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Abstract

A novel method for generating families of continuous distributions is presented by introducing a new
parameter referred as Pi-Exponentiated Transformation (PET). Various properties of the PET method
have been obtained. The method has been specialized on two-parameter Weibull distribution, and a
new distribution called Pi-Exponentiated Weibull (PEW) is attained. A comprehensive mathematical
treatment of the new proposal is provided. Closed-form expressions for the density function, distribution
function, reliability function, hazard rate function have been provided. The PEW distribution is quite
flexible, and it can be used to model data with decreasing, increasing or bathtub shaped hazard rates.
Simulation study has been carried out to assess the behavior of the model parameters. Finally, the
effectiveness of the suggested method is demonstrated by examining two real-life data sets.

Keywords: Pi-Exponentiated Transformation; Quantile Function; Reliability Function; Mean
Waiting Time; Maximum Likelihood Estimation.

1. Introduction

Classical distributions are extensively employed in many applicable domains, including engi-
neering, environmental studies, medical sciences, economics, actuarial, finance, insurance etc.
to represent lifetime data. These distributions have been successfully implemented in all the
fields listed above. However, in many domains, like reliability engineering and medical science,
these conventional distributions do not offer the perfect fit when the data follow non-monotonic
failure rates. As a result, generalized versions of these classical distributions are required to
model reliability engineering and medical science data. Therefore, researchers became inspired to
develop new modifications to theses existing distributions. These modified distributions offer
more flexibility to the baseline model by introducing one or more extra parameters. In recent
advances in distribution theory, researchers have shown a keen interest in proposing new methods
for expanding the family of lifetime distributions. This has been accomplished through a variety
of methods. Some well-known methods are:

• The exponentiated transformation initiated by Mudholkar and Srivastava [16], and is given
by

F(x; α) = (ψ(x))α; α > 0, x ∈ R.

Where ψ(x) is the cumulative distribution function (cdf) of baseline model.
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• The beta-generated technique was proposed by Eugene et al. [7] that makes use of the
beta distribution as the generator with parameters a and b to establish the beta generated
distributions.

F(x) =

ψ(x)∫
0

r(s)ds.

Where r(s) is the probability density function (pdf) of a beta random variable (rv) and ψ(x)
is the cdf of any rv X.

• The quadratic rank transmutation map approach proposed by Shaw and Buckley [19] and
is given as

F(x; ξ) = (1 + ξ)ψ(x)− ξψ(x)2, |ξ| ≤ 1, x ∈ R.

Where ψ(x) is the cdf of an existing distribution.

• Minimum Guarantee distribution proposed by Kumar et al. [9] and is given by

F(x) = e1− 1
ψ(x) , x ∈ R.

Where ψ(x) is the cdf of an existing distribution.

• Log-transformation proposed by Maurya et al. [15] and is given by

F(x) = 1 − log(2 − ψ(x))
log2

, x ∈ R.

Where ψ(x) is the cdf of an existing distribution.

• A new transmuted cumulative distribution function based on the Verhulst logistic function
proposed by Kyurkchiev [10] and is given by

F(x) =
2ψ(x)

1 + ψ(x)
.

Where ψ(x) is the cdf of an existing distribution.

• Marshall and Olkin [14] proposed a general method for generating a new family of life
distributions defined in terms of survival function as:

F̄(x; α) =
αψ̄(x)

1 − ᾱψ̄(x)
=

αψ̄(x)
ψ(x) + αψ̄(x)

; α > 0, x ∈ R.

Where ᾱ = 1 − α and ψ̄(x) = 1 − ψ(x) is the survival function of the random variable X.

• Anwar et al. [8] presented a new method based on trigonometric function called Sine-
Exponentiated-Transformation (SET). The cdf of SET family of distributions for x ∈ R is
defined as

FSET(x, α) = ψ(x) sin
(π

2
ψα(x)

)
; α ≥ 0.

Where ψ(x) is the cdf of a continuous rv X.
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• Lone et al. [11] proposed a new method for generating a family of continuous distributions
called ratio trasformation (RT) method. The cdf of RT method for x ∈ R is defined as

FRT(x; α) =
ψ(x)

1 + α − αψ(x)
; α > 0.

Where ψ(x) is the cdf of a continuous rv X.

• Recently, Lone et al. [12] introduced an innovative method for generating a family of
continuous distributions called the MTI method. They employed MTI method on Weibull
distribution and derived a new three-parameter MTI Weibull (MTIW) distribution. The cdf
of MTI method for x ∈ R is defined as

FMTI(x; α) =
αψ(x)

α − logα ψ̄(x)
; α > 0.

