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1 Preface 
 

Dedicated to Boris Gedenko  

who was my mentor in my entire life. 

 

 
Why I have decided to write this book? 

From the very begining of my carrier I have been working at the junction of engineering 

and mathematics – I was a reliability engineer.  As an engineer by education, I never had a 

proper mathematical background; however life forced me to submerge in depth of probability 

theory and mathematical statistics. And I was lucky meeting at the very beginning of my carier 

the “Three Pillars on Which Rested the Reliability Theory” in Russia –   they were Boris 

Gnedenko, Alexander Solovyev and Yuri Belyaev. They helped me to understand nuances and 

physical sense of many mathematical methods. 

So, I decided to share with the readers with my own experience as well as with many real 

mathematical insights, which happened with my when I submerged into Reliability Theory.  

Boris Gnedenko once told me: “Mathematical reliability models are engendered by 

practice, so they have to be adequate to reality and should not be too complex by its nature”. 

To get understanding of “real reliability”, one comes through a series of painful mistakes 

in solving real problems. Engineering intuition arrives to mathematicians after years of working 

in reliabiity enginering, and, at the same time, proper mathematical knowledge comes to 

reliability engineers after multiple practical uses of mathematical methods and having “finger 

sensation” of formulas and numbers.  

I remember my own thorny way in the very beginning of my professional carrier... So, I 

decided to write a reliability textbook that contains as much as possible “physical” explanations 

of mathematical methods applied for solving reliabiity problems and, as well, “physical” 

explanations of engineering objects laid in the basis of mathematical models. 

At the end of the book, the reader can find a wide list of monographs on reliability. 

Nevertheless, I would like to mark out a few books that, in my opinion, are basical in this area. 

They are (in order of pуblication) the monographs by Igor Basovsky (1961), Lloyd and Miron 

Lipov (1962), Richard Barlow and Frank Proschan (1965), Boris Gnedenko, Yury Belyaev and 

Alexander Solovyev (1965).  These books cover the entire area of probabilistic reliability 

modeling and contain many important theoretical and practical concepts. 

 

 
Igor Ushakov 

September 2011, 

 San Diego,   

California. 
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2 Acronyms and notations  

Acronyms 

 

AC  Availability coefficient 

d.f.  Distribution function 

DFR  Decreasing failure rate 

FR  Failure rate 

GF  Generating function 

i.i.d.  Independent identically distributed (about r.v.) 

IFR  Increasing failure rate 

LT  Laplace transform 

MDT  Mean down time 

MTBF Mean time between failures 

MTTF Mean time to failure 

OAC  Operational availability coefficient 

PEI  Performance effectiveness index  

PFFO  Probability of failure-free operation 

r.v.  Random variable 

RBD  Reliability block-diagram 

TTF  Random time to failure 

UGF  Universal generating function 

 

Notations 

F (t)     Distribution function   

K   System stationary availability coefficient 

K (t)    System non-stationary availability coefficient 

P (t)  Probability of system’s failure-free operation  

pk (t)  Probability of failure-free operation of unit k 

Q (t)    Probability of system’s failure 

qk (t)    Probability of failure of unit k 

T       Mean time to/between failures  

λ  Failure rate 

τ  Down time 

Х  Random variable 

ξ  Random time to/between failures 

η  Random recovery time 

ψ(·)  System’s structural function 
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 nk1

  Sum by k from 1 to n. 


 nk1

  Product by k from 1 to n. 

   Logic sum (“or”) 

   Logic product (“and”) 


nk1

  Logic sum by k from 1 to n. 


nk 1

  Logic product by k from 1 to n. 

ni ,1  Set of natural numbers from 1 to n.
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3 What is reliability? 

 
3.1 Reliability as a property of technical objects 

 

Reliability of a technical object is its ability of successful performing required 

operations. Usually it is assumed that an object is used in accordance with its 

technical requirements and is supported by appropriate maintenance. 

 One of the outstanding Russian specialists in cybernetics, academician Axel 

Berg told: “Reliability is quality expanded in time”. 

Reliability is a broad concept. Of course, its main characterization is the failure-

free operation during performance of required tasks. However, it includes also such 

features as availability, longevity, recoverability, safety, survivability and other 

important properties of technical objects. 

Speaking about reliability, one has to introduce a concept of failure. What does 

it mean: "successful operating”? Where is the limit of “successfulness”? 

In reliability theory, one usually analyzes systems consisting of units, each of 

which has two states: operational and failure. If some “critical” set of units has 

failed, it leads to the system failure. However, not always a unit’s failure leads to 

the “total” system failure, it can only decrease its ability but main system 

parameters still could be in appropriate limits. 

However, such “instantaneous” failure is only one of possibilities. The system 

can fail due to monotonous drifting of some parameters that can bring the entire 

system to the unacceptable level of performance.  

In both cases, one needs to formulate failure criteria.  

 

 
3.2 Other “ilities”  

 

Reliability itself is not the final target of engineering design.  An object can be 

almost absolutely reliable in “greenhouse condition”; however, at the same time, it 

can be too sensitive to real environment. Another situation: an object is sufficiently 

reliable but during operation it produces unacceptable pollution that contaminates 

natural environment.  

Below we discuss some properties closely connected to the concept of 

reliability. 

 

Maintainability. Failure free operation is undoubtedly very important property. 

However, assume that a satisfactory reliable object needs long and expensive 

restoration after a failure. In other words, maintainability is another important 
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property of recoverable systems. Maintainability, in turn, depends on multiple 

factors itself.  

The quality of restoration an object after failure as well as time spent on 

restoration significantly depends on repairmen qualification, availability of 

necessary tools and materials, etc.  

 

Safety.  Development of large scale industrial objects attracts attention to safety 

problem. It is clear that an object has not only to perform its main operating 

functions, but it is very important that the “successful operation” is not dangerous 

for personnel’s health and does not harm ecology.  

One of the most tragic events of this kind happens in 1984. It was the Bhopal 

Gas Tragedy – one of the world's worst industrial catastrophes. It occurred at the 

Union Carbide India Limited pesticide plant in India. The catastrophy led to almost 

immediate death of about 7 thousand people and then about 8 thousand died from 

gas-related diseases. In addition, over half a million people got serious injuries. 

Then, in 1986 explosion and fire had happenned at the Chernobyl Nuclear Power 

Plant in the former Soviet Union.  Large quantities of radioactive contamination 

were released into the atmosphere, which spread over much of Western USSR and 

Europe. It is considered the worst nuclear power plant accident in history. 

Thousands of workers were killed almost instantaneously, about one million cancer 

deaths occurred between 1986 and 2004 as a result of radioactive contamination. 

Actually problem of safety appears not only in context of failures.  A number of 

“reliable” industrial plants are extremely unsafe for the people who work there or 

live in the area. 

 
Figure 1. Typical “industrial landscape” with terrible air pollution. 
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Survivability.  The problem of survivability is very close to the reliability and 

safety problems. This is an object’s property to survive under extreme natural 

impacts or intentional hostile actions.  

In this case, nobody knows the moment of disaster, so an object has to have 

some “warranty level” of safety factor. In our time, the survivability problem is 

extremely important for large scale terrestrial energy systems. 

The 1999 Southern Brazil blackout was the largest power outage ever. The 

blackout involved San Paulo, Rio de Janeiro, and other large Brazilian cities, 

affecting about 100 million people.  

Then in 2003 there was a widespread power outage known as the North-East 

Blackout. It was the second most widespread blackout in history that affected 50 

million people in Canada and the United States. 

On March 11 of 2011 a ferocious tsunami spawned by one of the largest 

earthquakes ever recorded slammed Japan's Eastern coast. This earthquake 

officially named the Great East Japan Earthquake was 9 magnitudes (in Richter 

scale). Tsunami waves reach up to 40 meters that struck the country and in some 

cases traveling up to 10 kilometers inland Japan.  States of emergency were 

declared for five nuclear reactors at two power plants. There were some severe 

damages, though consequences were much less than after Chernobyl. 

Problem of survivability became essential in our days when unpredictable by 

location and strength terrorist acts are initiated by religious fanatics.  

 

Stability. An object performance occurs in unstable conditions: environment can 

change, some simultaneously performing operations can conflict with each other, 

some disturbances can happen, etc. An object has to have an ability to return to 

normal operable state after such inner or outer influences.  

 

Durability.  Reliability as a concept includes such a property as durability. For 

instance, mechanical systems, having some fractioning parts, can be very reliable 

at the first several hundred hours, however after some period of time due to 

wearing-out processes it becomes to fail more and more frequently, and  became 

unacceptable for further use. 

 

Conservability.  This is the property of the object to continuously maintain the 

required operational performance during (and after) the period of storage and 

transportation. This property is important for objects that are keeping as spares or 

are subjects of long transportation to the location of the use. 
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3.3 Hierarchical levels of analyzed objects. 

 

Analyzing reliability, it is reasonable to introduce several hierarchical levels of 

technical objects. Below we will consider systems, subsystems and units. All these 

terms are obvious and understandable; nevertheless we will give some formal 

definitions for the further convenience. 

A unit is an indivisible (“atomic”) object of the lowest hierarchical level in the 

frame of current reliability analysis. 

A system is an object of the highest hierarchical level destined for performing 

required tasks. 

Of course, concepts of unit and system are relative: a system in one type of 

analysis can be a unit in consideration of a larger scale object and vice versa. In 

addition, sometimes it is reasonable to introduce an intermediate substance – 

subsystem. It can be a part of a system that destined for performing a specific 

function or a separate constructive part. 

System reliability indices can be expressed through corresponding indices of its 

units and subsystems. 

 

  
3.4 How can reliability be measured?  

 

Reliability can be and has to be measured. However, what measures should be 

used for reliability? 

Distance can be measured in kilometers and miles; weight in kilograms and 

pounds; volume in liters and gallons. What kinds of index or indices are 

appropriate for reliability? 

Of course, reliability index depends on the type of a technical object, its 

predestination, and regime of operating, as well as on some other factors that are 

usually rather individual. 

Generally speaking, all technical objects can be divided into two main classes: 

unrecoverable and recoverable. All single-use technical objects are unrecoverable. 

For instance, anti-aircraft missile is used only once. It can be characterized by the 

probability that the required operation is completed.   

A reconnaissance satellite is also a single-use object. However, for this object 

the best reliability index is an average time of operating without failure: the more 

time the satellite on the orbit, the more useful information will be collected.   

Most of technical objects we are dealing with are recoverable ones: they can be 

restored after a failure and can continue their operations. 

Let us consider a passenger jet. It is almost obvious that the most important 

reliability index is the probability that a jet successfully completed its flight.  Of 



13 

 

course, one should think about longevity and convenience of technical 

maintenance, though these indices are undoubtedly secondary. 

Let us notice that the same object may be considered as recoverable or not 

depending on the concrete situation. It is clear that for the same passenger jet some 

critical failure, having been occurred during the flight (for instance, engine failure), 

cannot be corrected. Thus in this case a jet should be considered as unrecoverable 

during a flight. 

Anti-missile defense systems are working in regime “on duty”, i.e. they have to 

be in operable state at any arbitrary chosen moment of time. For an airport 

dispatcher system it is very important to be in an operational state at some required 

moment of time and successfully operate during an airplane landing. Thus for such 

systems the most important property is availability. 

For a passenger bus, probably one of the main reliability characterization is the 

duration of failure free operation, because it means that the number of unexpected 

stops due failures is minimal.  Same reliability index is convenient for trucks: it 

delivers the best economical efficiency during operations.   

For most home appliances, cars, technical equipments, durability is very 

important, because it saves money of the user.  At the same time, one does not 

need “immortal” personal computer, because in 2-3 years it will be anyway 

obsolete and should be replaced by a modern one. There are several common sense 

rules that one should keep in mind choosing reliability indices: 

 

(1) They have to reflect specificity of the object and its operating process; 

(2) They have to be simple enough and to have an understandable physical 

sense; 

(3) They have to be calculable analytically or numerically; 

(4) They have to be empirically confirmed by special tests or during real 

exploitation. 

The number of indices chosen for characterization of reliability of a 

technical object should be as limited as possible, since multiple indices can only 

lead to confusion. Do not use “weighted” indices because they usually have no 

physical sense. 

 

 
3.5 Software reliability  

 

Software reliability requires a special topic. Frankly speaking, there are too 

much confusion and misunderstanding. 

Nobody doubts that reliability in technical context is a concept associated with 

time and randomness. If there is an object (especially, immaterial) that exists in 
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sense “beyond the time” and its failure do not occur randomly, how we can talk 

about reliability? 

Take a look: what is software? This is a set of commands arranged in a special 

order. It reminds a book “written” for a “hardware-reader” that can “read” it when 

and if needed.  

Is it possible to say about “reliability of a book”, keeping in mind its contents? 

Of course, a book can contain errors (“failures”) but these errors are everlasting 

property of this specific book! These errors can be deleted in the next edition of the 

book but they are and they will remain forever in this particular edition.  

The same picture we observe with software if some “inner program conflict” or 

“inconvenient “ set of input data appears again and again, that will lead to 

repeating failures.  And it does not depend on current time, and it is not random at 

all. 

For software, we should say about quality, which depends on programmer’s 

qualification and carefulness of testing. To say about “frequency of software 

failures” is hardly correct. 

 
3.5.1 Case Study: Software failures avalanche. 

 

In 1970s, the author, being an engineer at R&D Institute of the former Soviet 

Union,   participated in a design of an automatic control system for missile 

defense.  Relaibility requirements for the system were extremely high.  

After design completion, long and scrupulous tests began. Hardware and 

software have been multiply checked and rechecked: the system seemed 

“absolutely reliable”. But all of a sudden, a long series of software failures 

happened in a row! 

Acceptance Commission was in panic… 

After careful analysis it was found that a young lieutenant who was working as 

an operator mentioned that some sequence of specific commands led to computer 

fault. He made a corresponding note in a Test Protocol though, being too much 

curious, continued to try the same commands multiply.  

Definitely, recording several tens faults was unreasonable. It was only one fault 

of software recorded. Afterwards, the software had been corrected… 

However, there is a question: how you should characterize software reliability? 

The only fault has been recorded during 50 hours of testing.  May you say that the 

software failure occurs once in 50 hours on average? Moreover, the program had 

been “repaired”. So, does it mean that after this the software became “absolutely 

reliable”? 

Who knows when and how next time such “inconvenient” circumstances may 

occur in real operating regime?  
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4 Unrecoverable Objects 

 
4.1 Unit 

 

An indivisible (“atomic”) part of a system under current consideration is 

called a unit. Process of an unrecoverable unit operation is defined by its random 

time to failure (TTF). Let us denote this random variable (r.v.) by ξ and its 

distribution function (d.f.) by F (t) = Pr {ξ< t}.   

 
4.1.1 Probability of failure-free operation  

 

The probability of failure-free operation (PFFO) of unrecoverable init during 

time t equals, by definition, 

P (t) = Pr {ξ ≥ t) = 1 – F (t).                                          (1) 

If d.f. is exponential, then  

P (t) = exp (-λt).                                                 (2) 

For highly reliable unit when λt << 1, there is a good approximation: 

P (t)    1 – λt.                                                   (3) 

 (This estimation gives understated estimate with error of order (λt)
2
.) 

 Sometimes it is reasonable to introduce the so-called “indicator function” 

that is defined as follows: 






.,0

,,1
)(

otherwise

tmomentatstateloperationainisunitif
tx                                  (4) 

It is clear that x is a binary Boolean
1
 r.v. The unit’s PFFO can be defined in 

new terms as: 

)],(1[0)(1)}({)( tPtPtxEtP                                (5) 

where E{·} is operator of mathematical expectation. 

                                                        
1
 This type of variable is named after George Boole (1815 – 1864) who was an English 

mathematician and philosopher. He invented Boolean logic – the basis of computer logic.  

 

http://en.wikipedia.org/wiki/English_people
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Philosopher
http://en.wikipedia.org/wiki/Boolean_logic
http://en.wikipedia.org/wiki/Computer
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This form of presentation will be sometimes useful below. (For compactness 

of formulas we will omit sometimes argument t.)  

 
4.1.2 Mean time to failure  

The MTTF of unrecoverable unit in general case is calculated as 





00

)()(}{ dttPdttftET  .                                     (6) 

For exponential d.f., this integral gives: 

  



 1
dteT t                                                      (7) 

 

4.2 Series systems 

 

A series system is such a system, for which failure of any its unit leads to 

inevitable failure of the entire system. Usually, these systems present a serial 

connection of its subsystems or units.  

The series structure is one of the most common structures considered in 

engineering practice. In reliability engineering, for describing the logical 

connection of system units, one uses the so-called reliability block diagrams 

(RBD).  For system of n units, RBD can be presented in the following form: 

 

 
 Figure 1. Reliability block-diagram for series system. 

