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Abstract

It has been noted in the literature on probability theory that the classical probability distributions do
not adequately fit real-world data and do not exhibit non-monotonic hazard rate behavior. To overcome
this limitation, researchers are focusing on the improvement of these distributions. In this manuscript,
we have introduced a new probability model called Ratio Transformation Lomax Distribution (RTLD) as
a new generalization of Lomax distribution. A thorough mathematical analysis of the new distribution
is provided in closed form such as density function, distribution function, the r-th moment, survival
function, hazard function, moment generating function, generalized entropy and also the order statistics.
The new model’s parameters are calculated using the method of maximum likelihood estimation. The
proposed distribution’s performance and adaptability is backed by three sets of real lifetime data as well as
simulated data.

Keywords:Ratio Transformation Lomax distribution, hazard rate function, moments, maximum
likelihood estimation

1. Introduction

In several literary contexts, the Lomax distribution has been employed. It has been frequently
utilised for reliability modelling and life testing. But it does not provide an acceptable fit
for several applications, particularly when the risk rates include bimodal or bathtub-shaped
hazards. To overcome these limitations, researchers have created a variety of extensions and
changes to the Lomax distribution to model various sorts of data. In the statistical literature,
a variety of probability models are available to simulate various real-life random processes.
Every year more distinct models with high degrees of flexibility are developed because no
single distribution can fully represent all phenomena. As a result, researchers are focusing on
creating new families of distribution and releasing a new variety of families of distribution in
order to more thoroughly analyse real-world data in a variety of applications. Among these,
some of the extensions of the Lomax distribution found in the literature are exponentiated
Weibull-Lomax distribution proposed by [7], power Lomax distribution introduced by [8], a
new extension of Lomax distribution formulated by [5], Marshall-0lkin alpha power Lomax
distribution presented by [4]. The generalization of probability models has been very popular
in recent years. There are variety of approaches for generalizing probability distributions, such
as Alpha Power Transformation (APT) proposed by [12], exponentiation, mixture and Weighted
Technique ,Power Transformation, and several others. Recently, [11] proposed a new method for
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generating distributions known as Ratio Transformation(RT) method. In this manuscript, our
motive is the generalization of Lomax distribution to develop the new probability model called as
Ratio Transformation Lomax Distribution (RTLD) by using Ratio Transformation (RT) method.
The primary justification for making this generalization is that RTLD’s hazard rate displays a
variety of complex shapes, such as constant, increasing-decreasing, decreasing-increasing, etc.,
which overcomes Lomax distribution’s drawbacks. Additionally, when considering a real-world
data sets, the new distribution performs better than the baseline distribution and certain well-
known competitive models. The remaining portions of the manuscript are structured as follows:
In section 2, the Ratio Transformation (RT) method is discussed. In section 3, the RTLD’s pdf and
cdf are defined, and its sub-cases are covered. In section 4, the reliability analysis of the RTLD is
presented. In sections 5, 6, 7, and 8 the statistical properties ,generating functions, order statistics,
and information measure of the RTLD are respectively discussed. A very effective method is used
to carry out the parameter estimation in section 9. Sections 10, 11 and 12, respectively, provide
information on the simulation study, applicability of RTLD and its conclusion.

2. Ratio Transformation (RT) Method

The Ratio Transformation (RT) family of probability distributions, as proposed by [11] is high-
lighted in this section. Suppose the continuous random variable X has cdf F(x). Therefore, the
RT of F(x) denoted by FRT(x) for x ∈ R and is defined by

FRT(X) =
F(x)

1 + η − ηF(x)
; η > 0 (1)

The pdf of the Ratio Transformation(RT) distribution is defined as follows

fRT(X) = f (x)

(
1 + η − ηF(x) (1− F(x)logη)

)
(
1 + η − ηF(x)

)2 ; η > 0 (2)

3. Ratio Transformation Lomax Distribution (RTLD)

Suppose the random variable X has the Lomax distribution with shape parameter β and scale
parameter θ respectively, then its probability density function(pdf) and Cumulative distribution
function (cdf) are respectively given by

f (x; β, θ) =
β

θ

(
1 +

x
θ

)−(β+1)
; x > 0, β > 0, θ > 0 (3)