Where ψ̄(x) = 1 − ψ(x) is the survival function of the random variable X.

In this manuscript a novel method for introducing greater flexibility to a family of distribution
functions by bringing in new parameter to the given family has been introduced. This novel
method has been refereed as PET. The proposed PET transformation is very simple and efficient
method for introducing a new parameter to generalize the existing distributions. Some general
properties of this class of distribution functions have been discussed. Then PET method has
been specialized to a two-parameter Weibull distribution and generated a three-parameter PEW
distribution, several statistical and reliability measures of PEW distribution have been obtained.

In section 2, the pdf and the cdf of the novel method have been obtained and various gen-
eral properties of this method have been discussed. In section 3, the method has been specialized
on two-parameter Weibull distribution and its structural properties as well as reliability measures
have been obtained. In section 4, estimates of unknown parameters and simulation study have
been performed. In section 5, two real data sets were analyzed to illustrate the efficacy of the
suggested model. In section 6, the conclusion is stated.

2. General properties of PET method

Let X be a continuous rv, then the cdf of PET for x ∈ R, is defined as

FPET(x) =
π(F(x))α − 1

π − 1
; α > 0. (1)

Obviously, FPET(x) is a valid cdf only if F(x) is a valid cdf. The corresponding pdf of PET for
x ∈ R, is defined as

fPET(x) =
αlogπ

π − 1
π(F(x))α

(F(x))α−1 f (x) ; α > 0. (2)

Clearly, fPET(x) is a weighted version of f (x), the weight function is given by

v(x) = π(F(x))α
(F(x))α−1.

Therefore, fPET(x) can be written as

fPET(x) =
f (x)v(x)

k
.
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Where, k = E[v(X)] is the normalizing constant.

By using the following power series

αu =
∞

∑
j=0

(logα)j

j!
uj, (3)

the linear representation for the cdf and the pdf in (1) and (2) are respectively given by

FPET(x) =
1

π − 1

[
∞

∑
j=0

aj(F(x))αj − 1

]

and

fPET(x) = b
∞

∑
j=0

aj(F(x))α(j+1)−1 f (x).

Where, aj =
(logα)j

j! and b = αlogπ
π−1 .

The reliability function RPET(x) is given by

RPET(x) =
π

π − 1

(
1 − π(F(x))α−1

)
; α > 0. (4)

The hazard rate function hPET(x) is given by

hPET(x) =
αlogπ f (x)(F(x))α−1

π1−(F(x))α − 1
; α > 0. (5)

If h(x) and R(x) are the hazard rate function and reliability function of f then the hazard rate
hPET(x) is given by

hPET(x) = αlogπh(x)R(x)
(F(x))α−1

π1−(F(x))α − 1
; α > 0. (6)

From (6), it is clear that

lim
x→−∞

hPET(x) =


0 ∀ α > 1
logπ
π−1 lim

x→−∞
h(x) ∀ α = 1

∞ ∀ α < 1

and
lim

x→∞
hPET(x) = lim

x→∞
h(x).

If F−1(x) exists, then for α > 0, a random sample from FPET(x) can be obtained as

X = F−1

{(
log(1 + U(π − 1))

logπ

) 1
α

}
where U is a uniform rv, 0 < u < 1.

3. PEW distribution and its properties

A rv X has a three-parameter PEW distribution denoted by PEW(α, β, λ) with parameters
α, β and λ, if the cdf and the pdf of X for x > 0, are respectively, given by

FPEW(x) =
π(1−e−λxβ

)α − 1
π − 1

; α, β, λ > 0 (7)
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and
fPEW(x) =

αλβlogπ

π − 1
xβ−1e−λxβ

π(1−e−λxβ
)α
(1 − e−λxβ

)α−1 ; α, β, λ > 0. (8)

The linear representations for the cdf in (7)is given by (9).

FPEW =
1

π − 1

(
∞

∑
k=0

ame−kλxβ − 1

)
. (9)

Where

am =
∞

∑
j=0

(−1)k
(

jα
k

)
(logπ)j

j!
.

The linear representations for the pdf in (8) is given by (10).

fPEW =
∞

∑
k=0

bmg(x). (10)

Where

bm =
∞

∑
j=0

(−1)kα(logπ)j+1

(π − 1)(k + 1)j!

(
α(j + 1)− 1

k

)
and

g(x) = (k + 1)λβxβ−1e−(k+1)λxβ
.

Clearly, g(x) is the Weibull distribution with scale parameter (k + 1)λ and shape parameter β.

