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Abstract

The study focuses on the E-Bayesian estimation of a Type-II censored sample from the Chen distribu-
tion. Three distinct prior distributions for the hyper-parameters and three different loss functions are
considered here for deriving the E-Bayes estimators of the scale parameter and hazard rate of above said
distribution under Type-II censoring. Also derived analytical expressions for the E-MSE of the proposed
estimators. Additionally, several features of the E-Bayesian estimators and E-MSEs are derived. This
paper compares E-Bayesian estimation with traditional estimation methods like MLE and Bayesian. The
applicability of the proposed estimators is demonstrated using a real data application. Furthermore, the
credible intervals of the scale parameter estimators are also provided. The numerical analysis demonstrates
that the proposed method is simpler and more feasible than traditional techniques.

Keywords: Chen distribution; Type II censoring; Bayesian estimation; E-Bayesian estimation;
E-MSE.

1 Introduction

Experiments in reliability and life-testing are done to learn more about the time of a significant
event of interest. Examples of situations where the time of occurrence is significant are when a
component fails, a disease abrogates, or a biological unit dies. For some reason, most investiga-
tions might not have complete information on the lifetimes or failure times of the experimental
units. For example, in a medical trial, patients may withdraw from treatment, or the funding
is only available for a specific period. In industrial trials, it is planned to remove accidentally
damaged units before they fail to reduce testing time and costs. Censored data are those obtained
from such experiments. The censoring schemes that appear the most frequently in the literature
are Type-I and Type-II censoring. The experiment’s endpoint is fixed, while the amount of failures
reported is random in Type-I censoring. In contrast, the experiment’s endpoint is random, and
the number of failures is fixed in Type-II censoring. Type-II censoring is more cost-effective than
Type-I censoring when comparing two censoring schemes. Inference under Type-II censoring for
different parametric family distributions has been thoroughly studied in the literature. For more
details, one can refer to [23], [7], [4], [9], [10].

A number of distributions with hazard rate functions that are constant, increasing, or decreas-
ing in nature are discussed in the reliability literature. These distributions include generalized
exponential, gamma, Weibull, and lognormal. These are the most often used models, and we use
them to investigate various phenomena that occur in real life. However, these models do not
work well with data sets showing bathtub-shaped hazard rates. In order to analyze real data
with bathtub-shaped failure rates, several authors introduced probability models like modified
Weibull by [18] and extended Weibull by [19], but these models are still unsuitable for producing
accurate bathtub shape failure rates. Chen [8] showed a two-parameter lifespan distribution with
a bathtub-shaped or increasing failure rate function. The hazard rate for this distribution initially
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declines, keeps the same, and increases. Chen distribution is a useful model for examining the
lifespan of mechanical and electronic devices and humans. In addition to well-known models
like lognormal and gamma, it can also be used to model positively skewed data. Due to the
two parameters, closed-form confidence intervals for the shape parameter and joint confidence
regions, this distribution is adaptable.

The MLEs of the Chen distribution parameter using samples that have been progressively
Type-II censored are calculated by [24]. The MLE and Bayes estimators for the parameters of
the Chen distribution using complete and censored samples are derived by [22], [2], [17], [16].
Kayal et al. [15] developed point and interval estimates of the multicomponent stress-strength
reliability model of an s-out-of-j system using both classical and Bayesian techniques under the
presumption that both the stress and the strength variables follow a Chen distribution. The
literature on estimations of Chen distributions mentioned above mainly focuses on MLE or
Bayesian techniques.

In addition to the Bayesian approach, the E-Bayesian estimation method, was developed in
the literature. Originally, Han [13] addressed the definition of E-Bayesian estimation. Since
the prior distribution of the hyperparameters is taken into account, the E-Bayesian approach is
more reliable than Bayesian. The term "E-Bayesian estimation" refers to the expectation of the
parameter’s Bayesian estimate for all hyperparameters. In recent days so many works related
to E-Bayesian inference of parameters and reliability functions of different distributions using
complete and censored samples are discussed in the literature. For more details, one can refer to
[1], [12],[3], [21], [20], [5]. The works mentioned above were a source of inspiration for further
research on E-Bayes estimators for the scale parameter and hazard rate of Chen distributions
under Type-II censoring schemes. The present work aims to develop E-Bayes estimators for the
scale parameter and hazard rate of the Chen distribution using a Type-II censoring scheme and
to calculate E-MSEs for the proposed estimators.

The organization of the remaining part of the work is as follows. In part 2, we go through the
MLE of the scale parameter and hazard rate of the Chen distribution under the Type-II censoring
scheme. Section 3 discusses the estimators’ MSE as well as the Bayesian estimation of the scale
parameter and hazard rate. Section 4 developed how to obtain E-Bayesian estimators of the scale
parameter, hazard rate, and their associated E-MSEs. Section 5 of the article discusses the features
that all of these estimators possess. In Section 6, it is discussed how well the estimators work
with real data set. The final findings of the proposed study are provided in Section 7.

2 Maximum Likelihood Estimation

In this section, using a Type-II censoring technique, we derive the MLE of the scale parameter and
hazard rate of the Chen distribution. The pdf, cdf and hazard function of the Chen distribution
are respectively given by

f (x; θ, λ) = θλxλ−1exλ+θ(1−exλ
), x > 0, λ > 0, θ > 0, (1)

F(x; θ, λ) = 1 − eθ(1−exλ
), x > 0, λ > 0, θ > 0 (2)

and
h(t) = θλtλ−1etλ

, t > 0. (3)

With pdf and cdf defined in (1) and (2), respectively, assume that n distinct units selected from
a population are put to the test and that the associated lifetimes are distributed identically. Let
X = (X(1), X(2), ..., X(r)) be the Type-II censored sample taken from (1) with r failure times. The
likelihood function for Type-II censored sample is given by

L(λ, θ|x) =
n!

(n − r)!
πr

i=1 f (x(i))[1 − F(x(r))]
n−r

=
n!

