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Abstract 
 

The study of probability distribution has expanded the field of statistical modelling of real life data. 
It has also provided solution to the problems of skewed data which often violate the normality. This 
research work introduces a new T - Half-Lapalace{Exponential} family with a novel Half-Laplace 
distribution as baseline distribution with specific interest in three-parameter lifetime model called 
the Weibull-Half-Lapalace{Exponential} (W-HLa{E}) distribution. The W-HLa{E} model is capable 
of modeling various shapes of aging events. The W-HLa{E} distribution is derived by combining 
Half-Laplace and Weibull distribution using the quartile function of Exponential distribution. 
Some of its statistical properties such as the mean, mode, quantile function, median, variance, 
standard deviation, skewness, and kurtosis are derived. Other statistical properties such as survival 
function, hazard rate, moments, asymptotic limit, order statistics, and entropy which is the measure 
of uncertainty of a random variable are derived and studied. The parameter estimation method 
adopted in this study is the maximum likelihood method. The graphs of W-HLa{E} at different 
values of shape and scale parameters show that the distribution is unimodal hence the mode is given 

as 𝑚𝑜𝑑𝑒 = 𝜃 + (!"#
!
)
!
" and it is positively skewed with a steep peak. A simulation study is carried 

on the new proposed distribution using maximum likelihood estimation. The simulation also 
supported the theoretical expression of the statistical properties of the proposed distribution such as 
the location parameter does not affect the variance, skewness, and kurtosis of the new distribution. 
The importance and the flexibility of the proposed distribution in modeling some real life data sets is 
demostrated inn the research. The results of the sudy shows that the proposed W-HLa{E} 
distribution perform better than other disribbutions in the literature.  
 
Keywords: Laplace distribution; Half-Laplace distribution; Weibull Half-Laplace 
distribution; Censored data; Lifetime data; Maximum likelihood estimation 
 
 

1. INTRODUCTION 
 
Numerous classical distributions have been extensively used over the past decades for modeling 
data in several areas such as engineering, actuarial, environmental and medical sciences, biological 
studies, demography, economics, finance, and insurance. However, there is a clear need for 
extended forms of these classical distributions. Due to that reason, researchers have developed and 
studied several methods for generating new families of distributions. The most outstanding 
characteristics of this distribution are that it is unimodal and symmetric. Laplace distribution is a 
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mixture of normal laws (see Kotz [10]), as a possible explanation of the wide applicability of this 
distribution for modeling growth rates. Let 𝑓(𝑥, 𝜃, 𝛽) be the probability density function of Laplace 
distribution.  

𝑓(𝑥, 𝜃, 𝛽) = !
"#
𝑒(%|'%(|/#), 𝑥 ∈ (−∞,∞)                     (1) 

 and CDF, F(x) is given as:  

𝐹(𝑥; 𝜃, 𝛽) = /
!
"
𝑒+%

!"#
$ ,,										𝑖𝑓	𝑥 < 𝜃

1 − !
"
𝑒+%

!"#
$ ,						𝑖𝑓	𝑥 ≥ 𝜃

                        (2) 

 The expected value of a Laplace distribution is given as 𝐸(𝑥) = 𝜃. The expected value of a Laplace 
distribution is the same as the location parameter and a symmetric situation means that the mean 
is the same as mode and median. Laplace distribution can be compared with other symmetric 
distributions like Normal, Logistic, etc. except that Laplace has a higher spike and slightly thicker 
tails.  
In recent years, Asymmetric Laplace distribution of [10] has received much attention in modeling 
currency exchange rates, interests, stock price changes which is a modification of Laplace 
distribution but not for survival data. Many researchers have developed compound distributions 
using different methods to fit survival data. In this research work, we shall reduce the classical 
Laplace distribution to a non-negative function. Most real-life quantities to be measured are non-
negative values. With the assumption that the data is non-negative, therefore, it is necessary to 
reduce the Laplace distribution to one-sided (positively skewed distribution). Thus, the one-sided 
Laplace distribution, otherwise called the half-Laplace distribution is the positive side of the 
Laplace distribution.  
Let 𝑋 be a random variable on 𝑅. = (0,∞) given by the density function of Laplace distribution 
equation (1), where 𝑥 ≥ 𝜃 ≥ 0𝑎𝑛𝑑	𝛽 > 0, then x is said to have a half Laplace distribution, denoted 
by 𝐻𝐿(𝜃, 𝛽)  

𝑓(𝑥, 𝜃, 𝛽) = !
#
𝑒(%

!"#
$ ), 𝑥 > 𝜃 ≥ 0; 𝛽 > 0                              (3) 

 and the CDF of the half-Laplace distribution is  

𝐹(𝑥, 𝜃, 𝛽) = 1 − !
#
𝑒(%

!"#
$ ), 𝑥 > 𝜃 ≥ 0; 𝛽 > 0           (4) 

  
 Where 𝜃 is the location parameter and 𝛽 is the shape parameter The half-Laplace distribution 
reduces to the exponential distribution when 𝜃 = 0, we have the exponential distribution. 
Recently, many researchers have developed and studied compound distributions using T-X which 
was introduced by Alzaatreh [5] and T-X{Y} by Aljarrah [3]. This was later modified by Alzaatreh 
[6] as  T-gamma family, Alzaatreh [7] also constructed T-normal families. Almheidat [4] studied 
the T-Weibull family. Amalare [8] derived Lomax-Cauchy {Uniform}. Ogunsanya [13] developed 
and studied the extension of Cauchy distribution named Rayleigh Cauchy distribution, 
Ogunsanya [14] studied Weibull-Inverse Rayleigh distribution: Classical/ Bayesian approach and 
Job [11] applied Weibull Loglogistic{Exponential} distribution on some survival data. 
In Section 2, we derive the new Weibull Half Laplace distribution, with statistical properties such 
as hazard function, survival function, Moments, skewness, kurtosis, order statistics, and Shannon 
entropy are determined.  Section 3 shows the simulation study. Estimation of the parameters of W-
HLa{E} distribution by maximum likelihood is performed in Section 4. In Section 5, the 
performance of the new W-HLa{E} distribution is demonstrated on two real data sets and the 
conclusion and summary of the work are expressed in Section 6. 
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2. DERIVATION OF WEIBULL-HALFLAPLACE {EXPONENTIAL} 

DISTRIBUTION 
 
In this section, we investigate in details the properties, parameters estimation, and applications of a 
new distribution of the T-Half Laplace {𝑌} family called Weibull- Half Laplace {𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙} (W-
HLa{E}) distribution.  
Let t be a random variable that follows a two-parameter Weibull distribution, then PDF is given as  