The reliability and the hazard rate of PEW distribution for x > 0 are given by (11) and (12),
respectively

RPEW(x) =
π

π − 1

(
1 − π(1−e−λxβ

)α−1
)

; α, β, λ > 0 (11)

and

hPEW(x) =
αλβlogπxβ−1e−λxβ

(1 − e−λxβ
)α−1

π1−(1−e−λxβ
)α − 1

; α, β, λ > 0. (12)

Figure 1 shows some PEW density graphs for various selected parameter values. Figure 2 depicts
graphs of the hazard rate of the PEW distribution for different parameter values.

3.1. Simulation and Quantile

The PEW distribution can be simulated using inverse cdf method

X =

{
− 1

λ
log

[
1 −

(
log(1 + U(π − 1))

logπ

) 1
α

]} 1
β

.

Where U is a uniform rv, 0 < u < 1. The qth quantile of PEW distribution is given by

xq =

{
− 1

λ
log

[
1 −

(
log(1 + q(π − 1))

logπ

) 1
α

]} 1
β

The median can be obtained as

x0.5 =

− 1
λ

log

1 −
(

log( 1
2 (π + 1))
logπ

) 1
α


1
β
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Figure 1: Density plots of PEW for different combinations of α, β and λ = 1.
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Figure 2: Hazard rate plots of PEW for different combinations of α, β and λ = 1.
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3.2. Moments and generating function

The rth moment of PEW distribution is obtained by using the following series representation.

αx =
∞

∑
k=0

(logα)kxk

k!
(13)

(1 − x)b−1 =
∞

∑
m=0

(−1)m
(

b − 1
m

)
xm ; |x| < 1, b > 0. (14)

The rth moment of X can be obtained as

E(Xr) =

∞∫
0

xr f (x)dx

=
αλβlogπ

π − 1

∞∫
0

xr+β−1e−λxβ
π(1−e−λxβ

)α
(1 − e−λxβ

)α−1dx. (15)

Using (13) and (14) in (15), we have

E(Xr) =
αλβ

π − 1

∞

∑
a,m=0

(logπ)a+1(−1)m

a!

(
α(a + 1)− 1

m

) ∞∫
0

xr+β−1e−λ(m+1)xβ
dx. (16)

By applying the transformation xβ = y in (16), we get the final expression as

E(Xr) =
α

π − 1

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
r
β a!(m + 1)

r
β +1

(
α(a + 1)− 1

m

)
Γ(

r
β
+ 1).

The moment generating function of PEW distribution is obtained as

MX(t) =
∞∫

0

etx f (x)dx.

By using the same procedure as above, we get the final expression for moment generating function
as

MX(t) =
α

π − 1

∞

∑
a,l,m=0

(−1)mtl(logπ)a+1

λ
l
β l!a!(m + 1)

l
β +1

(
α(a + 1)− 1

m

)
Γ(

l
β
+ 1)

3.3. The Mean residual life of PEW distribution

The mean residual life function, say µ(t) of PEW distribution can be obtained as

µ(t) =
1

R(t)

E(t)−
t∫

0

x f (x)dx

− t. (17)

Where

E(t) =
α

π − 1

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
1
β a!(m + 1)

1
β +1

(
α(a + 1)− 1

m

)
Γ(

1
β
+ 1) (18)

and
t∫

0

x f (x)dx =
α

π − 1

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
1
β a!(m + 1)

1
β +1

×
(

α(a + 1)− 1
m

)
γ

(
λ(m + 1)tβ,

1
β
+ 1
)

. (19)
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Substituting (11), (18) and (19) in (17), we have

µ(t) =
α

π − π(1−e−λxβ
)α

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
1
β a!(m + 1)

1
β +1

(
α(a + 1)− 1

m

)

×
[

Γ
(

1
β
+ 1
)
− γ

(
λ(m + 1)tβ,

1
β
+ 1
)]

− t.

Where γ(p, q) =
p∫

0
xq−1e−xdx, is called lower incomplete gamma function.

The mean waiting time µ̄(t) of PEW distribution, can be obtained as

µ̄(t) = t − 1
F(t)

t∫
0

x f (x)dx. (20)

Substituting (7) and (19) in (20), we get

µ̄(t) =t − α

π(1−e−λxβ
)α − 1

∞

∑
a,m=0

(−1)m(logπ)a+1

λ
1
β a!(m + 1)

1
β +1

×
(

α(a + 1)− 1
m

)
γ

(
λ(m + 1)tβ,

1
β
+ 1
)

3.4. Renyi Entropy

Renyi entropy of PEW distribution, sayREX(u) can be obtained as

REX(u) =
1

1 − u
log

 ∞∫
−∞

f (x)udx

 ; u > 0, u ̸= 1.