(n − r)!
θrν(λ, x)e−θT . (4)
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where ν(λ, x) = λrπr
i=1xλ−1

i e∑r
i=1 xλ

i , x = (x(1), x(2), ..., x(r)) and T = ∑r
i=1 exλ

i + (n − r)exλ
r − n.

The log-likelihood function is provided by Chen distribution when λ is known is given by

ln(L) = ln θr + ln e−θT .

The normal equation is obtained by differentiating the log-likelihood with respect to the scale
parameter θ and equating them to zero.

∂ ln(L)
∂θ

= 0 =⇒ r
θ
− T = 0.

By solving the above equation we can obtain MLE of the parameter θ as

θ̂ML =
r
T

. (5)

3 Bayesian Estimation

The Bayes estimators of the parameter θ are obtained in this section based on the squared error
loss function (SELF), entropy loss function (ELF), and precautionary loss function (PLF). For
developing the Bayesian estimation, we assume the gamma distribution as conjugate prior with
probability density function

π(θ|a, b) =
ba

Γ(a)
θa−1e−bθ , θ > 0, a, b > 0, (6)

where a and b are the hyper parameters. The posterior density of θ can be expressed as the
following using the prior density (6) and likelihood function (4) as

q(θ|x) = (b + T)r+a

Γ(r + a)
θr+a−1e−θ(b+T), θ > 0. (7)

We arrived at the Bayes estimators of θ and the hazard rate of (1) under three distinct loss
functions in the subsequent theorem.

Theorem 1. For the Type-II censored sample X = (X(1), X(2), ..., X(r)) from (1) under SELF, ELF,
and PLF together with the likelihood function (4) and prior distribution (6), we obtain the Bayes
estimators of θ and hazard rate, respectively, provided as

i) Under SELF

θ̂B1 =
r + a
b + T

, (8)

ĥ(t)B1 =
r + a
b + T

λtλ−1etλ
. (9)

ii) Under ELF

θ̂B2 =
r + a − 1

b + T
, (10)

ĥ(t)B2 =
r + a − 1

b + T
λtλ−1etλ

. (11)

iii) Under PLF

θ̂B3 =

√
(r + a + 1)(r + a)

(b + T)2 , (12)

ĥ(t)B3 =

√
(r + a + 1)(r + a)

(b + T)2 λtλ−1etλ
. (13)
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Proof.

i) The mean of (7) serves as the Bayes estimator of θ under SELF and is written as

θ̂B1 = E(θ|x) = r + a
b + T

.

Likewise, the Bayes estimator of hazard rate is

ĥ(t)B1 = E
(

θλtλ−1etλ |x
)
=

r + a
b + T

λtλ−1etλ
.

ii) The following is the expression of a Bayes estimator of θ using ELF:

θ̂B2 =

[
E
(

1
θ
|x
)]−1

=
r + a − 1

b + T
.

Likewise, the Bayes estimator of hazard rate is

ĥ(t)B2 =

[
E
((

θλtλ−1etλ
)−1

|x
)]−1

=
r + a − 1

b + T
λtλ−1etλ

.

iii) The following is the expression of a Bayes estimator of θ using PLF:

θ̂B3 =
√

E(θ2|x) =

√
(r + a)(r + a + 1)

(b + T)2 .

Likewise, the Bayes estimator of hazard rate is

ĥ(t)B3 =

√
E
((

θλtλ−1etλ
)2

|x
)
=

√
(r + a + 1)(r + a)

(b + T)2 λtλ−1etλ
.

�
We determined the MSE of the Bayes estimators of θ and the hazard rate of (1) for three

distinct loss functions in the subsequent theorem.

Theorem 2. For the Type-II censored sample X = (X(1), X(2), ..., X(r)) from (1), the MSE of the
Bayes estimators of θ and the hazard rate under SELF, ELF, and PLF, respectively as

i) Under SELF

MSE(θ̂B1) =
r + a

(b + T)2 , (14)

MSE(ĥ(t)B1) = (λtλ−1etλ
)2 r + a
(b + T)2 . (15)

ii) Under ELF

MSE(θ̂B2) =
r + a + 1
(b + T)2 , (16)

MSE(ĥ(t)B2) = (λtλ−1etλ
)2 r + a − 1

(b + T)2 . (17)

iii) Under PLF

MSE(θ̂B3) =
2(r + a)
(b + T)2 [(r + a + 1)−

√
(r + a + 1)(r + a)], (18)

MSE(ĥ(t)B3) = (λtλ−1etλ
)2 2(r + a)
(b + T)2 [(r + a + 1)−

√
(r + a + 1)(r + a)]. (19)
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Proof.

i) MSE of the Bayes estimator of θ under SELF is defined as

MSE(θ̂B1(a, b)) = E(θ2|x)− 2θ̂B1(a, b)E(θ|x) + [θ̂B1(a, b)]2

=
r + a

(b + T)2 .

Likewise, the MSE of the Bayes estimator of hazard rate under SELF is as follows:

MSE(ĥ(t)B1) = E[h(t)2|x]− 2ĥ(t)B1E[h(t)|x] + [ĥ(t)B1]
2

= (λtλ−1etλ
)2 r + a
(b + T)2 .

ii) MSE of Bayes estimator of θ using ELF is defined as

MSE(θ̂B2(a, b)) = E(θ2|x)− 2θ̂B2(a, b)E(θ|x) + [θ̂B2(a, b)]2

=
r + a − 1

(b + T)2 .

Likewise, the MSE of the Bayes estimator of hazard rate under ELF is as follows:

MSE(ĥ(t)B2) = E[h(t)2|x]− 2ĥ(t)B2E[h(t)|x] + [ĥ(t)B2]
2

=
r + a − 1

b + T
λtλ−1etλ

.

iii) MSE of the Bayes estimator of θ using PLF is defined as

θ̂B3 = E(θ2|x)− 2θ̂B3(a, b)E(θ|x) + [θ̂B3(a, b)]2

=
2(r + a)
(b + T)2 [(r + a + 1)−

√
(r + a + 1)(r + a)].