𝑓/(𝑡; 𝜆, 𝑘) = H
𝑘
𝜆 I
𝑡
𝜆J

0%!
𝑒%+

1
2,
%

K ; 𝑡 ⩾ 0, 𝜆, 𝑘 ⩾ 0 

 And the CDF is  

𝐹/(𝑡; 𝜆, 𝑘) = 1 − 𝑒%+
&
',
%

; 𝑡 ⩾ 0, 𝜆, 𝑘 ⩾ 0                                      (5) 
 Recall Equation (4), and given the quantile function of exponential distribution as -blog[1-x] 

𝐹3(𝑥) = 𝐹/{−𝑏𝑙𝑜𝑔[1 − (𝐹4(𝑥))]} 
then the CDF of proposed W-HLa{E} distribution is  

𝐹3(𝑥) = 𝐹/ Q−𝑏𝑙𝑜𝑔 R1 − I1 − 𝑒
+%!"#$ ,JST                                   (6) 

 Substituting the CDF of Weibull distribution in equation (6) 

𝐹3(𝑥) = 1 − 𝑒%+
(
'$,

%
('%()%                                                                (7) 

 Let 5
2#
= 𝛾 in (7), then we have  

𝐹3(𝑥) = 1 − 𝑒%(6)%('%()%                                                                (8) 
 Hence the corresponding PDF using equation (8)  

𝑓3(𝑥) = 𝑘 V 5
2#
W
0
(𝑥 − 𝜃)0%!𝑒+

(
'$,

%
('%()%                                     (9) 

Let 5
2#
= 𝛾 in (9) or differentiate equation (8) with respect to x, then we have  

𝑓3(𝑥) = 𝑘𝛾0(𝑥 − 𝜃)0%!𝑒6%('%()%                                                           (10) 
 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  

 
3. STATISTICAL PROPERTIES OF W-HLA{E} DISTRIBUTION 

 
The statistical properties of the W-HLa{E} distribution including quantile function, ordinary 
moments, and Shannon entropy are provided in this section 
Proposition 1 (Quantile Function) If 𝑋 is a random variable that has W-HLa{E} distribution 
(𝑥; 𝑘, 𝜃, 𝛾) and let 𝑄3(𝑝), such that 0 ≤ 𝑝 ≤ 1 denote the quantile function for the W-HLa{E} 
distribution. Then 𝑄3(𝑝) is given by  

𝑄3(𝑝) = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 𝑝)}

)
%                                                              (11) 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  
Proof: 

From Equation (8) replace 𝐹3(𝑥) with 𝑝 and solve for 𝑥, we obtain (11), the quantile 
function of W-HLa{E} distribution.  
Setting𝑝 = 0.25,0.50, 𝑎𝑛𝑑0.75 in (30)he quartiles of the W-HLa{E} distribution can be obtained. 
Lower Quartile  

                     𝑄3(0.25) = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 0.25)}

)
% 

Median  

                 𝑄3(0.5) = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 0.5)}

)
% 

Upper Quartile  
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                 𝑄3(0.75) = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 0.75)}

)
% 

Proposition 2 (Modal Function) If 𝑋 is a random variable that has W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) and 
let 𝑋789:(𝑥), such that 0 ≤ 𝑝 ≤ 1 denote the mode function for the W-HLa{E} distribution. Then 𝑄3(𝑝) is 
given by  

𝑋;89:(𝑥) = 𝜃 + !
6
_0%!
0
`
)
%                                             (12) 

 where 𝑘, 𝜃, 𝛾 > 0 are parameters of W-HLa{E} distribution  
Proof: 
Differentiate (10) and equate to zero  

𝑑
𝑑𝑥 𝑓(𝑥) = 0 

𝑑
𝑑𝑥 _𝑘𝛾

0(𝑥 − 𝜃)0%!𝑒%6%('%()%")` = 0 

 
𝑘(𝑘 − 1)𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%")

(𝑥 − 𝜃) −
𝑘"𝛾"0(𝑥 − 𝜃)"0%!𝑒%6%('%()%")

(𝑥 − 𝜃) = 0 

 
𝑘(𝑘 − 1)𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%")

(𝑥 − 𝜃) =
𝑘"𝛾"0(𝑥 − 𝜃)"0%!𝑒%6%('%()%")

(𝑥 − 𝜃)  

 Solving for x, we have  

𝑋;89:(𝑥) = 𝜃 +
1
𝛾 R
𝑘 − 1
𝑘 S

!
0
 

 
3.1. Shape Properties of W-HLa{E} Distribution 

 
Cumulative Distribution Function (CDF) of W-HLa{E} Distribution. 
 Equation (9) is now the CDF of the new probability distribution called W-HLa{E}   
Distribution. 
 

3.2   Hazard Function 
The hazard function of the W-HLa{E} distribution is derived from this definition  

ℎ3(𝑥) = 𝑓3(𝑥)/1 − 𝐹3(𝑥) 
where 𝑓3(𝑥) and 𝐹3(𝑥) are the PDF and CDF of W-HLa{E} distribution given in (9) and (10) 
respectively. The hazard function h(x) can be written as  

ℎ3(𝑥) =
06%('%()%"):"*

%(!"#)%

!%{!%:"*%(!"#)%}
                                                  (13) 

Simplifying (13), we have  
ℎ3(𝑥) = 𝑘𝛾0(𝑥 − 𝜃)0%!                                                          (14) 

 
The log hazard of W-HLa{E}D, which is frequently used in modeling is given by  

𝜆3(𝑡) = 𝑙𝑜𝑔(ℎ3(𝑥)) 
𝜆3(𝑡) = 𝑙𝑜𝑔(𝑘𝛾0(𝑥 − 𝜃)0%!)                                                 (15) 

Expanding equation (15)  
𝜆3(𝑡) = 𝑙𝑜𝑔(𝑘𝛾0) + 𝑙𝑜𝑔(𝑥 − 𝜃)0%! 
𝜆3(𝑡) = 𝑙𝑜𝑔(𝑘𝛾0) + (𝑘 − 1)𝑙𝑜𝑔(𝑥 − 𝜃)                                  (16) 
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 Figure 1: (a) Density plot and (b) CDF plot of WLE distribution for sample size = 1000 and for various values of 𝑘, 𝜃 
and 𝛾. 
Figure 1(a) ahows that the PDF is positively skewed. Figure 1(b) shows that the CDF of W-
HLa{E}D increases as x increases and remains constant as it approaches 1.  

