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Abstract

A strong need for an appropriate lifetime model arises in reliability analysis. A large number of lifetime
distributions are available in the literature. To analyze reliability data, a more suitable lifetime distribution
is plausible. Power Generalized DUS (PGDUS) transformation of the lifetime model gives a solution to fit
the data with more precision. PGDUS transformation of the exponential distribution is the first attempt in
this regard. This new class of distributions can be used for model series systems in which the components
are distributed as DUS transformations of some lifetime model. This paper introduces two novel classes
of distributions using PGDUS transformation, which is a generalization of DUS transformation, with
Weibull and Lomax distributions as the baseline distributions. Some analytical properties like moments,
moment generating function, characteristic function, cumulant generating function, quantile function,
distribution of order statistics, and Rényi entropy are derived. The maximum likelihood estimation
procedure is employed to estimate the unknown parameters. Moreover, a simulation study has been
conducted, and data has been analyzed for each of the proposed distributions to demonstrate how well the
distributions would perform in a real-life situation. In comparison with some other recent new models,
the proposed distribution is found to be a better model.

Keywords: PGDUS transformation, Weibull Distribution, Moments, Lomax Distribution, Maxi-
mum likelihood estimator, Simulation

1. Introduction

A large number of distributions are available in the literature to model monotone failure rate data.
The Weibull distribution is confined to model data that exhibit monotone failure rate behavior.
Due to the inability to handle non-monotone failure rate behavior, various modifications and
generalizations are made to the existing Weibull distribution. The generalized Weibull distribution
is widely applied in survival analysis and reliability engineering due to its simplicity and relative
flexibility. Xie and Lai [24] introduced an additive Weibull model by adding two Weibull
survival functions having a bathtub-shaped failure rate function. Theoretical investigations of
the exponentiated Weibull family were carried out by Mudholkar and Srivastava ([18], [19]).
Bagdonavicius and Nikulin [3] proposed a power-generalized Weibull distribution as an extension
of the Weibull distribution. Xie et al. [25] proposed a modified Weibull bathtub-shaped failure
rate distribution.

The Lomax distribution (also called Pareto-II distribution) is a heavily skewed probabil-
ity distribution that plays an imperative role in the analysis of lifetime data sets in business,
actuarial science, computer science, queueing theory, Internet traffic modeling, economics, in-
come and wealth inequality, and reliability modeling. A few generalizations and extensions
of the Lomax distribution can be seen in the literature, such as the Marshall-Olkin extended
Lomax distribution (Ghitany et al. [9], Gupta et al. [10]), exponentiated Lomax distribution
(Abdul-Moniem and Abdel-Hameed [1]), Beta-Lomax distribution (BL), Kumaraswamy Lomax
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distribution and McDonald-Lomax distribution (Lemonte and Cordeiro [15]), Gamma-Lomax
distribution (Cordeiro et al. [6]), transmuted Weibull Lomax distribution (Afify et al. [2]) and the
generalized transmuted Lomax distribution (Nofal et al. [20]).

With application to survival data analysis, Kumar et al. (2015) proposed a method, called DUS
transformation, for getting a new distribution based on exponential baseline distributions. In
terms of computation and interpretation, this transformation produces a parsimonious result since
it does not include any new parameters other than those involved in the baseline distribution.
In the case where F(x) is the CDF of the baseline distribution, then the CDF of the new DUS
transformed distribution is as follows:

G(x) =
1

e − 1
[eF(x) − 1]

Maurya et al. [17] introduced the DUS transformation of the Lindley distribution. Tripathi et al.
[23] studied the DUS transformation of an exponential distribution and its inference based on the
upper record values. Recent studies using the DUS transformation can be seen in the works of
Deepthi and Chacko [7], Kavya and Manoharan [11], and Gauthami and Chacko [8]. Recently,
Thomas and Chacko [22] introduced an exponentiated generalization of the DUS transformation
called the power generalized DUS transformation. When researchers deal with series systems with
components distributed as DUS-transformed lifetime distributions, the PGDUS transformation is
highly useful. So the investigation of the PGDUS transformation of various lifetime distributions
is relevant in the sense of the selection of appropriate lifetime models for series systems.