Likewise, the MSE of the Bayes estimator of hazard rate under PLF is as follows:

ĥ(t)B3 = E[h(t)2|x]− 2ĥ(t)B3E[h(t)|x] + [ĥ(t)B3]
2

= (λtλ−1etλ
)2 2(r + a)
(b + T)2 [(r + a + 1)−

√
(r + a + 1)(r + a)].

�

4 E-Bayesian Estimation and its E-MSE

Han [13] is the author who first introduced E-Bayesian estimation in literature. Here we will
obtain the E-Bayes estimator of the scale parameter and hazard rate of the Chen distribution
under Type II censoring based on SELF, ELF and PLF and derive the properties exhibited by these
estimators. Three different prior distributions of the hyper-parameters are considered to examine
the impact of various prior distributions on the E-Bayesian estimate of θ. According to [13], it is
important to establish that the prior distribution of a and b, indicated by π(θ|a, b), is a decreasing
function in θ. Finding the first derivative of π(θ|a, b) with respect to θ and obtaining the result as

∂π(θ|a, b)
∂θ

=
baθa−2e−bθ

Γa
[(a − 1)− bθ].

As a result, the function ∂π(θ|a,b)
∂θ <0 and π(θ|a, b) is a decreasing function of θ for 0< a <1 and

b>0. Given 0< a <1, the gamma density function’s tail will be thinner the larger b. The thinner-
tailed prior distribution frequently affects the robustness of the Bayesian estimate, according to
[6], which took the robustness of the Bayesian estimate into account. As a result, b must not
exceed a specified upper bound c, where c > 0 is an unknown constant. As a result, the restriction
of 0< a <1 and 0< b < c should be used when choosing the hyper-parameters a and b.
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Definition 4.1. θ̂EB =
∫ ∫

D θ̂B(a, b)π(a, b)dadb = E[θ̂(a, b)] is referred to as the E-Bayesian
estimate of θ when θ̂B(a, b) is continuous and is considered finite. D is the domain of a and b,
θ̂B(a, b) is the Bayesian estimation of θ with hyper-parameters a and b, and π(a, b) is the prior
density of a and b over D.

The expectation of the Bayesian estimation of θ for the hyperparameters is what definition 4.1
defines as the E-Bayesian estimation of θ. The definition of E-MSE of the E-Bayes estimators of θ
presented by [11] is provided below.

Definition 4.2. E − MSE(θ̂EB) =
∫ ∫

D MSE(θ̂B(a, b))π(a, b)dadb = E[MSE(θ̂B(a, b))] is referred
to as the E-MSE of E-Bayes estimation of θ when MSE(θ̂B(a, b)) is continuous and is considered
finite. D is the domain of a and b, MSE(θ̂(a, b)) is the MSE of the Bayesian estimation of θ with
hyper-parameters a and b, and π(a, b) is the prior density of a and b over D.

The E-Bayesian estimators of the parameter θ are obtained in this section using three different
prior distributions for the hyper-parameters a and b. These prior distributions were chosen
to demonstrate how the various prior distributions affected the E-Bayesian estimation of the
parameter θ. The prior distributions we used are given by

π1(a, b) =
2(c − b)

c2 , 0 < a < 1 0 < b < c. (20)

π2(a, b) =
1
c

, 0 < a < 1 0 < b < c. (21)

π3(a, b) =
2b
c2 , 0 < a < 1 0 < b < c. (22)

These prior distributions are used to ensure that π(θ|a, b) is a decreasing function in θ. The
E-Bayes estimators of the parameter θ and the hazard rate function using π1(a, b) are derived in
the subsequent theorem under various loss functions.

Theorem 3. We have the E-Bayes estimators of θ and hazard rate, which are provided, for the
censored sample X = (X(1), X(2), ..., X(r)) from (1) using the prior distribution (20) under SELF,
ELF, and PLF, respectively as

i) Under SELF

θ̂ES1 =
2r + 1

c2

{
(T + c)ln

(
T + c

T

)
− c
}

, (23)

ĥ(t)ES1 = λtλ−1etλ 2r + 1
c2

{
(T + c)ln

(
T + c

T

)
− c
}

. (24)

ii) Under ELF

θ̂EE1 =
2r − 1

c2

{
(T + c)ln

(
T + c

T

)
− c
}

, (25)

ĥ(t)EE1 = λtλ−1etλ 2r − 1
c2

{
(T + c)ln

(
T + c

T

)
− c
}

. (26)

iii) Under PLF

θ̂EP1 =
2
c2

{
(T + c)ln

(
T + c

T

)
− c
} ∫ 1

0

√
(r + a)(r + a + 1)da, (27)

ĥ(t)EP1 = λtλ−1etλ 2
c2

{
(T + c)ln

(
T + c

T

)
− c
} ∫ 1

0

√
(r + a)(r + a + 1)da. (28)

Proof.
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i) The following is the expression of the E-Bayes estimator of θ using SELF:

θ̂ES1 =
∫ 1

0

∫ c

0
θ̂B1(a, b)π1(a, b)dadb

Using (8) and (20), the above equation simplifies to

θ̂ES1 =
2r + 1

c2

{
(T + c)ln

(
T + c

T

)
− c
}

Likewise, the E-Bayes estimator of hazard rate using SELF using (9) and (20) is as follows:

ĥ(t)ES1 =
∫ ∫

D
ĥB1(a, b)π1(a, b)dadb

= λtλ−1etλ 2r + 1
c2

{
(T + c)ln

(
T + c

T

)
− c
}

.

ii) The following is the expression of the E-Bayes estimator of θ using ELF:

θ̂EE1 =
∫ 1

0

∫ c

0
θ̂B2(a, b)π1(a, b)dadb.

Using (10) and (20), the above equation simplifies to

θ̂EE1 =
2r − 1

c2

{
(T + c)ln

(
T + c

T

)
− c
}

.