 
 

3.3   Survival Function 
The survival function of the W-HLa{E} distribution is derived from this definition  

𝑆3(𝑥) = 1 − 𝐹3(𝑥) 
where F(x) is the CDF of the W-HLa{E} distribution as defined in equation(9) The survival function 
𝑆' can be written as  𝑆3(𝑥) = 1 − {1 − 𝑒%6%('%()%} 

𝑆3(𝑥) = 𝑒%6%('%()%                                                                (17) 
For 𝑥 > 0, 𝑘, 𝜃𝑎𝑛𝑑𝛾 > 0	𝑎𝑛𝑑	𝑡 > 0, the probability that a system having age x units of time will 
survive up to 𝑥 + 𝑡 units of time is given by  

𝑆3(𝑥) =
𝑒%6%('.1%()%

𝑒%6%('%()%
 

 
3.4 Cumulative Hazard Function 

 
The cumulative hazard function, of the W-HLa{E} distribution, is given as 

𝐻3(𝑥) = −𝑙𝑜𝑔:{𝑒%6
%('%()%}                                                  (18) 

Simplifying (18) we have  
𝐻3(𝑥) = 𝛾0(𝑥 − 𝜃)0                                                             (19) 

 
3.5 Asymptotic Behavior of W-HLa{E} Distribution 

 
To investigate the asymptotic behavior of the proposed distribution model W-HLa{E}, we find the 
limit as 𝑥 ⟶ 𝜃 and as 𝑥 ⟶ ∞ of the W-HLa{E} distribution  

𝑙𝑖𝑚'→(𝑓(𝑥) = 𝑙𝑖𝑚'→(𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6
%('%()% = 0 

 Proof: Since 𝑙𝑖𝑚'→((𝑥 − 𝜃) = 0, then  
 𝑙𝑖𝑚'→(𝑓(𝑥) = 0  
 Hence as 𝑥 tend to a minimum value of the distribution, W-HLa{E} distribution becomes zero 
Similarly,  

𝑙𝑖𝑚'→?𝑓(𝑥) = 𝑙𝑖𝑚'→(𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6
%('%()% = 0 

Proof: Since 𝑙𝑖𝑚'→? = V𝑒%6%('%()%W = 0, then  
 𝑙𝑖𝑚'→?𝑓(𝑥) = 0 
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As x tends to infinity the W-HLa{E} distribution becomes zero 
 

3.6 Moments and Variance 
 
 In this subsection, we shall determine 𝑟1@ moment of about the origin and 𝑛1@ moment about the 
mean. Given   

𝐸(𝑋) = ∫?( 𝑥𝑓3(𝑥)𝑑𝑥                                      (20) 
  
Proposition 3 (First Moment about Origin) If 𝑋 is a random variable that has W-HLa{E} 
distribution(𝑥; 𝑘, 𝜃, 𝛾) and let 𝑋7 denote the first moment about the origin of the W-HLa{E} distribution. 
Then 𝜇!`  is given by 

𝑋7 = 𝜇!` = 𝜃 +
1
𝛾 ΓI1 +

1
𝑘J 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  
 Proof: Substituting (10) in (20)  

𝐸(𝑋) = ∫?( 𝑥𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%𝑑𝑥                             (21) 
 Let  

𝑧 = 𝛾0(𝑥 − 𝜃)0                                                         (22) 
 then differentiate Equation (22) with respect to x  

𝑑𝑥 = 9B
06%('%()%")

                                                              (23) 

 Substitute (23 ) in (21), we have  
𝐸(𝑋) = ∫?( 𝑥𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()% 9B

06%('%()%")
                 (24) 

 𝐸(𝑋) = ∫?( 𝑥𝑒%6%('%()%𝑑𝑧                                              (25) 
 From (22), we make x the subject,  

𝑥 = 𝜃 + B)/%

6
                                                           (26) 

 0 ≤ 𝑧 ≤ ∞ Substitute (22) and (26) in Eqn. (25), we have  

𝐸(𝑋) = ∫?C V𝜃 + B)/%

6
W 𝑒%B𝑑𝑧                                                    (27) 

  

𝐸(𝑋) = ∫?C 𝜃𝑒%B𝑑𝑧 + ∫?C
B)/%

6
𝑒%B𝑑𝑧                                       (28) 

 By evaluating the limits, we have  
𝐸(𝑋) = −𝜃𝑒%6%('%()%|(? +

!
6
Γ V1 + !

0
W                                    (29) 

 Hence equation (29) becomes  
𝐸(𝑋) = 𝜃 + !

6
Γ V1 + !

0
W                                                              (30) 

  
Proposition 4 (Second Moment about Origin) If 𝑋 is a random variable that has W-HLa{E} 
distribution(𝑥; 𝑘, 𝜃, 𝛾) and let 𝜇"`  denote the second moment about the origin of the W-HLa{E} distribution. 
Then 𝜇"`  is given by 

𝜇"` = 𝜃 + 2
1
𝛾 Γ I1 +

1
𝑘J +

1
𝛾" Γ I1 +

2
𝑘J 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  
 Proof: Given  

𝐸(𝑋") = 𝜇"` = ∫?( 𝑥"𝑓3(𝑥)𝑑𝑥                                                          (31) 
 Substitute equation (10) in equation (31)  

𝜇"` = ∫?( 𝑥"𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%𝑑𝑥                                  (32) 
 Using the above method adopted in proposition 4.4, we have,  

𝜇"` = 𝜃" + 2 (
6
ΓV1 + !

0
W + !

6.
ΓV1 + "

0
W                                            (33) 
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Corollary 1 (rth moment) Let 𝑋 be a random variable that follows W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) and let 
𝜇D`  denote the rth moment about the origin of the W-HLa{E} distribution. Then 𝜇D`  is given by  

𝜇D` = 𝜃D +∑DEF! V
𝑟
𝑖 W

(/")

60
Γ V1 + E

0
W                                                  (34) 

 Where i=1,2,3,…,r  
 Proof: By Mathematical induction, it follows from equations (30) and (33) of propositions 3 and 4. 
respectively 
Hence the first four moments of the proposed distribution are given  

𝜇!` = 𝜃 +
1
𝛾 Γ I1 +

1
𝑘J 

𝜇"` = 𝜃" + 2
𝜃
𝛾 ΓI1 +

1
𝑘J +

1
𝛾" Γ I1 +

2
𝑘J 

𝜇G` = 𝜃G + 3
𝜃"

𝛾 ΓI1 +
1
𝑘J + 3

𝜃
𝛾" ΓI1 +

2
𝑘J +

1
𝛾G ΓI1 +

3
𝑘J 

𝜇H` = 𝜃H + 4
𝜃G

𝛾 ΓI1 +
1
𝑘J + 6

𝜃"

𝛾" Γ I1 +
2
𝑘J + 4

𝜃
𝛾G ΓI1 +

3
𝑘J +

1
𝛾H ΓI1 +

4
𝑘J 

 Again using the relationship between moments about mean and moments about the origin, the 
moments about the mean of W-HLa{E} distribution are obtained as  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜇") = 𝐸(𝑋") − [𝐸(𝑋)]" 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜇") = 𝜃" + 2
𝜃
𝛾 Γ I1 +

1
𝑘J +

1
𝛾" Γ I1 +

2
𝑘J − R𝜃 +

1
𝛾 Γ I1 +

1
𝑘JS

"

 

  = !
6.
Γ V1 + "

0
W − _!

6
Γ V1 + !

