); however, this equation
does not provide an analytical solution. As a result, we employ an iterative method such
as Newton-Raphson (NR) to compute the estimate computationally using built-in codes in R
software.

2.2. Interval Estimation

The MLE of the unknown parameter θ is not found in closed form, hence exact distribution of
MLE of θ cannot be derived. Therefore, it is infeasible to compute exact confidence interval for θ.
Hence, we will construct the asymptotic confidence interval (ACI) for θ using the asymptotic
distribution of MLE of θ. We know, the MLE θ̂ of θ, is consistent and asymptotic Gaussian

distribution with
√

n(θ̂ − θ) follows N(0, I−1(θ)), where I(θ) = E
(
− ∂2LL

∂θ2

)
. Therefore, the

variance of the estimator θ̂ can be computed as V(θ̂) ≈ J−1(θ̂) where J(θ̂) = −
(

∂2 log L
∂θ2

)∣∣∣
θ=θ̂

. The
second-order partial derivative of LL function (5) is

∂2LL
∂θ2 = − 1

θ2

n
∑

i=1
(yi − di + 1)− 1

θ2

n
∑

i=1
yi(1 + E2) +

1
θ2

n
∑

i=1

di((1−θE1)(E2
3−yi(E3−θyi ))−(θE1+E3)

2)

(1−θE1)
2 .

Hence, the 100 × (1 − γ)% ACI for the parameter θ is

θ̂ ∓ Zγ/2

√
V(θ̂),

where Zγ/2 is the upper γ/2 quantile of the standard Gaussian distribution.

3. Bayesian estimation

The Bayesian estimation blends prior and experimental information in terms of prior density and
LF, respectively, to derive posterior inferences about the unknown quantities. The prior infor-
mation is generally divided into two categories: informative priors and non-informative priors.
Here, we will perform Bayesian estimation using both informative and non-informative priors to
obtain Bayes estimators of the unknown parameter. Furthermore, the highest posterior density
(HPD) interval for the parameter θ is also derived.

Case 1: When a probability distribution for the parameter θ provides adequate and full
information, informative prior (IP) is used. In this scenario, we suppose θ has an exponential
prior distribution with a density as

g(θ) = λe−λ(θ−1); θ > 1, λ > 0. (7)

By combining prior distribution (7) with the LF (4) using the Bayes rule, the posterior distribution
of θ given data is

P1(θ|y) ∝ θ∑n
i=1 (yi−di+1) exp

(
−

n

∑
i=1

θyi+1 − λθ

)
∏n

i=1 (exp(θ(yi+1) − θyi )− θ)
di (8)

A loss function reflects the statistical risk (error) that arises while estimating parameters. It is a
function of true and estimated parameters and is used to choose the best estimator with the lowest
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risk. The squared error loss function (SELF), which gives equal weight to overestimation and
underestimation, is one of the most often used loss functions in literature. The Bayes estimator of
a parameter under SELF is simply the expectation of that parameter with respect to its posterior
distribution.

In the case of proposed distribution, the Bayes estimator of a function of the parameter θ
under SELF, say ψ(θ) is

ψ̂(θ) = ∫∞
1 ψ(θ)P1(θ|y)dθ. (9)

The integral (9) cannot be given explicitly because the posterior distribution (8) is not in closed
form. In this case, we may use a family of Markov Chain Monte Carlo (MCMC) algorithms to
mimic draws from a posterior distribution. The Metropolis-Hastings (MH) algorithm [[12] and
[13]] is a prominent approach in MCMC that generates a chain of random samples based on a
given function, which may then be used to get Bayes estimates of interest.

To implement the MH algorithm for the proposed model, we go through the following steps:
Step 1. Set initial value of θ as θ(0) and begin with i = 1.

Step 2. Propose a move θ∗(i), with candidate proposal density g
(

θ(i−1), θ∗(i)
)

.
Step 3. Calculate the Hastings ratio

ρ
(

θ(i−1), θ∗(i)
)
=

P1

(
θ∗(i)|y

)
g
(

θ∗(i), θ(i−1)
)

P1

(
θ(i−1)|y

)
g
(

θ(i−1), θ∗(i)
) .