Likewise, the E-Bayes estimator of hazard rate using ELF using (11) and (20) is as follows:

ĥ(t)EE1 =
∫ 1

0

∫ c

0
ĥB2(a, b)π1(a, b)dadb

= λtλ−1etλ 2r − 1
c2

{
(T + c)ln

(
T + c

T

)
− c
}

.

iii) The following is the expression of the E-Bayes estimator of θ using PLF:

θ̂EP1 =
∫ 1

0

∫ c

0
θ̂B3π1(a, b)dadb.

Using (12) and (20), the above equation simplifies to

θ̂EP1 =
2
c2

{
(T + c)ln

(
T + c

T

)
− c
} ∫ 1

0

√
(r + a)(r + a + 1)da.

Likewise, the E-Bayes estimator of hazard rate using PLF using (13) and (20) is as follows:

ĥ(t)EP1 = λtλ−1etλ 2
c2

{
(T + c)ln

(
T + c

T

)
− c
} ∫ 1

0

√
(r + a)(r + a + 1)da.

�
The E-Bayes estimators of the parameter θ and the hazard rate function using π2(a, b) are

derived in the subsequent theorem under various loss functions.

Theorem 4. We have the E-Bayes estimators of θ and hazard rate, which are provided, for the
censored sample X = (X(1), X(2), ..., X(r)) from (1) using the prior distribution (21) under SELF,
ELF, and PLF, respectively as

i) Under SELF

θ̂ES2 =
2r + 1

2c
ln
(

T + c
T

)
, (29)

ĥ(t)ES2 = λtλ−1etλ 2r + 1
2c

ln
(

T + c
T

)
. (30)
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ii) Under ELF

θ̂EE2 =
2r − 1

2c
ln
(

T + c
T

)
, (31)

ĥ(t)EE2 = λtλ−1etλ 2r − 1
2c

ln
(

T + c
T

)
. (32)

iii) Under PLF

θ̂EP2 =
1
c

ln
(

T + c
T

) ∫ 1

0

√
(r + a)(r + a + 1)da, (33)

ĥ(t)EP2 = λtλ−1etλ 1
c

ln
(

T + c
T

) ∫ 1

0

√
(r + a)(r + a + 1)da. (34)

Proof. The proof is excluded since it is similar to that of Theorem 3. �
The E-Bayes estimators of the parameter θ and the hazard rate function using π3(a, b) are

derived in the subsequent theorem under various loss functions.

Theorem 5. We have the E-Bayes estimators of θ and hazard rate, which are provided, for the
censored sample X = (X(1), X(2), ..., X(r)) from (1) using the prior distribution (22) under SELF,
ELF, and PLF, respectively as

i) Under SELF

θ̂ES3 =
2r + 1

c2

{
c − Tln

(
T + c

T

)}
, (35)

ĥ(t)ES3 = λtλ−1etλ 2r + 1
c2

{
c − Tln

(
T + c

T

)}
. (36)

ii) Under ELF

θ̂EE3 =
2r − 1

c2

{
c − Tln

(
T + c

T

)}
, (37)

ĥ(t)EE3 = λtλ−1etλ 2r − 1
c2

{
c − Tln

(
T + c

T

)}
. (38)

iii) Under PLF

θ̂EP3 =
2
c2

{
c − Tln

(
T + c

T

)} ∫ 1

0

√
(r + a)(r + a + 1)da, (39)

ĥ(t)EP3 = λtλ−1etλ 2
c2

{
c − Tln

(
T + c

T

)} ∫ 1

0

√
(r + a)(r + a + 1)da. (40)

Proof. The proof is excluded since it is similar to that of Theorem 3. �
The E-MSE of the E-Bayes estimators of the parameter θ using different priors are derived in

the subsequent theorem under various loss functions.

Theorem 6. The E-MSE of the E-Bayes estimators of θ using the priors π1(a, b), π2(a, b), and
π3(a, b) under SELF, ELF, and PLF are presented, respectively, for the E-Bayes estimators of θ of
Type-II censored sample X = (X(1), X(2), ..., X(r)) from (1) as

i) Under SELF

E − MSE(θ̂ES1) =
2r + 1

c2

{
ln
(

T
T + c

)
+

c
T

}
, (41)

E − MSE(θ̂ES2) =
2r + 1

2

{
1

T(c + T)

}
, (42)

E − MSE(θ̂ES3) =
2r + 1

c2

{
ln
(

T + c
T

)
− c

c + T

}
. (43)
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ii) Under ELF

E − MSE(θ̂EE1) =
2r + 3

c2

{
ln
(

T
T + c

)
+

c
T

}
, (44)

E − MSE(θ̂EE2) =
2r + 3

2

{
1

T(c + T)

}
, (45)

E − MSE(θ̂EE3) =
2r + 3

c2

{
ln
(

T + c
T

)
− c

c + T

}
. (46)

iii) Under PLF

E − MSE(θ̂EP1) =
4
c2

{
ln
(

T
T + c

)
+

c
T

} ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da, (47)

E − MSE(θ̂EP2) =
2

T(c + T)

∫ 1

0
(r + a)[(r + a + 1)−

√
(r + a)(r + a + 1)]da, (48)

E − MSE(θ̂EP3) =
4
c2

[
ln
(

T + c
T

)
− c

c + T

] ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da. (49)

Proof.

i) Under SELF, the E-MSE of the estimator, θ̂ES1 can be obtained from (14) and (20) by using
the definition (4.2) and is given by

E − MSE(θ̂ES1) =
∫ ∫

D
MSE(θ̂B1(a, b))π1(a, b)dadb

=
2r + 1

c2

{
ln
(

T
T + c

)
+

c
T

}
.