The main goal of this study is to introduce two novel distributions using the power generalized
DUS (PGDUS) transformation. Let X be a random variable with baseline cumulative distribution
function (CDF) G(x) and corresponding probability density function (PDF) g(x). Then the CDF of
the proposed PGDUS distribution is defined as:

F(x) =

(
eG(x) − 1

e − 1

)θ

, θ > 0, x > 0. (1)

and the PDF is,

f (x) =
θ

(e − 1)θ
(eG(x) − 1)θ−1eG(x)g(x), θ > 0, x > 0. (2)

The survival function is,

R(x) = 1 −
( eG(x) − 1

e − 1
)θ , θ > 0, x > 0.

The failure rate function is,

h(x) =
θg(x)eG(x)(eG(x) − 1)θ−1

(e − 1)θ − (eG(x) − 1)θ
, θ > 0, x > 0.

The paper is organized as follows. In Section 2, the distribution based on PGDUS transforma-
tion with Weibull distribution as baseline distribution is proposed. Moments, moment generating
function, characteristic function, cumulant generating function, quantile function, distribution of
order statistics, and Rényi entropy are derived. Parameter estimation based on the maximum
likelihood method, simulation study, and real data application are also discussed. In section 3,
a different distribution using the Lomax distribution as the baseline distribution in the PGDUS
transformation is proposed. As in section 2, properties of PGDUS transformation of Lomax
distribution are derived. Parameter estimation using the maximum likelihood method, simulation
study, and real data application are also discussed. Finally, concluding remarks are given in
Section 4.
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2. PGDUS Weibull Distribution

In this section, the Weibull distribution is used as the baseline distribution for PGDUS trans-
formation and investigated the distributional properties. The CDF of Weibull distribution with
parameters α and β is

G(x) = 1 − e−(xβ)α
, α, β > 0, x > 0. (3)

and corresponding PDF is

g(x) = αβ(xβ)α−1e−(xβ)α
, α, β > 0, x > 0 (4)

Using Eq.3 in Eq.1, the CDF of PGDUS transformation of Weibull distribution is obtained as

F(x) =
(

e1−e−(xβ)α − 1
e − 1

)θ

, α, β > 0, θ > 0, x > 0. (5)

and the corresponding PDF is given as

f (x) =
θαβα

(e − 1)θ
xα−1(e1−e−(xβ)α − 1)θ−1e1−(xβ)α−e−(xβ)α

, α, β, θ > 0, x > 0. (6)

Then, the failure rate function associated to Eq.5 and Eq.6 is,

h(x) =
θαβαxα−1(e1−e−(xβ)α − 1)θ−1e1−(xβ)α−e−(xβ)α

(e − 1)θ − (e1−e−(xβ)α − 1)θ
, α, β, θ > 0, x > 0. (7)

The distribution with CDF Eq.5 and PDF Eq.6 is referred to as Power generalized DUS Weibull
distribution with parameters α, β and θ and is denoted as PGDUSW(α, β, θ). Figures 1 and 2
provide the graphical representation of the PDF and failure rate function respectively for various
parameter values

Figure 1: PGDUSW distribution density plot for various parameter values.

2.1. Analytical Properties

Moments, moment generating function (MGF), characteristic function (CF), cumulant generating
function (CGF), quantile function, distribution of order statistics, and Rényi entropy of the
proposed PGDUSW(α, β, θ) distribution are derived.
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Figure 2: PGDUSW distribution failure rate plot for various parameter values.