=
1

1 − u
log

 ∞∫
0

(
αλβlogπ

π − 1

)u
xu(β−1)e−uλxβ

×(1 − e−λxβ
)u(α−1)πu(1−e−λxβ

)α
dx
)

. (21)

Using (13) in (21), we have

REX(u) =
u

1 − u
log
(

αλlogπ

π − 1

)
− log(β) + log

(
∞

∑
a=0

(ulogπ)a

a!

×
∞∫

0

βxu(β−1)e−uλxβ
(1 − e−λxβ

)α(a+u)−udx

 . (22)

Using (14) and applying the transformation y = xβ in (22) , then the final expression for REX(u)
is given by

REX(u) =
u

1 − u
log
(

αλlogπ

π − 1

)
− log(β) + log

(
∞

∑
a,m=0

(−1)m(ulogπ)a

a!

×
(

α(a + u)− u
m

) Γ
(

u + 1−u
β

)
(λ(m + u))u+ 1−u

β


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3.5. Order Statistics

Let X1, X2, ..., Xn be a random sample of size n, and let Xr:n denote the rth order statistic, then,
the pdf of Xr:n, say fr:n(x) is given by

fr:n(x) =
n!

(r − 1)!(n − r)!
F(x)r−1 f (x)(1 − F(x))n−r. (23)

Substituting (7) and (8) in (23) and using(14), we get

fr:n(x) =
αλβlogπ

B(r, n − r + 1)

n−r

∑
a=0

(−1)a(n−r
a )

(π − 1)a+r

(
π(1−e−λxβ

)α − 1
)a+r−1

× xβ−1e−λxβ
π(1−e−λxβ

)α
(1 − e−λxβ

)α−1.

Where B(a, m) is a beta function.

3.6. Stress Strength Reliability

If X1 ∼ PEW(α1, λ1, β) and X2 ∼ PEW(α2, λ2, β), where X1 and X2 are independent strength and
stress rv’s respectively, then, the stress strength reliability P(X1 > X2), say SSR, can be obtained
as

SSR =

∞∫
−∞

f1(x)F2(x)dx. (24)

Using (7) and (8) in (24), we have

SSR =

∞∫
0

(
α1λ1βlogπ

(π − 1)2 xβ−1e−λ1xβ
π(1−e−λ1xβ

)α1

×(1 − e−λ1xβ
)α1−1π(1−e−λ2xβ

)α2
)

dx − 1
π − 1

. (25)

Using (13), (14) and applying the transformation y = xβ in (25), then the final expression for SSR
is given by

SSR =
1

π − 1

(
α1λ1

(π − 1)

∞

∑
a,b=0

∞

∑
m,n=0

(−1)m+n(logπ)a+b+1

a!b!(λ1(1 + m) + nλ2)

(
α1(a + 1)− 1

m

)(
bα2

n

)
− 1

)

4. Estimation

4.1. Maximum Likelihood Estimation

Let x1, x2, ..., xn be a random sample from PEW distribution, then the logarithm of the likelihood
function is

l =nlog(αλβ) + nlog
(

logπ

π − 1

)
+ (β − 1)

n

∑
i=1

xi − λ
n

∑
i=1

xβ
i

+ logπ
n

∑
i=1

(
1 − e−λxβ

i

)
+ (α − 1)

n

∑
i=1

log
(

1 − e−λxβ
i

)
. (26)
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The MLEs of α, λ and β are obtained by partially differentiating (26) with respect to the corre-
sponding parameters and equating to zero, we have

∂l
∂α

=
n
α
+

n

∑
i=1

log
(

1 − e−λxβ
i

)(
logπ(1 − e−λxβ

i )α + 1
)
= 0 (27)

∂l
∂β

=
n
β
+

n

∑
i=1

xi − λ
n

∑
i=1

xβ
i logxi

+
n

∑
i=1

λxβ
i logxi

e−λxβ
i − 1

(
α + αlogπ(1 − e−λxβ

i )α − 1
)
= 0 (28)

∂l
∂λ

=
n
λ
−

n

∑
i=1

xβ
i +

n

∑
i=1

xβ
i

e−λxβ
i − 1

(
α + αlogπ(1 − e−λxβ

i )α − 1
)
= . (29)

Since, the above equations (27), (28) and (29) are not in closed form and are difficult to solve
analytically. As a result, it is difficult to calculate the estimates of the parameters α, β and λ.
However, R software can be used to solve the equations numerically.