F(x; β, θ) = 1−
(

1 +
x
θ

)−β
; x > 0, β > 0, θ > 0 (4)

The RTLD is constructed from the Lomax distribution by using the (3) and (4)into (2) and(1)
respectively. Therefore, the cdf of the RTLD is obtained as;

FRTLD(x; β, θ, η) =
1−

(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

; ; x > 0, η > 0, β > 0, θ > 0 (5)

and the corresponding pdf is

fRTLD(x, β, θ, η) =

β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2 ; x > 0, η > 0, β > 0, θ > 0

(6)
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Table 1: Sub-Cases of RTLD

η θ β Reduced Model
- 1 - Two parameter RTLD
1 - - Two parameter Lomax distribution
1 1 - Beta Prime distribution
1 1 1 F(2, 2)
1 1

θq(q−1)
(2−q)
(q−1) q-exponential distribution

Figure 1 and 2 have been displayed to provide a visual representation of the potential shapes
of pdf and cdf of RTLD. Figure 3 represents the hazard rate plots of the RTLD for different
parameter values.
Remark: For η = 1 in 6, RTLD becomes the two parametric Lomax distrbution. The important
sub-cases of RTLD are presented in Table 1

4. Reliability analysis of the RTLD

This section primarily focuses on calculating the reliability (survival function), hazard rate (failure
rate), reverse hazard function, cumulative hazard function, and mills ratio expressions for RTLD
respectively.

4.1. Survival function

The survival function/reliability function is the complement of the cumulative distribution
function and it is defined as the probability that a system will survive beyond a specified time.
For the RTLD, the survival function denoted as RRTLD(x) is given by

RRTLD(x) = 1− FRTLD(x; β, θ, η) =

η

(
1− η−(1+ x

θ )
−β
)
+
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

(7)

4.2. Hazard Rate

Hazard rate also known as hazard function , force of mortality or failure rate. The expression for
the hazard rate of RTLD is expressed as

h(x; η, β, θ) =
fRTLD(x, β, θ, η)

RRTLD(x, β, θ, η)

h(x; η, β, λ) =

β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))(
1 + η − η1−(1+ x

θ )
−β
)−1

η

(
1− η−(1+ x

θ )
−β
)
+
(
1 + x

θ

)−β

(8)

4.3. Reverse Hazard function

The reverse hazard function for the RTLD is expressed as

hr(x; η, β, θ) =
fRTLD(x, β, θ, η)

FRTLD(x; β, θ, η)
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Using equation (6) and(5) , the reverse hazard function for the RTLD is obtained as

hr(x; η, β, θ) =

β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))(
1 + η − η1−(1+ x

θ )
−β
)−1

1−
(
1 + x

θ

)−β

(9)

4.4. Cumulative Hazard function

The Cumulative hazard function for the RTLD is obtained as

ΛRTLD(x; η, β, θ) = − log RRTLD(x)

ΛRTLD(x; η, β, θ) = log


1 + η − η1−(1+ x

θ )
−β

η

(
1− η−(1+ x

θ )
−β
)
+
(
1 + x

θ

)−β

 (10)

4.5. Mills Ratio

The Mills ratio for the RTLD is obtained as

M.R =
FRTLD(x; β, θ, η)

RRTLD(x)
=


1−

(
1 + x

θ

)−β

η

(
1− η−(1+ x

θ )
−β
)
+
(
1 + x

θ

)−β

 (11)

5. STATISTICAL PROPERTIES OF RTLD

This part focuses on discussing the related measures that are connected to the formulated model,
including the raw moments, central moments, pearson’s coefficients, coefficient of variation, and
index of dispersion.

5.1. Raw Moments

The rthmoment of the RTLD about origin µ
′
r is given by

µ
′
r = E(xr) =

∞∫
0

xr fRTLD(x, β, θ, η)dx

µ
′
r =

∞∫
0

xr

β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2 dx (12)

Here, rth moment of the RTLD is obtained by using the following series representations.