2.1.1 Moments

The rth raw moment of the PGDUSW(α, β, θ) distribution is given by

µ′
r =

∫ ∞

0
xr θαβαxα−1

(e − 1)θ
(e1−e−(xβ)α − 1)θ−1e1−(xβ)α−e−(xβ)α

dx

=
θαβαe
(e − 1)θ

∫ ∞

0
xr+α−1e−(xβ)α

e−e−(xβ)α
∞

∑
k=0

(
θ − 1

k

)
(e1−e−(xβ)α

)θ−k−1(−1)kdx

=
θαβαe
(e − 1)θ

∞

∑
k=0

(
θ − 1

k

)
(−1)keθ−k−1

∫ ∞

0
xr+α−1e−(xβ)α

e−(θ−k)e−(xβ)α

dx

=
θαβαe
(e − 1)θ

∞

∑
k=0

(
θ − 1

k

)
(−1)keθ−k−1

∞

∑
m=0

(−1)m

m!
(θ − k)m

∫ ∞

0
xr+α−1e−(1+m)(xβ)α

dx

=
θβ−re
(e − 1)θ

∞

∑
k=0

∞

∑
m=0

(−1)m+k

m!
eθ−k−1

(
θ − 1

k

)
(θ − k)m Γ( r

α + 1)

(1 + m)
r
α +1

2.1.2 Moment Generating Function

The MGF of PGDUSW(α, β, θ) distribution is

MX(t) =
θαβαe
(e − 1)θ

∫ ∞

0
xα−1etxe−(xβ)α

e−e−(xβ)α

(e1−e−(xβ)α − 1)θ−1dx
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=
θαβαe
(e − 1)θ

∫ ∞

0
xα−1etxe−(xβ)α

e−e−(xβ)α
∞

∑
k=0

(
θ − 1

k

)
(−1)k(e1−e−(xβ)α

)θ−k−1dx

=
θαβαe
(e − 1)θ

∞

∑
k=0

(
θ − 1

k

)
(−1)keθ−k−1

∫ ∞

0
xα−1etxe−(xβ)α

e−(θ−k)e−(xβ)α

dx

=
θαβα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

(−1)k+m

m!

(
θ − 1

k

)
eθ−k(θ − k)m

∫ ∞

0
xα−1etxe−(1+m)(xβ)α

dx

=
θαβα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

m!n!

(
θ − 1

k

)
eθ−k(θ − k)m(1 + m)nβαn

∫ ∞

0
xα+αn−1etxdx

=
θα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

m!n!

(
θ − 1

k

)
eθ−k(θ − k)m(1 + m)nβα+αn Γ(α + αn)

tα+αn

2.1.3 Characteristic Function and Cumulant Generating Function

The CF of PGDUSW(α, β, θ) is given by

ϕX(t) =
θα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

m!n!

(
θ − 1

k

)
eθ−k(θ − k)m(1 + m)nβα+αn Γ(α + αn)

(it)α+αn ,

and the CGF of PGDUSW(α, β, θ) is given by

KX(t) = log ϕX(t)

= log

[
θα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

m!n!

(
θ − 1

k

)
eθ−k(θ − k)m(1 + m)nβα+αn Γ(α + αn)

(it)α+αn

]

where i =
√
−1 is the unit imaginary number.

2.1.4 Quantile Function

The pth quantile Q(p) of the PGDUSW(α, β, θ) is the real solution of the following equation

((e1−e−(βQ(p))α − 1)/(e − 1))θ = p

where p ∼ Uni f orm(0, 1). Solving the above equation for Q(p), we have

Q(p) =
−1
βα

log[1 − log (e − 1)p
1
θ + 1]

1
α

. (8)

The median is obtained by setting p = 0.5 in the Eq.8. Thus,

Median =
−1
βα

log[1 − log (e − 1)0.5
1
θ + 1]

1
α

.

Similarly, the quartiles Q1 and Q3 are obtained respectively by setting p = 0.25 and p = 0.75 in
Eq.8.
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2.1.5 Distribution of Order Statistic

Let X1, X2, . . . , Xm be m independent random variables from the PGDUSW(α, β, θ) distribution
with CDF Eq.5 and PDF Eq.6. Then the PDF of rth order statistics X(r) of the PGDUSW(α, β, θ)
distribution is given by

fX(r)
=

m!
(r − 1)!(m − r)!

θαβαxα−1

(e − 1)θm

(
e1−e−(xβ)α − 1

)θr−1

e1−(xβ)α−e−(xβ)α

[
(e − 1)θ − (e1−e−(xβ)α

)θ
]m−r

, r = 1, 2, . . . , m.