4.2. Simulation study

The simulation study has been conducted using R Software to demonstrate the behaviour of the
MLEs in terms of the sample size. Two sets of sample (n=50, n=100) each repeated 1000 times
with different combinations of parameters λ = (1, 2), α = (0.5, 1.5, 3) and β = (0.5, 1.5, 3, 5) were
achieved from PEW. In each setting, the average values of MLEs and the corresponding empirical
mean squared errors (MSEs) were obtained. The simulation results are presented in tables 1 and
2. Tables 1 and 2 show that the estimates are stable and reasonably close to the true parameter
values. As the sample size increases the MSE decreases in all the cases.

5. Applications

In this section, we examine two data sets in order to describe the significance and flexibility of
PEW distribution. The first data set has been taken from (Cordeiro and Brito [6]), consist of 48
rock samples from a petroleum reservoir. The dataset corresponds to twelve core samples from
petroleum reservoirs that were sampled by four cross-sections. Each core sample was measured
for permeability and each cross-section has the following variables: the total area of pores, the
total perimeter of pores and shape. We analyze the shape perimeter by squared (area) variable.
The observations are: 0.0903296, 0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220,
0.1623940, 0.2627270, 0.1794550, 0.3266350, 0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020,
0.1541920, 0.4641250, 0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 0.1224170,
0.2285950, 0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230, 0.2910290, 0.3412730,
0.4387120, 0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530, 0.1641270,
0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470.

The second set of data is taken from (Aydin [2]) representing a random sample of average
daily wind speed data for March, collected in 2015 from the Turkish Meteorological Services for
Sinop, Turkey.The data are recorded as follows
2.8, 1.8, 3.2, 5.0, 2.4, 4.8, 2.9, 2.9, 2.3, 3.2, 2.3, 2.0, 1.9, 3.3, 4.4, 6.7, 4.3, 1.9, 2.2, 3.3, 2.1, 4.0, 2.0, 3.1,
3.8, 3.1, 3.2, 3.4, 2.8, 2.1, 3.1.

We compare the fit of the proposed PEW distribution with its sub-model Weibull (W) (see
[20]) and a number of other competing models, namely Alpha Power Weibull (APW) (see [13]),
Alpha Power Inverse Weibull (APIW) (see [3]), Modified Weibull (MW) (see [18]), Transmuted
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Table 1: mean values of ML estimates and their corresponding mean square errors(n=50).

Parameter MLE MSE

λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 0.5 1.10179 0.50379 0.50421 0.33514 0.01926 0.01998
1.5 1.09164 0.50369 1.48989 0.29139 0.02022 0.07911
3 1.09261 0.50384 2.96632 0.29186 0.01920 0.27951
5 1.10208 0.50390 4.93128 0.33049 0.01722 0.77969

1.5 0.5 1.10144 1.48760 0.50812 0.34598 0.06202 0.02153
1.5 1.10143 1.48689 1.49968 0.34594 0.05021 0.05021
3 1.10492 1.47913 3.07588 0.35744 0.07182 0.30989
5 1.09812 1.48823 4.97413 0.34323 0.06181 0.92916

3 0.5 1.06841 2.92528 0.51901 0.34669 0.26838 0.02320
1.5 1.06708 2.92446 1.53312 0.35017 0.26879 0.11011
3 1.05536 2.92289 3.06026 0.27696 0.26986 0.39581
5 1.06038 2.92293 5.08217 0.27756 0.26961 1.06087

2 0.5 0.5 2.05707 0.50408 0.50614 0.58601 0.01735 0.01989
1.5 2.0553 0.50405 1.49456 0.58328 0.02217 0.07999
3 2.05262 0.50411 2.97686 0.58133 0.01935 0.28283
5 2.06155 0.50419 4.94529 0.58885 0.01855 0.76788

1.5 0.5 2.07548 1.48263 0.51078 0.47035 0.06455 0.02193
1.5 2.07572 1.48192 1.52755 0.47079 0.06453 0.09875
3 2.07602 1.48205 3.10344 0.46824 0.06445 0.35757
5 2.06563 1.48288 5.190317 0.39804 0.06414 0.93515

3 0.5 2.08168 2.92146 0.51719 0.50571 0.27205 0.02432
1.5 2.08232 2.92217 1.5266 0.50634 0.27417 0.12172
3 2.06791 2.92024 3.04978 0.44313 0.27343 0.43695
5 2.06542 2.92144 5.07546 0.44743 0.27186 1.19552

Table 2: mean values of ML estimates and their corresponding mean square errors(n=100).