η−x =
∞

∑
k=0

(−logη)kxk

k!
(13)

(1− x)−2 =
∞

∑
k=0

(k + 1)xk ; |x| < 1, (14)

(1− x)−1 =
∞

∑
k=0

xk ; |x| < 1, (15)
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By substituting y =
(
1 + x

θ

)−β in (12) and solving the integral further,we obtain rthmoment of the RTLD
about origin µ

′
r as

µ
′
r =

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(16)

where
A = B(r + 1, β(m + 1)− r) and C = B(r + 1, β(m + 2)− r) represents the beta functions of second type.

Using equation (16) and substituting r = 1, 2, 3, 4 , the first four moments about origin of the RTLD are
obtained as

µ
′
1 =

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}
(17)

where

A
′
1 = B(2, β(m + 1)− 1)

C
′
1 = B(2, β(m + 2)− 1)

The equation (17) represents the mean of the RTLD.

µ
′
2 =

∞

∑
k,m=0

βθ2ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
2 + (1 + k)m+1logη

[
A
′
2 − C

′
2

]}
(18)

where

A
′
2 = B(3, β(m + 1)− 2)

C
′
2 = B(3, β(m + 2)− 2)

µ
′
3 =

∞

∑
k,m=0

βθ3ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
3 + (1 + k)m+1logη

[
A
′
3 − C

′
3

]}
(19)

where

A
′
3 = B(4, β(m + 1)− 3)

C
′
3 = B(4, β(m + 2)− 3)

µ
′
4 =

∞

∑
k,m=0

βθ4ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
4 + (1 + k)m+1logη

[
A
′
4 − C

′
4

]}
(20)

where

A
′
4 = B(5, β(m + 1)− 4)

C
′
4 = B(5, β(m + 2)− 4)
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5.2. Moments about Mean (Central Moments)
The moments about the mean also known as central moments of RTLD are obtained as

µ2 = µ
′
2 − (µ

′
1)

2

µ2 =
∞

∑
k,m=0

βθ2ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
2 + (1 + k)m+1logη

[
A
′
2 − C

′
2

]}

−
{

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}}2

(21)

The equation (21) represents the variance of RTLD.

µ3 =
∞

∑
k,m=0

βθ3ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
3 + (1 + k)m+1logη

[
A
′
3 − C

′
3

]}
−3

(
∞

∑
k,m=0

βθ2ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
2 + (1 + k)m+1logη

[
A
′
2 − C

′
2

]})
(

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]})

+2

{
∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}}3

(22)

µ4 =
∞

∑
k,m=0

βθ4ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
4 + (1 + k)m+1logη

[
A
′
4 − C

′
4

]}
−4

(
∞

∑
k,m=0

βθ3ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
3 + (1 + k)m+1logη

[
A
′
3 − C

′
3

]})
(

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]})

+6

(
∞

∑
k,m=0

βθ2ηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
2 + (1 + k)m+1logη

[
A
′
2 − C

′
2

]})
(

∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]})

−3

{
∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}}4

(23)

As a result, these equations may be used to calculate the skewness measure, kurtosis, coefficient of variation
and index of dispersion for the RTLD.

5.3. Pearson’s Coefficients
The following four coefficients can be obtained for the RTLD based upon the first four moments about the
mean using the above section as:

β1 =
µ2

3
µ3

2

γ1 =
√

β1

β2 =
µ4

µ2
2

γ2 = β2 − 3
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5.4. Coefficient of Variation

CV =

√
µ2

µ
′
1

On using the equations (17) and(21), the coefficient of variation can be obtained for RTLD.

5.5. Index of Dispersion
The index of dispersion is defined as :

D =
µ2

µ
′
1

On using the equations (17) and(21), the index of dispersion can be obtained for RTLD.

6. Generating Functions RTLD

6.1. Moment Generating Function
Moment generating function (MGF) is used to represent all the moments of a distribution. The MGF for
RTLD distribution is given in the following theorem.

Theorem 1. Let X follows the RTLD distribution, then the moment generating function, MX(t) is

Mx(t) =
∞

∑
r=0

tr

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(24)

Proof: The moment generating function of RTLD distribution is defined as

Mx(t) =
∞∫

0

etx f (x)dx

Using the series representation of etx, we have

∞

∑
r=0

tr

r!