(9)

Then, the PDF of X(1) and X(m) are obtained by setting r = 1 and r = m respectively in Eq.9. This
can be used to analyze the reliability of serial and parallel systems.

2.1.6 Rényi Entropy

Rényi entropy introduced by Rényi [21] is defined as

R(ν)ג =
1

1 − ν
log
( ∫

f ν(x)dx
)

where ν > 0 and ν ̸= 1.

∫ ∞

0
f ν(x)dx =

(θαβαe)ν

(e − 1)θν

∫ ∞

0
xνα−νe−ν(xβ)α

e−νe−(xβ)α
∞

∑
k=0

(
νθ − ν

k

)
(−1)k(e1−e−(xβ)α

)νθ−ν−kdx

=
(θαβαe)ν

(e − 1)θν

∞

∑
k=0

∞

∑
m=0

(−1)k+m

m!

(
νθ − ν

k

)
(νθ − k)meνθ−ν−k

∫ ∞

0
xνα−νe−(ν+m)(xβ)α

dx

=
(θα)ν

(e − 1)θν

∞

∑
k=0

∞

∑
m=0

(−1)k+m

m!

(
νθ − ν

k

)
(νθ − k)meνθ−k Γ(ν − ν

α + 1)

(ν + m)ν− ν
α +1βα−ν

Then the Rényi entropy becomes

R(ν)ג =
1

1 − ν
log

[
(θα)ν

(e − 1)θν

∞

∑
k=0

∞

∑
m=0

(−1)k+m

m!

(
νθ − ν

k

)
(νθ − k)meνθ−k Γ(ν − ν

α + 1)

(ν + m)ν− ν
α +1βα−ν

]

2.2. Estimation

The method of Maximum likelihood estimation is used to estimate the unknown parameters
of the PGDUSW(α, β, θ). For this, consider a random sample of size n from PGDUSW(α, β, θ)
distribution. Therefore, the likelihood function is given by,

L(α, β, θ|x) =
n

∏
i=1

f (x) =
n

∏
i=1

θαβα

(e − 1)θ
xα−1e1−(xi β)

α−e−(xi β)α

(e1−e−(xi β)α

− 1)θ−1 (10)

Applying the natural logarithm to Eq.10, the log-likelihood function becomes

log L = n log(θ) + n log(α) + αn log(β)− θn log(e − 1) + n +
n

∑
i=0

(α − 1) log(xi)

−
n

∑
i=0

(xiβ)
α −

n

∑
i=0

e−(xi β)
α
+ (θ − 1)

n

∑
i=0

log(e1−e−(xi β)α

− 1).
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Computing the first order partial derivatives, we get

∂ log L
∂α

=
n
α
−

n

∑
i=0

(xiβ)
α log(xiβ) +

n

∑
i=0

log(xi) +
n

∑
i=0

(xiβ)
αe−(xi β)

α
log(xiβ)

+n log(β) +
(θ − 1)(xiβ)

α

(e1−e−(xi β)α − 1)
log(xiβ)e1−(xi β)

α−e−(xi β)α

,
(11)

∂ log L
∂β

=
nα

β
−

n

∑
i=0

α(xiβ)
α

β
+

n

∑
i=0

α(xiβ)
α

β
e−(xi β)

α

+(θ − 1)
n

∑
i=0

α

β
(xiβ)

α e1−(xi β)
α−e−(xi β)α

(e1−e−(xi β)α − 1)
,

(12)

and
∂ log L

∂θ
=

n
θ
− n log(e − 1) +

n

∑
i=0

log(e1−e−(xi β)α

− 1). (13)

Equations 11, 12, and 13 are not in closed form. The solution of these explicit equations can be
obtained analytically and can be solved numerically using R software by taking arbitrary initial
values.

2.3. Simulation Study

In order to illustrate the performance of the maximum likelihood method for PGDUSW(α, β, θ)
distribution, the inversion transformation method is used. For different values of α, β, and θ,
samples of sizes n = 100, 250, 500, 750, and 1000 are generated from the PGDUSW(α, β, θ) model.
For 1000 repetitions, the bias and mean square error (MSE) of the estimated parameters are
computed. The selected parameter values are α = 0.5, β = 0.5 and θ = 0.5, α = 0.5, β = 1 and
θ = 0.5 and α = 1, β = 1 and θ = 0.5. From Tables 1, 2, and 3, it is noted that bias and MSE
decrease for the selected parameter values as sample size increases.

