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Abstract

A simple model of the new notion of “Markov up” processes is proposed; its positive recurrence and
ergodic properties are shown under the appropriate conditions. A one-dimensional process in discrete
time moves upwards as if it were Markov, and goes down in a more complicated way, remembering all its
past from the moment of its “u-turn” down. Also, it is assumed that in some sense its move downwards
becomes more and more probable after each step in this direction.
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1. Introduction

The idea of integer valued processes which behave like markovian on the periods of growing
and in a more complicated non-markovian way on the periods of decreasing was suggested by
Alexander Dmitrievich Solovyev in a private communication in the late 90’s [2]. In this phase
of his research activity he only worked on applied projects. Hence, there is no doubt that this
idea was also an applied one, most likely related to the theory of reliability, which was one of his
main interests. To the best of the authors knowledge he did not leave any published notes on this
theme. Also, the authors are not aware of any other publications devoted to this idea, although
certain close models do exist in the literature. In this paper a toy model of this idea is proposed.

Consider a process Xn, n ≥ 0 on Z+ = {0, 1, . . .}, or on Z0,N̄ = {0, . . . N̄} with some
0 < N̄ < ∞, possessing the following property: for any n ≥ 1 where the last jump was up
(including staying), it is assumed that for some function ϕ(i, j), i, j ∈ Z+,

P(Xn+1 = j|FX
n ; Xn ≥ Xn−1) = ϕ(Xn, j), (1)

that is, the “movement upwards remains markovian”; the “decision” to turn downwards is
also markovian in the first instant; however, where the last jump was down, the next proba-
bility distribution may depend on some part of the past trajectory: namely for some function
ψ(Xn, . . . Xζn)

P(Xn+1 = j|FX
n ; Xn < Xn−1) = ψ(Xn, . . . Xζn), (2)

where ζn is the last turning time from “up” to “down” before n; it is formally defined in (3) in
what follows. Hence, the “memory” of the process while moving down is limited by the last time
of turning down; the latter moment may not be bounded. These assumptions reflect the property
that while the process “goes up" its transition probabilities for any jump up obey the Markov
property (1); as soon as it goes down, its transition probabilities “must" remember some past
values of the trajectory, namely, from the last jump up moment. The case of equality Xn = Xn−1
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– or staying at its place – is included in the movement up; probably it may be shifted to the
movement down, but apparently it would change the calculus and we do not pursue studying
all possibilities here at once. Also, some more complicated rules could be introduced instead
of those described above; however, our goal is just to show a simplest version of the idea of a
“Markov up" process and to discuss some recurrence and ergodic properties which this model
may possess.

As a rationale, the model may be applied to a situation of the evolution of some involved
many-component device which may have several states and which “goes up” while it is working,
or it “goes down” if one or several of the critical components in this device break down, after
which the evolution does not stop but becomes more and more chaotic with a likely further
disbalance or even, or, at least, dependent on all the states after their break down: the device
“remembers” the event of the faults in the critical components all the time until they are repaired
(in the simplest example fixing is just reloading the system), after which the transmission may
resume again and the behaviour becomes “markovian” again, satisfying the condition (1). There
is also some evidence that certain disastrous processes related to complicated devices may expose
similar features: once some critical failure occurs, the process of destruction may accelerate and
be unpredictably chaotic until some rescue arrives.

Note that the probability of such a model to be at some subset in the state space could be
viewed as a characteristic of the reliability of this device. Suppose that the movement “up” of
the process X is treated as approaching to some goal which is a high enough level above zero,
and that at any moment of time the position of X above the minimal level N brings some profit,
while falling down below the level N is regarded as a failure with no dividends or even with
some loss due to the expenses for repairing with the necessity to recover and to start raising
up again. Then the dynamical, or instantaneous reliability of the system may be defined as the
probability r(t) := P(Xt > N). Naturally, we are interested in computing this function r(t), or, at
least, its limit r(∞) := limt→∞ r(t), or its stationary value if the latter exists. Indeed, traditionally
all features of a model are evaluated and described in a stationary regime. It is well known that
very often in probability models such a limit coincides with the stationary value of r(t). In such
a setting the property of a positive recurrence may help to show that this invariant or limiting
probability r(∞) exists. The next important question would be to find the rate of this convergence;
it is not pursued in this paper. The issue of the bounds for the rate of this convergence is left until
further research and publications. Here we just recall that positive recurrence is naturally linked
to the existence of a stationary regime (see the corollary 6 in what follows).

The paper [3] proposes a Markov model for the daily dynamics of the Fire Weather Index
(FWI), which estimates the risk of wildfire. The authors do indicate that in fact the probability
of wildfire escaping will grow as the duration of a several-day intensive fire onset increases.
Statistical analysis in the paper concerns the suitable order of the Markov chain. It shows that
for the data analyzed mostly a Markov chain of order 1 is suitable, however sometimes order
2 is preferable. Data is limited to the province of Ontario, and the appropriate order may be
different elsewhere. In our model the length of memory is not fixed, which allows greater
flexibility. It also takes into account duration of the last fire onset, which may be beneficial. For
example, the paper [4] supports the idea that the total area burnt by a fire is an exponential
function of time after ignition. Such amplification of chaos and further imbalance is discussed
in the previous paragraph about functionality of a multi-component device. Evidence of local
memory dependence suggests that possibly a Markov-up process should be a reasonable model
for evolution of an index which quantifies realistic damage from fire. For the process to be called
Markov-up the worse the prognosis of the total damage the lower the index should be. In case
of working with a variable such as FWI ranging from 0 (low danger) to 100 (extreme danger),
perhaps, we could just as well introduce the notion of a “Markov-down” process, reversing the
directions of jumps with the specified transition probability characteristics. For fire damage
index dynamics it would be appropriate to consider a variation of the Markov-down process,
in which return to Markov behaviour happens after the index reaches a ‘low’ danger threshold
level in several sequential steps. Note that this index may also be regarded as a reliability type

