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Abstract 

In this paper, a progressive type-II censoring strategy is used to estimate the parameters, reliability and 
hazard rate functions of the exponentiated moment exponential distribution. The maximum likelihood 
and Bayesian techniques have been used to estimate the proposed estimators. Gamma (informative) and 
uniform (non-informative) priors are taken into account under the squared error loss function to 
produce the Bayesian estimators. The highest posterior density interval estimations and the 95% 
approximate confidence intervals along with coverage probability are calculated. In order to evaluate 
the effectiveness of estimates produced by the Metropolis-Hastings sampling algorithms, we provide a 
numerical research. According to the study's findings, the Bayes estimates under informative priors 
are typically more accurate than other estimates.  

Key Words: Exponentiated moment exponential, gamma prior,  credible interval, 
Metropolis-Hastings, Progressive censorning 

1. Introduction

Censoring is widely used in reliability  data analysis and other practical life-testing investigations. It 
becomes apparent when precise failure times for a subset of the test units used in an experiment are 
observed. The experimenter frequently runs into incomplete data in this scenario. Typical censoring 
systems include type I censoring (T1C) and type II censoring (T2C). The units can only be expelled 
after the conclusion of the experiment, which is a major drawback of TIC and T2C methods. In a more 
open-ended censoring technique known as progressive censoring (PC), units are designated to be 
discarded from the test at times other than the eventual termination time point. The remaining units 
are then tested again while being observed. To learn more, visit Balakrishnan [1]. 

Progressive T2C (PT2C) is the major topic of this research project. Let's assume that n 
identical items are used in the experiment, and that the PC scheme R is pre-fixed so that, after the first 
failure,  surviving items are ejected from remaining live  items, surviving items are ejected 
from remaining live  items, and so on. After mth failure, this procedure is maintained until 
all  remaining objects are expelled (see Hofmann et al [2]). Therefore, a PT2C 

1R ( 1)n- 2R

1( 2)n R- -

1 1...m mR n m R R -= - - -
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procedure consists of m and   such that . Note that, if R1 = R2= …=Rm =0 then 

the PT2C provides complete sampling and if  R1 = R2=…= Rm-1 = 0 and Rm  = n-m then PT2C yields T2C 
scheme (see Krishna and Kumar [3]).  

According to PT2C samples, the likelihood function of random variable X  (Balakrishnan and 
Aggarwala [4]) is supplied as follows .    

     (1) 

where Some important literature regarding the 
estimation studies under PT2C scheme can be found in  Wu [5] , Ng [6], Dey et al. [7], Hassan et al. 
[8], EL-Sagheer [9],  Noor et al. [10],  Alshenawy  et al. [11], and  Shrahili et al. [12]. 

   Moment distributions are essential in probability theory and several economic, reliability, and 
biological studies, as well as other areas of mathematics and statistics. Some of the fundamental 
features of the moment exponential (ME) distribution were studied and suggested by Dara and 
Ahmad [13]. The version of the ME distribution that includes an additional shape parameter is known 
as the exponentiated ME (EME) distribution, and it is frequently employed in reliability research. 
Hasnain  et al. [14] suggested several EME distribution features, including conditional-based 
characterisation, explored maximum likelihood (ML) estimators, and fitted it to actual data sets. 
Compared to the ME distribution and exponentiated exponential (EE) distribution, the EME 
distribution is more adaptable when fitting data. As described by Hasnain  et al. [14] the EME 
distribution's cumulative distribution function (CDF), is 

     (2) 

where is scale parameter and is shape parameter. The probability density 
function (PDF) of the EME distribution is 

(3) 

For 1, the CDF (2) gives the CDF of one parameter EE distribution (Gupta and Kundu [15]). Also, 
for , the CDF (2) gives the CDF of ME distribution. The reliability function (RF) and hazard rate 
function (HRF) related to (3) are defined as: 

               

