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Abstract 

 
Lifetime distributions for many components usually have a bathtub shape for its failure rate function 

in practice. However, there are a very few distribution have bathtub shaped failure rate function. 

Models with bathtub-shaped failure rate functions are useful in reliability analysis, particularly in 

reliability related decision making, cost analysis and burn-in analysis. When considering a failure 

mechanism, the failure of units in system may be due to random failure occurred by change in 

temperature, voltage, jurking etc or due to ageing. This paper study on a distribution, which is a 

mixture of Exponential and Gamma (3) distribution, which have bathtub shaped failure rate function. 

Moments, skewness, kurtosis, moment generating function, characteristic function are derived. 

Renyi entroy, Lorenz curve and Gini index are obtained. Reliability of stress-strength model is 

derived. Distribution of maximum and minimum order statistics are obtained. We have obtained 

maximum likelihood estimators. A simulation study is conducted to illustrate the performance of the 

accuracy of the estimation method used. Application is illustrated using real data.  

 

Keywords: Reliability, Bathtub shaped failure rate, Moments, Entropy, Maximum 

Likelihood estimator. 

 

 

I. Introduction 
 

Modeling and analysis of lifetime data has a prominent role in many applied sciences such as 

medicine, engineering and finance. Various lifetime data have been modeled using distributions 

such as Exponential, Weibull, Gamma, Rayleigh distributions and their generalizations. It is proved 

that Exponential distribution (ED) have constant failure function and Rayleigh distribution have 

monotone increasing failure functions. Two parameter generalized Exponential distribution is 

introduced by Gupta and Kundu [6] and proved that it has monotone failure functions, depending 

on its shape parameter. Generalized Rayleigh distribution has an increasing or bathtub shaped 

failure function, see Surles and Padgett [13]. A new distribution with probability density function 

    xexxf 




 


 1

1

2
, , 0x , 0 . 

is proposed by Lindley [8] in the context of Bayesian statistics. Ghitany et al. [5] studied the 

properties and application of the Lindley distribution. They highlighted that the Lindley distribution 

is a better model than one based on the exponential distribution. Ghitany et al. [3] showed that the 

Lindley distribution can be written as a mixture of a Exponential distribution and a Gamma 

distribution with shape parameter 2. Sankaran [12] proposed the discrete Poisson-Lindley 

distribution as a combination of the Poisson and Lindley distributions. An Upside-down Bathtub 

Shaped failure rate model using DUS Transformation of Lomax Distribution is discussed by Deepthi 

and Chacko (2020). When considering a failure mechanism, the failure of units in system may be due 
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to random failure occurred by change in temperature, voltage, jurking etc or due to ageing. In such 

situations, we need to use Exponential distribution for random failures and other lifetime 

distributions for failure due to aging.  Mixture of Exponential distribution and a Gamma distribution 

with shape parameter 2 is not appropriate in some real life situations. So here we examine the 

mixture of Exponential distribution and a Gamma distribution with shape parameter 3.  

 The rest of the paper is organized as follows. Section II discussed Exponential-Gamma(3, 𝜃) 

distribution. In Section III, the statistical properties are given. Section IV deals with computation of 

reliability. Section V described the distribution of maximum and minimum. In Section VI, the 

maximum likelihood method to estimate the unknown parameter is given and two real data sets are 

analysed. In Section VII, detailed simulation study is given. The comparison of Exponential-

Gamma(3) distribution with Exponential and Exponentiated Exponential distribution (EED) for 

examples from reliability and survival analysis is discussed in Section VIII. Conclusions are given in 

section IX. 

 

II. Exponential-Gamma (3, 𝜃) Distribution 

A mixture of Exponential (𝜃) and Gamma (3, 𝜃) distribution is considered. It is denoted as  EGD

. Probability density function (pdf) of mixture of the Exponential (𝜃)and Gamma (3, 𝜃) distribution 

is as follows: 
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(2.1) 

The corresponding cumulative distribution function (cdf) of  EGD  distribution is  
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The Survival function associated with (2.2) is  
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The first derivative of the pdf is 
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The second derivative of the pdf is 
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The mode of )(xf is the point 0xx   satisfying   00  xf . Here   00  xf  at the 
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x  .   0 xf  for 0 < x < 1 and   0 xf  for 1 ≤ x ≤ 2. 

 Shape of the probability density function is given in figure 1 below. 
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Figure 1 (a) & (b): pdf of EGD (θ) for θ =0.45, 0.65, 0.85, 1 and θ = 1.5, 2.75, 3.5, 5. 

 

From the above figures it is obvious that the pdf can be decreasing or unimodal. 