 

 
4.2.1  Probability of failure-free operation  

 

 Denote the system random TTF by ξ and units TTF’s by ξk, where 1 kn, 

then from the definition of a series system follows:  

  

k
nk





1
min .                                                    (8) 

 

This statement is easily understood from the figure below: 
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Figure 2. Illustration of a series system TTF. 

 

 Often one uses Boolean equations for description of reliability structures. For 

series system Boolean expression is:  


n

i

ix
1

)(


X .                                               (9)                     

where X = (x1 , x2 , ... , xn ). For independent units,  ))(()( tXEtP  , and by the 

Theorem of multiplications, we can immediately write: 

.)(}Pr{}Pr{...}Pr{}Pr{1Pr)(
11

21

1














n

k

k

n

k

kn

n

i

i tpttttxtP        (10) 

 

where the probability of failure-free operation of unit k is denoted by pk(t) = Pr{ξk t). 

Let’s introduce notation qk(t) = 1 – pk(t). If system’s units are highly reliable, 

i.e. 
nk1

max qk(t) <<
n

1
, then: 

  



n

i

k

n

k

k tqtqtP
11

)(1)(1)( .                                (11) 

 From formula (10), one can make the following conclusions: 

 A series system's reliability decreases (increases) if the reliability of any unit 

decreases (increases). 

 A series system's reliability decreases (increases) if the number of units is 

decreases (increases). 

 A series system's reliability is worse than reliability of any of its units. 
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 If each unit has exponential d.f. of TTF, then for a series system consisting of 

such units, one can write: 









 



n

k

k

n

k

k tttP
11

exp)exp()(                                    (12) 

 

 For systems, consisting of higly reliable units, for which .
1

max
1 n

t k
nk



 , one 

can write a convenient approximation  





n

k

kttP
1

1)(  .                                                       (13) 

 If all system units were identical, then  

P(t) = exp (-λnt).                                                    (14) 

 For “feeling” the numbers, consider a system consisting of units with 

999.0)( 0 tp . In the table below, one can see how reliability of the system decreases 

with the number of units increase. 

 
Table 1. System reliability dependence on the system scale. 

n  

10 

 

100 

 

1000 

 

10000 

P(t)  

0.99005 

 

0.904837 

 

0.367879 

Practically 

zero 

  

 By the way, from this table, one can see that approximation formula is 

practically acceptable for values of λnt of order 0.1. 

  

 

  

  
4.2.2 Mean time to failure 

 

 Now consider the MTTF of a series system. For any unrecoverable series 

system, the random TTF, ξ, can be expressed through a unit's random TTF's (ξk) in 

the following way: 

.min
1

k
nk



                                                         (15) 

 

 In general case, the MTTF can be found only in a standard way as 
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                                         (16) 

 For exponential distributions, there is a closed expression: 


 

















n

k

k

n

k

ktT

1

0 1

1
exp



                                       (17) 

where λk is the parameter of the corresponding d.f. 

 For system with identical units with MTTF equals T* for all k = 1, 2, … , n, 

one has: 

                                                 (18) 

 

i.e. the system MTTF is inverse proportional to the number of units. 

  

 

 
4.3  Parallel System 

 

Another principal structure in reliability theory is a parallel system. This system is in 

operational state until at least one their unit is operable. This type of redundancy is 

called loaded redundancy or even in engineering jargon “hot redundancy”.  Usually, 

in practice the operating and all redundant units are assumed to be identical. In 

addition, all units are assumed independent. 

 

 RBD for a parallel system of n units is presented in Figure 3 below. 

 

 
Figure 3. Reliability block diagram for parallel system. 

 

 
4.3.1 Probability of failure-free operation  
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 Let denote again the system random TTF by ξ and units TTF’s by ξk, where 

1kn, then from the definition of a parallel system follows:  

  

k
nk





1
max .                                                 (19) 

 

This statement is easily to understand from the figure below: 

 

  

 

 

 
Figure 5. Illustration of parallel system TTF. 

 

 

 

 From the definition of a parallel system follows that it can be described by a 

Boolean function of the form: 

 
n

k

nk xxxx
1

21 ...)(


x ,                                       (20) 

 First, we transform expression (20) using de Morgan
2
 Law of algebra of 

logics. This law states that  

2121 xxxx   ,                                                  (21) 

where x denote a complement to x. Actually, de Morgan Law can be easily proved 

by Ancinet Greeks rule: “Look at the drawing”. Indeed, look at the diagrams on 

Figure 6 that are called Venn
3
 diagrams: 

 

                                                        
2 Augustus De Morgan (1806–1871) was a British mathematician and logician. 
3 John Venn (1834-1923) was a British logician and philosopher. 



21 

 

 
Figure 6. Venn diagrams for proving de Morgan Law. 

 

 You can see that the second and the sixth pictures present the same sets. This 

law can be easily expanded on arbitrary numver of x’s. Let us demonstrate it on the 

adding x3: 

213213213 xxxххxxxx   ,                                                                (22) 

where  we additionalлy use another de Morgan Rule that double complement to x is х 

itself. The last statement again is clear from the figure below. 

 

 
Figure 7. Venn diagrams for proving de Morgan Rule of double complement. 

 

 Thus in general case, one has the following expression: 


n

k

k

n

k

k xx
11 

 ,                                                     (23) 

From (23) follows formula for PFFO: 

 

  



n

i

iqEP
1

1)(X .                                       (24)   

 where kk qx  )0Pr{ . The same result follows from the definition of a parallel 

system: using the Theorem of multiplications, one gets 

 





n

k

k

n

k

kn tqtttttQ
11

21 )(}Pr{)}(...)()Pr{()(              (25) 

 

 



22 

 

where Q (t) is the probability of parallel system failure, Q (t) = 1 – P(t), and qk(t) is 

the probability of unit k failure, qk(t) = 1 – pk(t).  

 Thus, the PFFO of a parallel system is 





n

k

k tqtQtP
1

)(1)(1)(                                             (26) 

 Sometimes a different form equivalent to (26) is used 

 

 P(t) = p1(t) + q1(t)  p2(t) + q1(t)  q2(t)  p3(t) + ... + q1(t)  q2(t)  qm-1(t)  pm(t)   

 = p1(t) + q1(t)  [p2(t) + q2(t)  [p3(t) + ... + qm-1(t)  pm(t)].                         (27) 

  

This expression can be explained as following:  

 

 Pr {a parallel system successfully operates}= 

 Pr {the first unit is up during time t;  

                        or  

            if the first unit has failed, the second is up during time t;   

                          or 

                             if both of these units have failed, then the third one;  

                          and so on... }. 

 

From formula (26), one can make the following conclusions: 

 A parallel system's reliability decreases (increases) if the reliability of any unit 

decreases (increases). 

 A parallel system's reliability decreases (increases) if the number of units 

decreases (increases). 

 A parallel system's reliability is higher than reliability of any of its units. 

 

 If each of the system's unit has an exponential TTF distribution pk(t) =  

exp(- tk ), for a highly reliable system where 
nk1

max qk(t)  
n

1
 , one can write 

qk(t)  , and, finally, 





n

k

k

n
n

k

k tttP
21

1)]exp(1[1)(  .                                        (28) 

  

 If all units of a parallel system are identical with exponentially distributed TTF 

then (28) turns to the following: 

nttP )(1)(  .                                                           (29) 
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 In other words, the distribution function of parallel system TTF has a Weibull
4
 

-Gnedeno
5
 distribution with parmeters n   and n (see appendix A.2.8). 

 For “having a sensation” of the numbers, consider a parallel system of n 

identical inits with p = 0.9. In the table below, one can see how reliability of the 

system significantly is increased with the number of units increased. 

 
Table 2.  Depending of parallel system’s PFFO on the number of parallel units. 

n 2 3 4 5 … 10 

P=0.9 0.991 0.9991 0.99992 0.999992 … Practically 1 

 

   

 
4.3.2 Mean time to failure 

 

 The MTTF of a parallel system in general case can be calculated only by 

integration of corresponding function P(t). However, when each unit has exponential 

distribution of TTF, an analytic expression can be derived. For this purpose, write the 

PFFO in the form (27). Simple integration immediately gives us the result: 

k

nk

n

jknj<kknk

 + ... + 
+

1
 = T  

 








1

11

1
)1(

1

                           (30)

 

  

 If, in addition, all units are identical, then (30) turns into the following: 

: 

T = 


1













nk kn 1

111
...

3

1

2

1
1

                                     (31)
 

 

where 


1
 is the MTTF of a single unit. 

   Explanation of this formula is understandable on the basis of the 

following simple and “physical” arguments. Consider a system, consisting of n 

identical and independent units each of which has exponential distribution with 

parameter . Assume that we have a series system of n units but after first failure the 

                                                        
4
 Ernst Hjalmar Waloddi Weibull (1887-1979)  was Swedish engineer, scientist, and mathematician. In the middle 

of 1930-s suggested a model of  “weakest link” type. He introduced a two-parameter distribution of rather universal 

kind. 
5 Boris Vladimirovich Gnedenko (1912-1995) was an outstanding Soviet mathematician who proved in a very 

beginning of 1940-s a cycle of limit theorems concerning extreme r.v.’s. The so-called Weibull distribution was a 

particular case of the entire class of limit distributions. This fact gives rise to call this distribution by two names. 
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system instantly transforms into a system of (n-1) units and continue working with no 

failure. MTTF of that system equals
n

1
. Next system works on average 

)1(

1

n
 until 

its failure and instantly transforms into a series system of (n-2) units. Such 

transformation continues until the last survivor that is working on average time


1
. 

This procedure is illustrated for a parallel system with n = 5 in Figure 8 below. 

 
Figure 8. Explanation of deriving formula (35). 

  

 With unlimited n increase, MTTF of a parallel system approaches infinity 

though this increase is very slow. Some numbers are given in the table below. 

 
Table 3. Increase of parallel system MTBF depending on number of parallel units. 

Number of 

parallel units 

MTTF 

increase 

2 =1.50 

3 ≈1.83 

5 ≈2.28 

10 ≈2.93 

15 ≈3.32 

20 ≈3.60 
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 For large n one can use Euler
6
 formula for a harmonic set 

 

        ,ln
1

1

Cn
k

n

k




                                                            (32) 

 

where  C is the Euler constant: C ≈ 0.5772. However, hardly anybody will use 

multiple loaded redundancy for MTTF increase, because it is too ineffective. 

 

 

 
4.4 Structure of type «k-out-of-n» 

 

A system with such structure consists of n units and remains in operational 

state until n – k + 1 of units have failed. Structural function of such a system can 

be written as follow: 











.,0

,1
)(

1

otherwise

kхif
n

i

iх

                                                     (33)

 

Factually, such a system can be considered as a series system of k units with 

n-k redundant units, each of which can replace any one of failed operating units.    

Conditional RBD of this type of system is presented in Figure 9. 

 

 
Figure 9. Conditional RBD of unrecoverable loaded “k-out-of-n” system. 

 

 

                                                        
6 Leonard Euler (1707-1783) was Swiss, German and Russian scientist who made significant contributions in 

mathematics, physics, mechanics and astronomy. The second half of his life worked in Sanct Petersburg Academy 

of Sciences, Russia. 
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 In general case, the formula for PFFO can be written as: 
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n-of-out-k .             (34) 

 

where 
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!
 is a binomial coefficient. 

For highly reliable units (when q << 
n

1
), one can use an approximation: 
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 If units have exponential distribution of TTF, then using arguments 

analogous to those used for (30), one gets: 





n

ki i
Т

11


n-of-out-k .                                                       (36) 

  

Notice that when k=n, the structure transforms into an ordinary series 

system of n units, and when k = 1, it transforms into an ordinary parallel system. 

As a rule, structures «2-out-of-3» are found in engineering practice. For such 

system Boolean expression has the form: 

       321321321321)( xxxxxxxxxxxx х .           (37) 

The RBD for such system is presented in Figure 10. 

 

 
Figure 10. Connection a redundant unit instead of a failed operating unit. 

 

From (34) for identical units follows 

  qppEP 23 3)(  х3-of-out-2 .                                       (38) 
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4.5 Realistic models of loaded redundancy  

 

On the paper redundant systems are sufficiently reliable. However, a real life is 

harder than a paper project... 

Usually, one should use monitoring of operating unit for switching to redundant 

one after a failure. In addition, there should be a switching device, etc. Thus, the 

main problem is in constructing a realistic mathematical model. There is no 

universal solution: a reliability engineer has to take into account all specific 

features of analysed equipment and constructs an individual mathematical model 

for it. 

We begin with dubbed system, one of the most often case of redundancy in 

engineering practice. We will consider this case in more details, taking into 

account some realistic assumptions.  

 
4.5.1 Unreliable switching process  

What happens if switching process is unreliable? How much it will affect on 

the dubbed system reliability? 

Let us denote probability of successful switching by  . Then PFFO of 

unrecoverable dubbed system can be written as:  

 

P(t) = (1 -  ) p(t) +  {1 – [q(t)]
2
},                                  (39) 

 

 We would like to demonstrate numerical results using for this purpose a 

simple model realized in MS Excel. In this example, TTF distribution is taken 

exponential. 
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Figure 11.  Dependence of a dubbed unrecoverable system on reliability of switching. 

  

 
4.5.2 Non-instant switching 

  

Usual assumption that switching from a failed operational unit to redundant 

one is instantaneous is erroneous. Actually, many systems have some “functional 

inertia”: it can stand short down times. In other words, there is some “acceptable” 

witching time, ε, which does not lead to the dubbed system failure.  

Switching time itself can be random with some d.f., F switch (t). In this case, 

with probability F switch (ε) switching is considered as successful and with 

probability 1- F switch (ε) system fails. 

It is clear that this case differs from the previous model only by terminology 

and noitations. 

 

 
4.5.3 Unreliable switch  

 

Now assume that switching process is ideal; however a switch itself is 

unreliable and can fail with time. Thus, if switch has failed before an operating unit 

failure, then utilization of redundant unit will be impossible. Let us present a 

conditional RBD for this case in the following form: 
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Figure 12. Conditional RBD of unrecoverable dubbed system with an unreliable switch. 

  

 Let us first find the probability, p*, that the switch has failed after the 

operating unit failed, i.e. switching to redundant unit is successful.  

p* = P{ ξswitch > ξ | t} =  

t

switch dttftP
0

,)()(                                   (40) 

where ξ is the operating unit TTF,  ξswitch   is the switch TTF, Pswitch (t) is the switch 

PFFO, and f(t) is density function of unit TTF.  

If assume that all d.f. are exponential, it is easy to find: 

 

p* = 








switch

t

switch dttt )exp()exp(
0

 .                                 

(41)  

 

So, the PFFO of such system can be written as: 

).(*)()()( tpptqtptP                                              (42) 
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Below you can see numerical illustration of a switch unreliability influence. 

 
Figure 13. Dependence of unrecoverable dubbed system on switch reliability. 

 

 
4.5.4 Switch serving as interface 

 

Often (especially, in computer systems) the switch plays a role of a special 

kind of interface between the redundant group and a remaining part of the system. 

It means that such switch-interface is a necessary unit of the system and, actually, 

has to be considered as a series unit to the dubbed system. Conditional RBD for 

this case is presented below.  

 
 Figure 14. Conditional RBD of unrecoverable dubbed system with switch-interface. 

 

Here we assume that switching is ideal. The switch failure becomes apparent 

only at the moment of required switch after а operating unit failure.  In this case, 

the PFFO can be calculated by formula: 

})]([1{)()( 2tqtPtP switch                                              (43) 

Again for simplicity of numerical calculations assume that all distributions are 

exponential.  
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Figure 15. Dependence of unrecoverable dubbed system on switch-interface reliability. 

 

From this example, one can see that the switch-interface reliability plays 

crucial role.  Moreover, if switch-interface reliability is comparable with unit 

reliability, then duplication almost has no practical sense.   

All these models are given to demonstrate how important can be “secondary” 

factors”, concerning switching from failed unit to redundant one. 

 

 
4.5.5 Incomplete monitoring of operating unit 

 

However, switching is not the only important factor when one deals with the 

redundancy group analysis. Also there is very important the monitoring procedure: 

without determination of operating unit failure, it is impossible to make a decision 

“to switch or not to switch”. 

Assume that some part of the operating unit, say, а (а<100%), is not controlled 

at all, i.e. any failure of this part becomes a hidden failure, and switching to a 

redundant units does not occur.  Conditional RBD for this case is presented below. 
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Figure 16. Initial RBD of loaded dubbed system with incomplete monitoring (1) and its equivalent 

presentation (2). 