Parameter MLE MSE

λ α β λ̂ α̂ β̂ λ̂ α̂ β̂

1 0.5 0.5 1.0506 0.50247 0.50289 0.23614 0.01735 0.01694
1.5 1.05062 0.50287 1.49297 0.21722 0.01631 0.05371
3 1.04942 0.50287 2.97447 0.20015 0.01601 0.17807
5 1.04802 0.50289 4.96282 0.19792 0.01496 0.47121

1.5 0.5 1.08086 1.49116 0.50075 0.28492 0.05099 0.01989
1.5 1.09562 1.49818 1.501702 0.26724 0.04504 0.08107
3 1.08072 1.48961 3.06019 0.27247 0.06647 0.30124
5 1.09101 1.49015 4.98213 0.28726 0.05136 0.76879

3 0.5 1.06714 2.95807 0.51053 0.23006 0.19014 0.02037
1.5 1.06075 2.95628 1.50918 0.19142 0.19102 0.08285
3 1.04935 2.95675 3.00808 0.19031 0.19078 0.29455
5 1.04988 2.95522 5.01794 0.14934 0.19213 0.77231

2 0.5 0.5 2.01161 0.50271 0.50106 0.46357 0.01587 0.01686
1.5 2.01208 0.50251 1.49633 0.46451 0.01733 0.05311
3 2.01008 0.50253 2.98083 0.46424 0.01524 0.17549
5 2.01285 0.50246 4.96023 0.45973 0.01634 0.46167

1.5 0.5 2.01167 1.48439 0.49989 0.39586 0.05389 0.01959
1.5 2.01133 1.48356 1.49515 0.39526 0.05386 0.07749
3 2.01735 1.48402 2.98175 0.36287 0.05382 0.27414
5 2.01093 1.48444 4.92742 0.36888 0.05417 0.72391

3 0.5 2.06175 2.95508 0.51010 0.31644 0.19261 0.02031
1.5 2.05964 2.95508 1.50872 0.31542 0.19263 0.08399
3 2.06125 2.95504 3.00326 0.31317 0.19257 0.29708
5 2.05041 2.95512 5.00925 0.28678 0.19251 0.77898

Weibull (TW) (see [1]), Odd Weibull (OW) (see [4]), Lindley Weibull (LW) (see [5]), Alpha Power
Within Weibull Quantile (APWQ) (see [17]), Marshall Olkin Weibull (MOW) (see [14]) and Alpha
Power exponential (APE) ([13]). The corresponding density functions for x > 0 are presented in
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Figure 3: (i) Fitted PEW density & relative histogram. (ii) Fitted PEW reliability & empirical reliability for first data
set.
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Figure 4: (i) Fitted PEW density & relative histogram. (ii) Fitted PEW reliability & empirical reliability for second
data set.

the Appendix.

Tables 3, 4, 5 and 6 show that the PEW distribution has the minimum −2l(β̂), AIC, AICC,
BIC and K-S values, as well as the greatest p-value, of all the competing models. As a result,
the suggested model fits both the data sets better than the other competitive models. Also the
Figures 3, 4, 5 and 6 definitely confirm the conclusions presented in Tables 3, 4, 5,& 6.

6. Conclusion

In this manuscript, a novel method known as PET has been presented. The PET approach
has been applied to the Weibull distribution, and a new three-parameter PEW distribution is
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Figure 5: q-q plot for first and second data set.
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Figure 6: p-p plot for first and second data set.

established. Various structural properties as well as reliability measures of the PEW distribution
have been highlighted. The reason for adopting this method is that its cdf has a closed form and
can represent data with monotone and non-monotone failure rates. It has been revealed that the
three-parameter PEW distribution offers more flexibility in respect of hazard rate function and
the density function. The suggested model is fitted to two distinct real-life data sets, and the
figures demonstrate that it fits both data sets better than any other competing models.
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Table 3: Estimates (standard errors) and kolmogorov smirnov test statistic for the first data set.