Similarly, the E-MSE of θ̂ES2 and θ̂ES3 can be obtained from (14), (21) and (22) and by using
the definition (4.2) and are given, respectively, by

E − MSE(θ̂ES2) =
∫ ∫

D
MSE(θ̂B1(a, b))π2(a, b)dadb

=
2r + 1

2

{
1

T(c + T)

}
,

and

E − MSE(θ̂ES3) =
∫ ∫

D
MSE(θ̂B1(a, b))π3(a, b)dadb

=
2r + 1

c2

{
ln
(

T + c
T

)
− c

c + T

}
.

ii) Under ELF, the E-MSE of the estimator, θ̂EE1 can be obtained from (15) and (20), and using
the definition (4.2) and is given by

E − MSE(θ̂EE1) =
∫ ∫

D
MSE(θ̂B2(a, b))π1(a, b)dadb

=
2r + 3

c2

{
ln
(

T
T + c

)
+

c
T

}
.

Similarly, the E-MSE of θ̂EE2 and θ̂EE3 can be obtained from (15), (21) and (22) and by using
the definition (4.2) and are given, respectively, by

E − MSE(θ̂EE2) =
∫ ∫

D
MSE(θ̂B2(a, b))π2(a, b)dadb
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=
2r + 3

2

{
1

T(c + T)

}
,

and

E − MSE(θ̂EE3) =
∫ ∫

D
MSE(θ̂B2(a, b))π3(a, b)dadb

=
2r + 3

c2

{
ln
(

T + c
T

)
− c

c + T

}
.

iii) Under PLF, the E-MSE of the estimator, θ̂EP1 can be obtained from (16) and (20) by using
the definition (4.2) and is given by

E − MSE(θ̂EP1) =
∫ ∫

D
MSE(θ̂B3(a, b))π1(a, b)dadb

=
4
c2

{
ln
(

T
T + c

)
+

c
T

} ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da.

Similarly, the E-MSE of θ̂EP2 and θ̂EP3 can be obtained from (16), (20) and (21) and by using
the definition (4.2) and are given, respectively, by

E − MSE(θ̂EP2) =
∫ ∫

D
MSE(θ̂B3(a, b))π2(a, b)dadb

=
2

T(c + T)

∫ 1

0
(r + a)[(r + a + 1)−

√
(r + a)(r + a + 1)]da,

and

E − MSE(θ̂EP3) =
∫ ∫

D
MSE(θ̂B3(a, b))π2(a, b)dadb

=
4
c2

[
ln
(

T + c
T

)
− c

c + T

]
∫ 1

0
(r + a)[(r + a + 1)−

√
(r + a)(r + a + 1)]da.

�
The E-MSE of the E-Bayes estimators of the hazard rate h(t) using different priors are derived

in the subsequent theorem under various loss functions.

Theorem 7. The E-MSE of the E-Bayes estimators of h(t) using the priors π1(a, b), π2(a, b), and
π3(a, b) under SELF, ELF, and PLF are presented, respectively, for the E-Bayes estimators of h(t)
of Type-II censored sample X = (X(1), X(2), ..., X(r)) from (1) as

i) Under SELF

E − MSE(ĥ(t)ES1) = (λtλ−1etλ
)2 2r + 1

c2

{
ln
(

T
T + c

)
+

c
T

}
, (50)

E − MSE(ĥ(t)ES2) = (λtλ−1etλ
)2 2r + 1

2

{
1

T(c + T)

}
, (51)

E − MSE(ĥ(t)ES3) = (λtλ−1etλ
)2 2r + 1

c2

{
ln
(

T + c
T

)
− c

c + T

}
. (52)

ii) Under ELF

E − MSE(ĥ(t)EE1) = (λtλ−1etλ
)2 2r + 3

c2

{
ln
(

T
T + c

)
+

c
T

}
, (53)

E − MSE(ĥ(t)EE2) = (λtλ−1etλ
)2 2r + 3

2

{
1

T(c + T)

}
, (54)

E − MSE(ĥ(t)EE3) = (λtλ−1etλ
)2 2r + 3

c2

{
ln
(

T + c
T

)
− c

c + T

}
. (55)
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iii) Under PLF

E − MSE(ĥ(t)EP1) = (λtλ−1etλ
)2 4

c2

{
ln
(

T
T + c

)
+

c
T

} ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da, (56)

E − MSE(ĥ(t)EP2) = (λtλ−1etλ
)2 2

T(c + T)

∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da, (57)

E − MSE(ĥ(t)EP3) = (λtλ−1etλ
)2 4

c2

[
ln
(

T + c
T

)
− c

c + T

] ∫ 1

0
(r + a)

[(r + a + 1)−
√
(r + a)(r + a + 1)]da. (58)

Proof. The proof is excluded since it is similar to that of Theorem 6. �

5 Properties of E-Bayesian estimation

We now go over some important features of E-Bayesian estimators and their E-MSE. The rela-
tionship between E-Bayes estimators of θ under various loss functions is given in the subsequent
theorem.

Theorem 8. Using the priors π1(a, b), π2(a, b) and π3(a, b) under various loss functions, the
relationship between E-Bayes estimators of θ when 0< c <T is given as

a) under SELF

i) θ̂ES3 < θ̂ES1 < θ̂ES2,

ii) limT→∞ θ̂ES1 = limT→∞ θ̂ES2 = limT→∞ θ̂ES3,

b) under ELF

i) θ̂EE3 < θ̂EE1 < θ̂EE2,

ii) limT→∞ θ̂EE1 = limT→∞ θ̂EE2 = limT→∞ θ̂EE3,

c) under PLF

i) θ̂EP3 < θ̂EP1 < θ̂EP2,

ii) limT→∞ θ̂EP1 = limT→∞ θ̂EP2 = limT→∞ θ̂EP3.

Proof.

a) Under SELF

i) From (23) and (29), we have

θ̂ES1 − θ̂ES2 =
2r + 1

c

[(
1
2
+

c
T

)
ln
(

T + c
T

)
− 1
]

. (59)
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For −1 < x < +1, we have, ln(1 + x) = x − x2

2 + x3

3 − x4

4 + x5

5 − ... = ∑∞
k=1(−1)k−1 xk

k .
Let x = c

T , when 0 < c < T, 0 < c
T < 1, we get[(

1
2
+

c
T

)
ln
(

T + c
T

)]
− 1

=

(
1
2
+

c
T

) [
c
T
− 1

2

( c
T

)2
+

1
3

( c
T

)3
− 1

4

( c
T

)4
+ ...