 

The PFFO of such system can be obtained with the use of the following 

formula: 

)],()(1[)()( 1 tqtqtptP aa                                             (44) 

where pа(t) – the PFFO of a non-controlled part of the operating unit and q1-а(t) – 

failure probability of a controlled part of the operating unit. Below there are results 

of numerical calculations. 

 

 
Figure 17. Dependence of unrecoverable dubbed system on the operating unit monitoring completeness. 

 

 
4.5.6 Periodical monitoring of the operating unit  

 

For unrecoverable redundant system, periodical monitoring has no sense at 

all: any failure is detected “post mortem”, when a operating unit has already 

failed, however switching has not occurred. 
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4.6 Reducible structures 

 

Pure series and pure parallel systems met in engineering practice not so 

soften. In general case, systems have more complex structures. However most of 

such structures can be reduced to a conditional unit by some simple procedures. 

Such systems are called reducible. 

   
4.6.1 Parallel-series and series-parallel structures 

 

The simplest reducible systems are parallel-series and series-parallel 

structures presented in Figures 19(a) and 19(b), respectively. 
 

 

 
Figure 18. RBD for parallel-series and series-parallel systems. 

 

We will write only expressions for PFFO without trivial explanations: 

1.  
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11 ,                                                        (45) 

and  

2.  
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j

s

k
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j

pP
1 1

)1(1 .                                                     (46) 

Of course, such idealized systems also seldom met in engineering practice.  
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4.6.2 General case of reducible structures 

Avoiding general consideration, let us demonstrate the procedure of 

reducing on a simple particular RBD.  

 
 

Figure 19. Example of reducing RBD of a system to a single unit. 

 

 At the beginning, we distinguish series structure (units «2» and «3»), and 

parallel structure (units «4» and «5»), and form new “equivalent” «6» и «7».  Then 

units «6» and «7» are transformed into units «8». And finally, we get a single 

equivalent unit «9». 

 Construction of the expression for system PFFO is starting from thr bottom 

of the scheme of transformation: 

P= p9 = p1 p8 = p1  (1 – q6q7)  = p1 {1 – (1 –  p2p3)  [1 – (1– q4q5) ]}.       (47) 

  Of course, not all structures are reducible; some of them will be considered 

later. 
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4.7 Standby Redundancy 

 

 Most technical systems have spare parts that can almost instantaneously 

replace failed operating unit. Of course, in practice such replacement takes a time, 

though most mathematical models assume that the time of replacement equals 0. 

 This type of redundancy is named standby redundancy. In this case redundant 

units are not included in an "active" system's structure. Moreover, these redundant 

units cannot fail until they occupy an active position. Of course, redundant units have 

to be identical to operating ones by all parameters, including reliability indices.  

 

 
4.7.1 Simple Redundant Group 

 

 А system consisting of a single operating unit and n-1 standby units is called a 

redundant group. Conditional RBD of redundant group with standby redundancy can 

be presented in the form: 

 

 
Figure 20. Conditional RBD for standby redundant group.(Standby units are dotted.) 

 

In this case, the random time of the system's successful operation   equals 

 Thus a system's MTTF can be written immediately: 

,*

111

}{EE}{E nTT =    =     = T k
nk

i

nk

k

nk

 = 











                      (51) 

where T* is the single unit’s MTTF. 

 .k

nk1

 =  


                                                                (50) 
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 Remember the well-known property of the mean: formula (51) is valid even if 

the standby units are dependent. 

 The probability of a system's successful operation P(t) can be written as 

.Pr}{Pr)(
1 











 


t   =  t    = tP

n

k

k                                               (52) 

         It is known that the distribution of the sum of random variables is calculated as a  

convolution by the formula: 

).(d)()(1)( )1()( хFхtP = tF -  = tP
n

t

0

n*n 

                                               (53) 

where  P
(k)

(t) is the PFFO of the system with k – 1 standby units (k units in the entire 

redundant group). 

 Formula (53) factually gives only idea of calculation, since in most practical 

cases only numerical calculations are applicable. 

 However, in engineering practice, especially for electronic devices, the most 

frequently used distribution F(t) is exponential. The standby group's random TTF has 

the Erlang
7 

 d.f. of the n-th order (see Appendix A.2.5) , and the probability of a 

failure-free operation is 

e
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 For  t << 1 the approximation can be written as 

.
n

t
   tP

n

)!1(

)(
1)(

1







                                                    (55) 

 In conclusion, notice that standby redundancy is more effective than loaded 

redundancy. This follows from a simple fact that 

                                                        

7
 Agner Krarup Erlang (1878 – 1929) was a Danish mathematician, statistician and engineer, who 

invented the fields of traffic engineering and queuing theory. Erlang also created the field of telephone 

networks analysis. 

 

http://en.wikipedia.org/wiki/Denmark
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/Engineer
http://en.wikipedia.org/wiki/Teletraffic_engineering
http://en.wikipedia.org/wiki/Queueing_theory
http://en.wikipedia.org/wiki/PSTN
http://en.wikipedia.org/wiki/PSTN
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The equality is never attained because of the strongly positive values of  's.  

 Of course, the reader should keep in mind that standby redundancy, in 

practice, demands some time to switch a unit into an active regime. More reasonable 

is considering unloaded redundancy as spare parts. 

   

 
4.7.2 Standby redundancy of type “k-out-of-n” 

 

This type of redindancy can be presented by condirional RBD, depicted in 

Figure 21. 

 

 
Figure 21. Conditional RBD for standby “k-out-of-n” redundant group. 

 

 It is clear that pure standby redundancy hardly can be implemented in real 

technical system. Mostly this type of model is used for evaluation of spare units 

sufficiency.  In this case the role of series system plays all units of the same type 

within analyzed equipment.  

 Consider a series system of k operating units. The system is supported by n-k 

standby units which can replace any failed unit of the group of k.  In general case, 

formulae for PFFO and MTTF cannot be written in a simple closed form except for 

the case of an exponentially distributed random TTF of units. We may write the 

result basing our explanation on simple arguments. 

 

 

Mean time to failure 

 

  loadedk
nk1

k

nk1

standby   =   =     max


                                           (56) 



38 

 

 Recall again that we assume that the units are i.i.d. 

 The system failure rate equals k . There are n – k  possible replacements, with 

average interval 
k

1
 between them. So the system MTTF, i.e. average time until 

stock’s depletion equals
k

kn 1
. 

 

 

Probability of failure-free operation 

 

 The probability of a system's successful operation when its units have 

exponential TTF is described by Poisson
8
 distribution: 

 







kn
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tk
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.                                                   (57) 

  

 

 

 
4.8 Realistic models of unloaded redundancy 
 

Ideal model of standby redundancy is constructed under assumption that a 

standby unit is immediately switched instead of failed operating unit. This is 

practically impossible: here should be some kind of functional inertia, i.e. the 

system has to assume a possibility of short down times needed for switching. 

Moreover, here (as well as in the case with loaded redundancy) there are many 

additional factors influencing on standby redundant group. 

Just for simplicity of some expressions, let us assume that units have 

exponential distribution of TTF. In thgis case, simple and understandable formulas 

can be written. 
 

  
4.8.1 Unreliable switching process 

 

If switching is ideal, then for unrecoverable unloaded dubbed system PFFO is 

written as ).1()( tetP t     Let successful switching occurs with probability . In 

this case, system PFFO, P(t), can be calculated as:  

                                                        
8
 Siméon Denis Poisson (1781–1840) was a French mathematician, geometer, and physicist. He made 

outstanding contribution in Probability Theory and Theory of Stochastic Processes. 

http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Geometer
http://en.wikipedia.org/wiki/Physicist
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  ttt eteеtP     1)1()( (1+ t ).                              (58) 

 How serious is a resulting error due to assumption concerning ideal 

switching? Let us give numerical illustration, using a simple model based on MS 

Excel. 

 

 
Figure 22. Dubbed system’s PFFO depending of probability of switching failure. 

 

 
4.8.2 Non-instant switching 

 

 Assume that acceptable switching time equals ε, i.e. if the switching 

duration,  less than ε (   ) the system does not fail. If this switching time is a 

random value with a known distribution function, Fswitch (t), the probability of 

аcceptably switching time,  , can be easily calculated: )( switchF . 

 After this, one can use the results of the previous section. 

  

  
4.8.3 Unreliable switch  

 

Assume that switching procedure is ideal but a switch itself can fail with time. 

The RBD of such system is presented in Figure 23. 
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Figure 23. Unloaded redundancy with an unreliable switch. 

 

 

If the switch has failed before the operating unit, use of spare unit becomes 

impossible. 

 Probability, p*, that switching device has failed after an operating unit is  

p* = P{ξswitch > ξ|t} dttftP

t

switch )()(
0

                            (59) 

where ξ – unit’s TTF,  ξswitch – switch’s TTF, )(tPswitch  - switch’s PFFO, and  f(t) – 

density function of unit’s TTF. 

  If assume that all random variables have exponential distribution, one finds 

by simple integration: 

 p* = 





0

)exp()exp(
switch

switch dttt



  .                        

(60)  

Again we can get expression for PFFO, substituting p*instead of  in formula (58).  

. 

Under assumption of exponential distribution of all TTF’s, the formula for 

PFFO can be easily written: 
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1)1()(         (61) 

This expression has a clear sense: with probability 
switch

switch






 a switch has 

failed before a operating unit failure, and with probability 
switch




a switch 
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performs hooking-up a redundant unit. The graph below numeically illustrates the 

influence of the switch reliability on the system reliability. 

 
Figure 24. System’s PFFO depending on switch reliability. 

 

 
4.8.4 Switch serving as interface 

 

In some situations, a switching device is a necessary part of the system 

operation. For instance, it can use as interface between redundant group and the 

remaining part of the system. In this case, a switching device has to be considered 

as a series unit. 

Conditional RBD of such a system can be presented as folows. 

 

 
Figure 25. Conditional RBD for unloaded duplication with switch-interface. 

 

 

The system fails if redundant group has failed or if the switching device has 

failed. In this case,  

   .1])(exp[1)exp()( ttеtttP switch

t

switch     ,             (63) 
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(We assume that switching procedure itself is ideal.) 

Dependence of system PFFO on parameters of a unit and unreliability of 

switch -interface presented below.  

 

 
Figure 26. System’s PFFO depending on switch reliability. 

 

 

These graphs show how important is role of switching device reliability. 

Indeed, dubbed system cannot be more reliable than the switch-interface. 

 

 
4.8.5 Incomplete monitoring of the operating unit 

 

As we saw above, monitoring of operating system is a very significant factor 

for unrepairable redundant systems. 

Assume that a part, say, a (а<100%), of an operating unit is not monitoring, i.e. 

its failure leads to the system failure, since there is no indication for switching to a 

standby unit. 

Conditional RBD for this case is presented in Figure 27. 
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Figure 27. Initial RBD of standby dubbed system with incomplete monitoring of the operating unit and its 
equivalent transformation. 

 

PFFO of this system is expressed as 
 }Pr{}Pr{}Pr{}Pr{}Pr{)Pr{)( 11111 aaaaaaaa tttttP   

 (64) 

 

In general case, this formula cannot be written in closed form and only 

numerical integration is possible. However if all distributions are exponential, one 

can derive expression for PFFO in close form: 

 )1()exp()exp()( 1 ttttP a
a

a 








  .                                (65) 

Comparison of different variants of monitoring completeness is given below. 

 

 
Figure 28. System’s PFFO depending on completeness of operating unit monitoring. 
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Notice that periodical monitoring of operating unit in the case of standby 

redundancy also has no sense, since after “hidden” failure the system occurs in 

failure state. 
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5 Recoverable systems. Markov 

models  

 

Reliability of recoverable systems with arbitrary distributions of units’ time to 

failure practically cannot be described analytically in convenient and “workable” 

form. So, we restricted ourselves with Markov
9
 models.  By the way, almost all 

stationary reliability indices for non-Markov models can be derived by substitution 

corresponding MTTF and MDT’s in formulas obtained for Markov models. 

 

 
5.1 Unit  
 

          A recoverable unit is defined by its two main parameters – MTTF and mean 

recovery time (MDT). Usually, one assumes that after failure a recovered unit is 

identical (in statistical sense) to the initial one, so in this case, MTTF and MTBF 

coincide. We are begining with the simplest case when both distribution TTF and 

recovery time are exponential.  

 
 

5.1.1 Markov Model 
 

General description 

 In most academic approaches random TTF and random recovery time are 

asumed exponentially distributed that gives a possibility to use Markov model for 

reliability study.  Let parameter of the TTF distribution is λ and parameter of the 

recovery time is μ. In other words, MTBF (MTTF) and mean recovery time are 

known from the beginning:  


1
T  and 




1
 . 

 At any moment of time, the unit can be in one of two states: it is either 

operable or it is failed. A convenient form of presentation of such process is the 

transition graph presented in Figure 1. Let us denotes the operable state with symbol 

“0”, and the failed state with symbol “1”. 

 

                                                        

9
 Andrey Andreyevich Markov (1856-1922) was a Russian mathematician. He is best known for his 

work on theory of stochastic processes. His research later became known as Markov chains. 

 

http://en.wikipedia.org/wiki/Russia
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Markov_chain
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 Figure 1. Transition graph for a recoverable unit. 

 

 

 The unit transition process can be described as an alternative renewal process.  

It is represented by a sequence of mutually independent r.v.'s ξk  (unit's operational 

time) and ηk (unit's recovery time). An example of time diagram is presented in 

Figure 2. 

 

 
 

 Figure 2.  Example of time diagram for a unit. 

 
 

Equations for finding non-stationary availability coefficient. 
 

Let us find the probability, p0(t), that at moment t+Δt a unit occurs in state “0”. There 

are two possibilities:  

 - at moment t unit was in state “0” and did not leave it during infinitesimally 

small time interval ∆t, that happens with probability 1 – λΔt, or 

 -  at moment t it was in state "1" and moved to the state "0" during the time 

interval Δt, that happens with probabiity μΔt.  

 This immediately gives the equation: 

(t)pt + (t)pt)( = t)+(tp 100
 1                                          (3) 

 Form (3) we easily obtain 

  

 (t).p + (t)p = 
t

(t)pt)+(tp
10

00 



                                        (4) 
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and in the limit as  ∆t 0, we obtain the following differential equation: 

 

  

 This represents the simplest example of Chapman
10

-Kolmogorov
11

 Equation. 

To solve it with respect to any pk(t), we need to have one more equation. The second 

equation, which is called normalization equation, is: 

which means that at any moment the unit must be in one of two possible states. 

 We need also to determine the initial condition for the solution of the system 

of differential equations. Usually, one assumes that at moment t = 0 the unit is in 

operational state, i.e. p0(0) = 1. 

 It is clear that p0(t) is non-stationary availabiity coefficient that shows the 

probability that a unit has been found in state “0” at a given moment t under 

condition that at moment t = 0 the unit was in state “0”.  

 Finding this reliability index can be done with the help of different methods. 

We will use the Laplace
12

 transform (LT) to make the presentations of other solutions 

in the book uniform. Brief information about Laplace transforms the reader can find 

in Appendix B. 
  
 

Non-Stationary Availability Coefficient 
 

The system of above differential equations (5) - (6) with the initialcondition p0(t) = 1 

has the LST form: 

.
s

 = (s) + (s) 

  (s) + (s) = (s) s+ 

10

100

1

1



 

                                               (7) 

 
                                                        
10

 Sydney Chapman (1888–1970) was a British mathematician and geophysic. 
11

Andrey Nikolaevich Kolmogorov (1903 –1987) was a great Soviet Russian mathematician, of the 20th 
century, who advanced various scientific fields, among them probability theory, topology, intuitionistic 

logic, turbulence, classical mechanics and computational complexity.  
12

 Pierre-Simon, marquis de Laplace (1749–1827) was a French mathematician and astronomer whose 

work was pivotal to the development of mathematical astronomy and statistics. 

 (t).p + (t)p  = (t)p
dt

d
100

                                              (5) 

 1)()(
10

 = tp + tp                                                              (6) 

http://en.wikipedia.org/wiki/United_Kingdom
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Geophysics
http://en.wikipedia.org/wiki/Soviet_Union
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Topology
http://en.wikipedia.org/wiki/Intuitionistic_logic
http://en.wikipedia.org/wiki/Intuitionistic_logic
http://en.wikipedia.org/wiki/Turbulence
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Astronomer
http://en.wikipedia.org/wiki/Astronomy
http://en.wikipedia.org/wiki/Statistics
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or, in the canonical form 

. = (s) s+ (s) s

   = (s) - (s) s)+ (

10

10

1

1




                                                      (8) 

 To solve (8), we can use Cramer's
13

 Rule: 

 To invert this LST, we have to present it in a form of a sum of terms of types 

a/s  or b/(s+а), inverse functions for which are a constant and an exponential 

function, respectively. 