274



Alexander Veretennikov and Maria Veretennikova
ON MARKOV-UP PROCESSES

RT&A, No 3 (69)
Volume 17, September 2022

characteristic where the reliability value could be defined as a probability that this index does not
exceed some level. What is more, actually, the probability of each possible value of this index
could be a more accurate and informative characteristic of an “extended reliability” type. The
theory in this paper concerns the simplest version of a Markov-up process.

Note that according to (2) the “transition probabilities” P(Xn+1 = j|Xn, . . . Xζn) after jumps
down do not depend on n, that is,

P(Xn+1 = j|Xn, . . . , Xζn)|ζn=m,Xn=a0,...,Xζn=am

= P(Xn+k+1 = j|Xn+k, . . . , Xζn+k )|ζn+k=m,Xn+k=a0,...,Xζn+k
=am ,

for any m ≥ 0 and k ≥ 0 in the case of

a0 > . . . > am,

where it is assumed that Xζn−1 ≤ am. Similar assumption is made about the probabilities
P(Xn+1 = j|Xn) after jumps up, see (1). This corresponds to the “homogeneous” situation, in
which it makes sense to pose a question about ergodic properties. For the conditional probabilities
after the “jumps down” the memory could be, in principle, unlimited, in the sense that it is not
described by, say, m-Markov chains (i.e., with the memory of length m) except for the case of a
finite N̄. However, the process “does not remember anything which is older than the last turn
down”, that is, there is no dependence of future probabilities on the past earlier than time ζn for
each n. The moment ζn itself is interpreted as the last jump up before the fault occurs, and all the
time before the faulty component is fixed, the device keeps record of what has happened from
that moment to the present time, and the transition probabilities depend on this memory. The
first jump up after a series of jumps down signifies that the faulty component is fixed and, hence,
movement up resumes. The movement in both directions can have several options, that is, it is
not assumed that any jump up is by +1 and any jump down is with -1. Naturally, from zero there
are only jumps up, or the process may stay at its place. The model with a finite N̄ does not differ
too much from the infinite version: since we are interested in bounds which would not depend
on N̄, the calculus would be very similar: the only point is that at N̄ it should be specified what
kind of jumps are possible; we do not pursue this version here assuming N̄ = ∞.

Models with more involved dependencies are possible: for example, instead of the immediate
switching to “Markov” probabilities after one jump up, it could be assumed that such a switch
occurs after several steps up, or after the average in time of consequent jumps up or down exceeds
some level, etc. Probably, some other adjustments of the model may be performed in order to
include some specific features of forest fires mentioned earlier.

We are interested in establishing ergodic properties for the model (1)–(2) under certain
“recurrence” and “non-singularity” assumptions. So, recurrence is one of the key points addressed
here.

There are some ideological similarities of the proposed model with renewal processes, and
with a (more general) notion of Hawkes processes, and also with semi-Markov processes. Actually,
this is a special case of semi-Markov type, as well as a special case of a regeneration process.
Moreover, as we shall see in what follows, some transformation of the model based on the
enlarged state space turns out to be a particular Markov process, which is not really surprising
since, as is well-known, any process may be regarded as Markov after a certain change of the
state space. Yet, this is not always useful. In any case, ergodic properties of the model are to be
established from scratch, and markovian features will only be used in what concerns the invariant
measure via the Harris – Khasminskii principle.

An extended abstract preceding this publication was presented at the ICMS5 conference in
November 2020, see [5]. Because of many new objects, quite a few definitions will be repeatedly
reminded to the reader during the text. The paper consists of five section: Introduction, The
model and assumptions, Auxiliary lemmata, Main results (theorem 5 and corollary 6), Proof of
theorem 5, and Proof of corollary 6.
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2. The model and the assumptions

We use standard notation a ∧ b = min(a, b), a ∨ b = max(a, b).

Further notations: Let us define for each n ≥ 0 the random variables

ζn := inf(k ≤ n : ∆Xi := Xi+1 − Xi < 0, ∀i = k, . . . n), (inf(∅) = +∞), (3)

ξn := sup(k ≥ n : all increments ∆Xi ≥ 0, ∀ n ≤ i ≤ k) ∨ n. (4)

χn := sup(k ≥ n : all increments ∆Xi < 0, ∀ n ≤ i ≤ k) ∨ n. (5)

Also, let

X̂i,n := Xi1(ζn ∧ n ≤ i ≤ n), F̃n = σ(ζn; X̂i,n : 0 ≤ i ≤ n). (6)

Note that the family (F̃n) is not a filtration, and this is not required. We have, F̃n ⊂ Fn and
1(ζn ∧ n = n)E(ξ|F̃n) = 1(ζn ∧ n = n)E(ξ|Xn) ∀ξ. Also, note that X̂n,n = Xn for any n.

Now let us state the assumptions which rewrite from scratch the formulae (1) and (2).