0
W`
"
 

  = !
6.
QΓ V1 + "

0
W − _Γ V1 + !

0
W`
"
T 

 Therefore the standard deviation is given as  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑋) = t
1
𝛾" HΓ I1 +

2
𝑘J − RΓ I1 +

1
𝑘JS

"

K 

 

=
1
𝛾
tHΓ I1 +

2
𝑘J − RΓ I1 +

1
𝑘JS

"

K 

 

𝐶𝑜 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	of	𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝐶. 𝑉) =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐸(𝑋)  

𝐶. 𝑉 =

1
𝛾"tQΓV1 +

2
𝑘W − _Γ V1 +

1
𝑘W`

"
T

𝜃 + 1𝛾 ΓV1 +
1
𝑘W

 

 Again using the relationship between moments about mean and moments about origin where 
𝜇G = 𝜇G` − 3𝜇!` 𝜇"` + 2𝜇!`G and 𝜇H = 𝜇H` − 4𝜇!` 𝜇G` + 6𝜇!`"𝜇"` + 3𝜇!`H are third and fourth moments about 
the mean respectively. The moments about the mean of W-HLa{E} distribution are obtained as  

 𝜇G = 𝜃G + 3 (
.

6
Γ V1 + !

0
W + 3 (

6.
Γ V1 + "

0
W + !

61
Γ V1 + G

0
W − 

 3 _𝜃 + !
6
ΓV1 + !

0
W` _𝜃" + 2 (

6
Γ V1 + !

0
W + !

6.
Γ V1 + "

0
W` + 2 _𝜃 + !

6
Γ V1 + !

0
W`
G
 

  𝜇H = 𝜃H + 4 (
1

6
Γ V1 + !

0
W + 6 (

.

6.
Γ V1 + "

0
W + 4 (

61
Γ V1 + G

0
W + !

62
Γ V1 + H

0
W 

 −4 _𝜃 + !
6
ΓV1 + !

0
W` _𝜃G + 3 (

.

6
Γ V1 + !

0
W + 3 (

6.
ΓV1 + "

0
W + !

61
ΓV1 + G

0
W` 

 +6 _𝜃 + !
6
ΓV1 + !

0
W`
"
_𝜃" + 2 (

6
Γ V1 + !

0
W + !

6.
Γ V1 + "

0
W` + 3 _𝜃 + !

6
Γ V1 + !

0
W`
H
 

 Hence, the skewness and kurtosis are determined as follows;  
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 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = I('%J)1

K.
= J1

K.
 

 	𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠	 = !
)
*.
LM+!..%,%NM+!.

)
%,O

.
P
𝜃G + 3 (

.

6
Γ V1 + !

0
W + 3 (

6.
Γ V1 + "

0
W + !

61
Γ V1 + G

0
W − 

3 R𝜃 +
1
𝛾 ΓI1 +

1
𝑘JS R𝜃

" + 2
𝜃
𝛾 Γ I1 +

1
𝑘J +

1
𝛾" Γ I1 +

2
𝑘JS + 2 R𝜃 +

1
𝛾 Γ I1 +

1
𝑘JS

G

 

 Further simplification of above we have  

=

2Γ V1 + 1𝑘W
"
− 3ΓV1 + 1𝑘W Γ V1 +

2
𝑘W + Γ V1 +

3
𝑘W

𝛾"

1
𝛾" Γ V1 +

2
𝑘W − _

1
𝛾 Γ V1 +

1
𝑘W`

"  

=
2Γ V1 + 1𝑘W

"
− 3ΓV1 + 1𝑘W Γ V1 +

2
𝑘W + Γ V1 +

3
𝑘W

Γ V1 + 2𝑘W − _
1
𝛾 Γ V1 +

1
𝑘W`

"  

Kurtosis =
µH
σH 

 	𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠	 = � !

)
*2
LM+!..%,%NM+!.

)
%,O

.
P
.� Q𝜃H + 4

(1

6
ΓV1 + !

0
W + 6 (

.

6.
Γ V1 + "

0
W +

4 (
61
ΓV1 + G

0
W + !

62
ΓV1 + H

0
W − 4 _𝜃 + !

6
Γ V1 + !

0
W` _𝜃G + 3 (

.

6
Γ V1 + !

0
W + 3 (

6.
Γ V1 + "

0
W + !

61
Γ V1 + G

0
W` +

6 _𝜃 + !
6
Γ V1 + !

0
W`
"
_𝜃" + 2 (

6
Γ V1 + !

0
W + !

6.
Γ V1 + "

0
W` + 3 _𝜃 + !

6
Γ V1 + !

0
W`
H
T 

  
3.7 Order Statistics 

 
Order statistics is an important concept in probability theory. Let a random sample 𝑋!, 𝑋", . . . 𝑋Q, 
from the distribution function F(x) and corresponding pdf f(x), therefore the pdf of ith order 
statistic is given as  
Proposition 5 If 𝑋 is a random variable that has W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) and let 𝑓(𝑥E) denote the 
pdf of ith order statistic which is given as  

𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑘𝜃S𝛾0 ∑?S,TFC I

𝑘 − 1
𝑝 JI𝑖 − 1𝑞 J (−1)S.T V𝑒%6%('%()%W

!.T.Q%E
(35) 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution  
Proof: Given  

𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑓(𝑥)𝐹(𝑥)E%![1 − 𝐹(𝑥)]Q%!                                  (36) 

 hence the pdf of ith order statistic of W-HLa{E} distribution is determined by substituting 
equation (7) and (10) in equation (35) we have  

𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()% _1 − 𝑒%6%('%()%`

E%!
_𝑒%6%('%()%`

Q%!
(37) 

 

𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑘𝛾0 ∑?SFC I

𝑘 − 1
𝑝 J (−1)U𝜃S𝑒%6%('%()% ∑?TFC I

𝑖 − 1
𝑞 J (−1)T V𝑒%6%('%()%W

T
(38) 

  𝑓(𝑋E) =
Q!