 The denominator of fraction in (9) can be written as 

))(()( 21

2 ssssss   , where s1 and s2 are polynomial roots that are, as can be 

easily found: s1 =0 and s2= – ( + ). Now we can write: 

 where A and B are unknown constants to be determined. To find them we should  

note that two polynomials with similar denominators are equal if and only if the 

coefficients of their numerators are equal. Thus we set the two representations equal: 

 And so we obtain a new system for A and B by equalixing the coefficients of the  

polynomials: 

                                                        
13

 Gabriel Cramer (1704 –1752) was a Swiss mathematician. In linear algebra, Cramer's rule is a 

theorem, which gives an expression for the solution of a system of linear equations in terms of the 
determinants. 

 .
)s + ( + s

 + s
 = 

ss

s+

s
 = (s)

20













1

1

                                          (9) 

 

 
0

1 2

(s) =  
A

s - s
 +  

B

s - s
 =  

A

s
 +  

B

s+ +


                                    (10) 

 ,
s)++s(

+s
 = 

s++

B
 + 

s

A






                                        (11) 

http://en.wikipedia.org/wiki/Swiss
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Determinant
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. = )+A( 

   = B + A



1
                                                     (12) 

It is easy to find 













+
 = 

+
  = B  

 
+

 = A

1

                                        (13) 

Thus, the LST of interest can be written as 

 Finally, the non-stationary availability coefficient, i.e., the inverse LST of (14), is 

 The function K(t) showing the time dependence of the system availability is 

presented in Figure 3. 

 
 

 Figure 3. Graph of K(t) with initial conditions p0(0) = 1. 

 

  By the way, if initial condition is p1(0) = 1, then the graph of K(t) will be as 

follows: 

 .
s+++

 + 
s+

 = (s)









11
0

                                   (14) 

 

e
+

 + 
+

 = (t)p = K(t) )t+(

0









                                       (15)                                  
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Figure 4. Graph of K(t) with initial conditions p1(0) = 1. 

 

 The graph shows that after awhile K(t) approaches stationary value 

independently on the initial state. Since index K(t) is practically almost never used in 

practice, we restrict ourselves by considering it for a recoverable unit. 
 

Stationary Availability Coefficient 

As we mentione above, if t  , K(t) approaches its limit value that is called the 

stationary availability coefficient, K: 

 













+T

T
 = 

+
ttK = K

tt









])(exp[lim)(lim    .                         (16) 

 

 Actually, availability coefficient can be defined as an average portion of time, 

when a unit is in operating state. In turn, this is the average portion of time when a 

unit is in operating state during a single cycle “operating-recovering”. So, expression 

(16) for a recoverable unit can be written directly from the definition of availabiity 

coefficient.  

 It is time to repeat that we use all this rather sophisticated mathematics solely 

to demonstrate general methodology on simplest examples. 

 In practice, one ususlly consider highly reliable objects, for which condition 

1
){

){






Е

E

  is satisfied. In this case, it is possible to use a very good approximation: 

.11

1

1














T

T

T

T
K                                 (17)

 

 
Error of this approximation does not exceed .

2













 

 
Probability of Failure-Free Operation 
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 Since MTTF is given and Markov model is considered, one can immediately 

write:  

.e = (t)ptP t-)(
0

                                                 (18) 

 Notice that for highly reliable unit there is a simple and accurate 

approximation: 

.1)( ttPo                                                          (19) 

 This approxiation has an error of order 2)( t . 

 

 
Coefficient of interval availability 

 The easiest way to get this reliabiity index (that we denote by R(t0)) is to use 

memoryless, or Markovian property. For this case, we can just multiply availability 

coefficient by PFFO, i.e. 

).exp(),0(),()( 0000 t
T

T
KtPKttPtR 





                       (20) 

For higly reliavle systems, one can write an approximation: 

).(1)( 00   ttR                                              (21) 

 

                

  
Remark:  We analyzed this simple case with such a scrupulosity only to demonstrate different possible 

ways of obtaining the needed result. We do this to avoid explanations below with unnecessary additional 
details for more complex models. The same purpose drives us to use a homogeneous mathematical 

technique for all routine approaches. 

  
 

 

5.2 Series System 

 

 Recoverable series systems differ by their recovery processes. First of all, 

some systems have to be turned off during recovery after failure. In this case there is 

a single failed unit under restoration. Another case: system continues to stay in an 

operational  state, so during recovering a currently failed unit there may appear new 

failures. In principle, in this case one can observe even a situation when all system’s 

units are failed. It can happen if, for instance, a recovery process is very slow. 
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 In addition, the number of repair facilities can be restricted, so failed units can 

form a queue for recovering. 

  

 
5.2.1 Turning-off system during recovery 

 

 Assume that distributions of the TTF, Fi(t), and of the recovery time, Gi(t), are 

exponential for all units. Denote parameters of these d.f.’s by i  and i ,  

respectively. 

 Let after faiure of any unit, the system is turned off during recovery of the 

failed unit, so other units cannot fail until recovery completion.  The transition graph 

for such a system is presented in Figure 5. 

 

 
 Figure 5. Transition graph for series system that is turning-off during recovery. 

  

 

 We won't write the equations to obtain results for this case.  As much as 

possible, we will try to use simple verbal explanations. 

 
Probability of a failure-free operation 

 

Any exit from state "0" (see Figure 5) leads to failure. Hence, 









 

 ni

ittP
1

exp)(     .                                              (22) 

Thus, by its PFFO the system is equivalent to a single unit with a failure rate equals 

 : 

 =  
1 i n

i

 

 
                                                       (23) 

 Mean time to failure 
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From (23), one easily finds that  

.
1

1

 i

ni

= T



                                                         (24) 

 If all system’s units have exponential distributions of TTF, then the system 

MTTF and MTBF coicide. 

 
Mean recovery time. 

  

Let us consider a general case, where all units differ by their repair time 
i

i



1

 . It is 

clear that a current system’s failure due to unit i is: 


 i

ip


,                                                        (25) 

where  is defined in (23). 

 Thus, mean recovery time can be found easily as weighed value: 

.
1

11


 


ni i

i

ni i

ip






                                                   (26) 

 
Stationary Availability Coefficient 

  

 Using (23) and (26), one easily writes 

.1
1

1

1

1




ii

niii

ni

 + 
 = K 

 



                                      (27) 

        It is important to notice that if distributions Fi(t) and Gi(t) are not exponential,  

the expression: 

 .1

1

1

1

1

T

T
 + 

 = K
i

i

ni

i

i

ni






 



                                        (28) 

remains valid. (Conditions of high reliability for the approximation correctnes 

conserves.) 
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Stationary Interval Availability Coefficient 

  

 Since distribution of the system’s TTF is exponential, we can use the 

expression R(t0)=KP(t0) where P(t0) and K are defined in (22). and (27), respectively. 

 

  

 
5.2.2 System in poperating state during recovery. Unrestricted 

repair. 

  

 Consider a recoverable series system of n independent units with n 

independent repair facilities for a case when the system continues to stay in up state, 

so any its unit may fail during recovery process of the previously faied unit. 

 In this case, the system’s reliability indices can be obtained in a very siple 

way.  
 

 

Probability of a failure-free operation and mean time to failure 

  

 The system PFFO and MTTF  coincide with those considered above in (22) 

and (24).  It is also clear that MTBF is equal to MTTF, since all units have 

exponential distribution of TTF. 

 

 

Mean recovery time. 

 

 Let us consider a general case where each unit has its own mean repair time 

i

i



1

 . It is clear that a current system’s failure due to unit i occurs with probability: 


 i

ip


,                                                              (29) 

where  is the total system failure rate defined in (23). 

 Thus, mean recovery time can be found easily as weighed value: 

.
1

11


 


ni i

i

ni i

ip






                                               (30) 
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Notice that recovery time has a hyper-exponential distribution (see 

Appendix A.2.6): 







n

i

i

ii

истС

t
t

1

.

)exp(
}Pr{






                                                         (31)

 

 
Stationary Availability Coefficient 

 

 For independent units, one immediately writes: 

.1
1

1

11




ii

nini ii

= K 





                                 (32) 

 (Conditions of approximation correctness are the same as above in analogous cases.) 

 

 
Stationary Operational Availability Coefficient 

 

 Since distribution of the system TTF is exponential, we can use the expression 

R(t0)=KP(t0) where P(t0) and K are defined in (22). and (27), respectively. 

 
Remark:  If the number of independent repair facilities k is less than n, solution for different units 

becomes very clumsy and actually has pure “academic” interest.  

  

Just for demonstration the mentioned above fact, let us consider relatively simple 

system of 2 different independent units and one repair facility. Assume that repair of 

failed units conforms to the rule “first-in-first-out”. (In Figure 6, system’s  failure 

states are shadowed.) 
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Figure 6. Example of a transition graph for a series system of two units with a single repair facility. 

 

 
5.2.3 System in operating state during recovery. Restricted repair. 

 

Sometimes when repair facilities are restricted in its ability of simultaneous 

recovery several failures, a queue of failed units can be formed. Naturally, it leads 

to the recovery time increase. Analysis of such systems in general case cannot lead 

to obtaining convenient formulas. However, if all units of series system are 

assumed identical (rather rear case in real engineering practice!), the problem of 

finding reliability indices becomes solvable. In this case one can use birth-and-

death model described in Appendix C2.  In this particular case, when there are only 

k repair facilities (k < n) for a series system of n units, transition graph has the form 

depicted in Figure 7: 
 

 
 

Figure 7. Transition graph for a system of n identical units with k repair facilities. 

 

 In the considered case, the system of equations is: 

 np0 = p1                              

(n-1)p1 =2p2                                                         

 ...                                   

 (n-k+1) pk-1 =k pk                                                                                          (33)                                                                                                     

(n-k) pk =k pk+1 
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...                                             

pn-1 = kpn  . 

        Standard solution of the system (33), given in Appendix C.1.4, has the form: 

 p1 = np0= 








1

n
 p0 

p2 =  
2

1n
  p1= 
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...                                                                                                                         (34) 

pn = 
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k
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 p0 , 

                                        

where  



  . 

Since sum of all these probabilities equals 1 (condition of the total 

probability), from (34), one easily finds the stationary availability coefficient: 
 

K= 

1
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0
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If the considered system is highly reliable, i.e.  <<
n

1
1/n, one can write 

approximation: 

nK 1 .                                                (36) 

             Actually, it says that for highly reliable systems, it is enough to have a single 

repair facility, because the probability of occurrence another failure during recovery 

time is infinitesimally small. 

 

 

5.3 Dubbed system 
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We begin with this particular case of parallel systems since because it allows 

demonstrate mathematical technique on clear and understandable level.  
  

5.3.1 General description 
 

A dubbed recoverable system with embedded loaded redundant unit is probably 

the most common case of redundancy in engineering practice. This simple 

structure allows perform a general analysis for all possible configurations: loaded 

and unloaded redundancy for restricted and unrestricted number of repair facilities. 

Transition graphs for all these cases are presented in Figure 7.  

 
Loaded redundancy 

Unrestricted recovery 

Loaded redundancy 

Restricted recovery 

Unloaded redundancy 

Unrestricted recovery 

Unloaded redundancy 

Unrestricted recovery 

    
Figure 7. Transition graphs for four cases of recoverable dubbed system. 

 

Usually, one makes the following assumptions: 

1. In case of loaded redundancy, failures of  both units occur independently; 

2. After failure of an operating unit, switching to redundant unit is 

instantaneous and absolutely reliable; 

3.  Recovering of failed unit begins immediately if there are available repairing 

resources; 

4. After recovering a unit becomes as well as initial. 

 

We will find solution of the problem in general case, using the transition graph 

depicted in Figure 8.  
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Figure 8. Transition graph for general Markov model of recoverable dubbed system. 

 

  
5.3.2 Non-stationary availability coefficient 

 

Let us write a system of differential equations in the same way as we deed it 

for a single recoverable unit.  

)()()( 11000 tptptp
dt

d
    

)()()()()( 22111001 tptptptp
dt

d
                         (37) 

)()()(1 210 tptptp   

1)0(0 p  . 

Laplace transform gives us the following system of algebraic equations: 

)()()(1 11000 ssss    

)()()()()( 22111001 sssss  
                (38) 

)()()(
1

210 sss
s

   

Since for dubbed system both states «0» and «1» are operational, expression 

for availability coefficient can be written as: 

)(1)()()( 210 tptptptK   ,                                  (39) 

i.e. LST of function K(t) is 
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)(/1)( 2 sssK   .                                             (40) 

To find )(/1)( 2 sssK    from system of equation (38), we can apply the 

Cramer Rule: 
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Finally, expression for needed LST is: 

 2120102110
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21201110
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sK              (42) 

For preparing to inverse LST, let us present (3.7) in the form of simple 

fractions of the following form: 

321

)(
ss

C

ss

B

ss

A
sK








 ,                                              (43) 

where s1, s2 and s3 are roots of denominator in (42).  In this case, 2s and 3s are 

conjugate roots, and 01 s :  





42

2

3,2s ,                                                  (44) 

where, in turns, 2110    and 212010   . (Naturally, if s2=s3, 

one uses L’Hopital
14

 rule.) 

The next step is finding coefficients А, B and C in (3.8).  First, make in (3.8) 

reduction to a common denominator 

                                                        
14

 Guillaume François Antoine, Marquis de l'Hôpital (1661-1704) was a French mathematician. 

l'Hôpital's rule for calculating limits involving indeterminate forms 0/0 and ∞/∞ did not originate with 

l'Hôpital, it appeared in print for the first time in his famoius book, which was a first systematic 
exposition of differential calculus. 

http://en.wikipedia.org/wiki/Marquis
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
http://en.wikipedia.org/wiki/Limit_(mathematics)
http://en.wikipedia.org/wiki/Indeterminate_form
http://en.wikipedia.org/wiki/Differential_calculus
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)()()()()()(
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321
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       (45)
 

Two fractions (42) and (45) with equal denominators are equal if and only if 

polynomials in nominators are also equal. This condition permits us to write 

immediately: 

)()()()()()()( 21313221201110

2 ssssCssssBssssAss  

   (46) 

The right side of the equality (46) can be rewritten аs 

213132213132

2 )]()()([)( sCssBssAsssCssBssAsCBAs                (47) 

In result, (46) and (47) allow us to compile a new system of algebraic equations for 

finding coefficients A, B and C: 

222 242)(

33)]()(2)(
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A

CBA
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                                 (48) 

We omit simple however rather boring mathematical exercises and present the 

final result for all four different cases of recoverable dubbed system in the table 

below: 

 
Table 1. Formulas of K(t) for four cases of recoverable dubbed system. 
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Unloaded 

redundancy 

Restricted 
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 Let us notice that in this case when both units are mutually independent 

(case of loaded redundancy with unrestricted repair facilities) , the solution for K(t)  

can be obtained directly from the definition of dubbed system of mentioned type: 

tt
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REMARK: Notice again that non-stationary availability coefficient in practice is used 

extremely rare, so these deductions were done exclusively from methodological viewpoint, 

rather than for practical purposes.  

We omit deriving availability coefficient for other particular cases, since it will be a 
boring use of the same standard methods. Nevertheless, it is interesting to compare all four 

cases. 

 

 
5.3.3 Stationary availability coefficient 

 

For finding this reliability index, one can use the equation system (37), 

replacing all derivatives by 0, all pk(t) by constant  pk, and omitting the initial 

condition. Then one gets the following  system of algebraic equations: 
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From the first equation, one gets 
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After substitution  (51)  into the second equation in (50), one gets:
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Finally, after substitution (51) and (52) into the third equation in (50): 
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or, finally: 
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From (54), it easy to compile the following table. 

 
Table 2. Formulas of K for four cases of recoverable dubbed system. 
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 Naturally, availability coefficient for the first case can be obtained directly: 
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5.3.4 Probability of failure-free operation 

 

Transition graph s for this case are presented in Figure 9. State “2” 

corresponding to system’s failure is absorbing one.  Since there is no difference 

between restricted and unrestricted  repair. 
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Loaded redundancy Unloaded redundancy General case 

 
 

 

Figure 9. Transition graphs for calculations P(t) of recoverable dubbed system. 
 

The system of linear differential equations in this case is: 

 

)()()( 11000 tptptp
dt

d
   

)()()()( 111001 tptptp
dt

d
                                                (56) 

1)0(0 p . 

After applying Laplace transform, one gets the following system of algebraic 

equations: 

      )()()(1 11000 ssss    

)()()()( 111001 ssss                                 (57) 

 

  Since for a dubbed system  )()()( 10

)0( tptptP   , the solution in terms of 

Cramer Rule has the form: 
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Here the superscript at )()0( tP  and )()0( s denotes that solution has been got 
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under the mentioned above initial conditions.  