Plots of the PDF and HRF of the EME distribution are displayed in Figure 1. It is evident that different 
parameter values result in varied forms for the PDF for the EME distribution. The distribution may 
alternatively be characterised as favourably skewed to right and uni-modal. It is clear that the EME 
distribution's HRF has an increasing trend. 
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Figure 1: PDF and HRF plots of the EME distribution 

Different approaches to estimating the PDF and CDF of the EME distribution were provided by 
Tripathi et al. [16].  The ML and Bayesian techniques developed by Fatima and Ahmad [17] have been 
taken into consideration when discussing the parameter estimators of the EME distribution. Akhter et 
al. [18] provided explicit algebraic equations that are generated from the EME distribution for both 
single and product moments of order statistics. Additionally, they used a full sample as well as a T2C 
sample to identify the best linear unbiased estimators based on these moments. Some generalizations 
of EME distribution may be found in Iqbal et al. [19], Ahmadini  et al. [20] and  Shrahili  et al. [21]. 

The RF, HRF, and parameter estimators of the EME utilising ML and Bayesian techniques are 
addressed in the current study. Both the Bayesian credible intervals (BCIs) and the approximate 
confidence intervals (ACIs) are built using the PT2C data. This document can be constructed as 
shown below. Section 2 deals with ML estimators and the ACIs of parameters, RF and HRF. Sections 
3 explore Bayesian estimate under informative (IF) and non-informative (NIF) priors. Sections 4 and 
5, respectively, provide numerical illustrative studies and a conclusion. 

2. Maximum Likelihood Procedure

Here, using PT2C data, we obtain the ML estimators of the parameters, RF, and HRF of the EME 
distribution. In addition, the ACIs for the RF, HRF and the parameters and are built. 
Let be the observed PT2C random samples extracted from the EME distribution.  Based 
on (1), then the likelihood function of the EME distribution takes the following form: 

    (4) 

where and we write for simplified form. The logarithm of (4), say 
 becomes: 

 (5) 

The first derivative of (5) via are given as: 
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where . The estimator of  is the solution of the first derivative of 

 Numerical iterative approach may be used to calculate the estimator 

of for the specified values of ( ).  Additionally, the invariance feature of the ML method 
is used to evaluate R(x) and h(x) as below 

      

In addition, we get the observed information matrix, say  to build ACIs. The multivariate 

normal distribution is used to create ACIs for the parameters and  with the 
usual regularity requirements. Based on the asymptotic normality criteria of the ML, the two-sided 

ACI for parameter and is 

 

 
AIL= AsyCI_Upper - AsyCI_Lower, 

where  is the right tail probability's percentile  for the standard normal distribution. Once 
more, an R-based numerical method is offered to get the variance-covariance matrix. Also, the 

ACI for R(x) and h(x) are given by  

3. Bayesian Estimators

Here, Bayesian estimator of the parameters, RF and HRF of the EME distribution in case of IF and NIF 
priors under squared error (SE) loss function. Firstly, consider  and have a gamma distribution 
with parameters (a, b) and (c, d) respectively. Assuming that and are independently distributed, 
the joint prior distribution of and is given by: 

 

where a, b, c and d are chosen to reflect the prior knowledge about the unknown parameters (the 
criteria to select the hyper-parameter values is discussed in Section 3.1). The joint posterior 
distribution of parameters and is defined as:  

 

Hence, the marginal posterior distributions of and take the following forms: 
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where  . 

The Bayesian estimator of and expressed by and are obtained as follows: 

 

The Bayesian estimators of R(x) and h(x) are given by: 

 (6) 

  (7) 

The above Bayesian estimators are not in closed forms but can be evaluated 
numerically for the given values of  
Secondly, assuming the prior of parameters and denoted by and has the uniform 
(NIF) prior distribution. The joint prior for parameters and represented by  assuming 
independent of priors, is 

 

The joint posterior density of and given the data  is given by: 

 

where                      

Hence, the marginal posterior distributions of and take the following forms: 

 

 

The Bayesian estimator of and denoted by  and  are obtained as follows: 
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  (8) 

 (9) 

The Bayesian estimator of R(x) and h(x) are given by: 

 (10) 

  (11) 

The above Bayes estimates  are assessed numerically for the given values of 

 Integrals (8)-(11) are very hard to be solved analytically, so the Metropolis-Hastings 
(MH) algorithm will be used to solve these integrals. 