(E%!)!(Q%E)!
𝑘𝜃S𝛾0 ∑?S,TFC I

𝑘 − 1
𝑝 J I𝑖 − 1𝑞 J (−1)S.T V𝑒%6%('%()%W

!.T.Q%E
 

 Therefore the first and nth order statistics for W-HLa{E} distribution can be determined as thus  
Corollary 2 (nth Order Statistic) Let 𝑋 be a random variable that follows W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) 
and let 𝑓(𝑥!) denote the first (1st) order statistic of the W-HLa{E} distribution. Then 𝑓(𝑥!) is given by  

𝑓(𝑋!) =
Q

(T)!(%T)!
𝑘𝜃S𝛾0 ∑?S,TFC I

𝑘 − 1
𝑝 J (−1)S.T V𝑒%6%('%()%W

V.T
)          (39) 

 Where i=1,2,3,…,n  
Proof: From equation (35), replace i with 1 we have equation (39)  
 

153



 
A. S. Ogunsanya and O. Job 
WEIBULL HALF LAPLACE {EXPONENTIAL} DISTRIBUTION 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

Corollary 3 (nth Order Statistic) Let 𝑋 be a random variable that follows W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) 
and let 𝑓(𝑥Q) denote the last (nth) order statistic of the W-HLa{E} distribution. Then 𝑓(𝑥Q) is given by 

𝑓(𝑋E) =
Q

(Q%!%T)!(T)!
𝑘𝜃S𝛾0 ∑?S,TFC I

𝑘 − 1
𝑝 J (−1)S.T V𝑒%6%('%()%W

!.T
)          (40) 

 Where i=1,2,3,…,n  
Proof: From equation (35), replace i with n we have equation (40)  
 

3.8 Entropy 
 
In information theory, entropy is an important concept and can be defined as a measure of the 
randomness or uncertainty associated with a random variable. However, the Shannon entropy for 
a random variable X with pdf 𝑓3(𝑥) is defined as 𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))}  
Proposition 6 If 𝑋 is a random variable that has W-HLa{E} distribution(𝑥; 𝑘, 𝜃, 𝛾) then Shannon’s entropy 
is given as  

𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 − (𝑘 − 1) I
0.57722

𝑘 J − 𝑙𝑜𝑔(𝛾) − 𝑙𝑜𝑔(𝑘) 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution and Φ = −∫?C 𝑙𝑜𝑔𝑧𝑒%B𝑑𝑧 ≈ 0.57722 is 
the Euler gamma constant  
 Proof: Substitute equation (10) in the definition of entropy we have  

𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝐸 �−𝑙𝑜𝑔 V𝑘𝛾0(𝑥 − 𝜃)0%!𝑒6%('%()%W�                                           (41) 
𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝐸{−[𝑙𝑜𝑔(𝑘) + 𝑘𝑙𝑜𝑔(𝛾) + (𝑘 − 1)𝑙𝑜𝑔(𝑥 − 𝜃) − 𝛾0(𝑥 − 𝜃)0]} 

= 𝐸{𝛾0(𝑥 − 𝜃)0 − [𝑙𝑜𝑔(𝑘) + 𝑘𝑙𝑜𝑔(𝛾) + (𝑘 − 1)𝑙𝑜𝑔(𝑥 − 𝜃)]}               (42) 
Finding the expectation of (𝑥 − 𝜃) with the proposed distribution W-HLa{E}, we have,  

𝐸((𝑥 − 𝜃)0) = ∫?( (𝑥 − 𝜃)0𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%𝑑𝑥                                  (43) 
 Recall Equation (22) and (23)and substitute them in equation (43)  

𝐸((𝑥 − 𝜃)0) = ∫?( (𝑥 − 𝜃)0𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()% × 9B
06%('%()%")

                    (44) 

 𝐸((𝑥 − 𝜃)0) = ∫?C (𝑥 − 𝜃)0𝑒%6%('%()%𝑑𝑧                                                           (45) 
 Substituting Equation (26) in Equation (45) and integrating the expression  

𝐸((𝑥 − 𝜃)0) = ∫?C 𝑧𝑒B𝑑𝑧 = [−𝑧𝑒B − 𝑒B]C? = 1                                                  (46) 
 Hence  

𝐸(𝛾0(𝑥 − 𝜃)0) = 𝛾0𝐸((𝑥 − 𝜃)0) = 𝛾0                                                      (47) 
 Also  

𝐸((𝑥 − 𝜃)0) = ∫?( 𝑙𝑜𝑔(𝑥 − 𝜃)0𝑓3(𝑥)𝑑𝑥                                                (48) 
 Therefore  

𝐸(𝑙𝑜𝑔(𝑥 − 𝜃)0) = ∫?( 𝑙𝑜𝑔(𝑥 − 𝜃)0𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()%𝑑𝑥                 (49) 
 Substitute Equation (22) and (23)and substitute them in equation (49)  

𝐸(𝑙𝑜𝑔(𝑥 − 𝜃)0) = ∫?( 𝑙𝑜𝑔(𝑥 − 𝜃)0𝑘𝛾0(𝑥 − 𝜃)0%!𝑒%6%('%()% × 9B
06%('%()%")

   (50) 

 Then equation (50) becomes  
= ∫?( 𝑙𝑜𝑔(𝑥 − 𝜃)0𝑒%B𝑑𝑧                                             (51) 

= ∫?( 𝑙𝑜𝑔 �B
)
%

6
� 𝑒%B𝑑𝑧                                   (52) 

= �
?

C
𝑙𝑜𝑔 I𝑧

!
0J 𝑒%B𝑑𝑧 +�

?

C
𝑙𝑜𝑔 I

1
𝛾J 𝑒

%B𝑑𝑧 

= ∫?C 𝑙𝑜𝑔 V𝑧
)
%W 𝑒%B𝑑𝑧 − ∫?C 𝑙𝑜𝑔(𝛾)𝑒%B𝑑𝑧                         (53) 

= ∫?C 𝑙𝑜𝑔 V𝑧
)
%W 𝑒%B𝑑𝑧 − 𝑙𝑜𝑔(𝛾) ∫?C 𝑒%B𝑑𝑧                        (54) 

= !
0 ∫

?
C 𝑙𝑜𝑔(𝑧)𝑒%B𝑑𝑧 − 𝑙𝑜𝑔(𝛾)∫?C 𝑒%B𝑑𝑧                         (55) 

 Let Φ = −∫?C 𝑙𝑜𝑔(𝑧)𝑒%B𝑑𝑧 then equation (55) becomes  

154



 
A. S. Ogunsanya and O. Job 
WEIBULL HALF LAPLACE {EXPONENTIAL} DISTRIBUTION 

RT&A, No 1 (72) 
Volume 18, March 2023  

 