Using the same procedure as above, one gets in this case solution: 
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Below we will need a solution of the same system of linear differential 

equations with initial conditions ,1)0(1 p  i.e. when the starting moment is a 

moment of the system’s recovery completion. The corresponding system of 

algebraic equations for Laplace transforms has the form: 

     )()()( 11000 ssss    

)()()()(1 111001 ssss                                    (60) 

 

Let us omit routine deductions absolutely similar those above, and write the 

result: 
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Inverse Laplace transform is: 
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where roots *

1s and *

2s  are the same as for (59). Here again the superscript at )()1( tP  

corresponds to initial condition  1)0(1 p . 

  

 
5.3.5 Stationary coefficient of interval availability 
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This is one of the most important reliability indices of recoverable systems. 

For dubbedd system, this index can be written as a formula of total probability: 
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where  р0  and   р1  are stationary probabilities of states “0” and “1” , respectively; 

probabilities )()0( tP  and )()1( tP are conditional PFFO’s for successful completion an 

operation, starting at corresponding states. Probabilities )()0( tP  and )()1( tP  are taken 

from (59) and (62) , correspondingly.  Stationary probabilities р0  and  р1  can be 

found by using (51) – (53).
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and  
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We do not write the obvious final expression for )( 0tR  because it is too 

clumsy.  However, approximations for highly reliable systems have rather simple 

and compact forms, though it is more convenient to write all of them for specific 

cases: 

 
Table 3. Approximate formulas of R(t0) for four cases of highly reliable recoverable dubbed systems. 
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5.3.6 Mean time to failure 

 

MTTF can be easily found from standard formula: 
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Let us notice that Laplace transform of function )(0 tP with substitution  s = 0 

also gives T
(0)

. Indeed, 
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Thus T
(0) 

can be found with the help of Laplace transform (58): 
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5.3.7 Mean time between failures 

For a dubbed system MTTF and MTBF are different. It is clear because 

functions )()0( tP  and )()1( tP  are different. MTBF can be found with the help of 

Laplace transform (61): 
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Notice that )0(T  is larger than )1(T   on value of 
0

1


. It is clear: this is the 

average “travel” time from state “0” to state “1”. 

The same result can be obtained also in a different way. From the statement 

above follows: 

)1(
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)0( 1
TT 


.                                             (68) 

Coming to state “1” the process stays there before going to stet “0” or state 

“2” on average time 
11

1

 
 and after it returns to state “0” with probability 

11

1






 

or moves to absorbing state “2” with probability 
11

1






. It gives a possibility to 

write the following recurrent equation: 
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Substituting  (69) into (68) gives the final expression: 
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From (69) and (70) follows that  
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  We give sometimes several different deductions of the same results 

exclusively for a single purpose: to help the readers to develop “mathematical 

intuition”. 

The final results for all types of recoverable dubbed systems are presented in 

Table 4. 

 
Table 4.  MTTF and MTBF for four types of recoverable dubbed systems 
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 T
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exact approximate exact approximate 
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5.3.8 Mean recovery time 

 

The mean recovery time, τ, for this simple Markov model coincides with 

average duration of staying the process in state “2”. As follows from transition 

graphs, this time is equal to 
2

1


.  So, this reliability index depends on the number 
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of repair facilities. For  unrestricted recovery (two repair facilities)  
2

1
, and for 

restricted repair facilities (a single repair facility),  .
1

  
 
 

5.4 Parallel systems 
 

By definition, a parallel system is factually a single operating unit with a 

group of identical redundant units, which are independent in sense of  failing. Such 

an idealized scheme has few relations to a real engineering practice though is of 

theoretical interest. Speaking about parallel systems consisting of recoverable 

units, one has to keep in mind four main possible cases, presented in Table 5. 

 
Table 5. Main cases of parallel systems. 

 Regine of recovering 

Unrestricted repair Restricted repair 

 

Regime of 

redundant 

units 

Loaded Factually, all n units in parallel are 
independent 

As soon as the number of failed units 
exceeds the number of reapir facilities, 

failed units form a waiting line. 

Unloaded Failure of such a system occurs 

only if during repair of first failed 
units all other units have failed. 

As in above case, when the number of 

failed units exceeds the number of reapir 
facilities, failed units form a waiting 

line. 

 

 

  Probably, the mathematical description of such systems is given by “Birth-

Death Process that is considered in details in Appendix C2. 

Let a parallel system consists of n units, i.e. one operating unit and n-1 

redundant ones.  Assume that there are k repair facilities for recovering failed units, 

k ≤ n – 1.  Let us denote states by natural numbers 0, 1, 2, ..., where the number of 

a state corresponds to the number of failed units.  Then all four cases can be 

described, actually, by very similar linear transition graphs. 
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Loaded redundancy, 

unrestricted repair 
Loaded redundancy, 

restricted repair 
Unloaded redundancy, 

unrestricted repair 
Unloaded redundancy, 

restricted repair 

 
Figure 10. Transition graphs for corresponding “Birth-Death Processes”. 

 

 For each of these transition graphs, the system of differential equations, 

corresponding system of algebraic equations for Laplace transforms and  algebraic 

equations for stationary probabilities can be easily found with the help of 

Appendix B. We will omit them, first of all, because of ”pure parallel” systems 

with multiple loaded redundant units are rare in engineering practice. Much more 

interesting is the structure that is described in the next section. 

 
 

5.5 Structures of type “m out of n” 
 

Much more realistic is a series system of identical independent units with a 

common group of redundant units. Formally, such a structure appears if a system 

consists of units of several types. A set of units of the same type can be considered 

as a “series system”, for which there is a stock of spare units. It is reasonable to 

consider these spare units as unloaded; these units are waiting for being switched 

into operating position after one of operating units has failed. Failed units are 

directed to a repair shop, from where after recovery they again enter the system’s 

stock. Switching of spare unit into an operating position is usually assumed 

instantaneous. (Of course, this assumption is almost correct if switching time is 

relatively small.) 

In this case, the system as a whole can be presented as a series connection of 

such “mk-out-of- nk” subsystems. 
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Figure 11.Conditional presentation a system as a series connection of  “m-out-of-n” subsystems. 

 

Transition graph for one of such series subsystems of m operating units and 

common group of  n-m unloaded spare units is presented below. States of system 

failure are shadowed. 

 

 
Figure 12.Transition graph of  “m-out-of-n” system with unloaded spare units. 
 

This model of  redundancy is, probably, one of  the most useful for practical 

purposes in reliability engineering. We will repete most of deductions given in 

Appendix C2 for this particular, however very important case. We omit only 

technical details minutely described in the mentioned Appemdix. 

The system of differential equations in this case takes the form: 
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nnn    . 

 The initial condition in most reliability application is taken in the form 

p0(0)=1. 

Of course, system of equations (72) can be solved with the help of methods 

described in Appendix B. The probability of failure-free operation can be found as: 
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 We will not spend time for pure mathematical exercises because such 

systems are oriented on long run, and, consequently, stationary availability 

coefficient for such systems is more appropriate reliability index rather than PFFO.  

In this case the system (72) transforms into the system of algebraic equations: 
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nn pnp  1 . 

 

Since equations in (74) are mutually dependent, it is necessary additionally 

to use equation of total probability:  
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As it has been stated in Appendix C2, actually it is more  convenient to write 

the equations of balance for for “cuts” of transition graph rather than for states. It 

actually leads to the solution almost directly. Remind that the balance means that 

flows back and forth through a cut between neighbor states of the transition graph 

are equal. Thus, on the base of thransition graph depicted in Figure 12 we can 

write:  
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Using (75), one can write the solution: 
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For any pk solution can be easily obtained by substitution p0 in 

corresponding equation of  (77). 

 

 

 
 

6 Recoverable systems. Heuristic 

models 
 

 

 

 

6.1  Preliminary notes 
 

In the previous chapter we presented analysis of recoverable parallel systems 

by the means of  Markov models. The reader had a chance to receive evidence that 

even idealized simplest models needs rather sophisticated mathematical technique. 

What if the model will be a little bit more realistic? For instance, the dubbed 

system has a non-reliable switch? What if a operating unit (unit on operational 

position) has not complete monitoring of its state, so can leads to a hidden system 

failure? (Of course, such kinds of important practical features of redundant systems 

can be continued.)  Below a transition graph for the system described above is 
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presented with additional condition: repair failed part is performing in accordance 

the rule FIFO (first-in-first-out). In this case, the transition graph is rather ugly! 

 
Figure 1. Transition graph for “simple” recoverable dubbedd system with unreliable switching and 

incomplete control of operating and redundant units. 

 

Hardly anyone will take courage to solve a corresponding system of 

differential or even algebraic equations! 

          At the same time, such a problem can be easily solved with the help of 

heuristic methods. 

 

      Do not think that heuristic is something taken “ from the ceiling”.  

Heuristic we are talking about is an approximation method based on strong 

mathematical asymptotical results working for analysis of highly reliable 
systems. 

     However, what to do if the system is not highly reliable? The answer is  

simple: in this case, you should think about improvement of system reliability, not 

spend your time on senseless “reliability analysis” with deducting ugly and useless 
“five-store” formulas. 

 

A researcher is often faced with the problem of finding a "solution" of a 

problem when the problem is practically unsolvable.   However, in spite of the 

problem's "insolvability", a solution must be found! And even if an exact or “ideal” 



76 

 

solution cannot be found, a designer is forced to make a practical decision, since  

required problem has to be solved!  

Remember that famous legend about “Columbus's egg”. It refers to a brilliant 

idea or discovery that seems simple and easy after the fact. That story of how 

Christopher Columbus, having been told that discovering the Americas was no 

great accomplishment, challenged his critics to make an egg stand on its tip. After 

his challengers gave up, Columbus did it himself : he tapped it gently on the table 

breaking it slightly and, with this, the egg stood on its end, because he flattened its 

tip. His sailors were buzzing: “We would do the same!” Columbus answered: “You 

wpould, however I did it!” 

When there is no exact analytic solution and the problem is still too hard for 

even a Monte Carlo simulation, the only possibility is to use a heuristic procedure 

(heuristics). 

 Sometimes heuristics are thought to lead to an arbitrary "solution", based only 

on an “I-personally-believe" type of argument. We oppose such "heuristics", as we 

understand  the term "heuristic" to be an extension of analytical methods in areas 

where such methods cannot be exactly proven. Sometimes we omit some specified 

conditions, sometimes we make additional assumptions and are not insure that the 

method of solution is still correct. 

Sometimes we change an analyzed 

phenomenon description to allow 

the use of available mathematical 

tools. 

 In fact, the building of a 

mathematical model is always a 

heuristic procedure itself. No 

mathematical model completely 

reflects all of the properties of a real 

object. We always create "an ideal 

image" based on a real object, and 

then build a mathematical model for this idealized image.  

 Moreover, approximate calculations can be viewed as "good proven heuristic".  

 Thus, heuristics is an inevitable part of mathematical modeling. 

 Below we will introduce several heuristic approaches. Generally, they concern 

the constructing of models.   

 Anyway, never use a cannon for hanting birds: a simple fowling-piece is quite 

enough for this purpose. 

 

 

 

http://en.wikipedia.org/wiki/Christopher_Columbus
http://en.wikipedia.org/wiki/Voyages_of_Christopher_Columbus
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6.2 Poisson process 

 

 In Reliability Theory, the Poisson process occupies a special place. Models 

based on the Poisson process are rather simple and very convenient for numerical 

analysis. However, it is not like the drunk who is looking for his lost keys under the 

street lamp because that’s the most illuminated place, not because that’s the place 

where he dropped the keys. The utilization of the Poisson models in reliability has a 

веры strong empirical background. 

 Most of complex systems consist of large number of relatively reliable units. 

Flow of system failures is generated by many “sub flows” of units’ failures.  These 

“sub flows” are mutually independent because they are formed by independent units, 

for highly reliable units probability of intersection of failures are negligible and, 

finally, after relatively short time the process of system’s failure becomes stationary, 

i.e. does not change its probabilistic properties with time, and these properties 

become very close to the properties of the Poisson process: the Markov property, the 

ordinariness and stationarity. Let us explain these properties in more detail. 

(1) Markov property, means that the future development of the process 

does not depend neither on current state of the process, nor on its 

entire prehistory. 

(2) Ordinarness means that there are no simultaneously happening  

events or even the so-called “points of concentration”. In other words, 

if time interval Δ→0, the probability of occurrence of more than one 

event, pk>1 (Δ ) within this interval becomes infinitesimally small in 

comparison with p1 (Δ ): 

.0
)(

)(
lim

1

1

0






 p

pk  

(3) Stationarity means invariance to the shift operator, i.e. probabilistic 

characteristics of the process (for instance, mean number of failures in 

interval of given length t) depend on the length of the interval and do 

not depend on its location on time axis.  

 

 The Poisson process especially well describes the process of generating of 

electronic equipment failures. Not in vain, the Poisson process is often called “the 

process of rare events”. In the theory of stochastic processes the Poisson process 

plays a role which is analogous to that of the normal distribution in probability 

theory. 
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 The Poisson process is defined as a point stochastic process that is formed by 

sequence of  independent random variables with the same exponential distribution.  

Probability that within fixed time interval [x, x+t] exactly k events of the Poisson 

process occur has the Poisson distribution: 

)exp(
!

)(
),( t

k

t
txxp

k

k 


 .                                        (1) 

Parameter  is called intensity of the Poisson process. By definition it is 

equal to the mean number of events (in our case failures) in a unit of time, that is 

=1/T, where Т is average distance between events (in our case T is MTBF).  

Actually, formula (1) complies with the three properties that were 

formulated almost on qualitative level. Indeed, take an arbitrary fixed interval of 

length t and divide it into small subintervals i so that



i

i t . 

The mean number of failures within interval i  is: 

Е {i} = i .                                             (2) 

From the other hand, for the same interval i one can write another 

expression for the mean number of failures: 

Е {i} = 



j

ijjp
0

)( ,                                     (3) 

where pk(i) is the probability that exactly k failures will have occurred within 

interval i .Taking into account the property of ordinariness, the following 

equation can be written for total probability: 

p0(k) +  p1(k) + о(k)  = 1,                                (4) 

where о(k) means infinitesimally small value in comparison with  p1(k). Thus, 

property of ordinariness allows rewrite (3) as follows: 

)(lim
0

kE
k




=  p1(k)                                       (5) 

or, taking into account (2) and (4): 

p1(i)  =  i                                              (6) 

and  
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p0(i) = 1 –  i  .                                    (7) 

Let us find now the probability of no failures within entire interval of length 

t. Due to the Markov property: 





i

iptP )()( 0 .                                (8) 

In limit, under condition of uniform tend all i  to 0, and remembering that 

i = t, we get: 

)exp()1(lim)( /

0
ttP Tt  


.                   (9) 

This has completed the proof that the three characterization properties of the 

Poisson process leads to recurrent point process with intervals between events 

distributing exponentially.  

 

 
6.3 Procedures over Poisson processes 
 

Before begin with explanations of a suggested heuristic method, let us 

consider two simple procedures: thinning of the Poisson process and superposition 

of the Poisson processes. 

 

Thinning procedure. 

Procedure of thinning consists in the following. Let us exclude from an 

arbitrary Poisson process points with constant probability q and keep them with 

probability p = 1– q. What kind of process we will get in this case? 

Get the result without any special mathematical proofs basing only on 

characterization properties of the Poisson process. 

Markov property of a new point process conserves because probability of 

exclusion of any point does not depend on entire prehistory of the process.  

Ordinariness property conserves due to the fact that points are only 

excluding from the process. 

 Stationarity of the process conserves due to constant value of probability q 

on all time axis. 

Thus, since all characterization properties have been preserved under such 

thinning procedure, the resulting process is the Poisson one. 

Of course, not any “thinning procedure” with Poisson process leads to such 

results.  Assume that probability of point exclusion, for instance, is decreasing in 

time. In this case, the flow of failures will remind a traditional aging process of a 
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system consisting of wearing-out units: before “complete death” a system will fail 

more and more often, i.e. no properties of the Poisson process are observed. 

 
 Figure 3. Example of thinning with probability q depending on time. 

 

 

Another example of thinning that does not conserve Markov property is 

thinning with probabilities of exclusion points from the process depending on the 

ordinal number of point in initial   process. For instance, let qk = 1 for all k ≠ 2
3x

 

and  k ≠ 2
3x+1

 where x is a natural number, and qk = 0, otherwise. In other words, we 

have a new point process:  after interval presenting sum of three i.i.d. exponential 

random variables with probability 1 follows a single exponentially  distributed time 

interval, In other words, the process becomes alternative process formed an 

alternative sequence of  intervals  with Erlang and exponential  (see Figure  4). 
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Figure 4. Example of thinning with probability q depending ordinal number of point in initial   

process. 