The failure rate function of EGD (θ) is given in (2.4) below. 
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The first derivative of failure rate function is 
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The second derivative of the failure rate function is given by 

(a) 

(b) 
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The extremum of h(x) is the point x = x0 satisfying   0 xh and these points correspond to a 

maximum or a minimum or a point of inflection according as   ,0 xh   0 xh  and   0 xh  

respectively. Here   0 xh at the point 


211
0


x  and   0 xh  for .0  So h(x) must 

attain a unique minimum at x = x0. Initially, plot of h(x) decreases monotonically and then increases 

giving a bathtub shape. 

Figure 2 provide the failure rate functions of EGD(θ) for different parameter values. 

 

Figure 2: Failure rate function of EGD(θ) for θ = 4.95, 5, 5.15. 

 

 

III. Statistical Properties 

    

   Here, we discuss the statistical measures for the EGD (θ) distribution, such as moments, skewness, 

kurtosis, moment generating function, characteristic function, quantile function, median, entropy, 

Lorenz curve and Gini index. 

I. Moments 

The concept of moment is important in statistical literature. We can measure the central tendency 

of a population by using moments. Moments also help in measuring the scatteredness, asymmetry 

and peakedness of a curve for a particular distribution. 

                 The rthraw moment (about origin) of EGD (θ) is  
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Therefore, the mean and variance of EGD(θ) are 
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II. Moment Generating Function and Characteristic Function 

 

Let X has )(EGD distribution, then the moment generating function of X,   )][exp(tXEtM X  , 

is  
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where 1i . 

 

III. Quantile and Median 

         Here, we determine the formulas of the quantile and the median of )(EGD  distribution. 

The quantile px  of the )(EGD  is given from 

10,)(  ppxF p . 

We obtain the 100
thp  percentile, 
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        Setting 5.0p in Eq. (3.1), we get the median of )(EGD  from 
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5.0x is the solution of above monotone increasing function. Using different statistical softwares we 

can obtain the quantiles or percentiles. 
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IV. Entropy 
 

An important entropy measure is Rѐnyi entropy [11]. If X has the ),(EGD then Rѐnyi entropy is 

defined by 
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Therefore, Rѐnyi entropy is given by 
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V. Lorenz Curve and Gini Index 
 

The Lorenz curve and Gini index have applications not only in economics but also in reliability. The 

Lorenz curve is defined by 
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where )(XE and )(1 pFq  . Gini index is defined by 
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IV. Reliability 

Suppose that X and Y are two independent strength and stress random variables. We derive the 

reliability 𝑅 = 𝑃(𝑌 < 𝑋) when X and Y are independent random variables distributed according to 

EGD distribution with parameters 
1 and

2 , respectively. Then system reliability is 
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V.Distribution of Maximum and Minimum 

Let nXXX ,,, 21   be a simple random sample from ).(EGD  Let      nXXX ,,, 21  denote the 

order statistics obtained from this sample. The pdf of  rX  is given by, 
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where );( xF , );( xf  are the cdf and pdf given by (2.1) and (2.2), respectively. 
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Then the pdf of the smallest and largest order statistics,  1X  and  ,nX  respectively, are 
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 Then the cdf of the smallest and largest order statistics  1X  and  ,nX  respectively, are 
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These distributions can be used in reliability operations. 

VI. Parametric Estimation 

       In this section, point estimation of the unknown parameter of the )(EGD  is described by 

using the method of maximum likelihood for a complete sample data, as given below. 

The likelihood function of )(EGD  distribution is 
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The log-likelihood function is,    
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      The first partial derivatives of the log-likelihood function with respect to   is 
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Setting the left side of the above equation to zero, we get the likelihood equation as a system of 

nonlinear equation in . Solving this system in   gives the MLE of  .  It is easy to obtain numerically 

by using statistical software package like nlm package in R programming with arbitrary initial 

values. 

The Fisher information about θ, I (θ), is 
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Then the asymptotic 100(1-α) % confidence interval for θ is given by 

 

 

VII. Simulation 

A simulation study is conducted to illustrate the performance of the accuracy of the 

estimation method. The following scheme is used: 

(i) Specify the value of the parameter θ.  

(ii) Specify the sample size n. 

(iii) Generate a random sample with size n from ).(EGD  

(iv)  Using the estimation method used in this paper, calculate the point 

estimate of the parameter θ. 

(v) Repeat steps 3-4, N times. 

(vi)  Calculate the bias and the mean squared error (MSE).  

The simulation study is performed at different sample sizes and different parameter      values, θ= 

1, 1.5, 1.85 and bias and MSEs for the parameter θ is given in table 1. MSE decreases as sample size 

increases.                    
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                    Table.1. Simulation Results 

Θ N Bias MSE 

1 

50 -0.000854222 3.648476e-05 

100 0.00039463 1.557328e-05 

500 1.3114e-05 8.59885e-08 

1000 3.6889e-05 1.490841e-09 

1.5 

50 -0.00072618 2.636687e-05 

100 -0.00058251 3.393179e-05 

500 -3.906e-06 7.628418e-09 

1000 -3.8229e-05 1.461456e-06 

1.85 

50 0.00174578 0.000152387 

100 0.00092697 8.592734e-05 

500 0.00016791 1.409688e-05 

1000 3.2956e-05 1.086098e-06 

 

VIII. Data Analysis 
 

Applications of the )(EGD  distribution is illustrated in two examples. 