𝐸(𝑙𝑜𝑔(𝑥 − 𝜃)0) = −W
0
− 𝑙𝑜𝑔(𝛾)                                                                      (56) 

 Substitute Equations (47) and (56) in Equation (42), we have  

𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 − (𝑘 − 1) I−W
0
− 𝑙𝑜𝑔(𝛾)J − �𝑙𝑜𝑔(𝑘) + 𝑘𝑙𝑜𝑔(𝛾)�        (57) 

                         𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 + (𝑘 − 1) IW
0
+ 𝑙𝑜𝑔(𝛾)J − 𝑙𝑜𝑔(𝑘) − 𝑘𝑙𝑜𝑔(𝛾) 

          𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 + (𝑘 − 1) VW
0
W − 𝑙𝑜𝑔(𝛾) − 𝑙𝑜𝑔(𝑘) 

 where 𝑘, 𝜃, 𝛾 ≥ 0 are parameters of W-HLa{E} distribution and Φ = −∫?C 𝑙𝑜𝑔𝑧𝑒%B𝑑𝑧 ≈ 0.57722 is 
the Euler gamma constant from Abramowitz [1] 

𝐸{−𝑙𝑜𝑔(𝑓3(𝑥))} = 𝛾0 + (𝑘 − 1) VC.YZZ""
0

W − 𝑙𝑜𝑔(𝛾) − 𝑙𝑜𝑔(𝑘)                          (58) 
 

3.9   Mean Residual life 
 

The Mean Residual Life (MRL) at a given time t measures the expected remaining life of an 
individual of age t. it otherwise called the life expectancy. 
 
Proposition 7: Let  𝑇 be a random variable that follows W-HLa{E} distribution(𝑡, 𝑘, 𝛾, 𝜃) and let MRL 
represents mean residual life at a given time t W-HLa{E} distribution. Then MRL is given by 
 	

MRL =
1

𝑒%(6)%(1%()%
Q
1
𝛾 Γ I1 +

1
𝑘J + 𝜃𝑒

%1 −
1
𝛾 ΓI1 +

1
𝑘 , 𝑡J	T − t 

 
 where 𝑘, 𝛾, 𝜃 ≥ 0 are parameters of t W-HLa{E} distribution  

 
Proof: Given  

MRL = !
!%[(1)

�𝐸(𝑥) −	∫1C t𝑓3(𝑡)𝑑𝑡� − t                                                      (59) 

And             𝑆3(𝑥) = 1 − F(x) 
 
From  equation (8) and (34) 

 𝐹3(𝑡) = 1 − 𝑒%(6)%(1%()%,   𝐸(𝑋) = 𝜃 + !
6
Γ V1 + !

0
W 

MRL = !

:"(*)%(!"#)%
�𝜃 + !

6
Γ V1 + !

0
W −	∫1C t𝑓3(𝑡)𝑑𝑡� − t                      (60) 

∫1C t𝑓3(𝑡)𝑑𝑡 = ∫1C V𝜃 +
B)/%

6
W 𝑒%1𝑑𝑡    

 

= �
1

C
𝜃𝑒%1𝑑𝑡 + �

1

C

𝑡!/0

𝛾 𝑒%1𝑑𝑡 

= −𝜃𝑒%1C
1 +

1
𝛾 𝛾 I1 +

1
𝑘 , 𝑡J 

∫1C t𝑓3(𝑡)𝑑𝑡 = 𝜃 − 𝜃𝑒%1 + !
6
Γ V1 + !

0
, 𝑡W                                                          (61) 

Substituting equations (61) in equation (60) 
 

MRL =
1

𝑒%(6)%('%()%
H𝜃 +

1
𝛾 Γ I1 +

1
𝑘J −	�𝜃 − 𝜃𝑒

%1 +
1
𝛾 Γ I1 +

1
𝑘 , 𝑡J�K − t 

 
 
Where Γ V1 + !

0
, 𝑡W is an incomplete gamma function of variable t. 

 

MRL =
1

𝑒%(6)%(1%()%
Q
1
𝛾 Γ I1 +

1
𝑘J + 𝜃𝑒

%1 −
1
𝛾 ΓI1 +

1
𝑘 , 𝑡J	T − t 
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4. SIMULATION STUDY 

 
The simulation was done using equation (11) which is the quantile function of W-HLa{E}. Let p be a 

uniform random variable on (0,1), then 𝑋 = 𝜃 + !
6
{−𝑙𝑜𝑔(1 − 𝑝)}

)
%, the descriptive summaries were 

obtained through Statistical software R3.4.4.version. 
 
Table 1: Descriptive summaries of simulation of W-HLa{E} distribution with various parameters 

Model Parameters Mean Median Max. Variance skewness kurtosis Cv 
𝑦! k=0.5; γ=0.5; θ=5 6.801 5.453 21.337 14.239 3.115 12.309 0.554 
𝑦" k=0.5; =0.5;θ=10 11.8 10.45 26.34 14.239 3.115 12.309 0.320 
𝑦G k=1; γ=3; θ=5 10.22 10.16 10.95 0.055 1.748 5.827 0.023 
𝑦H k=1.5; γ=1; θ=5  5.67 5.609 7.014 0.251 1.040 3.751 0.088 
𝑦Y k=2; γ=2; θ=10 10.35 10.34 10.85 0.042 0.612 3.008 0.036 
𝑦\ k=2; γ=2; θ=5 5.352 5.345 5.845 0.042 0.612 3.008 0.036 
𝑦Z k=3; γ=1; θ=5 5.76 5.781 6.419 0.097 0.127 2.625 0.054 

 	
𝑦] k=3; γ=1; θ=10 10.76 10.78 11.42 0.097 0.127 2.625 0.029 

 
From table 1 it is observed that as parameter k increases the variance, skewness, and kurtosis 
function decreases for different values of the scale and location parameters of W-HLa{E} 
distribution hence, the skewness and kurtosis are decreasing functions of k.  
When k=2 and γ=2, the mean is approximately equal to the median hence, the distribution tends to 
be symmetric. Table 1 also shows that the coefficient of variation is deeply affected by γ. 
When the γ increases positively the value of the coefficient of variation decreases 

 
5. ESTIMATION OF PARAMETERS FOR THE W-HLA{E} DISTRIBUTION 

 
The Maximum Likelihood estimates of W-HLa{E} distribution will be obtained in this section  
Definition: Let 𝑥!, 𝑥", . . . , 𝑥Q denote a random sample drawn from W-HLa{E} distribution with 
parameters 𝑘, 𝛾, 𝜃. The likelihood function l (𝑥, 𝑘, 𝛾, 𝜃) of W-HLa{E} distribution is defined to be the 
joint density of the random variables 𝑥!, 𝑥", . . . , 𝑥Q  