∞∫
0

xr f (x; η, β, θ)dx

Using equation (16) we obtain the moment generating function for RTLD as

Mx(t) =
∞

∑
r=0

tr

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(25)

6.2. Characteristic Function
The characteristic function for RTLD distribution is given in the following theorem.

Theorem 2. Let X follows the RTLD distribution, then the characteristic function, φX(t)is

φX(t) =
∞

∑
r=0

(it)r

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(26)

Proof: The characteristic function for the RTLD can be obtained using the relation φX(t) = Mx(it)

φX(t) =
∞

∑
r=0

(it)r

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(27)
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6.3. Cumulant Function
The cumulant function for the RTLD can be obtained using the relation kx(t) = log Mx(t)

kv(t) = log
∞

∑
r=0

tr

r!

∞

∑
k,m=0

βθrηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(28)

7. Order Statistics of RTLD

The order statistics connected to the RTLD is devoted in this section. Let X(t;n) be the tth order statistics with
the random sample x(1), x(2), x(3), ...x(m) derived from the RTLD having the probability density function
(pdf) f (x; η, β, θ) and cumulative distribution function (cdf) F(x; η, β, θ). Therefore, the probability density
function (pdf) and cumulative distribution function (cdf) of x(t;n) say f(t;n)(x) and F(t;n)(x) respectively is
defined as

f(t;n)(x) =
n!

(t− 1)!(n− t)!
[F(x; η, β, θ)]t−1 [1− F(x; η, β, θ)]n−t f (x; η, β, θ) (29)

F(t;n)(x) =
n

∑
j=t

(
n
j

)
[F(x; η, β, θ)]j [1− F(x; η, β, θ)]n−j (30)

Using equation(5) and equation(6) in equation(29) and equation(30), the pdf and cdf of tth ordered statistics
for the RTLD is derived and is expressed as

f(t;n)(x) =
n!

(t− 1)!(n− t)!

 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

t−1 (1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n−t


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2

 (31)

F(t;n)(x) =
n

∑
j=t

(
n
j

) 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

j (1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n−j

(32)

In order to obtain the expression for pdf of smallest(minimum) order statistics x(1)and the largest (maximum)
order statistics x(m) of RTLD , we assume t = 1 and n respectively and is expressed in the form as

f(1;n)(x) = n

(1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n−1


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2


(33)

f(n;n)(v) = n

 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

n−1


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2


(34)

7.1. Median order statistics
Theorem 3. The Pdf of median order statistics for the RTLD is given as

f(n+1;n)(x) =
(2n + 1)!
(n)!(n)!

 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

n (1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2

 (35)
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Proof The pdf of median order statistics, x(n+1) is defined as

f(n+1;n)(x) =
(2n + 1)!

n!n!
[F(x; η, β, θ)]n [1− F(v; η, β, θ)]n f (v; η, β, θ)

f(n+1;n)(x) =
(2n + 1)!
(n)!(n)!

 1−
(
1 + x

θ

)−β

1 + η − η1−(1+ x
θ )
−β

n (1 + x
θ

)−β
+ η − η1−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

n


β
θ

(
1 + x

θ

)−(β+1)
(

1 + η − η1−(1+ x
θ )
−β (

1− (1−
(
1 + x

θ

)−β
)logη

))
(

1 + η − η1−(1+ x
θ )
−β
)2

 (36)

8. Information measure of RTLD

Entropy is a quantitative measures of the amount of uncertainty in a random variable. In this section we
derive the expression for generalized entropy of RTLD.

Theorem 4. The generalized entropy for the RTLD is expressed as

I(α) =
1

α(α− 1)


∑∞

k,m=0
βθαηk(−logη)m

(1+η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}{
∑∞

k,m=0
βθηk(−logη)m

(1+η)k+2m!

{
km(1 + η)A′1 + (1 + k)m+1logη

[
A′1 − C′1

]}}α − 1

 (37)

Proof:The generalized entropy is defined as

I(α) =
xαµ−α − 1
α(α− 1)

where

xα =

∞∫
−∞

xα f (x)dx

and µ represents mean. For RTLD, we have

xα =
∞

∑
k,m=0

βθαηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}
(38)

where
A = B(α + 1, β(m + 1)− α) and C = B(α + 1, β(m + 2)− α) represents the beta functions of second type.