Data set 1:- We provide a data analysis to see how the new model works. The data set is taken 

from Klein and Berger [9]. It shows the survival data on the death times of 26 Psychiatric inpatients 

admitted to the University of Iowa hospitals during the years 1935-1948. 

 

Table 2: The survival data on the death times of Psychiatric inpatients 

1 1 2 22 30 28 32 11 14 36 31 33 33 

37 35 25 31 22 26 24 35 34 30 35 40 39 

 

We have used different distributions namely, ED, EED and )(EGD to analyse the data. The 

estimate(s) of the unknown parameter(s), corresponding Kolmogorov-Smirnov (K-S) test statistic 

and Log L values for three different models are given in table 3. 

 

Table 3: The estimates, K-S test statistic and log-likelihood for the dataset 1 

Model Estimates K-S LogL 

ED 0.03784579ˆ   0.3728 -111.1302 

EED 05254319.0ˆ,79724674.1ˆ  ba  0.3146 -108.9871 

)(EGD  0.1050099ˆ   0.2613 -104.5856 

We present the p-values, corresponding Akaikes Information Criterion (AIC) (see [1]) and 

Bayesian Information Criterion (BIC) in the following table 4. 

Table 4: The p-value, AIC and BIC of the models based on the dataset 1 

Model p- value AIC BIC 

ED 0.001455 224.2604 225.5185 

EED 0.01162 221.9741 224.4903 

)(EGD  0.0574 211.1713 212.4294 
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The table 3 shows the parameter MLEs and log likelihood values of the fitted distributions and 

table 4 show the values of AIC, BIC and the p-value. The values in tables 3 and 4, indicate that the 

)(EGD distribution is a strong competitor to other distribution used here for fitting the dataset. 

 

 

Figure 3: P-P plots for fitted ED, EED and EGD 

P-P plot for ED, EED and )(EGD  are given in Fig.3 which shows that )(EGD  model is 

more plausible than ED and EED models. 

Data set 2:- Chen [6] presented a type-II censoring data of  samples, in which there 

was  complete unit failures: 0.29, 1.44, 8.38, 8.66, 10.20, 11.04, 13.44, 14.37, 17.05, 17.13, and 

18.35. The estimate(s) of the unknown parameter(s), corresponding Kolmogorov-Smirnov (K-S) test 

statistic and Log L values for three different models are given in table 5. 

 

Table 5: The estimates, K-S test statistic and log-likelihood for the dataset 2 

Model Estimates K-S LogL 

ED 0.09139958ˆ   0.3533 -37.3176 

EED 0.1090155ˆ,1.3514168ˆ  ba  0.3183 -37.04664 

EGD 0.2375122ˆ   0.243 -35.25229 
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We present the p-values, corresponding Akaikes Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) for the dataset 2 in the following table 6. 

Table 6: The p-value, AIC and BIC of the models based on the dataset 2 

Model P value AIC BIC 

ED 0.09856 76.6352 77.03309 

EED 0.1722 78.09328 78.88907 

EGD 0.4625 72.50459 72.90248 

The table 5 shows the parameter MLEs and log likelihood values of the fitted distributions and 

table 6 show the values of AIC, BIC and the p-value. The values in tables 5 and 6, indicate that the 

)(EGD distribution is a strong competitor to other distribution used here for fitting the dataset. 

  

 

 

  

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Exponential Probability Plot

Expected

O
b

s
e

rv
e

d

0.0 0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Exponentiated Exponential Probability Plot

Expected

O
b

s
e

rv
e

d

0.0 0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Exponential-Gamma Probability Plot

Expected

O
b

s
e

rv
e

d



Beenu Thomas and V M Chacko 

ON EXPONENTIAL-GAMMA DISTRIBUTION 
RT&A, No 3 (58) 

Volume 15, September 2020  

61 

IX. Conclusion 

A bathtub shaped failure rate model, Exponential-Gamma(3, 𝜃) distribution is considered and its 

properties are studied. Moments, skewness, kurtosis, moment generating function, characteristic 

function, etc are derived. Renyi entropy, Lorenz curve and Gini index are obtained. Reliability of 

stress-strength model is derived. Distribution of maximum and minimum are obtained. We have 

obtained maximum likelihood estimators. A simulation study is conducted to illustrate the 

performance of the accuracy of the estimation method used.  Applications of )(EGD to real data 

show that Exponential-Gamma(3, 𝜃) distribution is effective in providing better fits than the 

Exponential and Exponentiated Exponential distribution. 
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