 

 

Superposition procedure. 

The second important procedure is the so-called superposition of 

independent Poisson processes. 

Markov property of a new point process conserves due to independence of 

initial processes and the Markov property of each ingredient process. 

Ordinariness property conserves due to the fact that exponential distribution 

is continuous, hence exact coincidence of two independent random variables is 

impossible. By the same reason, appearance of points of concentrations also 

becomes an impossible event. 

 Stationarity of the resulting process conserves due to initial stationarity of 

each incoming ingredient. 

Thus, since all characterization properties of Poisson process have been 

preserved under such procedure of superposition, the resulting process is also 

Poisson one with parameter equals to sum of parameters of inputting sub 

processes. 

*** 

These simple explanations are given only to give the reader  more exact 

filling of this two procedures those are so important in Theory of  stochastic point 

processes. 

The approximate methods suggested below are based on two important limit 

theorems in the theory of point stochastic processes.   

 

 

 
6.4 Asymptotic thinning procedure over stochastic point process 
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  We begin with a renewal process. By definition, a counting process, for 

which the interarrival times are i.i.d. with an arbitrary so-called "forming 

distribution" F(t) is said to be a renewal process. In this sense, the Poisson process 

is a particular case of a renewal one.  

 Let us apply the thinning procedure to this process multiply, excluding points 

step-by-step as it  shown in Figure 5. 

 

 
 
Figure 5. Three first steps of thinning a renewal process. 

 

 

 The strong definition of such asymptotic thinning procedure is known as the 

Limit Renyi
15

 Theorem: 

If  

 Qn = q1q2 ... qn → 0 as n → ∞,  

then in limit the thinned renewal process approaches Poisson one. Of course, such 

procedure lkeads to infinite growth of the interarrival times. To keep the resulting 

process of the same intensity (i.e. with the same average length of intervals as in the 

initial renewal process), one needs simultaneously to “compress” the time axis: new 

time scale after n thinning procedures has to be Qnt.  

 Some time later Yu. Belyaev
16

 generalized the result on stochastic point 

processes beyond renewal ones. 

 

 

                                                        
15
 Alfred Rényi (1921 – 1970) was a Hungarian mathematician who known for his contributions in 

combinatorics, graph theory, number theory but mostly in probability theory. 
16

 Yuri Konstantinovich Belyaev (b. 1932) is Russian statistician, Professor of Moscow State University 
and Professor Emeritus of University of Umeå (Sweden). Pupil of  A.N. Kolmogorov. 

http://en.wikipedia.org/wiki/Hungary
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Probability_theory


83 

 

6.5 Asymptotic superposition of stochastic point processes 
 

 Another important asymptotic result is  the Khinchin
17

-Ososkov
18

 Theorem of 

the superposition (union) of independent renewal processes.  Later this result was 

independently expanded on more general stochastic point processes by B. 

Grigelionis
19

 and I.Pogozhev
20

 in the theorem named after them, 

 

 
Figure 6. Example of superposition of three renewal processes, 

  

 The theorem states that superposition of n independent renewal processes 

forms in limit the Poisson process, when n → ∞. Indeed, let us again check if such 

procedure leads to three properties of the Poisson process. 

Each renewal process consisting the resulting one, possesses the property of 

“restricted aftereffect”, i.e. its future depends only on the moment of the last 

occurred event. If the number of superposed renewal processes is large, the 

process, in a sense, “forgets” its past: too many other independent events 

“intervene” between two neighbor arrivals of the same process. Thus, it is 

understandable, on intuitive level, that process asymptotically begins to possess 

Markov property. 

Ordinariness property conserves due to the fact that “forming distributions” 

Fk(t) of initial renewal processes are continuous, and due to it exact coincidence of 

two arrivals or appearance of points of concentrations are impossible events. 

 Stationarity of the resulting process is delivered by the fact that each of 

initial renewal processes has its own constant intensity. 
                                                        
17

 Alexander Yakovlevich Khinchin (1894 –1959) was a Soviet mathematician and one of the most 
significant people in the Soviet school of probability theory. 
18

 Gennady Alexeevich Ososkov (b. 1931) is Soviet and Russian mathematician, pupil of  A.N. 

Kolmogorov and A.Ya. Khinchin. 
19

 Bronyus Igno Grigelionis (b. 1935) is Lithuanian mathematician.Pupil by B.V. Gnedenko. 
20

 Ivan Borisovich Pogozhev (1923-2011) was Soviet and Russian mathematician. 

http://en.wikipedia.org/wiki/USSR
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Soviet_Union
http://en.wikipedia.org/wiki/Probability_theory
http://ru.wikipedia.org/wiki/1923
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Thus, since all characterization properties of  Poisson process are presented, 

the resulting point process asymptotically approaches Poisson one with parameter 

equals to sum of parameters of inputting sub processes. 

Of course, in this case interarrival intervals go to 0, so we again should 

change time scaling: we have to “stretch out”  the time axes to keep length of 

interarrival intervals in a reasonable scale. 

 The main requirement for correct using the Theorem of superposition is the 

condition of “uniformity” of point processes that compose the resulting process. For 

instance, assume that we superpose a single regular point process with constant 

interarrival time, τ,  and infinit number of Poisson processes of such type that their 

intensity, λk , decrease in such a way that  





k

nk
n

 
1

lim , where 


1
  (see Figure 7). 

 

 
Figure 7. Superposition “dense” regular point process with a number of “weak” Poisson processes. 

 

 From this figure, one can see that points of regular process prevail over points 

of other processes.  

* * * 

 Now we will show that both of these theorems are extremely constructive and 

effective for a heuristic analysis of highly reliable repairable systems. Of course, rigid 

asymptotic results used in a prelimit case gives only approximations, however what 

does it mean “correct model”? A model is always a model. We would like to 

underline once more that model constructing is “an art”, and preciseness of 
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probabilistic analysis of real objects and phenomena depends, in  first turn, on their 

understanding, rather than on filigree mathematical exercises. 

 Everybody understands that the main imperfection of any heuristic method 

usually lies in the impossibility of defining the domain where the results obtained 

with its help are valid.  But in this particular case, we can suggest a simple (and 

convenient!) rule: if you have obtained a high value of a reliability index, the 

application of the heuristic method was correct. It is not a bad rule because otherwise 

a system is improper for practical use! 

 

 The best way to explain a heuristic method in detail is to show examples of 

how it works. 

 

 
6.6 Intersection of flows of narrow impulses 

 

 The main idea is in the following. Consider two alternating renewal 

processes (flows of impulses), one with interarrival time T1 and impulse’s width τ1, 

and another with corresponding parameters T2 and τ2. In assumption of 

exponentiality of interarrival time, one can write 
1

1

1

T
  and

2

2

1

T
 . 

 Intersection of two impulses can happen if the end edge of an impulse of the 

first flow overlaps with the front edge of an impulse of the second flow, or if the end 

edge of an impulse of the first flow overlaps with the end edge of an impulse of the 

second flow. Notice that probability of this event is equivalent to the probability that 

the front edge of an impulse of the second flow appears within the impulse with the 

width equal to τ1 + τ2 (see Figure 8). 

 

 
Figure 8. Demonstration of equivalency of two models of impulses overlapping.  

 

 In result, the probability of impulses of the first flow overlap with impulses of 

the second flow can be calculated approximately as: 
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 ).())(exp(1 2122121                                       (10) 

  Now let us apply these results and mentioned above asymptotic theorems to 

reliability analysis of simplest series and parallel systems. 

 First, consider a series system of two units. What happens if two intervals of 

down time are overlapped? Consider the case of restricted recovery (the unit failed 

during recovery of previously failed one is waiting in line). The total recovery time 

equals 21   .  

 

 
Figure 8. Explanation of forming the total recovery time in case of restricted recovery. 

 

 In result, there are three ingredients of the resulting flow: 

1) Flow of impulses of mean width equals 21   .  Intensity of this flow 

defined in )( 212111   ; 

2) Flow of impulses of the first  flow (width of impulse equals 1  and intensity of 

this flow is  1

*

1  ); 

3)  Flow of impulses of the second flow (width of impulse equals 2  and intensity 

of this flow is  2

*

2  ). 

 Being practical, let us evaluate possible values of the found parameters. 

If a system is highly reliable, for instance, its availability coefficient is at least  0.95 

and the number of units is about 50, then availability coefficient of  each unit has to 

be of order  .999.095.050 K  If assume that mean down time is about 0.5 hour, it 

leads to value of failure rate about 0.002 [1/hrs]. In such assumptions value of 

Λ≈0.002
2
 [1/hrs] = 0.000004[1/hrs], i.e. in practice no sense in “catching the fleas”. 

 Thus, considering series systems with such minor corrections has no sense. 

 Now consider a dubbed system keeping the same notations for units’ 

parameters. In this case, the system failure occurs if and only if two impulses of 

down time overlapped. It means that the system failure rate is approximately Λ. In 

this case, the total recovery time is equal to the duration of time interval when both 

units are failed. This event may occur by two ways, as it depicted in Figure If 
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recovering time would be exponentially distributed, this total system recovery 

intensity is equal to  

21

21

21

11









  ,                                                 (11) 

or 

.
21

21







                                                      (12) 

In [Gnedenko, Ushakov, 1994] it is shown that (11) is valid, at least approximately, 

for wide class of distributions. 

 
Figure 9. Two ways   of forming the system recovery time: partial and complete overlapping. 
 

 

 

6.7 Heuristic method for reliability analysis of series recoverable systems 

 

 Let a series system consist of n units. The ith unit has a MTTF Ti and a mean 

repair time τi. In accordance with theorem about asymptotic behavior of point 

processes superposition, failure rate of such series system is: 

.  









 

 ni iT1

1
Syst. .                                                                           (13) 

 The system's mean down time can be calculated as a weighted average: 





ni

ii

1

1





Syst.

Syst.                                                        (14) 

 The system’s MDT has hyperexponential distribution (see Appendix 2.2.6). 
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Probability of failure-free operation  
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Availability coefficient  
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Operational availability coefficient 



























 



n

i

ii

n

i

i

n

i

ii tttR
1

0

1

0

1

0 )(111)( 

         (17) 

 

  

6.8 Heuristic method for reliability analysis of parallel recoverable systems 

Presenting use of the heuristic method to recoverable parallel systems, we 

restricted ourselves by dubbed systems. 

Operating process of dubbed recoverable systems can be illustrated by the 

following time diagram (see Figure 10). 
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Figure 10.  Operating process of a dubbed recoverable system.  

 

Let us begin with a stationary availability coefficient.  For a single 

recoverable unit this coefficient has the form 

T


1

1
where  is MDT and Т is 

MTBF.  If time between failures has exponential d.f., one can write the 

approximation 1– λτ. 

Thus, for dubbed system availability coefficient approximately equals: 

22 )(1)]1(1[1  K  .                                  (18) 

Now we consider some important special cases.  
 

6.8.1 Influence of unreliable switching procedure 
 

In reality, dubbedd system can fail during the process of switching from a 

failed operating unit to a redundant one,  

If π is the probability of successful switching, then the system will fail, on 

average, after  switching. In other words, dubbed system failure rate due to this 

particular cause is equal to λ(1-π). Assume that MDT in case of switching process 

failure is τs.  Another ingredient of system’s failure flow is simultaneous failure of 

both units simultaneously. The failure rate due to this case is λ
2
τ and MDT is 0.5 τ. 

These simple considerations lead to the following RBD (see Figure 11). 

 

 
Figure 11. Conditional RBD of a dubbedd system with unreliable switching procedure. 

 

 

In this case, the resulting availability coefficient of dubbedd system can be 

written as:  
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])(1[ 22 


 


 s

s

K                       (21) 

Dependence of availability coefficient on the level of switching reliability is 

presented in the table below. 
 

Table 1. Dependence of availability coefficient on reliability of switching procedure. 

 Unit’s coefficient of 

availability 

0.9 0.95 0.99 

 

π 

0.9 0.979 0.992 0.9989 

0.95 0.985 0.995 0.9994 

0.99 0.989 0.997 0.9998 

1 0.99 0.998 0.9999 
 

     
 

 

6.8.2 Influence of switch’s unreliability 
 

Sometimes a switch plays a role of a distinctive interface. It means that the 

switch failure leads to the system failure. The RBD for this case is presented in 

Figure 12. 

 
Figure 12. RBD for a dubbed system and a switch-interface. 

 

In this case the system availability coefficient can be written as: 

sKK  ])(1[ 2                                                         (22) 

where Ks  is availability coefficient of the switch-interface. 

 In the table below, one can find some numerical illustrations. 

 
Table 2. Dependence of availability coefficient on availability of switch-interface.  

  Unit’s availability coefficient  

 0.9 0.95 0.99 

 

Ks 

0.9 0.891 0.95 0.99 

0.95 0.94 0.898 0.8999 

0.99 0.98 0.948 0.9499 
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1 0.99 0.9975 0.9999 

 

 
6.8.3 Periodical monitoring of operating unit 

 

Sometimes for checking if a operating unit of dubbed system is operational or 

not, one has to perform special periodical testing. In this situation, a system fails 

after operating unit failure until it will have been detected. Thus, the system is 

found in the state of undetected failure during time interval with average length 0.5 

 , where   is period of testing (see Figure 13). 

 
 

Figure 13. Time diagram illustrating system undetected failure forming. 
 

 

In this case system’s availability coefficient can be written as: 

 5.0)(1)5.01(])(1[ 22 K                                  (23) 

Formula (23) shows that the testing period has to be significantly less than a 

single unit MTBF, otherwise there will be null effect of redundancy.  Numerical 

examples are given in the table below.  
 

Table 3. Dependence of availability coefficient on frequency of operating unit testing. 

  Unit’s availability coefficient  

 0.9 0.95 0.99 

 

 

0.1 0.94 0.948 0.95 

0.02 0.98 0.988 0.99 

0.01 0.98 0.993 0.995 

0 0.99 0.9975 0.9999 
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6.8.4 Partial monitoring of operating unit   
 

Efficiency of dubbed system depends on completeness of monitoring of an 

operating unit, which is currently performing needed operation. Usually testing of 

a redundant unit is made easier than a unit on operational position because testing 

itself can interfere with operating functions of the system. Consider a dubbed 

system with partially monitored operating unit. Time diagram of functioning 

process of such system is presented in Figure 13. 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 13. Time diagram of functioning process for dubbed system with partially monitored 

operating unit. 
 

 

The RBD of such system can be presented in a conditional form as follows: 

 
Figure 14. Conditional RBD for a dubbed system with partially monitored operating unit. 
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 For such system, availability coefficient can be written easily as: 

)1)]1()1(1[ 2

11  AAAASystem KKKK                                     (24)
 

From (24), one can see that even if an uncontrollable part  is small enough, the 

entire effect of redundancy can be practically nullified, moreover, it can even 

worsen the system total reliability (in the table below corresponding values are 

shadowed). 

 
Table 3. Dependence of recoverable dubbed system reliability on the portion of 

uncontrolled part of the operating unit. 

 

 portion of uncontrolled part 

0 0.01 0.05 0.1 
unit’s 

availability 

coefficient 

0.8 0.96 0.95 0.91 0.86 

0.9 0.99 0.98 0.94 0.89 

0.95 0.9975 0.988 0.948 0.9 

0.99 0.9999 0.9899 0.9499 0.8999 

 
6.9 Brief historical overview and related sourcews 
 

Here we offer only papers and highly related books to the subject of this chapter. List of general monographs 

and textbooks, which can include this topic, is given in main bibliography at the end of the book. 

One of the first who suggested applying process of random impulses for reliability analysis of recoverable 

systems was N. Sedyakin21. His ideas were not based on mentioned above asymptotic theorems, therefore were not 

accepted at his time by mathematical community.   

Theory of stochastic point processes and main asymptotic theorems, used for developing the heuristic 

method,  are presented in the following publications. Bibliography is given in chronological-alphabetical ordering for 

better exposition of historical background of the subject. 
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 Ososkov, G.A.  (1956).  A limit theorem for flows of similar events. Theory Probab. Appl., V. 1, No. 2 

 Renyi, A. (1956).  Poisson-folyamat egy jemllemzese (Hungarian). Ann. Math. Statist, V. 1, No. 4.  

 Smith, W.L. (1958) Renewal theory and its ramifications, in Journal of the Royal Statistical Society, series 

B, 20:243-302. 

 Cox, D.R. (1962). Renewal Theory. John Wiley, New York. 