3.1 Hyper-Parameter Elicitation 

This sub-section handled the elicitation of the hyper-parameter values in case of IP. These hyper-
parameters of IP are obtained from ML estimators for and by equating the mean and variance of 

and with the mean and variance of the gamma distributions, where i=1,2,….,N and N is the 
number of samples available from the EME distribution. Thus, 

 

Hence, the estimated hyper-parameters are obtained as follows 
: 

 

For more information (see Dey and Pradhan, 2014). 

3.2 Bayesian Credible Intervals 

 Furthermore, the BCI of and denoted by and is obtained under IF and NIF priors as 

follows: 
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  (15) 

Integrals (12)-(15) are very hard to be solved analytically, so the MH algorithm will be used to solve 
these integrals Similary, the BCI of R(x) and h(x) provided in (6), (7) under IP and the BCI of R(x) and 
h(x) provided in (10) and (11) under NIP are obtained using the above procedure. 

4. Numerical Illustration

To determine ML estimates (MLEs) and Bayesian estimates (BEs) for parameters, RF and HRF under 
the PT2C scheme, a simulation study was conducted. Different sample sizes (n), effective failure sizes 
(m), and picking parameter values are taken into consideration. The R 3.6.1 software is used to 
complete the following stages. 
1. Using the same technique as that provided by Balakrishnan and Sandhu [22], which includes the
following, random samples are produced from the EME distribution under PT2C 
samples: 

i. Generate m independent and identically (iid) random numbers from 
uniform distribution U(0,1).

ii. Set for  

iii. Set and for .Then  is the PT2C 
sample from U(0, 1) distribution. 

iv. Finally, set for , where is the inverse CDF of EME 
distribution  consideration, then are the required PT2C samples from 
EME distribution with censoring scheme  

2. Three different sampling schemes are considered as follows:
Scheme I: R1 = R2 =…= Rm-1and Rm = n m  (T2C), 

Scheme II:  Rm = n m, R2 = R3 =…= Rm=0 and 

Scheme III: R1 = R2 = (n m) / 2 , R3 = R4 =…= Rm=0. 

3. The parameters and are chosen with values; Case 1: ,  and  Case 2: ,  
4. With the mission time x = 0.8, the number of stages m, and the censoring strategy , 
various sample sizes of n=50, 100, and 150 are chosen. The method described by Dey et al. [23] is used 
to choose the hyper-parameters for gamma priors 
5. To create samples from the posterior distributions, the MH approach is applied.
6. The biases, mean squared errors (MSEs), average lengths (AILs), and CPs for MLEs and BEs are
computed for various sample sizes, with the number of repeated samples being 1000 samples
7. A portion of the results, which are lengthy numerically, are shown Tables 1–3 for MLEs and BEs
under IF.
Figures 2–8 provide examples from the investigation.
Regarding the behaviour of various estimations, the following findings are found.
v All the precision measures for MLEs and BEs tend to decrease with sample sizes n and number of

stages m, in majority of the cases. The sample size n and number of stages m both enhance the CPs
of the HRF estimates.

v Figure 2 shows that the MSEs of obtain the least values across all schemes, and the MSEs 

of  in Case 1 get the biggest values across all schemes. 
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Figure 2: MSEs for estimates in Case 1 for all values of m 

v Figure 3 demonstrates that the MSEs of  in Case 2 obtain the lowest values among all 

schemes, whereas the MSEs of obtain the highest values within all schemes 

Figure 3: MSEs for estimates in Case 2 for all values of m 

v Regarding Case 1, in Figure 4, the MSEs of in all schemes take the least value, while 

the MSEs of receive the biggest value 

Figure 4: MSEs for RF and HRF estimates in Case 1 for all values of m 
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v The MSEs of in all schemes, obtain the least values, as shown in Figure 5. 