Model
Estimates Statistics

α̂ β̂ λ̂ K-S p-value

PEW
358.7757 0.5380 15.8364 0.08433 0.8844
(24.4872) (0.3304) (2.0124)

APW
0.0320 3.4096 4.4898 0.12804 0.4108

(0.0508) (0.3606) (2.4429)

APIW
4.5086 3.0823 0.0029 0.10264 0.6927

(2.2779) (0.4720) (0.0017)

MW
0.0010 2.7475 47.5555 0.14985 0.2313

( 2.0711) (0.3700) (7.9292)

TW
0.6464 3.0077 0.2796 0.14075 0.2976

(0.2711) (0.3111) (0.0213)

OW
27.13668 0.1312 3.2941 0.08862 0.8452
(15.5796) (0.0737) (5.1657)

LW
17.0146 2.7406 1.4788 0.15011 0.2296

(22.4843) (0.2854) (1.4712)

APWQ
64.6499 6.8937 65.4380 0.17289 0.1134
(9.0106) (0.2609) (0.7298)

MOW
0.0224 4.8044 2.2389 0.09189 0.8124

(0.0362) (0.6295) (9.9652)

APE
100.4597 - 15.4005 0.10423 0.6741
(16.7779) (0.8223)

W
- 2.7475 47.5560 0.14990 0.2310

(0.2844) (17.9142)

Table 4: Information measures for the first data set.

Model −2l(β̂) AIC AICC BIC

PEW -116.4881 -110.4881 -109.9427 -104.8745

APW -110.56961 -104.56961 -104.02416 -98.95601

APIW -113.1797 -107.1797 -106.6342 -101.5661

MW -105.4775 -99.4775 -98.9321 -93.8639

TW -107.8930 -101.8930 -101.3476 -96.2794

OW -114.7898 -108.7898 -108.2443 -103.1762

LW -105.42378 -99.42378 -98.87832 -93.81017

APWQ -111.7091 -105.7091 -105.1636 -100.0955

MOW -115.3954 -109.3954 -108.8500 -103.7818

APE -111.3370 -107.3370 -106.7915 -103.5946

W -105.48441 -101.48441 -101.21774 -97.74201

Appendix

APW f (x) =
logα

α − 1
λβα1−e−λxβ

xβ−1e−λxβ

APIW f (x) =
logα

α − 1
λβx−(β+α)e−λx−β

αe−λx−β

MW f (x) = (α + λβxβ−1)e−αx−λxβ

TW f (x) =
β

λ

( x
λ

)β−1
e−(

x
λ )

β
(

1 − α + 2αe−(
x
λ )

β
)

OW f (x) =
αβ

x

( x
λ

)β
e(

x
λ )

β
(

e(
x
λ )

β

− 1
)α−1 [

1 +
(

e(
x
λ )

β

− 1
)α]−2

LW f (x) =
βα2

α + 1
λβxβ−1 + λ2βx2β−1e−α(λx)β
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Table 5: Estimates (standard errors) and kolmogorov smirnov test statistic for the second data set.

Model
Estimates Statistics

α̂ β̂ λ̂ K-S p-value

PEW
48.9866 0.8570 1.8620 0.10299 0.8974

(71.8227) (0.2715) (1.1181)

APW
0.5344 1.2214 7.8545 0.10759 0.8655

(2.3730) (1.5742) (0.1492)

APIW
2.6751 4.0481 32.1024 0.13443 0.6297

(4.6311) (0.7247) (16.6057)

MW
0.0010 2.9427 0.0255 0.16492 0.3680

( 0.2108) (0.4632) (0.0249)

TW
0.7341 3.2334 4.0055 0.14982 0.4897

(0.2973) (0.4079) (0.3343)

OW
56.6837 6.9111 5.8591 0.10573 0.8789
(34.145) (4.0662) (1.8199)

LW
0.0146 2.1105 3.0945 0.15024 0.4860

(0.0189) (0.2638) (2.1745)

APWQ
7.9249 3.7269 0.0047 0.16588 0.3611

(7.7298) (0.3934) (0.0034)

MOW
0.0139 5.3051 0.1529 0.10472 0.8859

(0.0249) (0.8008) (0.0459)

APE
183.6176 - 1.0341 0.12275 0.7385
(22.3726) (0.7071)

W
- 2.9413 0.0256 0.16544 0.3642

(0.3668) (0.0140)

Table 6: Information measures for the second data set.

Model −2l(β̂) AIC AICC BIC

PEW 83.70147 89.70147 90.59036 94.00343

APW 84.90786 90.90786 91.79675 95.20982

APIW 85.51669 91.51669 92.40557 95.81865

MW 92.26848 98.26848 99.15737 102.57044

TW 90.26095 96.26095 97.14984 100.56291

OW 85.10416 91.10416 91.99305 95.40612

LW 89.30294 95.30294 96.19183 99.60490

APWQ 90.44442 96.44442 97.33331 100.74638

MOW 84.89439 90.89439 91.78328 95.19636

APE 88.34464 92.34464 93.23353 95.21262

W 92.19582 96.19582 96.62439 99.06379

APWQ f (x) =
(α − 1)λβxβ−1e−λxβ

logα
(

1 + (α − 1)(1 − e−λxβ
)
)

MW f (x) =
αλβ(λx)β−1e−(λx)β

1 − (1 − α)e−(λx)β

APE f (x) =
logα

α − 1
λe−λxα1−e−λx

where α,β,λ > 0 and Γ(α) =
∞∫
0

xα−1e−xdx is the gamma function.