µ−α =

{
∞

∑
k,m=0

βθηk(−logη)m

(1 + η)k+2m!

{
km(1 + η)A

′
1 + (1 + k)m+1logη

[
A
′
1 − C

′
1

]}}−α

(39)

where

A
′
1 = B(2, β(m + 1)− 1)

C
′
1 = B(2, β(m + 2)− 1)

Therefore, the expression for the generalized entropy of RTLD is obtained as

I(α) =
1

α(α− 1)


∑∞

k,m=0
βθαηk(−logη)m

(1+η)k+2m!

{
km(1 + η)A + (1 + k)m+1logη [A− C]

}{
∑∞

k,m=0
βθηk(−logη)m

(1+η)k+2m!

{
km(1 + η)A′1 + (1 + k)m+1logη

[
A′1 − C′1

]}}α − 1

 (40)
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9. Estimation of Parameters

This section is devoted to maximum likelihood estimation procedure for estimating unknown parameters
η, β, θ of RTLD.

9.1. Maximum Likelihood Estimation(MLE)
Suppose x1, x2, x3, ...xn be the random sample derived from the RTLD having the probability density function
(pdf) f (x; η, β, θ). Therefore, for n observations , the logarithm of the likelihood function of RTLD is obtained
as

l = nlogβ + nβlogθ − (β + 1)
n

∑
i=1

log(xi + θ)− 2
n

∑
i=1

log
(

1 + η − η1−(1+ x
θ )
−β
)

+
n

∑
i=1

log
[

1 + η − η1−(1+ x
θ )
−β
(

1− logη (1−
(

1 +
x
θ

)−β
)

)]
(41)

The MLEs of η, θ and β are obtained by partially differentiating (41) with respect to the corresponding
parameters and equating to zero, we have

∂l
∂η

=
n

∑
i=1

1 + (1−
(
1 + x

θ

)−β
)2η−(1+ x

θ )
−β

logη

1 + η − η1−(1+ x
θ )
−β (

1− logη(1−
(
1 + x

θ

)−β
)
) − 2

n

∑
i=1

1− (1−
(
1 + x

θ

)−β
)η−(1+ x

θ )
−β

1 + η − η1−(1+ x
θ )
−β

(42)

∂l
∂β

=
n
β
+ nlogθ −

n

∑
i=1

log(xi + θ) + 2
n

∑
i=1

η1−(1+ x
θ )
−β

logη
(
1 + x

θ

)−β log
(
1 + x

θ

)
1 + η − η1−(1+ x

θ )
−β

−
n

∑
i=1

1 + η − η1−(1+ x
θ )
−β

(1 + x
θ )
−βlogη(1 + x

θ ) +
(

1− logη (1−
(
1 + x

θ

)−β
)
)

η1−(1+ x
θ )
−β

logη(1 + x
θ )
−βlog(1 + x

θ )

1 + η − η1−(1+ x
θ )
−β (

1− logη(1−
(
1 + x

θ

)−β
)
)

(43)

∂l
∂θ

=
nβ

θ
− (β + 1)

n

∑
i=1

1
(xi + θ)

− 2
n

∑
i=1

βθ−2xη1−(1+ x
θ )
−β

logη
(
1 + x

θ

)−(β+1)

1 + η − η1−(1+ x
θ )
−β

−
n

∑
i=1

[
βθ−2xlogη

(
1 + x

θ

)−(β+1)
] {

(1 + η − η1−(1+ x
θ )
−β

) +
(

1− logη (1−
(
1 + x

θ

)−β
)
)

η1−(1+ x
θ )
−β
}

1 + η − η1−(1+ x
θ )
−β (

1− logη(1−
(
1 + x

θ

)−β
)
)

(44)

The above three non-linear equations (42),(43) and (44) are not in closed form.Therefore,we shall solve these
equations with the help of R software.