𝑙(𝑥, 𝑘, 𝛾, 𝜃) = ∏ 𝑘𝛾0(𝑥 − 𝜃)0%!𝑒6%('%()%                                                 (62) 
= 𝑘Q𝛾Q0∏ (𝑥 − 𝜃)0%!𝑒%6%('%()%                                          (63) 

 finding the loglikelihood function of equation (63), we have  
𝑙𝑜𝑔𝑙(𝑥, 𝑘, 𝛾, 𝜃) = log𝑘Q + log𝛾Q0 +∑QE log(𝑥 − 𝜃)0%! +∑QE − 𝛾0((𝑥 − 𝜃)0)             (64) 

 where L=logl(𝑥, 𝑘, 𝛾, 𝜃)  
𝐿 = 𝑛log𝑘 + 𝑛𝑘log𝛾 + (𝑘 − 1)∑QE log(𝑥 − 𝜃) − 𝛾0 ∑QE ((𝑥 − 𝜃)0)                 (66)  
𝐿 = 𝑛log𝑘 + 𝑛𝑘log𝛾 + (𝑘 − 1)∑QE log(𝑥 − 𝜃) − 𝛾0 ∑QE ((𝑥 − 𝜃)0)                (66) 

 Differentiating the log-likelihood function in (66) with respect to the parameters𝐾, 𝛾, 𝜃 we have  
9^
96
= Q0

6
− 𝑘𝛾0%!∑QE (𝑥E − 𝜃)0                                                  (67) 

9^
90
= Q

0
+ 𝑛log𝛾 ∑QE (𝑥E − 𝜃)0 − 𝛾0 ∑QE (𝑥E − 𝜃)0log(𝑥E − 𝜃)                       (68) 

9^
9(
= 𝑘𝛾0 ∑QE (𝑥E − 𝜃)0%! − (𝑘 − 1)∑QE

!
('0%()

                         (69) 

 The maximum likelihood estimates (MLE), 𝑘�, 𝛾�, 𝜃� for the parameters 𝑘, 𝛾, 𝜃 respectively, are 
obtained by setting (67) - (69) to zero and solving them simultaneously.  
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6   APPLICATIONS 
 In this section, we shall be investing the importance of the new distribution W-HLa{E} distribution 
and apply it to three real-life data. In these applications, the maximum likelihood estimation 
method is used in these two applications to estimate the parameters of fitted distributions. The 
maximized log-likelihood, the Kolmogorov-Smirnov test (K-S) along with the corresponding p-
value, the Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) are 
reported to compare the W-HLa{E} distribution with the other distributions.  
 
DATA SET I: Remission times of bladder cancer patients  
Remission Time is the time taken for the signs and symptoms of a particular disease, in this case, 
cancer, to decrease or disappear after treatment. Though cancer may be considered in remission, 
cancer cells may remain in the body.  
 Table 2: Remission times (in months) of bladder cancer patients’ data 

0.080 0.200 0.400 0.500 0.510 0.810 0.900 1.050 1.190 1.260 1.350 1.400 1.460 1.760 2.020 
2.020 2.070 2.090 2.230 2.260 2.460 2.540 2.620 2.640 2.690 2.690 2.750 2.830 2.870 3.020  
3.250 3.310 3.360 3.360 3.480 3.520 3.570 3.640 3.700 3.820 3.880 4.180 4.230 4.260 4.330  
4.340 4.400 4.500 4.510 4.870 4.980 5.060 5.090 5.170 5.320 5.320 5.340 5.410 5.410 5.490  
5.620 5.710 5.850 6.250 6.540 6.760 6.930 6.940 6.970 7.090 7.260 7.280 7.320 7.390 7.590  
7.620 7.630 7.660 7.870 7.930 8.260 8.370 8.530 8.650 8.660 9.020 9.220 9.470 9.740 10.06  
10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07 12.63 13.11 13.29 13.80 14.24  
14.76 14.77 14.83 15.96 16.62 17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74  
25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05 

 
Table 2 shows data of remission times(in month) of 128 bladder cancer patients selected at random 
as reported by Lee, et al [12], which was studied by Zea [16] to compare the fits of a different 
family of beta-Pareto(BP) and beta exponentiated Pareto (BEP) distributions. Almheidat [4] also 
applied to four parameters Cauchy-Weibull {𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐} (𝐶 −𝑊{𝐿}) distribution in fitting this same 
data and just of recent Aldeni [2] applied uniform-exponential{𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑𝑙𝑎𝑚𝑏𝑑𝑎} distribution 
(𝑈 − 𝐸{𝐺𝐿}) distribution to fit the same data 
 
Table 3: Descriptive Statistics of remission times of bladder cancer patients distributions 

Min. Max. Mean 1st Qu. Median 3rd Qu. Skewness Kurtosis SD 

0.080 79.050 9.366 3.348 6.395 11.838 3.287 18.483 10.508 

 
Table 4: Performance of the distributions remission times of bladder cancer patients distributions Parameter estimates: 
Log-likelihood, AIC, and p-value (Standard errors in parentheses) 
 Distributions   𝑊𝐻𝐿𝑎{𝐸}   𝑈 − 𝐸{𝐺𝐿}   𝐶 −𝑊{𝐿}   BEP   BP  
  k = 0.4847  𝜃=0.2757   𝑎=2.3040   𝑎 = 0.348  𝑎 = 4.805  
 (0.0267)  (0.0665)  (1.0937)   (0.0970)   (0.0550)  
  𝛾 = 0.4850   𝜆G = 2.504   𝛽 = 2.0205   b =159831   b = 100.502  
  (0.0651)  (0.9285)   (0.4585)   (183.7501)   (0.2510)  
  𝜇 = 0.0785   𝜆H = 0.2894   k=3.0673   k= 0.051   k = 0.011  
  (-)   (0.0858)   (0.7319)   (0.0190)   (0.0010)  
      𝜆 = 12.663   𝛽 = 0.080   𝛽 = 0.080  
      (2.6326)   (2.0930)    
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Table 5: Performance of the distributions remission times of bladder cancer patients distributions Parameter estimates: 
Log-likelihood, AIC, and p-value 
 Distributions   𝑊𝐻𝐿𝑎{𝐸}   𝑈 − 𝐸{𝐺𝐿}   𝐶 −𝑊{𝐿}   BEP   BP  
-Loglikelihood   271.3276   409.45   416.0965  432.41   480.446  
𝐴𝐼𝐶   548.6552   824.9   840.2   874.819   968.893  
K-S   0.0078125   0.02876   0.06672   0.142   0.217  
P-value   0.9922   0.9999   0.6189   0.0121   1.11E-05  
 