 Grigelionis, B (1963).  On convergence of sums of steps stochastic processes to a Poisson Process. Theory 
Probab. Appl.  V.8, No.2 

 Gnedenko, B.V.  (1964). On duplication with renewal. Engrg Cybernet. No. 5 

 Gnedenko, B.V. (1964).  On spare duplication. Engrg Cybernet. No. 4 

 Sedyakin, N. M..(1965) Elements of the Theory of Random Impulse Flows (in Russian). Moscow, 
Sovetskoe Radio. 

                                                        
21

 Nikolai Mikhailovich Sedyakin  (1922-1969) was Soviet applied mathematician. 

http://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society
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7 Time redundancy 

 

 Some systems possess ability to neglect failures even without redundant units 

due to some kind of  “insensivity” to short failures or possibility to restart a needed 

operation. In this case, one says about the so-calle time redundancy.  

 Let us consider several main types of systems with time redundancy. 

 
7.1 System with possibility of restarting operation 

 Assume that the needed operation continues time t0, though it can be 

completed within some interval [0, t] where t > t0. So, the problem is to find the 

probability that there is at least one interval between failures that is larger than t0. 

 There are two cases: 

1. Failure durations are neglectibly short, though after each failure has to begin 

its operation from the beginning; 

2. Failure durations are not neglegible, so they decrease remaining potentially 

useful time. 

 

 First case. Each failure destroys current results of system operation, and every 

time the system is forced to begin its operation from the beginning.  

 Let )|( 0ttR  denote the probability that during interval [0, t] there will be at least 

one period between failures exceeding required value t0. The system performs its 

operation successfully during time t if two events occur: 

o there is no failures in time interval [0, t0]; 

o a failure has occurred at x<t0, however during remaining period [x, t0] 

time at least once the system successfully perform its operation. 

 The latter event, evidently, cannot occur if  t-x<t0. This verbal explanation 

leads us to the recurrent expression 

 
0

0

000 ),()|()()|(

t

xdFtxtRtPttR                                                (1) 

where F(x), as usual, is d.f of the system TTF. 
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 This is an equation relating to Volterra
22

 type equations. Equations of such a 

recurrent type are usually solved numerically. We will not provide here a 

mathematical technique for this solution.  

 For exponentially distributed TTF, one can wriтe a simple approximation 

based on the following arguments. Successfull system operationscan occur at the first 

attempt. If a failure happent in the first interval, then the system begins the second 

attempt, and so on. Under condition of highly reliable system 0t <<1, the probability 

of appearance of more than one failure within interval of duration 0t  is neglegibly 

small. At the same time, the conditional distribution of a single event of Poissonian 

process has a uniform distribution within a fixed interval. 

 Let us explain the latter statemet. Consider a Poisson process. If 0t <<1, then 

the conditional probability that there is a single faiure within the considered interval 

under  condition that there is at least one failure is very close to one. Conditional 

density of failure location within interval t is: 

tte

e
failureexactlyistheretf

t

t 1
)1|( 












 

 Thus, for interval t0 on average a failure occurs at moment
2

0t , and in this case 

there remain 
2

0tt  units of time for restarting a new attempt. In other words, during 

time t the system has a possibility to restart operation on average 
0

0

5.0 t

tt 
 times, i.e. it is 

equivalent to corresponding number of loaded redundant units (taking into account 

that thenumber of redundant units is integer.). Denote the integer part of 
0

0

5.0 t

tt 
 by  . 

Then we can write the following bounds: 

    1

000 )(1)|()(1


 tqttPtq .                                                  (2) 

 If time resouse is small, the effect of such time redundancy is negligible. Using 

formula (1) and the same heuristic arguments, we can write for a case when t<2t0: 

)].(1[)()()()()|( 000 ttqtptpttqtpttP ooo                                       (3) 

                                                        

22
 Vito Volterra (1860 – 1940) was an Italian mathematician and physicist, known for his contributions 

to mathematical biology and integral equations. 

 

http://en.wikipedia.org/wiki/Italy
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Physicist
http://en.wikipedia.org/wiki/Mathematical_biology
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Below there are some numerical examples where the total operational time is larger 

in comparison with t0. 

 
Table 1. Increase of PFFO depending on increase of the total operational time.  

 Total time  

110%  120% 130% 

 

 

p(t0) 

0.99 0.991 0.992 0.993 

0.98 0.982 0.984 0.986 

0.97 0.973 0.976 0.979 

0.96 0.964 0.968 0.972 

0.95 0.955 0.959 0.964 

 

 

Sesond case:  If failures are non-instant, one has to take into account lengths of idle 

periods between failures.  Let G(t) denote a distribution of idle time during recovery. 

This case is very close to the previous one with the diffreence that restarting of the 

system occurs after time of recovery, not immediately sffter a failure. 

 This verbal description permits us to write the following recurrent expression: 

  









0

0 0

000 ),()()|()()|(

t xt

xdFydGtyxtRtPttR                                 (4) 

where again ,0)|( 0 ttR  if t<t0.  

 For this case, we cannot suggest any “pleasant results”; soluiton can be 

obtained only by numerical methods. 

 

 
7.2 Systems with “admissibly short failures”. 

  

 Consider a system that has some kind of “functional inertia”: if recovery time, 

 , is less than , the system does not “feel” it and continue successfully perform its 

functions.   

 It is clear that for highly reliable systems when, }{}{  EE  , one can apply 

the asymptotic theorem of point processes thinning. If G(x) is d.f. of recovery time, 

then )(G is the probability that a system failure has been excluded durin thinning 

operation. In other words, such “short” failure has no influence on the system 

operation. In this case, for general distribution of TTF,  , we will have a new 

random variable, * , that has distribution, F*(t), which is defined as: 
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where   

t

nn xdFxtFtF
0

)1*(* )()()( is a convolution of order n, i.e. distribution of sum 

of n random variables. Thus, r.v. ξ* is the sum of random number of random 

variables ξ and this number has geometric distribution. It is known from the 

probability theory that asymptotically such sum has an exponential distribution.  So, 

for large n one can approximateli write: 









 )(exp)( G

T

t
tP .                                                               (6) 

  

 
7.3 Systems with a Time Accumulation 
 

 Some systems accumulate time of successful operation during a total period of 

performance, θ.  The system operation is considered completed if during period θ the 

totalaccumulated operational time exceeds t0. In this case we consider an alternating 

process of operating and idle periods. 

 Denote the probability that the total accumulate operational time is larger than 

t0 units during period θ as P(t0|θ). For this probability one consider two events lead to 

success: 

 - a system works without failures during time t0 from the beginning; 

 - a system has failed at moment x<t0, was repaired during time y and at the 

remaining interval of yx   tries to accumulate t0  – x units of time of a successful 

operation. This description leads us to the recurrent expression: 

 .xdFydGyx|xtP + tP = |tP

x-t0

)()()()()( 0

00

00 







 



                                  (7) 
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 This expression is correct for the case where a system starts to perform at t=0. 

In general case such equation can be solved only numerically. 

 This subject as a whole requires much more room and details. There are many 

interesting detailed models concerning, for instance, computer systems.  

 

 
7.4 Case study: Gas-pipeline with an underground storage 
 

 Consider a simplest gas-pipeline system with an underground storage, which 

allows a user to get gas supply during a pipeline break out. 

 Let η be the pipeline's random idle time with  distribution  G(t)=Pr{ η <t} and 

ξ  be its TTF with a distribution P(t)= Pr{ξ <t}. The storage volume equals V. The 

speed of the storage expenditure (after a pipeline failure) equals α, and its speed of 

refilling equals β. A process of expenditure and refilling the storage is depicted in 

Figure 1.  For simplicity, we assume that the storage begins refilling immediately 

after the pipeline's repair. 

 
 Figure 1. Example of a process of expenditure and refilling storage. 

  

 The system's failure occurs when a user does not obtain gas (the storage 

becomes empty). It is clear that due supplyimg from the storage, a user does not 

"feel" short failure times of the pipeline. 

 Assume that pipeline failures occur "not too often" and the probability of the 

storage's exhaustion during a pipeline's repair is "small enough". (The meaning of the 

expressions in inverse commas will be explained below.)  Also assume that pipeline 

MTBF is much larger than the average duration of the pipeline's repair. 

 Under these assumptions, one can consider the process of the pipeline's 

disruption occurrences as a renewal stochastic process. An appearance of the system 

failures can be considered as a "thinning" procedure because a pipe-line's disruption 

rarely leads to the system's failure. In other words, the process of system failures 

might be approximated by a Poisson Process. Note that for an acceptance of this 

hypothesis, the probability of developing a pipeline's failure in a system's failure 

should be small enough (practically less than 0.05). 
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 Let us denote 
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Gq 1 , then the system MTTF equals 
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For the PFFO, one can write 
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 exp                                                            (9) 

 This expression gives an upper bound because actually we assume that the 

storage is refilled instantaneously. The smaller the probability q, the better the bound. 

 One can easily obtain a lower bound. Assume that any pipeline failure, which 

appears during the refilling, leads to the system's failure. This bound is lower 

because, as a matter of fact, not each failure during refilling leads to the system's 

failure. The probability of a system's failure under this assumption equals 

 

Obviously, the probability q
*
 will be larger if we write 

 .
V

 R
V

G+ 
V

G = q
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i.e., consider that each pipeline failure has always a maximal duration equal to  
V


. 

Expression (11) can be rewritten as 

 .
V

 R 
V

G = q
*





























11                                        (12) 

Now we can write a lower bound for the system's MTTF 

q

 + T
 = T *

*
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                                                               (13) 

and for the system's PFFO 
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Note that in practical cases valuesof the MTTF and MTBF coincide. 

For more details, see [Rudenko and Ushakov, 1989]. 

 
7.5 Brief historical overview and related sourcews 
 

Here we offer only papers and highly related books to the subject of this chapter. List of general monographs 

and textbooks, which can include this topic, is given in main bibliography at the end of the book. 

The so-called time redundancy was first considered in the books by G. Cherkesov and B. Kredentser. Bibliography 

below is given in chronological-alphabetical ordering for better ecposition of historical background of the subject. 

 
Bibliography 

Cherkesov, G.N. (1974). Reliability of Technical Systems with Time Redundancy. (Russian). Moscow, Sovietskoe 

Radio. 

Kredentser, B.P. (1978). Prediction of Reliability of Systems with Time Redundancy.(Russian).KiNaukova Dumka. 

Rudenko, Yu.N., and I.A. Ushakov (1989). Reliability of Energy Systems. (Russian). Novosibirsk, Nauka. 

Obzherin, Yu.E., and A.I. Peschansky (1994) Relaibility of unstructured systems with excess time. Cybernetics and 

Systems Analysis, Vol.30, No.6. 

Obzherin, Yu.E., and A.I. Peschanskii. (2004).Reliability analysis of a system with combined time reserve. 

Cybernetics and Systems Analysis. Volume 40 Issue 5 

Obzherin, Yu. E.,  and A. V. Skatkov (2010).On the time to failure of systems with large replenishable reserve time. 

Journal of Mathematical Sciences, Vol. 57, No. 5 

 

http://www.springerlink.com/content/?Author=Yu.+E.+Obzherin
http://www.springerlink.com/content/?Author=A.+V.+Skatkov
http://www.springerlink.com/content/1072-3374/
http://www.springerlink.com/content/1072-3374/57/5/


102 

 

 

8 “Aging” units and systems of 

“aging” units 

 
8.1 Chebyshev bound 
 

In practice very often we know only MTBF of a unit and sometimes, 

additionally, from some physical hypotheses, that a unit is “aging”, i.e. its failure 

rate λ(t) is increasing in time. Even this scant information permits to get some 

reasonable boundary estimates of reliability indices. 

If distribution of TTF is unknown, one can write the following upper bound 

based on the Chebyshev
23

 inequlity: 

 
2

2
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  E  ,                                                           (1) 

where ξ is random variable (in our case, unit’s TTF), and Е{ξ} and 
2
 are its mean 

and variance;   is an arbitrary positive constant.  Let us demonstrate the proof of 

the statement. By definition:  
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Since the domain of integration is 1|}{|)/1(  XEx , one can write: 
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That completes the proof. 

From (3) one can see that the universal estimate gives rather rough estimates 

and only for arguments that are lying from the mean on a distance larger than .  

Nevertheless, it is possible to get better estimates if here is some additional 

information about type of d.f. 

 

 
8.2 “Aging” unit 

  In Reliability Theory aging units were introduced in [Barlow-Proschan, 

1965]. They called corresponding class of TTF distributions as IFR-distributions 

where IFR stands for Increasing Failure Rate.  

                                                        
23

 Pafnuty Lvovich Chebyshev (1821 – 1894) was a Russian mathematician. He is known for his work 
in the field of probability, statistics and number theory. 

http://en.wikipedia.org/wiki/Russians
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Number_theory
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For further deductions, we will use the fact that exponential and degenerate 

distribution functions represent boundary ones for the entire class of IFR 

distributions. Indeed, the constant is the boundary function between class of 

decreasing and increasing functions; and the second one is “the most increasing”: it 

is a delta function.  

Notice that degenerate distribution is the distribution function for non-

random variable, i.e. constant. Its distribution function is the Heaviside
24

 step 

function defined as: 



 


.1

0
),(*

otherwise

xtif
txD                                                  (4) 

where x is a point of discontinuity. 

On Figure 1 failure rates for both cases are depicted. 

 
Figure 1. Failure rates for exponential and degenerate distributions with equal MTTF’s. 

 
 

 

 
8.3 Bounds for probability of failure-free operations 

 

Lower bound.   Let us consider three functions: IFR, exponential and degenerate 

distributions, all with the same mean equals Т. Denote these functions by P(t), E(t) 

and D(t), respectively. 

                                                        

24
 Oliver Heaviside (1850 –1925) was a self-taught English electrical engineer, mathematician, and 

physicist who adapted complex numbers to the study of electrical circuits, invented mathematical 
techniques to the solution of differential equations (equivalent to Laplace transforms), and independently 

co-formulated vector analysis. Although at odds with the scientific establishment for most of his life, 

Heaviside changed the face of mathematics and science for years to come. 

 

http://en.wikipedia.org/wiki/Autodidact
http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Physicist
http://en.wikipedia.org/wiki/Complex_numbers
http://en.wikipedia.org/wiki/Electrical_circuits
http://en.wikipedia.org/wiki/Differential_equations
http://en.wikipedia.org/wiki/Laplace_transform
http://en.wikipedia.org/wiki/Vector_calculus
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Figure 2. Degenerate , IFR and exponential distributions with equal MTTF’s. 

 

It is easy to show that t*, the crossing point of P(t) and E(t), lays on the right 

of T. From the condition of equality of the means follows that areas restricted by 

each of curves G(t),   E(t) and P(t) and abscissa are equal. It follows that for E(t) 

and P(t), the equality stands: 
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Since G(t)>P(t) for all t<T, then: 
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that confirms that inequality t*>T is satisfied. 

From above follows that for any IFR distribution with the mean T the 

following lower bound exists: 

 










Ttfor

TtforTt
tP

0

)/exp(
)(   .                                        (7) 

 

Upper bound. If  tТ  the upper bound for PFFO is trivial: P(t)1. The upper 

bound for t>Т  needs some auxiliary arguments.  Consider a family of exponential 

functions, Е k*(t), truncated from the right and such that their means are equal to T. 

It is obvious that for each truncated exponent  λk <λ .
1

T
 . So, the “aging” function 

P(t) cross any of truncated exponential functions Е k*(t) twice: first from above on 

the left of tk, and then in tk (see Figure 3).  This fact follows from the condition of 

the means equality that means that the corresponding areas under curves are equal, 

i.e. 
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Figure 3.  Explanation of the upper bound construction. 

 

 For constructing the upper bound, that is set of all )( *&
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Integration of (9) gives us 

)exp(1 ***

kkk tT   .                                   (10) 

Thus, we can construct the continuous upper bound for P(t):  
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)( * Ttfort

Ttfor
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                                  (11) 

where λ* depends on corresponding tk and is found from equation of type (10). 

 Notice that for practical purposes, one is more interested in the lower bound, 

since it gives a warranty value for PFFO. 
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8.4 Series system consisting of “aging” units 

 
8.4.1 Preliminary Lemma 

 

 For the further analysis, we will need the following lemma. 

Lemma. Let for functions f(x) and g(x) thе following conditions are satisfied:  

(1)  f(x) is a monotone bounded and non-negative function on positive semi-axix, 

(2)  g(x) is absolutely integrated function on positive semi-axis,  

(3) g(x) possesses the following property:  g(x)0 for x<a and g(x)0 for xa , and 

additionally: 

(4)  g(x) satisfies the following condition: 





0

0)( dxxg .                                                        (12) 

Under these conditions, if function f(x) increases (decreases) in x, the 

following inequality takes place: 
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0)()()( dxxgxf .                                                 (13) 

Proof.  We present the proof in the form of a chain of equalities. 
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 The common sense of this lemma is easily understood from Figure 4: it is 

clear that in the final integral square  s2 is taken with smaller “weight” than square 

s1. 
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Figure 4. Graphical explanation of lemma for decreasing function f(x). 