A1. Random memory depth: For any n,

P(Xn+1 = j|Fn) = P(Xn+1 = j|F̃n) a.s., (7)

and the latter conditional probability does not depend on n given the past Xn, . . . Xζn∧n, which serves as
the analogue of the homogeneity.
The random memory depth is what clearly distinguishes the proposed model from Markov chains
with a fixed memory length also known as complex Markov chains.
A2. Irreducibility (local mixing): For any x ≤ N and for two states y = x and y = x + 1

P(Xn+1 = y|F̃n, Xn = x) ≥ ρ > 0.

Note that 2ρ ≤ 1. Along with the recurrence condition, the assumption A2 will guarantee the
irreducibility of the process in the extended state space where the process becomes Markov, see
(15) below.
A3. Recurrence-1: There exists N ≥ 0 such that

(jump down ≡ (Xn+1 < Xn)|F̃n, N < Xn) ≥ κ0 > 0; (8)

P(Xn+1 < Xn|F̃n, N < Xn < Xn−1) ≥ κ1 > 0,

etc., and for any n ≥ m

P(Xn+1 < Xn|F̃n, N < Xn < . . . < Xn−m+1) ≥ κm−1 > 0, ∀ 1 ≤ m, (9)

Note that κ0 ≤ κ1 ≤ . . . Denote
q = 1 − κ0; q < 1.

Then
P(jump up ≡ (Xn+1 ≥ Xn)|F̃n, N < Xn) ≤ 1 − κ0 = q < 1.

A4. Recurrence-2: It is assumed that the following infinite product converges

κ̄∞ :=
∞

∏
i=0

κi > 0; (10)
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and

∑
i≥1

i(1 − κi) < ∞. (11)

Let
q̄ := 1 − κ̄∞(< 1) & q := 1 − κ0 (< 1).

Note that
P(jump up ≡ (Xn+1 ≥ Xn)|F̃n, N < Xn) ≤ 1 − κ0 = κ̄0 = q < 1.

A5. Jump up moment bound:

M1 := ess
P

sup
ω

sup
n

E((Xn+1 − Xn)+|F̃n) < ∞. (12)

Let
q̄ = 1 − κ̄∞ (< 1).

This is the upper bound for the probability that the fall down is not successful, i.e., that the “floor”
[0, N] is not reached in one go.

Denote

κ̄m :=
m

∏
i=0

κi (≥ κ̄∞ > 0).

Let us emphasize that the index i in κi is not the state where the process X is, but the value for
how long the process is falling down. The process remembers for how long it has been going
down so far, and the longer it goes down the more probable is to continue in this direction, at
least, until the process reaches [0, N]. Equivalently,

∑ ln κi < ∞.

Of course, this implies that κi → 1 as i → ∞, which is, clearly, a weaker condition than (10).
Convergence of the sequence κi to 1, if it is monotonic, may be interpreted in a way that the
longer the decreasing trajectory, the more faulty components in the device: each jump down
makes some additional disorder in the system, which further increases the probability to continue
falling down.

Example 1. The assumption (11) is satisfied, for example, under the condition 1 − κm ≤ C
m3 , or,

equivalently,

κm ≥ 1 − C
m3 .

An exponential rate of the approach of the sequence κm to 1 accepted in some applied models of a fire
evolution could be interpreted as the inequality

κm ≥ 1 − exp(−λm)

with some λ > 0.

The assumption (12) is valid, for example, if there exists a nonrandom constant C ≥ 0 such that with
probability one

Xn+1 − Xn ≤ C < ∞.

Denote
τ = τ1 := inf(t ≥ 0 : Xt ≤ N); γ := inf(t ≥ τ : Xt−1 ≤ Xt = N).

277



Alexander Veretennikov and Maria Veretennikova
ON MARKOV-UP PROCESSES

RT&A, No 3 (69)
Volume 17, September 2022

The regeneration occurs not at moment τ, but at moment γ. However, the expectation of γ may be
evaluated via Exτ. Hence, it will be useful to introduce the following two sequences of stopping
times with respect to the filtration FX

n by induction:

Tn := inf(t > τn : Xt > N), τn+1 := inf(t > Tn : Xt ≤ N).

The convention. With the initial position X0 = x we assume that any artificial “admissible past”
is allowed, that is, we accept that there is some fictitious past which could have preceded this
state; we include in this past nothing if the artificial state X−1 does not exceed X0, or we add
the fictitious past trajectory from the last starting moment of the fall ζ0: Xζ0 , . . . , X−1. From the
assumption (A1) it follows that the process (Yn,FY

n ) is Markov; of course, FY
n = FX

n .

Let us recall the definitions of Greeks:

ζn := inf(k ≤ n : ∆Xi := Xi+1 − Xi < 0, ∀i = k, . . . n) (inf(∅) = ∞);

X̂i,n := Xi1(ζn ∧ n) ≤ i ≤ n), F̃n = σ(ζn; X̂i,n : 0 ≤ i ≤ n);

ξn := sup(k ≥ n : all increments ∆Xi ≥ 0, ∀ n ≤ i ≤ k) ∨ n;

χn := sup(k ≥ n : all increments ∆Xi < 0, ∀ n ≤ i ≤ k) ∨ n.

3. Auxiliary lemmata

Lemma 2. Under the assumption (A3) for any x > N,

Ex(ξ0 − 0) ≤ M2 =
q

(1 − q)2 .

Proof. Recall that the random variable ξn was defined by the formula

ξn := sup(k ≥ n : all increments ∆Xi ≥ 0, ∀ n ≤ i ≤ k) ∨ n.