Step 4. Accept the proposed move θ∗(i) with probability τ = U (0, 1) ≤ min
[
1, ρ

(
θ(i−1), θ∗(i)

)]
and reject with probability 1 − τ.
Step 5. Set i = i + 1.
Step 6. Repeat steps 2-5 for all i = 1, 2, 3, ..., M where M is large, and simulate the sequence
of samples of θ(i), i = 1, 2, 3, ..., M.
Step 7. The Bayes estimator of θ under SELF is calculated as

θ̂ =
1

M − m

M

∑
i=(m+1)

θ(i),

where m is the burn-in iterations of the Markov Chain.
To compute the HPD interval for θ, let θ(m+1) ≤ θ(m+2) ≤ ... ≤ θ(M) denote the ordered

values of θm+1, θm+2, ..., θM . Then, by [14] algorithm, the 100 × (1 − γ)% HPD interval for θ is
(θ(m+i∗), θ(m. i∗+[(1−γ)(M−m)])), where i∗ is chosen so that,

θ(m+i∗+[(1−γ)(M−m)]) − θ(m+i∗) = min
m≤i≤(M−m)−[(1−γ)(M−m)]

(θ(m+i+[(1−γ)(M−m)]) − θ(m+i)).

Case 2: In non-informative prior (NIP), least or no information is available about the unknown
parameter. For the proposed model, we perform the Bayesian analysis, when θ has NIP of the
following form,

g(θ) ∝
1
θ

; θ > 1. (10)

The un-normalized posterior distribution of θ given data is computed by combining prior
distribution (10) with LF (4).

P2(θ|y) ∝ θ∑n
i=1 (yi−di)+(n−1) exp

(
−

n

∑
i=1

θyi+1

)
. ∏n

i=1 (exp(θ(yi+1) − θyi )− θ)
di . (11)

Since the posterior distribution P2(θ|y) is again in non-closure form, so the Bayes estimator of θ
is cannot be solved analytically. Therefore, using a similar algorithm as we have done in case 1,
we can obtain the required point and interval estimates.
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4. Algorithm to simulate random right censored data

In this section, we present a simple algorithm to generate the randomly right-censored data from
the proposed model [15]. The algorithm consists of the following steps:
Step 1. Fix the value of the parameter θ.
Step 2. Draw n random pseudo from Uniform(0,1) i.e. ui ∼ U(0, 1); i = 1, 2, ..., n.
Step 3. Obtain y

′
i = F−1(ui); i = 1, 2, ..., n, where F−1(•) is defined in Equation (6).

Step 4. Draw n random pseudo from ci ∼ U(0, max(y
′
i)); i = 1, 2, ..., n. This is the distribution

that controls the censorship mechanism.
Step 5. If y

′
i ≤ ci, then yi = [y

′
i] and di = 1, i = 1, 2, ..., n, else, yi = [ci] and di = 0, i = 1, 2, ..., n.

Hence, pairs of values (y1, d1), (y2, d2), ..., (yn, dn) are obtained as the random right-censored
data.

5. Simulation study

The performance of the MLE and Bayes (IP and NIP under SELF) estimator under randomly
right-censored data is investigated in this section via a simulation study. The whole study is
based on random samples drawn from the DT distribution of sizes 20, 25,...,150. The parametric
values of the parameter are taken as 1.05, 1.50, 2.0, and 3.0. To produce the needed random
variable Y from the DT distribution, we employed the conventional strategy of first drawing the
pseudo-random value X from the continuous Teissier distribution and then discretizing this value
to store Y. A random variable X may be generated by using the following formula:

Q(u) =
1
α

log
[
−W−1

(
u−1

exp(1)