Table 1: Estimate, Biases and MSEs for PGDUSW model at α = 0.5, β = 0.5 and θ = 0.5

n Estimated value of Parameters Bias MSE

100
α̂=0.5668 0.0668 0.0473
β̂=0.7541 0.2541 1.0617
θ̂=0.5021 0.0031 0.0413

250
α̂=0.5251 0.0251 0.0118
β̂=0.5832 0.0832 0.1488
θ̂=0.5032 0.0022 0.0165

500
α̂=0.5297 0.0189 0.0057
β̂=0.4929 0.0177 0.0318
θ̂=0.4922 0.0007 0.0068

750
α̂=0.5188 0.0188 0.0034
β̂=0.4936 -0.0065 0.0223
θ̂=0.5026 0.0003 0.0050

1000
α̂=0.5165 0.0165 0.0025
β̂=0.4795 -0.0205 0.0160
θ̂=0.4922 -0.0078 0.0035
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Table 2: Estimate, Biases and MSEs for PGDUSW model at α = 0.5, β = 1 and θ = 0.5

n Estimated value of Parameters Bias MSE

100
α̂=0.5730 0.0730 0.0460
β̂=1.4827 0.4827 3.7354
θ̂=0.5134 0.0434 0.0485

250
α̂=0.5019 0.0019 0.0083
β̂=1.2852 0.2852 0.6372
θ̂=0.5333 0.0393 0.0169

500
α̂=0.4943 -0.0057 0.0041
β̂=1.2236 0.2236 0.2915
θ̂=0.5399 0.0339 0.0102

750
α̂=0.4886 -0.0109 0.0023
β̂=1.1045 0.1814 0.1353
θ̂=0.5244 0.0244 0.0050

1000
α̂=0.4822 -0.0178 0.0022
β̂=1.1814 0.1045 0.1195
θ̂=0.5207 0.0207 0.0042

Table 3: Estimate, Biases and MSEs for PGDUSW model at α = 1, β = 1 and θ = 0.5

n Estimated value of Parameters Bias MSE

100
α̂=1.1273 0.1273 0.1628
β̂=1.1460 0.1460 0.8851
θ̂=0.5223 0.0223 0.0545

250
α̂=1.0184 0.0184 0.0450
β̂=1.0889 0.0889 0.1068
θ̂=0.5205 0.0205 0.0177

500
α̂=1.0109 0.0109 0.0185
β̂=1.0490 0.0490 0.0447
θ̂=0.5151 0.0151 0.0085

750
α̂=1.0056 0.0056 0.0107
β̂=1.0381 0.0381 0.0260
θ̂=0.5095 0.0095 0.0049

1000
α̂=0.9851 -0.0149 0.0074
β̂=1.0239 0.0239 0.0167
θ̂=1.0012 0.0012 0.0035

2.4. Application

A real data analysis is carried out to determine the performance of the proposed model. For this,
the data on the number of million revolutions before the failure of 23 ball bearings put on test is
considered (Lawless [13]), see Table 4.

Different distributions namely, Inverse Weibull (IW) distribution, DUS Exponential (DUSE)
distribution, and Kavya-Manoharan Weibull (KMW) distribution are used to compare the per-
formance with the proposed PGDUSW(α, β, θ) distribution. In order to perform the necessary
numerical evaluations, the software R is used.
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Table 4: Lawless Data

17.88 28.92 33.00 41.52 42.12 45.60
48.80 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