We use the notations from the proof of lemma 4 (below): for i ≥ n let

ei = 1(Xi+1 ≥ Xi), ēi = 1(Xi+1 < Xi), ∆Xi = Xi+1 − Xi, ℓi
n = ēi

i−1

∏
k=n

ek (assume
n−1

∏
n

= 1).

The bounds in this lemma and in the other lemmata will not depend on the initial state x, so we
drop this index in Ex and Px in this section (but not in the proof of the main result). We have, for
i ≥ n

Ex(ei|Xi > N) = P(Xi+1 ≥ Xi|Xi > N)

= Ex(Px(Xi+1 ≥ Xi|F̃i, Xi > N)|Xi > N) ≤ 1 − κ0 = q.

Then almost surely

ξn − n =
∞

∑
k=0

kēn+k

n+k−1

∏
i=n

ei =
∞

∑
k=1

kēn+k

n+k−1

∏
i=n

ei =
∞

∑
k=1

kℓn+k
n .

So, we estimate,

Ex(ξn − n) = E
∞

∑
k=1

kēn+k

n+k−1

∏
i=n

ei ≤
∞

∑
k=1

kEx

n+k−1

∏
i=n

ei

≤
∞

∑
k=1

kqk = q
∞

∑
k=1

kqk−1 =
q

(1 − q)2 := M2 < ∞. QED
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Let us recall,

τ := inf(t ≥ 0 : Xt ≤ N), χn := sup(k ≥ n : all increments ∆Xi < 0, ∀ n ≤ i ≤ k) ∨ n,

and
Px(Xn+1 < Xn|F̃n, N < Xn < . . . < Xn−m+1) ≥ κm−1 > 0, ∀ 1 ≤ m,

and also
χn := sup(k ≥ n : all increments ∆Xi < 0, ∀ n ≤ i ≤ k) ∨ n.

Lemma 3. Under the assumptions (A3)-(A4), for any x > N, (n = 0)

Ex(χn − n)1(χn < τ) ≤ ∑
i≥1

i(1 − κi) := M3 < ∞.

Proof. Similarly to the calculus of the previous lemma but with the replacement of ei by ēi and
vice versa, we have

(χn − n)1(χn < τ) ≤
∞

∑
k=1

ken+k1(n + k − 1 < τ)
n+k−1

∏
i=n

ēi,

so,

Ex(χn − n)1(χn < τ) ≤ Ex

∞

∑
k=1

ken+k1(n + k − 1 < τ)
n+k−1

∏
i=n

ēi

≤
∞

∑
k=1

kEx1(n + k − 1 < τ)(
n+k−1

∏
i=n

ēi)Ex(en+k|∆Xi < 0, 0 ≤ i ≤ n + k − 1)

A3
≤

∞

∑
k=1

kEx1(n + k − 1 < τ)(
n+k−1

∏
i=n

ēi)(1 − κk) ≤
∞

∑
k=1

k(1 − κk) =: M3
A4
< ∞. QED

Let us recall once more,

ξn := sup(k ≥ n : all increments ∆Xi ≥ 0, ∀ n ≤ i ≤ k) ∨ n.

Lemma 4. Under the assumptions (A3) and (A5) the expected value of the maximum positive increment
over any single period of running up (non-strictly) until the first jump down is finite:

sup
n,x

Ex(Xξn − Xn)+ ≤ M4 < ∞.

Proof. First of all, it suffices to show that

sup
n,x

Ex(Xξn − Xn)+|F̃n) ≤ M4 < ∞.

Further, we have

sup
n,x

Ex((Xξn − Xn)+|F̃n, Xn ≤ N) ≤ N + sup
n,x

Ex((Xξn − Xn)+|F̃n, Xn > N).

Hence, it suffices to show only

sup
n,x

Ex((Xξn − Xn)+|F̃n, Xn > N) ≤ M < ∞ (a.s.)
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In other words, it is sufficient to establish for n = 0 that

sup
x>N

Ex(Xξ0 − x)+ ≤ M < ∞.

With the same notations ei = 1(Xi+1 ≥ Xi), ēi = 1(Xi+1 < Xi), ∆Xi = Xi+1 − Xi, ℓi
n =

ēi × ∏i−1
k=n ek we have,

Ex(Xξn − Xn)+ = Ex

∞

∑
i=n+1

ℓi
n(Xi − Xn) =

∞

∑
i=n+1

Exℓ
i
n(Xi − Xn)

(assuming that the latter sum converges; note that all its terms are non-negative). Further,

Exℓ
i
n(Xi − Xn) = Ex(ℓ

i
n

i−1

∑
j=n

∆Xj) =
i−1

∑
j=n

Exℓ
i
n∆Xj

For each single term in this sum we have (n ≤ j ≤ i − 1)

Exℓ
i
n∆Xj = ExEFj+1(

j

∏
k=n

ek)∆Xj(
i−1

∏
k′=j+1

ek′) = E(
j

∏
k=n

ek)∆XjEFj+1(
i−1

∏
k′=j+1

ek′)

= Ex(
j

∏
k=n

ek)∆XjEF̃j+1
(

i−1

∏
k′=j+1

ek′)
(A3)
≤ Ex(

j

∏
k=n

ek)∆Xj × qi−j−1

= qi−j−1Ex(
j−1

∏
k=n

ek)EFj ej∆Xj = qi−j−1Ex(
j−1

∏
k=n

ek)EF̃j
ej∆Xj

(A5)
≤ M1qi−j−1Ex(

j−1

∏
k=n

ek) ≤ M1qi−j−1qj−n = M1qi−n−1.