)]
; 0 < u < 1,

where θ = exp(α) and W−1 denotes the Lambert function and its value can be easily obtained
by the inbuilt R-function lambertWm1 available in the package lamW. The method described in
Section 4 is utilized to produce the required random right-censored data. All simulation results
are based on 2000 replicates for the different sample sizes considered for each parameter setting.
We have calculated the mean-squared error (MSE) and the average absolute bias (AB) for MLE
and Bayes point estimates and average width (AW) of 95% ACI and HPD intervals with their
respective coverage probability (CP) based on these 2000 values, and the resulting findings are
shown in Figures 1-3. Notably, when Bayesian estimation is used, an estimate for the parameter
of the DT distribution is made using an exponential prior as an IP and a uniform prior as a NIP.
Under exponential prior, the value of the hyper-parameter is calculated so that the expectation
of the related prior density of the unknown parameter is equal to its actual parametric value.
In this estimation scenario, we drew 51,000 MCMC samples for the parameter of the proposed
distribution using the MH algorithm, excluding the first 11,000 samples as a burn-in phase to
eliminate the effect of initial values. Additionally, to nullify the autocorrelation between successive
draws, every tenth observation has been preserved. We have finally calculated the posterior
quantities of interest by using generated posterior samples.

The following are some important inferences that are drawn from Figures 1-3:
• The MLE and Bayes estimator of the unknown parameters show the consistency property,

i.e., the MSE reduces as the sample size rises.
• As n becomes larger, the average AB approaches zero.
• The Bayes estimator with IP performs better as compared to the MLE and Bayes estimator

with NIP.
• The AW of HPD intervals under IP is lesser than those obtain under ACI and HPD with

NIP.
• For large values of the parameter θ, all estimation methods produce nearly similar results.

A similar trend is observed when sample size n becomes large.

RT&A, No 1 (72)
 Volume 18, March 2023

407



Abhishek Tyagi, Bhupendra Singh, Varun Agiwal, Amit Singh Nayal
ANALYSING RANDOM CENSORED DATA FROM DISCRETE TEISSIER MODEL

20 40 60 80 100 120 140

1
e

−
0

5
3

e
−

0
5

5
e

−
0

5

n

M
S

E

ML
Bayes with NIP
Bayes with IP

20 40 60 80 100 120 140

0
.0

0
1

0
.0

0
3

0
.0

0
5

0
.0

0
7

n

M
S

E

ML
Bayes with NIP
Bayes with IP

20 40 60 80 100 120 140

0
.0

0
5

0
.0

1
5

0
.0

2
5

0
.0

3
5

n

M
S

E

ML
Bayes with NIP
Bayes with IP

20 40 60 80 100 120 140

0
.0

5
0

.1
0

0
.1

5
0

.2
0

n

M
S

E

ML
Bayes with NIP
Bayes with IP

20 40 60 80 100 120 140

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

n

A
B

ML
Bayes with NIP
Bayes with IP

20 40 60 80 100 120 140

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

n

A
B

ML
Bayes with NIP
Bayes with IP

20 40 60 80 100 120 140

0
.0

6
0

.0
8

0
.1

0
0

.1
2

0
.1

4

n

A
B

ML
Bayes with NIP
Bayes with IP

20 40 60 80 100 120 140

0
.1

5
0

.2
0

0
.2

5
0

.3
0

n

A
B

ML
Bayes with NIP
Bayes with IP

Figure 1: The MLE and Bayes estimate for (i) θ =1.05 (ii) θ =1.50 (iii) θ =2.0 (iv) θ =3.0.
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Figure 2: The classical AW and CP for (i) θ =1.05 (ii) θ =1.50 (iii) θ =2.0 (iv) θ =3.0.

6. Application to random censored data

Here, we examine two real datasets to demonstrate the applicability of the DT model to censored
data. These data sets along with their fitting are described as follows:

The first data set (I): This data set consists of failure times for Epoxy Insulation Specimens
at the voltage level 57.5 Kv [see [16], pp. 335]. The failure times, in minutes, for the insulation
specimens are given below (censoring times are indicated with asterisks)
510, 1000*, 252, 408, 528, 690, 900*, 714, 348, 546, 174, 696, 294, 234, 288, 444, 390, 168, 558, 288.
Using Kolmogorov-Smirnov (K-S) statistics, we now evaluate the suitability of the DT distribution
for modelling the above data. The K-S statistic and associated p-values of 0.17219 and 0.5936
indicate that the proposed model with MLE and associated standard error (SE) in parenthesis
is 1.00195 (0.00018) sufficiently reflects the diversity of the data. Figure 4 (upper left panel)
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Figure 3: The HPD AW and CP for (i) θ =1.05 (ii) θ =1.50 (iii) θ =2.0 (iv) θ =3.0.