10. SIMULATION ILLUSTRATION

In this section, the effectiveness of the (MLEs) of RTLD is explored. To demonstrate the behavior of MLEs in
terms of random generating sample sizes of n= 50, 100, 200, 300, 400 a simulation research was conducted
using R Software. The procedure is repeated 500 times. Different sets of parameter combinations are selected
as (1,0.5,1)and (0.5,1,1) with reference to the usual order (θ, η, β). The average MLE values, bias, and related
empirical mean squared errors (MSEs) were determined for each scenario. From Table 2 and Table 3 the
simulation findings are shown. The estimates are stable and near to the genuine parameter values, as
presented in Tables 2 and 3. In all circumstances, the MSE drops as the sample size increases.
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Table 2: Results of the simulation study for the RTLD model at parameter combination set as (θ = 1, η = 0.5, β = 1).

Sample MLE BIAS MSE
n θ̂ η̂ β̂ θ̂ η̂ β̂ θ̂ η̂ β̂

50 1.88737 0.81308 1.48624 0.88737 0.31308 0.48624 5.31104 4.05814 1.24

100 1.36960 0.77404 1.23155 0.369604 0.27404 0.23155 1.26655 3.01730 0.32662

200 1.17796 0.61684 1.12613 0.177968 0.11684 0.126133 0.456912 0.24202 0.085288

300 1.09238 0.59553 1.07560 0.09238 0.0955 0.07560 0.381143 0.08623 0.06454

400 1.02375 0.59153 1.02596 0.02375 0.09153 0.02596 0.23470 0.06871 0.033937

Table 3: Results of the simulation study for the RTLD model at parameter combination set as (θ = 0.5, η = 1, β = 1).

Sample MLE BIAS MSE
n θ̂ η̂ β̂ θ̂ η̂ β̂ θ̂ η̂ β̂

50 0.82485 1.9607 1.36407 0.3248 0.9607 0.36407 1.07362 6.2609 0.59748

100 0.78055 1.64962 1.20104 0.28055 0.6496 0.2010 1.02573 4.14133 0.25056

200 0.60470 1.16408 1.07572 0.1047 0.1640 0.07572 0.16791 1.0627 0.04460

300 0.59327 1.14369 1.06681 0.0932 0.14369 0.06681 0.122244 0.50144 0.033350

400 0.56298 1.13550 1.0422 0.0629 0.135501 0.04229 0.0884 0.5013 0.01751

11. Application

This section concentrates on application of the proposed model to real life data sets. The significance and
superiority of RTLD are highlighted in this part by the use of three real-life data sets. The MLEs of the model
parameters are computed along with the corresponding Standard Error (SE) and goodness-of-fit statistics
for these models are compared with other competing models. We compare the fits of the RTLD distribution
with some competitive models which are listed in Table 4. To choose the best model among the compared
models, performance comparing tools such as Akaike Information Criteria (AIC),Bayesian Information
Criteria (BIC) and Akaike Information Criteria Corrected (AICc) are exploited. These Criterions choose the
superior distribution as the one which is having the smallest value of AIC,BIC,and AICc. Furthermore, the
Kolmogorov -Smirnov (KS)-distance and associated p- value is obtained to assess the goodness of fit. The
superior probability model is considered the one which is having the least value of KS and maximum value
of p- value.
The performance comparing tools are mentioned below:

∙ Akaike Information Criterion(AIC) is calculated as

AIC =-2l̂ + 2m

∙ Bayesian Information Criterion (BIC) is defined as

BIC =-2l̂ + m ln(n)

∙ Akaike Information Criterion Corrected(AICC) is defined as.

AICC =AIC + 2m(m+1)
n−m−1

where

l̂ is the log-likelihood function of the model given the data.
m represents the number of parameters involved in the given model.
n is the sample size.

Table 5 and Table 6 displays the MLE’s with corresponding Standard Error (SE) and the comparison of
performance of RTLD with compared distributions for data set 1 ,which represents the COVID-19 vaccination
rate from different countries. Table 7 and Table 8 presents the MLE’s along with corresponding Standard
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Table 4: Competitive models of the RTLD model.

Competitive models of the RTLD model
Distribution(s) Author(s)
(1) Sine Power Lomax (SPL) [14]
(2) Length Biased Weighted Lomax Distribu-
tion(LBWLD)

[2]

(3) Topp-Leone Lomax (TLLo) [15]
(4) Power Lomax (PL) [16]
(5) Exponentiated Lomax (EL) [1]
(6) Weibull Lomax(WL) [17]
(7) Lomax (L) [10]

Table 5: MLE’s of RTLD and compared distributions with corresponding standard error (given in parenthesis) for
Covid -19 vaccination rate data set .