Hence,

Exℓ
i
n(Xi − Xn) =

i−1

∑
j=n

Exℓ
i
n∆Xj ≤

i−1

∑
j=n

M1qi−n−1 = (i − n)M1qi−n−1

and so

Ex(Xξn − Xn)+ ≤ M1

∞

∑
i=n+1

(i − n)qi−n−1 =: M4 < ∞,

as required. Lemma 4 is proved. QED

4. Main results

Theorem 5. Under the assumptions (A1) – (A5) there exist constants C1, C2 > 0 such that

Exτ ≤ x + C1. (13)

and there exist constants C2, C3 > 0 such that

Exγ ≤ C2x + C3. (14)

Here C1 ≤ M4 q̄
1−q̄ .

Corollary 6. Under the assumptions of the theorem 5 the process Xn has a stationary measure.
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5. Proof of theorem 5

0. First of all let us state the idea of the proof. We will establish the property of recurrence
towards the interval [0, N] due to the recurrence assumptions, which property holds true despite
the non-markovian behaviour. Further, inside [0, N] coupling holds true on each step with a
positive probability bounded away from zero on the jump up (or stay); after such a coupling,
the process does not remember its past given the present before it started falling down. Hence,
de-coupling is not possible.

Formally, let us make the process (strong) Markov by extending its state space. For this aim it
suffices to define

Yn := Xn1(Xn ≥ Xn−1) + (Xn, . . . Xζn)
T1(Xn < Xn−1) ≡ (Xn, . . . Xζn∧n)

T (15)

(here T stands for the transposition; recall that ζn < n in case of Xn < Xn−1; in any case, the
vector Yn is of a finite, but variable dimension which is random).

1. Recurrence. Due to (10), from any state y > N there is a positive probability to attain the
set [0, N] in a single monotonic fall down with no stopovers with a probability no less than κ̄∞.
The time required for such a monotonic trajectory from y to [0, N] is no more than y − N − 1.
However, other scenarios are possible with stopovers and temporary runs up. Hence, to evaluate
the expected value of τ some calculus is needed.

Let us establish the bound (13).
Exτ ≤ x + C. (16)

If x ≤ N, then τ = 0 and the bound is trivial. Let x > N. Recall that slightly abusing notations
we only write down the initial position x, while in fact there might be some non-trivial prehistory
F̃0. The process may start descending straight away, or after several steps up (or after staying at
state x for some time). In the latter case the position Xξ0 from which the descent starts admits the
bound

(ExXξ0 − x)+ ≤ M4

(see lemma 4).

Case I: at t = 0 the process is falling down.
Let us define stopping times

t0 = T0 = 0, T1 = χt0 , t1 = ξT1 , T2 = χt1 , t2 = ξT2 , T3 = χt2 , . . .

In words, Ti is the end of the next partial fall after ti−1; ti is the end of the next run up after Ti. There
might be a.s. finitely many excursions down and up, and the last fall down will finish at [0, N].

Let us recall that

ξn := max(k ≥ n : all increments ∆Xi ≥ 0, ∀ n ≤ i ≤ k) ∨ n,

and
χn := max(k ≥ n : all increments ∆Xi < 0, ∀ n ≤ i ≤ k) ∨ n.

We have ∀x > N
Ex(ξ0 − 0) ≤ ∑

i
iqi =: M2.

and ∀x > N
Ex(χ0 − 0) ≤ M3.

Note that
Ti − ti−1 ≤ Xti−1 .
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Denote by Ai (i ≥ 1) the event of precisely i − 1 unsuccessful attempts to descend to the floor
[0, N], after which on the ith attempt it does attain the floor; by Bj let us denote jth unsuccessful
attempt to fall down until reaching the floor [0, N] (probability that it is unsuccessful is less
that q̄ < 1); Bc

j is the event where the jth fall down is successful. Then we have τ = Ti on

Ai = (
⋂

1≤j≤i−1 Bj)
⋂

Bc
i . The probability of Ai does not exceed q̄i−1. (Recall, q̄ = 1 − κ̄∞.) So, we

estimate,

Exτ = ∑
i≥1

Exτ1(Ai) ≤ ∑
i≥1

Ex1(Ai)Ti = ∑
i≥1

Ex1(
⋂

1≤j≤i−1

Bj)
⋂

Bc
i )Ti

2
= ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Ti
3
= ∑

i≥1
ExEFti−1

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Ti

4
= ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
EFti−1

1(Bc
i )Ti

5
= ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
EFti−1

1(Bc
i )(Ti − ti−1 + ti−1)

6
= ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )ti−1 + ∑
i≥1

Ex

(
1 ∏

1≤j≤i−1
(Bj)

)
EFti−1

1(Bc
i )(Ti − ti−1)

7
≤ ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )ti−1 + ∑
i≥1

Ex

(
1 ∏

1≤j≤i−1
(Bj)

)
EFti−1

1(Bc
i )Xti−1

8
≤ ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )ti−1 + ∑
i

Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Xti−1 .

Note that Bj ∈ FTj . We are going to show that

∑
i≥1

Ex

(
∏

1≤j≤i−1
1(Bj)

)
ti−1 ≤ C (17)

and

∑
i≥1

Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Xti−1 ≤ x + C. (18)

Step 1.
ti−1 = (ti−1 − Ti−1) + (Ti−1 − ti−2) + ... + (T1 − t0) + (t0 − T0).