Figure 5: MSEs for RF and HRF in Case 2 for all values of m 

v In most cases, it is possible to draw the conclusion that the MSEs of population parameters
employing IF priors take the lowest values.

v The widths of the BCIs via IF priors are shorter than those of the MLEs and BEs under NIP priors
in Case 1 ( ). 

v The CPs for BEs under IF priors are higher than the equivalent for MLEs and BEs under NIF
priors.

v In Figure 6, for NIF prior, history graphs for various estimates of  and are demonstrated. The
plots of the parameter chains resemble a horizontal band without any discernible lengthy upward
or downward trends, which are evidence of convergence.

(a) and  at n=100, m= 50 for  

( ) and h( ),R x x

=0.5, 1.5b a =

b a

b a =0.5, 1.5b a =
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(b) and  at n=100, m= 50  for  
Figure 6:  Different BEs for  under NIF priors 

v In Figure 7, for IF priors, history graphs for various estimations of are shown. The plots of 
the chains for the parameters resemble a horizontal band without any significant long-term rising 
or downward trends, which are signs of convergence 

(a) and  at n=100, m= 50  for  

(b) and  at n=100, m= 50   for  

Figure 7: Different Bayesian estimates for  under gamma priors 

b a =0.5, 3b a =
andb a

andb a

b a =0.5, 1.5b a =

b a =0.5, 3b a =

andb a
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Table 1: MLEs and associated measures for in case 1 

Scheme I 
n m Estimate Mean Bias MSE AIL CP 

50 

20 

0.490 0.010 0.017 0.511 95.6 
 1.780 0.280 0.562 2.728 95.8 

0.842 0.169 0.029 0.299 95.0 
0.627 0.366 0.134 0.758 95.0 

30 

0.485 0.015 0.010 0.383 96.6 
 1.734 0.234 0.471 2.531 96.2 

0.790 0.117 0.014 0.483 96.7 
0.729 0.264 0.070 1.118 96.7 

100 

20 

0.477 0.023 0.020 0.550 95.2 
 1.810 0.310 0.560 2.670 95.6 

0.909 0.237 0.056 0.184 95.0 
0.470 0.523 0.273 0.737 95.0 

50 

0.492 0.008 0.006 0.297 96.9 
 1.626 0.126 0.159 1.484 95.5 

0.772 0.100 0.010 0.469 96.0 
0.765 0.228 0.052 1.031 96.0 

70 

0.495 0.005 0.004 0.237 96.5 
 1.582 0.082 0.098 1.184 96.7 

0.638 0.035 0.001 0.640 97.1 
0.978 0.015 0.000 1.108 97.1 

150 

50 

0.490 0.010 0.007 0.324 96.1 
 1.615 0.115 0.138 1.384 95.8 

0.835 0.162 0.026 0.306 96.0 
0.676 0.317 0.100 0.767 96.0 

70 

0.491 0.009 0.004 0.258 96.8 
 1.599 0.099 0.103 1.198 95.7 

0.826 0.153 0.023 0.393 97.1 
0.686 0.308 0.095 0.964 97.1 

100 

0.495 0.005 0.003 0.202 96.7 
 1.562 0.062 0.070 1.011 95.3 

0.685 0.012 0.000 0.592 97.0 
0.915 0.078 0.006 1.103 97.0 

130 

0.498 0.002 0.002 0.165 96.8 
 1.530 0.030 0.047 0.838 96.3 

0.583 0.089 0.008 0.756 96.9 
1.046 0.053 0.003 1.173 96.9 

, , ( ) and ( )R x h xa b
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â
ˆ( )R x
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Continued Table 1 