  Table 3 shows the summary of the dataset I and table 4 displaces the parameters estimates of  W-
HLa{𝐸}	and four other distributios. Table 5 shows the values of parameter estimates, log-
likelihood, AIC, K-S, and its p-value at 95%. Based on the above test statistics, W-HLa{𝐸} has the 
least AIC with 548.6552 and K-S Statistic (0.0078125) hence W-HLa{E} performed best among the 
five distribution models applied to remission time of bladder cancer. This implies that the new 
distribution can fit skewed data with long-tail better than any distribution. After an appropriate 
distribution has been identified and parameters estimated, we can estimate the probability of 
having a given duration of remission and other probabilities. For example, the probability of 
having a remission time longer than 10 months can be predicted as 𝑃(𝑋 > 𝑥) = 𝑒%6%('%()% When 
𝑘 = 0.4847, 𝛾 = 0.4850, 𝜃 = 0.0785 

𝑃(𝑋 > 𝑥) = 𝑒%C.H]YC3.2526(!C%C.CZ]Y)3.2526 
𝑃(𝑋 > 10) = 0.117 

 
 Data Set II: 72 pigs infected by virulent tubercle Bacilli (Bjerkedal, T, 1960) 
The data in Table 6 are survival times (in days) of seventy-two pigs infected by virulent tubercle 
bacilli [9] The data in Table 6 are survival times (in days) of seventy-two pigs infected by virulent 
tubercle bacilli reported by Tahir [15] The Tables 4.4 shows the performance of W-HLa{E} and 
three other models (Logistic Frechet (LFr), Marshall-Olkin Frechet (MOFr), exponentiated-Frechet 
(EFr) and Frechet (Fr). 
Table  6: Infected Pigs data (in day) 

10    33    44   56   59   72   74   77    92   93    96  100   100  102  105 107  107  108  108  108  109  112  
113  115   116   120  121   122   122    124  130  134  136  139 144  146  153  159  160  163   163  168   
171    172    176 183   195  196   197  202  213 215  216  222  230   231  240  245    251    253 254   254  
278  293   327  342  347 361  402   432  458  555 

   
Table 7: Descriptive Statistics of Infected Pigs data 

Min.  Max. Mean 1st Qu. Median 3rd Qu. Skewness Kurtosis     SD 

 43.00  598.00 141.85 82.75 102.50 149.25 2.5153 9.332 109.209 

 
In this application, we obtain the descriptive statistics, maximum likelihood estimates of the 
parameters of the fitted distributions, and the values of the following statistics: AIC (Akaike 
Information Criterion), BIC (Bayesian Information Criterion), and HQIC (Hanna Quinn 
Information Criterion).  
In addition, we compute some goodness of fit statistics to verify which distribution provides the 
best fit to the data sets. We apply Kolmogorov-Smirnov (K-S) statistics. These statistics are 
described in detail in Tables 8 and 9. In general, the smaller the value of these statistics, the better 
the fit of the data by the distribution.  
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Table  8: Parameter Estimates and Standard errors in parentheses for W-HLa{E} Distribution 
 Distributions  𝑊𝐻𝐿𝑎{𝐸} 𝐿𝐹𝑟 𝑀𝑂𝐹𝑟 𝐸𝐹𝑟 

 𝜃 = 42.99956 𝜆=32.5054 𝑎=212.7251 𝑎= 155.680 
 (16.8814) (0.0665) (115.7064) (5.7063) 

Parameter  𝛾 = 0.4850 𝜆G = 2.504 𝛽 = 2.0205 𝑏 = 159831 
Estimates  (0.0651) (0.9285) (0.4585) (183.7501) 
 𝜇 = 0.0785 𝜆H = 0.2894 k=3.0673 k= 0.051 
 (-) (0.0858) (0.7319) (0.0190) 
   𝜆 = 12.663 𝛽 = 0.080 
   (2.6326) (2.0930) 
  𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 1.841076 and 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 7.49277  
 

Table 9: Log-likelihood, AIC, BIC, HQIC, KS Statistic and p-value of 72 pigs infected by virulent tubercle Bacilli of 
different distributions   
  Distributions   𝑊𝐻𝐿𝑎{𝐸}   𝐿𝐹𝑟   𝑀𝑂𝐹𝑟   𝐸𝐹𝑟  
-Loglikelihood   410.3371   426.2306   426.6764   449.7452  
𝐴𝐼𝐶   826.6741   858.4612   859.3527   903.4903  
𝐵𝐼𝐶   833.5041   865.2912   866.1827   908.0437  
𝐻𝑄𝐼𝐶   829.3932   861.1803   866.1827   905.3030  
K-S   0.027778   0.0695   0.1213   0.0923  
P-value   0.9460   0.8773   0.2403   0.5710  
 
From table 9, the new proposed W-HLa{E} model corresponds to the lowest values of the 
loglikelihood, AIC, BIC, HQIC, and K-S statistics among the fitted LFr, MOFr, and EFr models and 
therefore the W-HLa{E} model can be chosen as the best for the data set above. The distribution 
with the lowest Akaike Information Criteria (AIC) or BIC and the lowest Log-likelihood value is 
declared as ˜” best fit” distribution. In this case, W-HLa{E} distribution has the lowest  Log-
likelihood of -410.3371 with the lowest corresponding lowest AIC value of 826.6741. Hence, W-
HLa{E}D is regarded as a best-fit model for this particular data used.  
 
 

7.  CONCLUSION 
 

The research work introduced a new probability distribution called Weibull Half Laplace 
exponential distribution. Expressions for the probability density function, cumulative distribution 
function, survival function, and hazard function, and cumulative hazard function of the proposed 
distribution are derived. Some properties of the proposed distribution such as moments, order of 
statistics, and Shannon entropy have been studied. The simulation also supported the theoretical 
expression of the statistical properties of the proposed distribution such as the location parameter 
does not affect the variance, skewness, and kurtosis of the new distribution. From table 1, when 
k=2 and γ=2, the mean is approximately equal to the median hence, the distribution tends to be 
symmetric. The maximum likelihood method is adopted to estimate the parameters of the 
distribution. Coefficient of variation is deeply affected by γ. When the γ increases positively, the 
value of the coefficient of variation decreases It is shown, by means of two real data sets.  
Two life data were applied to the new distribution and others established distributions by 
researchers in the field of probability distribution and we found out that W-HLa{E} distribution 
has the lowest log-likelihood and the smallest AIC, BIC, and HQIC for the two data sets in tables 6 
and 9. W-HLa{E} distribution is a better fit for the two data sets.  
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