We have

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(ti−1 − Ti−1) = ExEFTi−1

(
∏

1≤j≤i−1
1(Bj)

)
(ti−1 − Ti−1)

= Ex

(
∏

1≤j≤i−1
1(Bj)

)
EFTi−1

(ti−1 − Ti−1)
lemma 1
≤ M2Ex

(
∏

1≤j≤i−1
1(Bj)

)
≤ M2q̄i−1;
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also,

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(Ti−1 − ti−2) = ExEFti−2

(
∏

1≤j≤i−1
1(Bj)

)
(Ti−1 − ti−2)

= Ex

(
∏

1≤j≤i−2
1(Bj)

)
EFti−2

1(Bi−1)(Ti−1 − ti−2)
lemma 2
≤ M3Ex

(
∏

1≤j≤i−2
1(Bj)

)
≤ M3q̄i−2;

further,

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(ti−2 − Ti−2) = Ex

(
∏

1≤j≤i−2
1(Bj)

)
(ti−2 − Ti−2)EFti−1

1(Bi−1)

≤ q̄ Ex

(
∏

1≤j≤i−2
1(Bj)

)
(ti−2 − Ti−2) ≤ q̄M2q̄i−2 = M2q̄i−1,

and

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(Ti−2 − ti−3) = ExEFTi−2

(
∏

1≤j≤i−1
1(Bj)

)
(Ti−2 − ti−3)

= Ex

(
∏

1≤j≤i−2
1(Bj)

)
(Ti−2 − ti−3)EFTi−2

1(Bi−1)

≤ q̄Ex

(
∏

1≤j≤i−2
1(Bj)

)
(Ti−2 − ti−3) ≤ q̄M3q̄i−3 = M3q̄i−2;

etc. By induction we obtain

Ex

(
∏

1≤j≤i−1
1(Bj)

)
ti−1 ≤ iM2q̄i−1 + (i − 1)M3q̄i−2.

Hence, the first desired inequality (17) is true,

∑
i

Ex

(
∏

1≤j≤i−1
1(Bj)

)
ti−1 ≤ M2 ∑

i≥1
(i − 1)q̄i−1 + M3 ∑

i≥2
(i − 2)q̄i−1 =: C < ∞.

Step 2. Note that Xtj ≥ XTj , so that Xtj − Xtj−1 ≤ Xtj − XTj . Also, in the case under the
consideration Xt0 = x. Hence, we have,

Xti−1 = (Xti−1 − Xti−2) + . . . + (Xt1 − Xt0) + (Xt0 − x) + x.
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So,

Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Xti−1

= Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )

(
x + (Xt0 − x) +

i−1

∑
k=1

(Xtk − Xtk−1)

)

≤ Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )

(
x +

i−1

∑
k=1

(Xtk − XTk )

)

= x × Ex ∏
1≤j≤i−1

1(Bj)1(Bc
i ) + Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )
i−1

∑
k=1

(Xtk − XTk )

≤ x × Ex ∏
1≤j≤i−1

1(Bj)1(Bc
i ) + Ex

(
∏

1≤j≤i−1
1(Bj)

)
i−1

∑
k=1

(Xtk − XTk ).

For any 1 ≤ k ≤ i − 1 we estimate

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(Xtk − XTk ) = ExEFtk

(
∏

1≤j≤i−1
1(Bj)

)
(Xtk − XTk )

= Ex

(
∏

1≤j≤k
1(Bj)

)
(Xtk − XTk )EFtk

(
∏

k+1≤j≤i−1
1(Bj)

)

≤ Ex

(
∏

1≤j≤k
1(Bj)

)
(Xtk − XTk )q̄

i−k−1 = q̄i−k−1Ex

(
∏

1≤j≤k
1(Bj)

)
EFTk

(Xtk − XTk )

lemma 3
≤ M4q̄i−k−1Ex

(
∏

1≤j≤k
1(Bj)

)
≤ M4q̄i−k−1+k = M4q̄i−1.

Therefore, since 1 = ∑i

(
∏1≤j≤i−1 1(Bj)

)
1(Bc

i ) a.s., we get

∑
i

Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Xti−1

≤ xEx ∑
i

∏
1≤j≤i−1

1(Bj)1(Bc
i ) + M4 ∑

i
iq̄i−1 ≤ x +

M4

1 − q̄
.

This shows (18), as required.

Case II: at t = 0 the process is going up. Let us define stopping times

T0 = 0, t0 = ξ0, T1 = χt0 , t1 = T1 + ξT1 , T2 = t1 + χt1 , . . .
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(Ti is the end of the next partial fall after ti−1; ti is the end of the next run up after Ti. There
might be a.s. finitely many excursions down and up, and the last fall down will finish at [0, N].)
We have,

ti−1 = (ti−1 − Ti−1) + (Ti−1 − ti−2) + ... + (T1 − t0) + (t0 − T0).