Scheme II 
n m Estimate Mean Bias MSE AIL CP 

50 

20 

0.488 0.012 0.010 0.385 96.5 
 1.673 0.173 0.314 2.090 96.8 

0.533 0.139 0.019 0.906 95.0 
1.092 0.099 0.010 1.491 95.0 

30 

0.494 0.006 0.007 0.335 95.8 
 1.652 0.152 0.263 1.921 95.2 

0.577 0.096 0.009 0.898 96.7 
1.026 0.033 0.001 1.380 96.7 

100 

20  

0.498 0.002 0.010 0.385 95.9 
 1.615 0.115 0.214 1.759 96.5 

0.491 0.181 0.033 0.893 95.0 
1.133 0.140 0.020 1.393 95.0 

50  

0.497 0.003 0.004 0.257 96.2 
 1.585 0.085 0.123 1.336 94.8 

0.512 0.160 0.026 0.967 96.0 
1.110 0.117 0.014 1.573 96.0 

70 

0.497 0.003 0.000 0.085 97.0 
 1.559 0.059 0.004 0.084 96.8 

0.549 0.123 0.015 0.938 100.0 
1.057 0.064 0.004 1.462 100.0 

150 

50 

0.490 0.010 0.004 0.251 96.5 
 1.600 0.100 0.111 1.247 96.3 

0.499 0.173 0.030 0.859 96.0 
1.169 0.176 0.031 1.156 96.0 

70 

0.497 0.003 0.003 0.210 96.2 
 1.557 0.057 0.079 1.081 95.8 

0.569 0.104 0.011 0.913 97.1 
1.043 0.050 0.002 1.312 97.1 

100 

0.500 0.000 0.002 0.183 97.0 
 1.538 0.038 0.059 0.939 96.5 

0.472 0.201 0.040 0.949 97.0 
1.171 0.178 0.032 1.425 97.0 

130 

0.498 0.002 0.002 0.160 97.1 
 1.536 0.036 0.044 0.809 96.0 

0.465 0.208 0.043 0.912 96.9 

1.193 0.200 0.040 1.280 96.9 
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â
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Continued Table 1 

Scheme III 
n m Estimate Mean Bias MSE AIL CP 

50 

20  

0.483 0.017 0.010 0.392 96.1 
 1.693 0.193 0.319 2.081 95.9 

0.566 0.107 0.011 0.938 95.0 
1.057 0.064 0.004 1.502 95.0 

30  

0.495 0.005 0.007 0.332 96.3 
 1.645 0.145 0.254 1.892 95.9 

0.580 0.093 0.009 0.958 96.7 
0.988 0.006 0.000 1.626 96.7 

100 

20  

0.490 0.010 0.010 0.381 96.3 
 1.617 0.117 0.191 1.653 95.9 

0.603 0.069 0.005 0.952 95.0 
0.958 0.035 0.001 1.614 95.0 

50  

0.496 0.004 0.004 0.253 96.4 
 1.588 0.088 0.123 1.333 95.4 

0.559 0.114 0.013 0.919 96.0 
1.069 0.075 0.006 1.371 96.0 

70 

0.494 0.006 0.003 0.209 96.8 
 1.581 0.081 0.093 1.151 95.6 

0.538 0.134 0.018 0.869 97.1 
1.100 0.106 0.011 1.227 97.1 

150  

50 

0.498 0.002 0.004 0.247 96.6 
 1.560 0.060 0.092 1.166 96.8 

0.462 0.210 0.044 0.932 96.0 
1.173 0.180 0.032 1.444 96.0 

70 

0.500 0.000 0.003 0.216 96.8 
 1.546 0.046 0.071 1.030 96.3 

0.536 0.136 0.019 0.947 97.1 
1.090 0.097 0.009 1.471 97.1 

100 

0.496 0.004 0.002 0.185 97.2 
 1.556 0.056 0.064 0.967 95.4 

0.544 0.129 0.017 0.937 97.0 
1.081 0.088 0.008 1.423 97.0 

130 

0.497 0.003 0.002 0.160 96.3 
 1.542 0.042 0.046 0.828 95.7 

0.485 0.188 0.035 0.960 96.9 
1.153 0.160 0.025 1.560 96.9 
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Table 2:  Bayes estimates and associated measures  for in case 1 using IF priors 