Table 5: Findings for PGDUSW Distribution

Model MLEs log L AIC CAIC KS p-value

IW
λ̂ = 1.8341

-115.7887 235.5774 236.1774 0.1328 0.8118
θ̂ = 0.0206

DUSE â = 0.0182 -127.4622 256.9244 257.1149 0.2774 0.0580

KMW
λ̂ = 2.3169

-113.4076 230.8152 231.4152 0.1421 0.7419
κ̂ = 0.0107

PGDUSW
α̂ = 0.9362

-113.0114 230.0228 230.6228 0.10921 0.9467β̂ = 0.0383
θ̂ = 4.4478

To check the acceptability of the PGDUSW(α, β, θ) distribution for the given data set Akaike
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), log-likelihood
value, and Kolmogorov-Smirnov goodness of fit test statistic (KS) with the p-value are used and
the computed values are provided in Table 5. It is worth noting that in the goodness of fit test,
the purpose is to determine whether the sets of data with the distribution function F(y) and
the hypothesised distribution FPGDUSW(y) are compatible. This problem can be formulated as
H0 : F(y) = FPGDUSW(y) versus the alternative H1 : F(y) = FPGDUSW(y).

From Table 5, it is noted that the PGDUSW(α, β, θ) distribution fits well for the given data set.
To facilitate a better understanding of the results, the plot of the empirical CDF (ECDF) is shown
in the figure along with other CDFs of the distributions for the Lawless dataset. Furthermore, our
proposed distribution is found to fit better than those of the other distributions.

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Empirical CDF

x

F
n

(x
)

PGDUSW
DUSE

IW
KMW

Figure 3: ECDF plot for various distributions.
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Figure 4: ECDF plot for various distributions.

3. PGDUS Lomax Distribution

Power Generalized DUS Lomax distribution denoted as PGDUSL(α, β, θ), is obtained using
PGDUS transformation with Lomax distribution as baseline distribution. Then the CDF of the
PGDUSL(α, β, θ) distribution using Eq.1 is given by

F(x) =
(

e1−(1+xβ)−α − 1
e − 1

)θ

, α, β > 0, θ > 0, x > 0. (14)

Then the PDF is

f (x) =
θαβ

(e − 1)θ
(e1−(1+xβ)−α − 1)θ−1e1−(1+xβ)−α

(1 + xβ)−(α+1). (15)

The failure rate function is

h(x) =
θαβ(e1−(1+xβ)−α − 1)θ−1e1−(1+xβ)−α

(1 + xβ)−(α+1)

(e − 1)θ − (e1−(1+xβ)−α − 1)θ

3.1. Properties of PGDUSL Distribution

Here, we explore a few properties of the PGDUSL distribution.

3.1.1 Moments

The rth raw moments of PGDUSL(α, β, θ) is

µ′
r =

θα

(e − 1)θ

∞

∑
k=0

∞

∑
m=0

∞

∑
n=0

(−1)k+m+n

n!

(
α + k

k

)(
θ − 1

m

)
βk+1eθ−m(θ − m)n

B(r + k + 1, αn − r − k − 1)
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Figure 5: PGDUSL distribution density plot for various parameter values.

3.1.2 Quantile Function

The pth quantile Q(p) of the PGDUSL(α, β, θ) is the real solution of the following equation

((e1−1+(βQ(p))α − 1)/(e − 1))θ = p

where p ∼ Uni f orm(0, 1). Solving the above equation for Q(p), we have

Q(p) =
1
β
{
[
1 − log

[
p

1
θ (e − 1) + 1

]]−1
α − 1}.

The median is obtained by setting p = 0.5 in the above equation. Thus,

Median =
1
β
{
[
1 − log

[
0.5

1
θ (e − 1) + 1

]]−1
α − 1}

3.2. Estimation of PGDUSL Distribution

The method of maximum likelihood estimation is used to estimate the unknown parameters of
PGDUSL(α, β, θ). For this, consider a random sample of size n from PGDUSL(α, β, θ) distribution.
Therefore, the likelihood function is given by,

L(α, β, θ|x) =
n

∏
i=1

f (x) =
(θαβ)n

(e − 1)θn

n

∏
i=1

(e1−(1+xi β)
−α − 1)θ−1e1−(1+xi β)

−α
(1 + xiβ)

−α+1 (16)

The log-likelihood function becomes

log L = n log(θ) + n log(α) + n log(β)− θn log(e − 1) + n −
n

∑
i=1

(1 + xiβ)
−α

− (α + 1)
n

∑
i=1

log(1 + xiβ) + (θ − 1)
n

∑
i=1

log(e1−(1+xi β)
−α − 1) (17)
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Figure 6: PGDUSL distribution failure rate plot for various parameter values.