]
− 1

=

[
1
2

( c
T

)
− 1

4

( c
T

)2
+

1
6

( c
T

)3
− 1

8

( c
T

)4
+ ...

]
+

[( c
T

)2
− 1

2

( c
T

)3

+
1
3

( c
T

)4
− 1

4

( c
T

)5
+ ...

]
− 1

=
1
2

( c
T

)
+

3
4

( c
T

)2
[

1 − 4
9

( c
T

)]
+

5
24

( c
T

)4
[

1 − 18
25

( c
T

)]
+ ... − 1

<0.

(60)

So, we can say that,
θ̂ES1 < θ̂ES2. (61)

Now from (23) and (35), we have

θ̂ES1−θ̂ES3

=
2r + 1

c2

[
(T + c) ln

(
T + c

T

)
− c
]
− 2r + 1

c2

[
c − T ln

(
T + c

T

)]
=

2r + 1
c2

[
(2T + c) ln

(
T + c

T

)
− 2c

]
=

2r + 1
c

[
(2T + c)

c
ln
(

T + c
T

)
− 2
]

.

(62)

[(
2T
c

+ 1
)

ln
(

T + c
T

)]
− 2

=

[
2 −

( c
T

)
+

(
2
3

)( c
T

)2
−
(

1
2

)( c
T

)3
+ ...

]
+

[( c
T

)
− 1

2

( c
T

)2

+
1
3

( c
T

)3
− 1

4

( c
T

)4
+ ...

]
− 2

=

(
1
6

)( c
T

)2 [
1 −

( c
T

)]
+

3
20

( c
T

)4
[

1 − 8
9

( c
T

)]
+ ...

>0.

(63)

So we can say that,
θ̂ES1 > θ̂ES3. (64)

From (61) and (64),
θ̂ES3 < θ̂ES1 < θ̂ES2. (65)

ii) From (59) and (60) and by applying limit T → ∞

lim
T→∞

(θ̂ES1 − θ̂ES2)

=

(
2r + 1

c

)
lim

T→∞
{1

2

( c
T

)
+

3
4

( c
T

)2
[

1 − 4
9

( c
T

)]
+

5
24

( c
T

)4
[

1 − 18
25

( c
T

)]
+ ... − 1}

=0.

(66)
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From (62) and (63) and by applying limit T → ∞

lim
T→∞

(θ̂ES1 − θ̂ES3)

=

(
2r + 1

c

)
lim

T→∞
{
(

1
6

)( c
T

)2 [
1 −

( c
T

)]
+

3
20

( c
T

)4
[

1 − 8
9

( c
T

)]
+ ...}

=0.

(67)

Hence from (66) and (67),

lim
T→∞

θ̂ES1 = lim
T→∞

θ̂ES2 = lim
T→∞

θ̂ES3. (68)

The remaining part of the proof is removed since it is comparable to that presented above. �
The relationship between E-Bayes estimators of h(t) under various loss functions is given in the
subsequent theorem.

Theorem 9. Using the priors π1(a, b), π2(a, b) and π3(a, b) under various loss functions, the
relationship between E-Bayes estimators of h(t) when 0< c <T is given as

a) under SELF

i) ĥ(t)ES3 < ĥ(t)ES1 < ĥ(t)ES2,

ii) limT→∞ ĥ(t)ES1 = limT→∞ ĥ(t)ES2 = limT→∞ ĥ(t)ES3,

b) under ELF

i) ĥ(t)EE3 < ĥ(t)EE1 < ĥ(t)EE2,

ii) limT→∞ ĥ(t)EE1 = limT→∞ ĥ(t)EE2 = limT→∞ ĥ(t)EE3,

c) under PLF

i) ĥ(t)EP3 < ĥ(t)EP1 < ĥ(t)EP2,

ii) limT→∞ ĥ(t)EP1 = limT→∞ ĥ(t)EP2 = limT→∞ ĥ(t)EP3.

The proof is excluded since it is similar to that of Theorem 8.

The relationship between E-MSE of the E-Bayes estimators of θ under various loss functions is
given in the subsequent theorem.

Theorem 10. Using the priors π1(a, b), π2(a, b) and π3(a, b) under various loss functions, the
relationship between E-MSE of the E-Bayes estimators of θ when 0< c <T is given as

a) under SELF

i) E − MSE(θ̂ES3) < E − MSE(θ̂ES1) < E − MSE(θ̂ES2),

ii) limT→∞ E − MSE(θ̂ES1) = limT→∞ E − MSE(θ̂ES2) = limT→∞ E − MSE(θ̂ES3).

b) under ELF

i) E − MSE(θ̂EE3) < E − MSE(θ̂EE1) < E − MSE(θ̂EE2),

ii) limT→∞ E − MSE(θ̂EE1) = limT→∞ E − MSE(θ̂EE2) = limT→∞ E − MSE(θ̂EE3).

c) under PLF

i) E − MSE(θ̂EP3) < E − MSE(θ̂EP1) < E − MSE(θ̂EP2),

ii) limT→∞ E − MSE(θ̂EP1) = limT→∞ E − MSE(θ̂EP2) = limT→∞ E − MSE(θ̂EP3).