Scheme I 
N m Estimate Mean Bias MSE CIL CP 

50 

20 

0.489 0.011 0.001 0.082 97.4 
 1.779 0.279 0.078 0.082 97.0 
 0.841 0.169 0.028 0.308 100.0 

0.629 0.364 0.132 0.787 100.0 

30 

0.484 0.016 0.001 0.080 97.0 
 1.734 0.234 0.055 0.082 98.5 
 0.789 0.116 0.014 0.483 96.7 

0.732 0.261 0.068 1.100 100.0 

100 

20 

0.477 0.023 0.001 0.084 96.7 
 1.809 0.309 0.096 0.080 96.7 
 0.909 0.237 0.056 0.186 100.0 

0.471 0.522 0.273 0.745 100.0 

50 

0.492 0.008 0.001 0.080 97.2 
 1.624 0.124 0.016 0.077 98.1 
 0.714 0.041 0.002 0.452 96.0 

0.895 0.098 0.010 0.922 100.0 

70 

0.495 0.005 0.000 0.077 97.6 
 1.580 0.080 0.007 0.084 97.4 
 0.638 0.035 0.001 0.640 97.1 

0.977 0.016 0.000 1.099 98.6 

150 

50 

0.491 0.009 0.001 0.081 98.9 
 1.619 0.119 0.015 0.082 96.4 
 0.793 0.120 0.014 0.281 96.0 

0.779 0.214 0.046 0.598 100.0 

70 

0.490 0.010 0.001 0.081 98.0 
 1.599 0.099 0.010 0.085 98.2 
 0.825 0.153 0.023 0.374 100.0 

0.688 0.305 0.093 0.884 100.0 

100 

0.496 0.004 0.000 0.078 96.9 
 1.549 0.049 0.003 0.084 96.8 
 0.697 0.024 0.001 0.571 99.0 

0.899 0.094 0.009 1.114 100.0 

130 

0.496 0.004 0.000 0.076 97.5 
 1.547 0.047 0.003 0.084 97.3 
 0.567 0.105 0.011 0.799 96.2 

1.067 0.074 0.006 1.196 99.2 

, , ( ) and ( )R x h xa b
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Continued Table 2 

Scheme II 
n m Estimate Mean Bias MSE CIL CP 

50 

20 

0.486 0.014 0.001 0.080 97.4 
 1.673 0.173 0.030 0.085 97.5 
 0.532 0.140 0.020 0.965 100.0 

1.097 0.104 0.011 1.595 100.0 

30 

0.494 0.006 0.000 0.080 96.5 
 1.651 0.151 0.023 0.090 97.5 
 0.577 0.095 0.009 0.891 96.7 

1.024 0.031 0.001 1.308 100.0 

100 

20 

0.496 0.004 0.000 0.082 97.1 
 1.615 0.115 0.014 0.083 97.1 
 0.490 0.182 0.033 0.991 100.0 

1.137 0.144 0.021 1.704 100.0 

50 

0.493 0.007 0.000 0.083 98.8 
 1.590 0.090 0.009 0.080 97.8 
 0.522 0.151 0.023 0.922 96.0 

1.118 0.125 0.016 1.333 100.0 

70 

0.497 0.003 0.000 0.078 97.2 
 1.557 0.057 0.004 0.083 98.1 
 0.549 0.123 0.015 0.938 100.0 