Model η̂ β̂ θ̂ α̂ λ̂

RTLD 0.3446 2.7564 25.9981
( 0.1854) ( 2.3906) ( 31.3471) - -

PL 0.9390 1.6917 6.7054
- ( 0.2478) - (1.6295) (6.9138)

SPL 0.9402 0.7755 0.2037
- ( 0.2714) - ( 0.7075) (0.2041)

EL 0.1952 1.3525 1.0322
- (0.2336) - (0.6882) (0.3999)

TLLo 0.6762 0.1952 1.0322
- (0.3441) - ( 0.2336) (0.3999)

L 5.5782 1.3924
- (3.3975) (0.5346) - -

Table 6: Comparison of RTLD and compared distributions for Covid -19 vaccination rate data set

Model -2l̂ AIC AICC BIC K-S p-value
RTLD 284.6826 290.6826 291.2540 296.1685 0.0845 0.8697

PL 285.6881 291.6881 292.2595 297.1740 0.1013 0.6938

SPL 285.8228 291.8229 292.3943 297.3088 0.1030 0.6751

EL 285.8365 291.8365 292.4079 297.3224 0.10699 0.6294

TLLo 285.8365 291.8365 292.4079 297.3224 0.10699 0.6294

L 288.7432 292.7432 293.0222 296.4004 0.108 0.6124

Error (SE) and comparison of performance of RTLD with compared distributions for data set 2. In addition
to these, the result findings of the RTLD for the data set 3 , that represents the organic carbon content
percentage in the soil of the district Ganderbal and are discussed in Table 9 and Table 10. The results shown
in Table 6, Table 8 and 10 reveals that RTLD is having a minimum value of AIC ,BIC and AICC, and thus
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Table 7: MLE’s of RTLD and compared distributions with corresponding standard error (given in parenthesis) for the
dataset of the life of fatigue fracture of Kevlar 373/epoxy data .

Model η̂ β̂ θ̂ α̂ λ̂

RTLD 20.9773 3.31514 0.635077
( 17.388) ( 0.892) ( 0.550) - -

SPL 1.543 1.768 0.127
- ( 0.246) - ( 1.385) (0.106)

PL 1.591 3.629 9.746
- ( 0.243) - (3.024) (8.519)

TLLo 15.937 0.023 1.772
- (17.019) - ( 0.026) (0.303)

EL 0.026 27.846 1.794
- (0.027) - (26.984) (0.309)

WL 9288.5276 41544.7577 1.32698 19.90441
(17578.45506) (548.674) (0.11376) (30.64844) -

L 112,212.8 219,815.9
- (11,863.8471) (231.3384) - -

Table 8: Comparison of RTLD and compared distributions for the data set of the life of fatigue fracture of Kevlar
373/epoxy data

Model -2l̂ AIC AICC BIC K-S p-value
RTLD 239.2362 245.2362 245.5695 252.2284 0.0669 0.863

SPL 242.6924 248.6924 249.0257 255.6846 0.0829 0.6416

PL 243.0583 249.0583 249.3916 256.0505 0.0844 0.6204

TLLo 244.5824 250.5824 250.9157 257.5746 0.0907 0.53

EL 244.6087 250.6087 250.9421 257.6009 0.0906 0.52

WL 245.0592 253.0592 253.6226 262.3822 0.11003 0.2943

L 254.2288 258.2289 258.3931 262.8902 0.16631 0.02635

outperforms the base model of Lomax and a few well-known competitive models as shown in Table 4 for
the provided data set 1, data set 2 and data set 3 (Given in Appendix A). The claim is further supported by
Figures 4 and 5. Also the P-P plots of the RTLD model for all the given 3 data sets are shown in Figure 6
,supports the results presented in Table 6, Table 8 and 10.
*Note: The findings of the TLLO and EL models for data set 1 and data set 2 are nearly equal,because of
their similar nature but slight numerical variations are seen without rounding.