Computing the first order partial derivatives of Eq.17, we get

∂ log L
∂α

=
n
α
+

n

∑
i=1

log(1 + xiβ)(1 + xiβ)
−α −

n

∑
i=1

log(1 + xiβ)

+
n

∑
i=1

(θ − 1) log(1 + xiβ)e1−(1+xi β)
−α
(1 + xiβ)

−α

(e1−(1+xi β)−α − 1)
,

(18)

∂ log L
∂β

=
n
β
−

n

∑
i=1

αxi(1 + xiβ)
−(α+1) − (α + 1)

n

∑
i=1

xi
1 + xiβ

−
n

∑
i=1

αxi(θ − 1)(1 + xiβ)
−(α+1)

(e1−(1+xi β)−α − 1)

(19)

and

∂ log L
∂θ

=
n
θ
− n log(e − 1) +

n

∑
i=1

log(e1−(1+xi β)
−α − 1) (20)

Equations 18, 19, and 20 are not in closed form. The solution to these explicit equations can be
obtained analytically and can be solved numerically using R software by taking arbitrary initial
values.

3.3. Simulation Study

In order to illustrate the performance of the maximum likelihood method for PGDUSL(α, β, θ)
distribution, the inverse transformation method is used. For different combinations of values of
α, β, and θ, samples of sizes n = 250, 500, 750, and 1000 are generated from the PGDUS− L(α, β, θ)
model. For 1000 repetitions, the bias and mean square error (MSE) of the estimated parameters
are computed. The selected parameter values are α = 0.5, β = 0.5 and θ = 0.5, α = 1, β = 1.5 and
θ = 0.5 and α = 1, β = 1.5 and θ = 1. From Tables 6, 7, and 8, it is observed that bias and MSE
decrease for the selected parameter values as sample size increases.

RT&A, No 1 (72)
 Volume 18, March 2023

379



Beenu Thomas and V. M. Chacko
PGDUS Transformation in Weibull and Lomax Distributions

Table 6: Estimate, Biases and MSEs for PGDUSL model at α = 0.5, β = 0.5 and θ = 0.5

n Estimated value of Parameters Bias MSE

250
α̂=0.5100 0.0100 0.0031
β̂=0.5520 0.0720 0.0665
θ̂=0.5218 0.0218 0.0049

500
α̂=0.4921 -0.0039 0.0016
β̂=0.5926 0.0526 0.0422
θ̂=0.5197 0.0197 0.0023

750
α̂=0.4960 -0.0079 0.0010
β̂=0.5313 0.0343 0.0181
θ̂=0.5088 0.0088 0.0013

1000
α̂=0.4889 -0.0111 0.0008
β̂=0.5343 0.0313 0.0134
θ̂=0.5046 0.0046 0.0009

Table 7: Estimate, Biases and MSEs for PGDUSL model at α = 1, β = 1.5 and θ = 0.5

n Estimated value of Parameters Bias MSE

250
α̂=1.0268 0.0268 0.0314
β̂=1.6452 0.1800 0.4484
θ̂=0.5217 0.0217 0.0037

500
α̂=1.0140 0.0140 0.0131
β̂=1.6800 0.1452 0.2215
θ̂=0.5187 0.0187 0.0017

750
α̂=0.9838 -0.0070 0.0080
β̂=1.6374 0.1374 0.1404
θ̂=0.5040 0.0050 0.0008

1000
α̂=0.9930 -0.0162 0.0059
β̂=1.6070 0.1070 0.0906
θ̂=0.5050 0.0040 0.0006

Table 8: Estimate, Biases and MSEs for PGDUSL model at α = 1, β = 1.5 and θ = 1

n Estimated value of Parameters Bias MSE

250
α̂=1.0284 0.0284 0.0194
β̂=1.69386 0.19386 0.71071
θ̂=1.05298 0.05297 0.03426