So, we estimate

Exτ = ∑
i≥1

Exτ1(Ai) = ∑
i≥1

Ex1(Ai)Ti = ∑
i≥1

Ex1(
⋂

1≤j≤i−1

Bj)
⋂

Bc
i )Ti

2
= ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Ti
3
= ∑

i≥1
ExEFti−1

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Ti

4
= ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
EFti−1

1(Bc
i )Ti

5
= ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
EFti−1

1(Bc
i )(Ti − ti−1 + ti−1)

6
= ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )ti−1 + ∑
i≥1

Ex

(
1 ∏

1≤j≤i−1
(Bj)

)
EFti−1

1(Bc
i )(Ti − ti−1)

7
≤ ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )ti−1 + ∑
i≥1

Ex

(
1 ∏

1≤j≤i−1
(Bj)

)
EFti−1

1(Bc
i )Xti−1

8
≤ ∑

i≥1
Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )ti−1 + ∑
i≥1

Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Xti−1

Note that Bj ∈ FTj . We are going to show that

∑
i≥1

Ex

(
∏

1≤j≤i−1
1(Bj)

)
ti−1 ≤ C (19)

and

∑
i≥1

Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Xti−1 ≤ x + C. (20)

Step 3. We have

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(ti−1 − Ti−1) = ExEFTi−1

(
∏

1≤j≤i−1
1(Bj)

)
(ti−1 − Ti−1)

= Ex

(
∏

1≤j≤i−1
1(Bj)

)
EFTi−1

(ti−1 − Ti−1)
lemma 1
≤ M2Ex

(
∏

1≤j≤i−1
1(Bj)

)
≤ M2q̄i−1,
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and

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(Ti−1 − ti−2) = ExEFti−2

(
∏

1≤j≤i−1
1(Bj)

)
(Ti−1 − ti−2)

= Ex

(
∏

1≤j≤i−2
1(Bj)

)
EFti−2

1(Bi−1)(Ti−1 − ti−2)
lemma 2
≤ M3Ex

(
∏

1≤j≤i−2
1(Bj)

)
≤ M3q̄i−2;

further,

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(ti−2 − Ti−2) = Ex

(
∏

1≤j≤i−2
1(Bj)

)
(ti−2 − Ti−2)EFti−1

1(Bi−1)

≤ q̄ Ex

(
∏

1≤j≤i−2
1(Bj)

)
(ti−2 − Ti−2) ≤ q̄M2q̄i−2 = M2q̄i−1;

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(Ti−2 − ti−3) = ExEFTi−2

(
∏

1≤j≤i−1
1(Bj)

)
(Ti−2 − ti−3)

= Ex

(
∏

1≤j≤i−2
1(Bj)

)
(Ti−2 − ti−3)EFTi−2

1(Bi−1)

≤ q̄Ex

(
∏

1≤j≤i−2
1(Bj)

)
(Ti−2 − ti−3) ≤ q̄M3q̄i−3 = M3q̄i−2;

etc. By induction we obtain

Ex

(
∏

1≤j≤i−1
1(Bj)

)
ti−1 ≤ iM2q̄i−1 + (i − 1)M3q̄i−2.

Hence, the first desired inequality (19) is true,

∑
i≥1

Ex

(
∏

1≤j≤i−1
1(Bj)

)
ti−1 ≤ M2 ∑

i≥1
iq̄i−1 + M3 ∑

i≥2
(i − 1)q̄i−1 =: C < ∞.

Step 4. Note that XT0 = x, and

Xti−1 ≤ x +
i−1

∑
j=1

(Xtj − XTj).

So, we have,

Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Xti−1 ≤ Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )

(
x +

i−1

∑
j=1

(Xtj − XTj)

)

= xEx ∏
1≤j≤i−1

1(Bj)1(Bc
i ) + Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )
i−1

∑
j=1

(Xtj − XTj)

≤ xEx ∏
1≤j≤i−1

1(Bj)1(Bc
i ) + Ex

(
∏

1≤j≤i−1
1(Bj)

)
i−1

∑
k=1

(Xtk − XTk ).
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For any 1 ≤ k ≤ i − 1 we estimate

Ex

(
∏

1≤j≤i−1
1(Bj)

)
(Xtk − XTk ) = ExEFtk

(
∏

1≤j≤i−1
1(Bj)

)
(Xtk − XTk )

= Ex

(
∏

1≤j≤k
1(Bj)

)
(Xtk − XTk )EFtk

(
∏

k+1≤j≤i−1
1(Bj)

)

≤ Ex

(
∏

1≤j≤k
1(Bj)

)
(Xtk − XTk )q̄

i−k−1 = q̄i−k−1Ex

(
∏

1≤j≤k
1(Bj)

)
EFTk

(Xtk − XTk )

lemma 3
≤ M4q̄i−k−1Ex

(
∏

1≤j≤k
1(Bj)

)
≤ M4q̄i−k−1+k = M4q̄i−1.

Therefore, since 1 = ∑i≥1

(
∏1≤j≤i−1 1(Bj)

)
1(Bc

i ) a.s., we get

∑
i≥1

Ex

(
∏

1≤j≤i−1
1(Bj)

)
1(Bc

i )Xti−1

≤ xEx ∑
i≥1

∏
1≤j≤i−1

1(Bj)1(Bc
i ) + M4 ∑

i
q̄i−1 ≤ x +

M4

1 − q̄
.

This shows (20), as required. In both cases I and II the bound (13) is proved.

Step 5. Let us establish the bound (14). Recall the notations introduced earlier after the
assumptions:

τ = τ1 := inf(t ≥ 0 : Xt ≤ N); γ = γ1 := inf(t ≥ τ : Xt−1 ≤ Xt = N),

and

Tn := inf(t > τn : Xt > N), τn+1 := inf(t > Tn : Xt ≤ N), n ≥ 1,

and T0 := 0. Also, let

γn+1 := inf(t > γn : Xt−1 ≤ Xt = N).

We have due to the assumption (A5)

ExXTn ≤ C, n ≥ 1; also, ExXT0 = x.

Therefore, by virtue of the bound (13) we have,

Ex(τ
n+1 − Tn) = ExEx(τ

n+1 − Tn|F̃Tn) ≤ ExXTn + C ≤ C, n ≥ 1,

and
Ex(τ

1 − T0) ≤ x + C, n = 0.