Declaration

Conflict of interest: The authors declare that they have no Conflict of interest.

RT&A, No 1 (72)
 Volume 18, March 2023

108



M. A. Lone, T. R. Jan
A New Pi-Exponentiated Method for Constructing
Distributions with an Application to Weibull Distribution

References

[1] Gokarna R Aryal and Chris P Tsokos. Transmuted weibull distribution: A generalization of
theweibull probability distribution. European Journal of pure and applied mathematics, 4(2):89–
102, 2011.

[2] Demet Aydin. The new weighted inverse rayleigh distribution and its application. Mathemtics
and Informatics, 34(3):511–523, 2019.

[3] Abdulkareem M Basheer. Alpha power inverse weibull distribution with reliability applica-
tion. Journal of Taibah University for Science, 13(1):423–432, 2019.

[4] Kahadawala Cooray. Generalization of the weibull distribution: the odd weibull family.
Statistical Modelling, 6(3):265–277, 2006.

[5] Gauss M Cordeiro, Ahmed Z Afify, Haitham M Yousof, Selen Cakmakyapan, and Gamze
Ozel. The lindley weibull distribution: properties and applications. Anais da Academia
Brasileira de Ciências, 90:2579–2598, 2018.

[6] Gauss Moutinho Cordeiro and Rejane dos Santos Brito. The beta power distribution. Brazilian
journal of probability and statistics, 26(1):88–112, 2012.

[7] Nicholas Eugene, Carl Lee, and Felix Famoye. Beta-normal distribution and its applications.
Communications in Statistics-Theory and methods, 31(4):497–512, 2002.

[8] Anwar Hassan, I. H Dar, and M. A Lone. A novel family of generating distributions based
on trigonometric function with an application to exponential distribution. Journal of Scientific
Research, 65(5), 2021.

[9] Dinesh Kumar, U Singh, and Umesh Singh. Life time distributions: Derived from some
minimum guarantee distribution. Sohag Journal of Mathematics, 4(1):7–11, 2017.

[10] Nikolay Kyurkchiev. A new transmuted cumulative distribution function based on the
verhulst logistic function with application in population dynamics. Biomath Communications,
4(1), 2017.

[11] MA Lone, IH Dar, and TR Jan. A new method for generating distributions with an application
to weibull distribution. Reliability: Theory & Applications, 17(1 (67)):223–239, 2022.

[12] Murtiza Ali Lone, Ishfaq Hassain Dar, and TR Jan. An innovative method for generating
distributions: Applied to weibull distribution. Journal of Scientific Research, 66(3), 2022.

[13] Abbas Mahdavi and Debasis Kundu. A new method for generating distributions with
an application to exponential distribution. Communications in Statistics-Theory and Methods,
46(13):6543–6557, 2017.

[14] Albert W Marshall and Ingram Olkin. A new method for adding a parameter to a family of
distributions with application to the exponential and weibull families. Biometrika, 84(3):641–
652, 1997.

[15] Sandeep K Maurya, Arun Kaushik, Rajwant K Singh, Sanjay K Singh, and Umesh Singh. A
new method of proposing distribution and its application to real data. Imperial Journal of
Interdisciplinary Research, 2(6):1331–1338, 2016.

[16] Govind S Mudholkar and Deo Kumar Srivastava. Exponentiated weibull family for analyzing
bathtub failure-rate data. IEEE transactions on reliability, 42(2):299–302, 1993.

[17] M Nassar, A Alzaatreh, O Abo-Kasem, M Mead, and M Mansoor. A new family of gener-
alized distributions based on alpha power transformation with application to cancer data.
Annals of Data Science, 5(3):421–436, 2018.

[18] Ammar M Sarhan and Mazen Zaindin. Modified weibull distribution. APPS. Applied Sciences,
11:123–136, 2009.

[19] William T Shaw and IR Buckley. The alchemy of probability distributions: Beyond gram-
charlier & cornish-fisher expansions, and skew-normal or kurtotic-normal distributions.
Submitted, Feb, 7:64, 2007.

[20] Waloddi Weibull. A statistical distribution function of wide applicability. Journal of applied
mechanics, 1951.

RT&A, No 1 (72)
 Volume 18, March 2023

109