Proof.

a)
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i) From (41) and (43), we have

E − MSE(θ̂ES3) − E − MSE(θ̂ES1)

=
1
c

[
ln
(

T + c
T

)
−
(

c
c + T

)
− ln

(
T

T + c

)
− c

T

]
=

1
c

[
2 ln

(
T + c

T

)
− c(2T + c)

T(c + T)

]
=

2
c

ln
(

T + c
T

)
− (2T + c)

T(c + T)
< 0. (69)

So, we can say that,
E − MSE(θ̂ES3) < E − MSE(θ̂ES1). (70)

Now, from (41) and (42), we have

E − MSE(θ̂ES2) − E − MSE(θ̂ES1)

=
c
2

1
T(c + T)

− 1
c

{
ln
(

T + c
T

)
− c

c + T

}
=

c
2T(c + T)

+
1

c + T
− 1

c
ln
(

T + c
T

)
=

c + 2T
(c + T)2T

− 1
c

[
c
T
− 1

2

( c
T

)2
+

1
3

( c
T

)3
− ...

]
=

c + 2T
(c + T)2T

− 1
T
+

1
2T

( c
T

) [
1 − 2

3

( c
T

)]
+

1
4T

( c
T

)3
[

1 − 4
5

( c
T

)]
+ ...

> 0. (71)

So, we can say that,
E − MSE(θ̂ES2) > E − MSE(θ̂ES1). (72)

From (70) and (72),

E − MSE(θ̂ES3) < E − MSE(θ̂ES1) < E − MSE(θ̂ES2). (73)

ii) From (69) and by applying limit T → ∞

lim
T→∞

(E − MSE(θ̂ES3)− E − MSE(θ̂ES1))

= lim
T→∞

[
2
c

ln
(

T + c
T

)
− (2T + c)

T(c + T)

]
= lim

T→∞

[
2
T
− c

T2 +
2c2

3T3 − c3

2T4 + ...
]

− lim
T→∞

2 + c
T

T( c
T + 1)

= 0. (74)

From (71) and by applying limit T → ∞

lim
T→∞

(E − MSE(θ̂ES2)− E − MSE(θ̂ES1))

= lim
T→∞

c
T + 2

2T( c
T + 1)

− 1
T
+

c
2T2

[
1 − 2

3

( c
T

)]
+

c3

4T4

[
1 − 4

5

( c
T

)]
+ ...

= 0. (75)

Hence from (73) and (74),

lim
T→∞

E − MSE(θ̂ES1) = lim
T→∞

E − MSE(θ̂ES2) = lim
T→∞

E − MSE(θ̂ES3). (76)
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The remaining part of the proof is removed since it is comparable to that presented above. �
The relationship between E-MSE of the E-Bayes estimators of h(t) under various loss functions is
given in the subsequent theorem.

Theorem 11. Using the priors π1(a, b), π2(a, b) and π3(a, b) under various loss functions, the
relationship between E-MSE of the E-Bayes estimators of h(t) when 0< c <T is given as

a) under SELF

i) E − MSE(ĥ(t)ES3) < E − MSE(ĥ(t)ES1) < E − MSE(ĥ(t)ES2),

ii) limT→∞ E− MSE(ĥ(t)ES1) = limT→∞ E− MSE(ĥ(t)ES2) = limT→∞ E− MSE(ĥ(t)ES3).

b) under ELF

i) E − MSE(ĥ(t)EE3) < E − MSE(ĥ(t)EE1) < E − MSE(ĥ(t)EE2),

ii) limT→∞ E− MSE(ĥ(t)EE1) = limT→∞ E− MSE(ĥ(t)EE2) = limT→∞ E− MSE(ĥ(t)EE3).

c) under PLF

i) E − MSE(ĥ(t)EP3) < E − MSE(ĥ(t)EP1) < E − MSE(ĥ(t)EP2),

ii) limT→∞ E− MSE(ĥ(t)EP1) = limT→∞ E− MSE(ĥ(t)EP2) = limT→∞ E− MSE(ĥ(t)EP3).

Table 1: The AE (first row), MSE (second row) and ACI for MLE, Bayesian and E-Bayesian estimates of θ for real
data.

n=148
r=30 r=60 r=90 r=120 ACI

θ̂MLE 0.0140806 0.0213817 0.0302629 0.0346765
9.58331 * 10−4 5.65431 * 10−4 2.45881 * 10−4 1.07767 * 10−4

θ̂B1 0.014312 0.021557 0.0304276 0.0348179 (0.0113113, 0.0473139)
1.0999 * 10−5 9.3838 * 10−6 1.11832 * 10−5 1.03929 * 10−5

θ̂B2 0.0138428 0.0212007 0.0300914 0.0345289 (0.0111863, 0.0467911)
1.13596 * 10−5 9.5389 * 10−6 1.13068 * 10−5 1.04791 * 10−5

θ̂B3 0.0145447 0.0217345 0.0305953 0.0349621 (0.0113736, 0.0475745)
1.10877 * 10−5 9.42226 * 10−6 1.12139 * 10−5 1.04144 * 10−5

θ̂ES1 0.0143109 0.0215561 0.0304265 0.0348168 (0.0113114, 0.0473116)
1.09967 * 10−5 9.38285 * 10−6 1.11823 * 10−5 1.03922 * 10−5

θ̂ES2 0.0143087 0.0215542 0.0304243 0.0348148 (0.0113117, 0.0473072)
1.09922 * 10−5 9.38095 * 10−6 1.11805 * 10−5 1.0391 * 10−5

θ̂ES3 0.0143065 0.0215524 0.030422 0.0348127 (0.011312, 0.0473028)
1.09877 * 10−5 9.37904 * 10−6 1.11788 * 10−5 1.03897 * 10−5

θ̂EE1 0.0138417 0.0211998 0.0300903 0.0345279 (0.0111864, 0.0467889)
1.13573 * 10−5 9.53794 * 10−6 1.13059 * 10−5 1.04785 * 10−5

θ̂EE2 0.0138396 0.021198 0.0300881 0.0345258 (0.0111867, 0.0467845)
1.13526 * 10−5 9.536 * 10−6 1.13041 * 10−5 1.04772 * 10−5

θ̂EE3 0.0138374 0.0211961 0.0300859 0.0345238 (0.011187, 0.0467801)
1.1348 * 10−5 9.53407 * 10−6 1.13023 * 10−5 1.04759 * 10−5

θ̂EP1 0.0300255 0.0353436 0.0443292 0.0472391 (0.0113737, 0.0475723)
1.10854 * 10−5 9.4213 * 10−6 1.1213 * 10−5 1.04137 * 10−5

θ̂EP2 0.0145414 0.0217316 0.0305919 0.0349589 (0.011374, 0.0475678)
1.10809 * 10−5 9.41939 * 10−6 1.12113 * 10−5 1.04124 * 10−5

θ̂EP3 0.0145391 0.0217297 0.0305896 0.0349568 (0.0113743, 0.0475634)
1.10763 * 10−5 9.41748 * 10−6 1.12095 * 10−5 1.04112 * 10−5
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6 Results

In this section, we examine how well the estimators developed in this article performed.