12. Conclusion

In this manuscript, the main contribution is to propose a flexible generalization of Lomax distribution that
can acts as a potential substitute for the base model in various situations. In this regard , we use the Ratio
Transformation (RT) method and introduced a new model called as RTLD. Some of its key characteristics
are discussed, and parameters are determined using a fairly potent estimation technique. The application of
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Table 9: MLE’s of RTLD and compared distributions with corresponding standard error (given in parenthesis) for the
dataset of the Organic carbon content percentage in the soil of district Ganderbal .

Model η̂ β̂ θ̂ α̂ λ̂

RTLD 18.0874 112511.8 24858.69
( 5.0829) ( 6957.718) ( 241.6045) - -

SPL 2.2218 48.3872 0.01316
- ( 0.2901) - ( 60.3950) (0.0164)

LBWLD 82006.2083 34926.7946
(8393.8383) - - - ( 141.5032)

L 58010.4142 49436.1672
- (10617.0983) (227.7487) - -

Table 10: Comparison of RTLD and compared distributions for the data set of the Organic carbon content percentage
in the soil of district Ganderbal

Model -2l̂ AIC AICC BIC K-S p-value
RTLD 36.7457 42.7457 43.3457 48.0982 0.0787 0.948

SPL 42.9822 48.9822 49.5822 54.3347 0.137 0.3808

LBWLD 56.3150 60.3150 60.60774 63.8834 0.22998 0.01904

L 73.91046 77.91046 78.20314 81.47884 0.30589 0.01

RTLD from a practical perspective is demonstrated through the incorporation of a three real life data sets.
The goodness of fit measure is used to assess the effectiveness of the proposed model to other existing known
models. The acquired findings are quite encouraging and demonstrate that the RTLD model outperforms
the competing models for the provided data sets.
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Appendix A

Data set 1: The first data represents the COVID-19 vaccination rate from 46 different countries in southern
Africa . The data has been previously analyzed by [3]. The data is as follows: 0.042, 0.205, 0.285, 0.319, 0.464,
0.550, 0.889, 0.895, 0.939, 0.986, 1.000, 1.088, 1.212, 1.244, 1.450, 1.593, 1.844, 2.039, 2.157, 2.167, 2.334, 2.440,
2.657, 3.685, 3.879, 4.493, 4.800, 4.944, 5.155, 5.674, 7.602, 10.004, 12.238, 12.520, 12.553, 13.063, 15.105, 15.229,
15.629, 15.848, 18.641, 18.940, 29.885, 58.162, 61.838, 72.286.
Data set 2 The data set represents the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant
pressure at the 90 % stress level until all had failed. For previous studies on the data sets, see, [9] and [6]
The data are: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753,
0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570,
1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746,
1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100,
2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455,
3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.
Data set 3 The data set represents the organic carbon(%) content in the soil of district Ganderbal. For
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previous studies on the data set, see, [13].The data set are: 0.99, 0.81, 0.57, 1.11, 0.97, 0.78, 0.85, 0.85, 0.91,
0.79, 0.66, 0.99, 0.94, 1.17, 1.06, 0.99, 0.84, 1.47, 1.14, 1.41, 0.2, 0.6, 0.03,0.12, 1.11, 0.25, 1.14, 0.63, 0.45, 0.76, 1.2,
1.08, 1.26, 1.08, 0.27, 0.15, 0.75, 0.33, 0.75, 0.63, 1.47, 1.21, 1.24, 1.48.
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Figure 1: Probability density plots of the RTLD for various values of η, β, θ > 0
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Figure 2: Distribution function plots of the RTLD for various values of η, β, θ > 0
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Figure 3: Hazard rate plots of the RTLD for various values of η, β, θ > 0
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 RTLD  and Competing Model Fitting For Data set 2
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Figure 4: Plot of the Fitted densities.
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 RTLD  and Competing Model Fitting For Data set 3
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Figure 5: Plot of the Fitted densities.
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(ii)P−P Plot for RTLD for data set 2
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(iii)P−P Plot for RTLD for data set 3
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Figure 6: P-P plot of the RTLD model for data set 1,data set 2 and data set 3 respectively.
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