500
α̂=1.0179 0.0179 0.0082
β̂=1.5999 0.0999 0.1999
θ̂=1.0472 0.0472 0.0144

750
α̂=0.9917 -0.0083 0.0049
β̂=1.5596 0.0596 0.1101
θ̂=1.0145 0.0145 0.0068

1000
α̂=0.9836 -0.0164 0.0033
β̂=1.5187 0.0187 0.0755
θ̂=0.9967 -0.0033 0.0051
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From Tables 6, 7, and 8, it is observed that bias and MSE are getting closer to zero, as the
sample size increases. Therefore, it can be concluded that the proposed model is more consistent
and the performance of MLE is highly adequate.

3.4. Real Data Application

Real data analysis is used to determine the applicability of the PGDUSL model. The data
set shown in Table 9 is an uncensored data set. As reported by Lee and Wang [14], Table
9 shows the number of months in which 128 bladder cancer patients experienced remission.
Different distributions namely, Lomax distribution (LD), DUS Exponential distribution (DUSE),
and DUS Lomax distribution (DUSL) are used to compare the performance with the proposed
PGDUSL(α, β, θ) distribution. In order to perform the necessary numerical evaluations, the
software R is used.

Table 9: Remission Times in Months of Blood Cancer Patients

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23
0.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09
0.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24
0.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81
0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32
0.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01
0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33
0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
0.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85
0.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02
0.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07
0.73 2.07 3.36 6.93 8.65 12.63 22.69 5.49

To check the acceptability of the PGDUSL(α, β, θ) distribution for the given data set AIC,
Consistent AIC (CAIC), log-likelihood value, and KS statistic with the p-value are used and the
computed values are provided in Table 10. It is worth noting that in the goodness of fit test,
the purpose is to determine whether the sets of data with the distribution function F(y) and
the hypothesised distribution FPGDUSL(y) are compatible. This problem can be formulated as
H04 : F(y) = FPGDUSL(y) versus the alternative H14 : F(y) ̸= FPGDUSL(y).
Similarly the following hypotheses are tested.
H01 : F(y) = FLD(y) Vs H11 : F(y) ̸= FLD(y)
H02 : F(y) = FDUSE(y) Vs H12 : F(y) ̸= FDUSE(y)
H03 : F(y) = FDUSL(y) Vs H13 : F(y) ̸= FDUSL(y)
From Table 10, it is clear that PGDUSL(α, β, θ) distribution fits well for the given data set. To
facilitate a better understanding of the results, the plot of the empirical CDF (ECDF) is shown
in the Fig.7 along with other CDFs of the distributions for the blood cancer patients dataset.
Also, the plot of fitted densities for the blood cancer patients dataset are given. Furthermore, our
proposed distribution is found to fit better than those of the other distributions.
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Table 10: Findings for PGDUSL distribution

Model MLEs log L AIC CAIC KS p- value

LD
λ̂ = 15.2817

-414.98 833.960 834.056 0.094 0.208
θ̂ = 0.0074

DUSE µ̂ = 0.1342 -433.139 868.278 868.309 0.081 0.366

DUSL
λ̂ = 6.471

-413.077 830.153 830.249 0.075 0.463
θ̂ = 0.0253

PGDUSL
α̂ = 3.842

-411.019 828.039 828.2324 0.035 0.998β̂ = 0.0605
θ̂ = 1.3984
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Figure 7: ECDF plot of the models for blood cancer patients dataset.
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4. Discussion

This paper proposes the power generalized DUS transformation of Weibull and Lomax distri-
butions. Moments, MGF, CF, CGF, quantile function, distribution of order statistics, and Rényi
entropy are derived. The parameter estimation has been done using the maximum likelihood
method. By using a simulation study, it is observed that the estimates of the proposed distri-
butions have smaller bias and mean square error when the sample size is larger. Real-world
applications have been performed to determine the applicability of the proposed model. Further-
more, the newly developed models are compared with a few existing models, and it is found that
the newly developed distributions perform better than the few existing models. When conducting
reliability analysis with a series system where each of the components has a specific lifetime
distribution, the PGDUS approach is highly useful.
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