6.1 Real Data Analysis

We used the real data set given by [14] for real-life situations indicating the graft survival periods
in months of 148 renal transplant patients to examine the performance of the estimators developed
in this research. The data were fitted using the Chen distribution, and the p-value and test statistic
values for the Kolmogorov-Smirnov test are 0.5844 and 0.0626, respectively. The MLEs for the
unknown Chen distribution parameters are calculated to be θ̂ =0.0429 and λ̂ =0.3863. We generate
Type-II censored samples by choosing different values for r (30, 60, 90 and 120). We presume
that the shape parameter is always known and equal to its MLE, i.e., λ̂ = 0.3863. Using the
bootstrapping concept, we computed the AE, MSE, E-MSE and 95% average credible interval
(ACI) of the estimators and are given in Tables 1 and 2.

Table 2: The AE (first row), MSE (second row) and ACI for MLE, Bayesian and E-Bayesian estimates of h(t) for real
data.

n=148
r=30 r=60 r=90 r=120 ACI

λ̂MLE 0.0205438 0.0334508 0.0501238 0.0557942
1.82571 * 10−3 1.28701 * 10−3 7.69232 * 10−4 7.28922 * 10−4

ĥB1 0.0198053 0.0325953 0.0490964 0.0556378 (0.00534318, 0.0855648)
2.10708 * 10−5 2.20851 * 10−5 3.14922 * 10−5 3.08391 * 10−5

ĥB2 0.019156 0.0320565 0.0485539 0.0551761 (0.00528414, 0.0846193)
2.17617 * 10−5 2.24501 * 10−5 3.18402 * 10−5 3.1095 * 10−5

ĥB3 0.0201274 0.0328636 0.0493669 0.0558682 (0.00537262, 0.0860362)
2.12408 * 10−5 2.21756 * 10−5 3.15787 * 10−5 3.09028 * 10−5

ĥES1 0.0198039 0.0325939 0.0490946 0.0556361 (0.00534354, 0.0855612)
2.10668 * 10−5 2.2083 * 10−5 3.14898 * 10−5 3.08372 * 10−5

ĥES2 0.019801 0.0325912 0.0490911 0.0556328 (0.00534425, 0.0855542)
2.10586 * 10−5 2.2079 * 10−5 3.14851 * 10−5 3.08335 * 10−5

ĥES3 0.0197981 0.0325885 0.0490876 0.0556295 (0.00534496, 0.0855471)
2.10505 * 10−5 2.20749 * 10−5 3.14804 * 10−5 3.08298 * 10−5

ĥEE1 0.0191546 0.0320552 0.0485521 0.0551744 (0.00528449, 0.0846158)
2.17575 * 10−5 2.2448 * 10−5 3.18378 * 10−5 3.10931 * 10−5

ĥEE2 0.0191518 0.0320525 0.0485487 0.0551712 (0.0052852, 0.0846088)
2.17491 * 10−5 2.24439 * 10−5 3.1833 * 10−5 3.10894 * 10−5

ĥEE3 0.0191489 0.0320499 0.0485452 0.0551679 (0.0052859, 0.0846018)
2.17407 * 10−5 2.24398 * 10−5 3.18282 * 10−5 3.10856 * 10−5

ĥEP1 0.0201259 0.0328622 0.0493651 0.0558665 (0.00537298, 0.0860327)
2.12367 * 10−5 2.21735 * 10−5 3.15763 * 10−5 3.09009 * 10−5

ĥEP2 0.020123 0.0328595 0.0493616 0.0558632 (0.0053737, 0.0860256)
2.12285 * 10−5 2.21695 * 10−5 3.15716 * 10−5 3.08972 * 10−5

ĥEP3 0.02012 0.0328567 0.049358 0.0558599 (0.00537441, 0.0860184)
2.12203 * 10−5 2.21654 * 10−5 3.15669 * 10−5 3.08935 * 10−5

From Tables 1 and 2, it is to be noted that the approximated MSEs decrease as r increases. We
can deduce from Tables that E-Bayesian estimators outperform MLE and Bayesian estimators in
terms of MSE.
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7 Discussion and Concluding Remark

The parameter and hazard rate of the Chen distribution based on Type II censoring are estimated
using the MLE, Bayesian, and E-Bayesian approaches. The estimates are computed using real data,
and various estimation techniques are compared. One of the study’s key findings is the superiority
of the proposed estimators versus existing estimators. The impact of various prior distributions
and loss functions is also something we theoretically investigate. Important concluding remarks
from our study are listed below:

∙ The lowest MSE of all the estimates is seen in the E-Bayesian estimations of θ.
∙ The lowest E-MSE among all estimates is found in the E-Bayesian estimations of θ based on

ELF with prior distribution π3(a, b).
∙ For a fixed value of n and r the E-MSE is less for E-Bayesian estimators as compared to

Bayesian and MLE.
∙ Compared to Bayesian and MLE, the proposed estimators perform better in terms of

minimum MSE.
Combining the findings mentioned above, we recommended the E-Bayesian technique, which
outperforms previous estimates in terms of minimum MSE, to estimate the scale parameter and
hazard rate functions of the Chen distribution based on the type-II censoring scheme using prior
distribution π3(a, b).
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