1.057 0.064 0.004 1.461 100.0 

150 

50 

0.495 0.005 0.000 0.079 96.8 
 1.574 0.074 0.006 0.082 96.6 
 0.505 0.167 0.028 0.958 100.0 

1.117 0.124 0.015 1.555 98.0 

70 

0.496 0.004 0.000 0.082 97.7 
 1.555 0.055 0.004 0.085 96.9 
 0.567 0.105 0.011 0.911 98.6 

1.046 0.053 0.003 1.319 97.1 

100 

0.498 0.002 0.000 0.077 98.2 
 1.547 0.047 0.003 0.085 97.2 
 0.511 0.162 0.026 0.940 96.0 

1.125 0.132 0.018 1.370 100.0 

130 

0.497 0.003 0.000 0.075 97.7 
 1.540 0.040 0.002 0.082 97.2 
 0.486 0.186 0.035 0.925 98.5 

1.164 0.170 0.029 1.330 96.9 
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Continued Table 2 

Scheme III 
n m Estimate Mean Bias MSE CIL CP 

50 

20 

0.483 0.017 0.001 0.081 97.1 
 1.693 0.193 0.038 0.088 98.2 

0.565 0.107 0.012 0.968 100.0 
1.059 0.066 0.004 1.590 100.0 

30 

0.494 0.006 0.000 0.083 98.9 
 1.644 0.144 0.021 0.080 97.4 

0.579 0.094 0.009 0.959 100.0 
0.991 0.003 0.000 1.626 100.0 

100 

20 

0.488 0.012 0.001 0.079 96.4 
 1.617 0.117 0.014 0.084 97.1 

0.602 0.070 0.005 0.973 100.0 
0.962 0.031 0.001 1.672 100.0 

50 

0.498 0.002 0.000 0.079 96.8 
 1.562 0.062 0.004 0.084 96.9 

0.457 0.215 0.046 0.927 98.0 
1.189 0.196 0.038 1.427 98.0 

70 

0.494 0.006 0.000 0.077 97.1 
 1.580 0.080 0.007 0.089 97.3 

0.538 0.135 0.018 0.865 100.0 
1.102 0.109 0.012 1.254 97.1 

150 

50 

0.497 0.003 0.000 0.079 96.7 
 1.559 0.059 0.004 0.082 97.3 

0.472 0.200 0.040 0.912 96.0 
1.172 0.179 0.032 1.271 100.0 

70 

0.499 0.001 0.000 0.079 98.0 
 1.547 0.047 0.003 0.084 96.8 

0.535 0.137 0.019 0.928 100.0 
1.094 0.101 0.010 1.487 97.1 

 100 

0.495 0.005 0.000 0.076 97.6 
 1.552 0.052 0.003 0.082 98.0 

0.515 0.158 0.025 0.887 99.0 
1.127 0.134 0.018 1.416 97.0 

 130 

0.497 0.003 0.000 0.076 98.3 
 1.534 0.034 0.002 0.085 97.1 

0.489 0.183 0.034 0.950 100.0 
1.148 0.154 0.024 1.438 100.0 
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5. Discussion and Summary
This study uses maximum likelihood and Bayesian techniques to analyse parameter estimators, 
reliability function estimator, and hazard rate function estimator for EME distributions under 
PT2Cschemes. Gamma and uniform priors are taken into account under the squared error loss 
function to construct the Bayesian estimators. On the basis of IF and NIF priors, it is possible to derive 
approximate confidence intervals as well as Bayesian credible intervals. A simulation study is 
conducted to compare the effectiveness of every estimate. The Bayesian estimates using the gamma 
prior are, roughly speaking, generally more accurate than the MLEs, according to a numerical 
illustration. When compared to other schemes, Scheme I's MSEs have the highest value. Additionally, 
the MSEs for each estimate use the value for Scheme III that is the lowest. Comparatively speaking, 
the Bayesian estimates using gamma priors have the highest coverage probability. 
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