depicts the unique existence of MLE, whereas Figure 4 (upper right panel) demonstrates that
the suggested model captures the data accurately. In addition, Table 1 displays the ACI, Bayes
estimates, HPD interval with NIPs, and K-S statistics with its p-value.

The second data set (II): This data come from a nine-month study on the effect of known
carcinogens DES and DMBA in the induction of mammary tumors in female rats [see [16], pp.
339]. After treatment, the times to tumor appearance for the animals were noted. The censored
observations are indicated by asterisks. The data values are
57*, 67*, 88, 94, 100, 107, 113, 123, 123, 125, 129, 129, 129, 136, 136, 143, 144, 191, 191, 192, 211, 218,
266*, 266*.
For this data, the MLE (SE) of the parameter θ is 1.00658(0.00058). Now, using this estimate for
the considered data, the K-S statistics and associated p-value are 0.2354 and 0.1396, respectively.
This well-known goodness-of-fit measure indicates that the suggested discrete model is adequate
for modelling the given censored data. The unique existence of the MLE can be verified by Figure
4 (lower left panel). Graphically, from Figure 4 (lower right panel), we can conclude that the DT
model closely follows the pattern of this censored data. Also, we have obtained the ACI, Bayes
estimates and HPD interval with NIPs, and the K-S statistics with its p-value, and they can be
viewed in Table 1.

Table 1: Classical and Bayesian estimates of censored data set I and II .

Data set Estimates K-S P-value

I

MLE (SE) 1.00193 (0.00018)
0.17219 0.5936

ACI [1.00158, 1.00228]
Bayes (SE) 1.00199 (0.00028)

0.1596 0.68790
HPD [1.00148, 1.00246]

II

MLE (SE) 1.00658(0.00058)
0.23549 0.13960

ACI [1.00546, 1.00773]
Bayes (SE) 1.00660 (0.00061)

0.23465 0.14220
HPD [1.00549, 1.00766]

RT&A, No 1 (72)
 Volume 18, March 2023

409



Abhishek Tyagi, Bhupendra Singh, Varun Agiwal, Amit Singh Nayal
ANALYSING RANDOM CENSORED DATA FROM DISCRETE TEISSIER MODEL

1.0010 1.0015 1.0020 1.0025

−
1
4
0

−
1
3
4

−
1
2
8

−LL plot for Data set I

θ

−
L
L

200 400 600 800 1000

0
.2

0
.6

1
.0

Fitted vs Empirical CDF plot for Data set I

y

C
D

F

Empirical CDF
Theortical CDF

1.002 1.004 1.006 1.008 1.010

−
1
5
0

−
1
3
5

−
1
2
0

−LL plot for Data set II

θ

−
L
L

50 100 150 200 250
0
.2

0
.6

1
.0

Fitted vs Empirical CDF plot for Data set II

y

C
D

F

Empirical CDF
Theortical CDF

Figure 4: The –LL and CDFs plots for data set I and II.

7. Conclusion

In this article, the one-parameter DT distribution introduced by [11] was studied, taking into
account the use of right-censored data. We use both classical and Bayesian methods to estimate
the unknown parameter of the DT distribution. Furthermore, an algorithm to produce randomly
right-censored data is also provided. An extensive simulation study is presented for the assess-
ment of the various estimation procedures under censored data. Finally, the uselfuness of the
proposed model is illustrated with two examples considering right censored real data sets. The
study suggested that the proposed model can be used to analyse randomly right-censored data
generated from various domains. Moreover, the DT distribution has the potential to attract more
comprehensive applications in a variety of fields. A future plan of action regarding the current
study might be an examination of the other types of censored data using the proposed model.
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