Also, due to the assumptions there exists p ∈ (0, 1) such that

Px(γ > Tn) ≤ pn ⇐⇒ Px(γ ≤ Tn) ≥ 1 − pn, n ≥ 1.
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Also,

Ex(Tn − τn) ≤ C, n ≥ 1.

Thus, also

E(Tn+1 − Tn) = E(Tn+1 − τn+1 + τn+1 − Tn) ≤ C.

Moreover,

E(Tn+1 − Tn|FX
Tn) ≤ C.

It follows by induction that

ETn ≤ Cn + x.

So, we estimate

Exγ = ∑
n≥0

Exγ1(Tn < γ ≤ Tn+1) ≤ ∑
n≥0

ExTn+11(Tn < γ ≤ Tn+1)

= ∑
n≥0

ExEx(Tn+11(Tn < γ ≤ Tn+1)|FX
Tn)

= ∑
n≥0

ExEx((Tn + Tn+1 − Tn)1(Tn < γ ≤ Tn+1)|FX
Tn)

≤ ∑
n≥0

ExEx((Tn + Tn+1 − Tn)1(Tn < γ)|FX
Tn)

= ∑
n≥0

ExTn1(Tn < γ) + ∑
n≥0

Ex1(Tn < γ)Ex((Tn+1 − Tn)|FX
Tn)︸ ︷︷ ︸

≤C+x1(n=0)

.
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Further, with any integer M > 0, denoting ExTn1(Tn < γ) =: dn, we have (note that d0 = 0),

M

∑
n=0

ExTn1(Tn < γ)︸ ︷︷ ︸
=:dn

=
M

∑
n=0

Ex(Tn−1 + Tn − Tn−1)1(Tn < γ)1(Tn−1 < γ)

= d0 +
M

∑
n=1

ExTn−11(Tn < γ)1(Tn−1 < γ) +
M

∑
n=1

Ex(Tn − Tn−1)1(Tn < γ)1(Tn−1 < γ)

= d0 +
M

∑
n=1

ExTn−11(Tn−1 < γ)Ex(1(Tn < γ)|FX
Tn−1)︸ ︷︷ ︸

≤p

+
M

∑
n=1

Ex1(Tn−1 < γ)Ex((Tn − Tn−1)1(Tn < γ)|FX
Tn−1)

≤ d0 +
M

∑
n=1

pdn−1 +
M

∑
n=1

Ex1(Tn−1 < γ)Ex((Tn − τn + τn − Tn−1)1(Tn < γ)|FX
Tn−1)

=
M

∑
n=1

pdn−1 +
M

∑
n=1

Ex1(Tn−1 < γ)[Ex((Tn − τn)1(Tn < γ)|FX
Tn−1)

+ Ex((τ
n − Tn−1)1(Tn < γ)|FX

Tn−1))︸ ︷︷ ︸
≤Cp+x1(n=1)

].

We have,

M

∑
n=1

Ex1(Tn−1 < γ)Ex((τ
n − Tn−1)1(Tn < γ)|FX

Tn−1))︸ ︷︷ ︸
≤Cp+x1(n=1)

≤ C + x + Cp
M

∑
n=1

Ex1(Tn−1 < γ) ≤ C + x + C
M−2

∑
n=0

pn ≤ C + x.
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Further,

M

∑
n=1

Ex1(Tn−1 < γ)[Ex((Tn − τn)1(Tn < γ)|FX
Tn−1)]

=
M

∑
n=1

Ex1(Tn−1 < γ)Ex[Ex{(Tn − τn)1(Tn < γ)|FX
τn}|FX

Tn−1 ]

≤
M

∑
n=1

Ex1(Tn−1 < γ)Ex[Ex{(Tn − τn)|FX
τn}︸ ︷︷ ︸

≤C

|FX
Tn−1 ]

≤ C
M

∑
n=1

Ex1(Tn−1 < γ) ≤ C ∑
n≥0

pn−1 ≤ C.

Thus,

M

∑
n=0

dn ≤ p(C +
M−1

∑
n=0

dn) + C + x,

which by the monotone convergence theorem implies that

∞

∑
n=0

dn ≤ C(1 + x)

and

Exγ ≤ ∑
n≥0

dn + C ≤ C + Cx.

The bound (14) is justified and the proof of the theorem is completed. QED

6. Proof of Corollary 6

The existence of an invariant measure for the process Y follows from the Harris – Khasminskii
principle via the formula

µY(A) := c EN−
γ

∑
n=1

1(Yn ∈ A),

where c is the normalising constant, A is any measurable set in the state space of the process
Y, and by EN− we understand the initial condition X0 = N with any preceding fictitious state
X−1 ≤ N. By the assumptions, the distribution of X1 only depends on X0 given this condition.
So, this state – with the convention of the preceding state in [0, N] – is, indeed, a regeneration
point.

To apply it to the process X let us take any bounded measurable function f (y) (y = (y1, . . .)),
which only depends on the first variable y1 = x:

∫
f (y)µY(dy) := cEN−

γ

∑
n=1

f (Yn).
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The latter expression in the right hand side determines an invariant measure for the process X
with a notation g(y1) := f (y):

∫
g(y1)µY(dy) := cEN−

γ

∑
1

g(Y1
n),

where Xn = Y1
n . So, the invariant measure for X reads

µX(A1) := cEN−
γ

∑
n=1

1(Y1
n ∈ A1).

The corollary is proved. QED
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