 

 

 
8.5 Series system 

 
8.5.1 Probability of failure-free operation 

 

 Consider a series system, elements of which are numerated in order of 

increasing their MTTF’s:  Т 1 Т 2... Т n.   

Lower bound.  The lower bound for the system, P(t), is defined as the product of 

the lower bounds of its units: 
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where  Ei(t) =  iTt /exp  , and Ti  is the i-th unit MTTF. 
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Figure 5. Explanation of the lower bound of PFFO construction on the example of a series system of three 

units. 

 

Using (7), one can immediately write the lower bound for the series system 

PFFO in the: 
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 Thus, the lower bound for series system PFFO has a non-trivial sense only 

vor time interval [0, Tmin]. 

 

 Upper bound. Using (2.8), one can write the upper bound, P , for a series system 

consisting of n independent “aging” units. This time we avoid long formal 

explanations, referring to Figure 6. 
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Figure 6. Explanation of the upper bound of PFFO construction on the example of a series system of three 

units. 

 

 The system upper bound for PFFO is defined as: 
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After substitution (11) in (17), the upper bound expression has the form: 
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where  λk  depends on corresponding moment of truncation. 

Unfortunately, this upper bound has almost no practical interests: we are 

usually interested in PFFO values for t << Tmin.  

  

If each unit’s d.f. has a small variation coefficients, then one can assume that  
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,                                                   (19) 

where index min corresponds to d.f. with the minimum MTTF, i.e. 

 

Tmin = .                                             (20) 

 

To explain this in graphical way, consider a system of two units (Figure 7). 

 

 

 
 
Figure 7. Influence of the weakest unit TTF distribution on  PFFO of a series system of two units. 

 

 

 From this figure, one can see that in this case one observes “the rule of the 

weakest link”: reliability of the system depends practically only on reliability of the 

less reliable unit. 

 

 
8.5.2 Mean time to failure of series system 

 

Upper bound. Since  
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one can write: 
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Lower bound. For getting this bound, use results of lemma above. Let us show 

that the substitution exponential distribution instead of IFR one (if MTTF’s of 

these units are equal) leads to the system’s MTTF decrease. 

Assume that the n-th “aging” unit is replaced by a unit with exponential 

distribution of TTF. Calculate the increment of MTTF, ∆:   
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 Since function Pn (t) crosses function  
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and their means are equal, then function 













n

n
T

t
tPtg exp)()(                                              (24) 

corresponds to function g(x) of the lemma above.  At the same time, function 
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i tP  corresponds to decreasing function  f(x) of the same lemma.  Thus, 

replacement an IFR distribution by an exponential one leads to decrease of the 

series system MTTF: <0. Performing such substitutions systematically, one gets 

the following lower bound for the system MTBF: 
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 So, the final result can be written as: 
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8.6 Parallel system 
 

 

8.6.1 Probability of failure-free operation  
 

Upper bound.  

 Let us write formula for the probability of failure of the parallel system: 
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where )(tqi is the probability of the i-th unit failure. Again let us numbering units in 

order of their MTTF decreasing: nTTT  ...21 . Notice that for the n-th unit for all 

t<Tn the upper bound equals p n(t)=1, or, equivalently, 
n

q n(t) = Q (t) = 0. For tTn , 

all qi (t) = 1– )exp( *ti , where parameters *

i  were found in (10).  Thus, for the 

PFFO of the parallel system consisting of n independent “aging” units, the lower 

bound, )tQ( , can be written as: 
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Naturally, that from (28), one gets the upper bound for the system PFFO: 
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 Notice again that for small time, this bound is trivial and non-informative. 

If these bound is meaningless, why we pay attention to it? This is given just for 

information and for protection those who would like to find such bounds. 

Remember Ancient Greeks who said: “Well-competent means armed”. 

 

Lower bound. Again begin with the upper bound for the system failure 

probability. Use formula (27) and pay attention to Figure 8, that is, in a sense, a 

mirror to Figure 6. 
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Figure 8. Explanation of the lower bound of failure probability construction on the example of a parallel 

system of three units. 

 

 From Figure above, one can see that for 
max

TTt  3  the upper bound is 

1)( tQ , so the lower bound for PFFO on the same time interval is 0)( tP .  From 

Figure 8, one can also see that for 1Tt  , the upper bound for the system’s failure 

probability is 
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 In general case, using the same arguments, one gets:  
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Naturally, the lower bound for the system PFFO can be obtained as complement: 
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 In conclusion notice that in reliability engineering practice the most 

important bounds, doubtlessly, are the lower ones, since they gives a warranty 

reliability index value.  Fortunately, for “aging” units and systems of “aging” units 

these bounds are sufficiently informative. 

 

 
8.6.2 Mean time to failure 

 

Lower bound.  This bound can be obtained in usual way: 
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Upper bound. Again let us use the result of the above lemma. Let units are 

numbered in accordance with increasing their MTTF’s.  The parallel system 

MTTFis:  

dttqT
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 As above, let us replace the n-th “aging” unit for a unit with exponential 

distribution of TTF and the same MTTF: 
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 The integrand in the last term of (35) is a product of two functions. The first 

one is product of probabilities of unit failures that corresponds to decreasing 

function f(x) in the above lemma, and the second one is a difference that 

corresponds to function g(x) in the same lemma. In accordance with the lemma 

 ∆ < 0 that means that replacement “aging” unit for a unit with exponential TTF 

and the same MTTF increases the parallel system MTTF. 

 Applying such replacement systematically, we obtain finally: 
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that gives, in result, deserved bound. 

 Thus MTTF of a parallel system consisting of  n independent  “aging” units 

has the following lower and upper bounds: 
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Remark:  If system’s units have IFR-distributions of TTF with almost equal MTTF’s and very small 

variation coefficient, then TTF of units could be grouped densely (see Figure 9). 
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Figure 9. Example of uniy TTF’s with close values of MTTF and small variation coefficients. 

 

 In this case Tmin ≈Tmax and it means that reliability indices for series and 

parallel systems are very close! Indeed, in limit case, when all distributions are 

degenerate and have the same MTTF, we have  TT
ni

i
ni 


11
maxmax for any n. In this case, 

addition an extra unit to a series system does not decrease its reliability as well as 

addition an extra unit to a parallel system does not increase its reliability. 

 

 
8.7 Bounds for the coefficient of operational availability 
 

 We know that the PFFO during interval t0 for a recoverable object that starts 

its operation at arbitrary random moment t equals 
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where P(t) is unit’s PFFO and Т is its MTTF. 

 Use again the above lemma. Consider three functions:  P(t), G(t) and  E(t) 

introduced above. First take function g1(t) = P(t) – G(t) that satisfies to conditions 

for function g(t) in the above lemma. Then:  
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Next take function  g2(x) = P(t) – G(t), for which we have: 
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From (39) and (40) follows: 
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and, finally: 
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Obviously, for t0>T, the left side of inequality turns 0. 

 Notice that bounds (43) are extremely good for highly reliable objects. 

Moreover, for small t0, one can write a simple and very precise approximation: 

T

t
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Stationary coefficient of interval availability is equal to  R*(t0)=KR(t0). It means 

that for highly reliable objects, one can write: 
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 Factually, approximation (46) is universal for reliability engineering: one 

should not know the type of unit’s TTF distribution .The only condition has to 

come true: an object (unit or system) has to be “aging”, and this condition comes 

true practically in all real cases.  

 
8.8 Brief historical overview and related sourcews 

 
Here we offer only papers and highly related books to the subject of this chapter. List of general monographs 

and textbooks, which can include this topic, is given in main bibliography at the end of the book. 

Swedish engineer, scientist, and mathematician E. Weibull, who  paid attention to the wearing-out processes and 

introduced a two-parameter distribution of rather universal kind. A few years later B. Gnedenko proved a cycle of 

limit theorems concerning extreme r.v.’s. The so-called Weibull distribution appeared a particular case of the entire 

class of limit distributions.  

 Then in 20 years R.Barlow and F. Proschan developed the modern theory of IFT distrivutions that appears 

very constructive in Reliability Theory. 

Bibliography below is given in chronological-alphabetical ordering for better ecposition of historical 
background of the subject. 
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9 Two-Pole Networks 

 
9.1 General comments 
 

 Above we considered systems with a so-called "reducible structure". These are 

series, parallel and various kinds of mixtures of series and parallel connections. As 

mentioned, they are two-pole structures which can be reduced, with the help of a 

simple routine, into a single equivalent unit.  However, not all systems can be 

described in such a simple way. 

 We would like to emphasize that most of existing networks, e.g. 

communication and computer networks, transportation railroads, gas and oil pipe-

lines, electric power systems and others, have a structure which cannot be described 

in terms of reducible structures.  

 In general, networks reliability can be analyzed from different viewpoints. If 

network is designated for transportation of some material flows then it can be 

characterized by an ability to deliver required amount of product from sender to 

receiver.  In telecommunication systems the system has to permit its customers to be 

able to contact each other. We will consider two-pole networks where successful 

operation is characterized by connectivity between points  A and B (see Figure 1). 

 

 
Figure 1. Example of a two-pole network. 

 

 It is clear that for two-pole network connectivity necessary and sufficient 

condition is: 

 There is at least one path from A to B. 

 or 

 There are no cuts between A and B. 

 

 Formally, a path is defined as a set of edges that provides connectivity between 

points  A and B. It is also useful to introduce a minimum path, i.e. such set of edges 

that deletion any of its edges violates network connectivity. A cut is such a set of 

edges that deletion of all its edges leads to the loss of the network connectivity. For 
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cuts, a concept of minimum cut is also very important. This is such a set of deleted 

edges that recovering any of them returns connectivity to the network.  Examples of 

paths and cuts are given in Figure 2. 

 
Sample of paths  Sample of cuts 

 

 

 

Set of edges forming one of paths between A and B  Set of edges forming one of cuts between A and B 

 

 

 
Set of edges forming one of minimum paths between A and B  Set of edges forming one of minimum cuts between A and B 

 
Figure 2. Examples of paths and cuts of a two-pole network. 

 

 For minimum paths and minimum cuts of two-pole network, one can introduce 

the so-called structural functions that, in a sense, repeat concept of series and parallel 

connections. For minimum path )(X  the structural function has the following 

Boolean form: 


)(

)( )()(




Xi

ixX


                                                  (1) 

or in verbal explanations: 



 


.otherwise,0

,,1allifonlyandif,1
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Xxx
X ii                       (2) 

For minimum cut )(X , the structural function can be written as: 
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In verbal form (3) is explained as: 



 


.otherwise,1
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X ii               (4) 

 For further convenience, let us introduce symbol AB to denote connectivity 

between vertices A and B.   

 

 
9.1.1 Method of Direct Enumeration 

 

 The simplest example of a system with a non-reducible structure is the so-

called "bridge structure" (Figure 3). 

 
 Figure 3. Bridge structure. 

 

 This particular structure is probably not of great practical importance, but it is 

reasonable to consider it in order to demonstrate the main methods of analysis of 

such kinds of structures.  

 For this simple system, it is possible to enumerate all states and check each of   

 

Table 1. System states defined by units’ states. 

States of units Vector Value 

x1 x2 x3 x4 x5 Xk ϕ(Xk) 

1 1 1 1 1 X1 1 

0 1 1 1 1 X2 1 

1 0 1 1 1 X3 1 

1 1 0 1 1 X4 1 

1 1 1 0 1 X5 1 

1 1 1 1 0 X6 1 

0 0 1 1 1 X7 0 

0 1 0 1 1 X8 1 

0 1 1 0 1 X9 1 

0 1 1 1 0 X10 1 

1 0 0 1 1 X11 1 



122 

 

1 0 1 0 1 X12 1 

1 0 1 1 0 X13 1 

1 1 0 0 1 X14 1 

1 1 0 1 0 X15 1 

1 1 1 0 0 X16 0 

0 0 0 1 1 X17 0 

0 0 1 0 1 X18 0 

0 0 1 1 0 X19 0 

1 0 0 0 1 X20 1 

1 0 0 1 0 X21 0 

1 0 1 0 0 X22 0 

1 0 0 0 1 X23 0 

1 0 0 1 0 X24 1 

1 1 0 0 0 X25 0 

0 0 0 0 1 X26 0 

0 0 0 1 0 X27 0 

0 0 1 0 0 X28 0 

0 1 0 0 0 X29 0 

1 0 0 0 0 X30 0 

0 0 0 0 0 X32 0 

 

 If edges of the bridge structure are mutually independent, one can easily find 

the probability of each state. For instance, probability that state X8  will be realized is:  

Pr{X=X8} = Pr{x1=0} Pr{x2=1} Pr{x3=0} Pr{x4=1} Pr{x5=1} = 

=q1 p2 q1 p2 p2, where pk = Pr {xk = 1} and qk = 1 – pk . 

 Finally, the probability of bridge connectivity, P, can be calculated by the 

formula: 

 








 


)()()}({
321

k

k

k XPXXEP                                                       (5) 

  Omitting intermediate results, we give the final formula for the connectedness 

probability (in the case of identical units) in two forms 

 P = p
5
  - 5p

4
  +  2 p

3
   + 2 p

2
                                    (6) 

 P = 1 - 2q
2
 - 2q

3
  + 5q

4
 - 2q

5
                                     (7) 

  Expression (7) is useful in case of highly reliable systems where q<<1, 

because it permits to get a simple approximation  

P ≈ 1 - 2q
2
.                                                  (8) 

 

 Of course, such a method of direct enumeration allows one to compute the 

probability of the connectedness of a non-reducible two-pole network only in 

principle. This method is nonapplicable for problems one meets in practice. 
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9.2  Method of Boolean Function Decomposition  

 

 Sometimes the method of decomposition of Boolean functions ϕ(X) is very 

effective. Any Boolean function can be decomposd in respect to its argument: 

 ϕ(x1,...,xk,...,xn) = xk ϕ(x1,...,1k,...,xn)   kx  ϕ(x1,...,0k,...,xn),                  (9) 

or even a set  of its arguments (for instance, two of them): 

ϕ(x1,...,xk,...,xn) = xk xj ϕ(x1,...,1k,...,1j,...,xn)   kx  xj ϕ(x1,...,0k,...,1j,...,xn)                    

xk jx  ϕ(x1,...,1k,...,0j,...,xn)   kx jx  ϕ(x1,...,0k,...,0j,...,xn) (10) 

where we use 1k (or 0k)  to show that 1 (or 0) is placed on the kth position. If we 

interpret the terms of the Boolean function as events, we can say that these events in 

(9) and (10) are mutually exclusive. For instance, the first term in (9) includes xk, and 

the second one includes kx . In this case, we can write for (9) 

 E{ϕ(x1,...,xk,...,xn)} = E{ xk ϕ(x1,...,1k,...,xn) } +E{ kx ϕ (x1,...,0k,...,xn) }. (11) 

 Since xk and ϕ(x1, ... , 1k , ... , xn) are independent as well as kx and  

ϕ(x1, ... ,0k , ... , xn), (11) can be finally rewritten in the form 

 E{ϕ(x1,...,xk,...,xn)} = E{ xk}E{ϕ(x1,...,1k,...,xn)} +E{ kx }E{ϕ (x1,...,0k,...,xn)}.     (12) 

  Let us apply this rule to the bridge structure. Choose unit  x3 for 

decomposition. Then (12) can be rewritten in the concrete form as  

E{ϕ(x1, x2, x3, x4, x5)} = E{x3} E{ϕ(x1, x2, 1, x4, x5)}+ E{ 3x }E{ϕ(x1, x2, 0, x4, x5)}=  

 = p3E{ (x1 x2) (x4  x5) } + q3E{(x1  x4)  ( x2  x5)}. 

 (13) 

 So, we came to a “mixture” of series-parallel and parallel-series systems. It 

becomes clear with the following explanations. What does it mean that x3=1? It 

means that in the initial bridge structure, unit  x3 is absolutely reliable (always in the 

operational state). Thus, the bridge structure becomes a simple series-parallel 

structure. Similarly, x3=0 means that unit x3 is eliminated from the structure (always 

in a failed state). This means that the structure becomes a parallel-series structure. 

(See Figure 4.) 
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Figure 4. Transformation initial bridge structure into series-parallel and parallel-series systems depending on 

state of unit 3.  

 

Finally, we may write 

 P = p3[(1-q1q2)(1-q4q5)] + q3[1 - (1-p1p4)(1-p2p5)].                      (14) 

 We should mention that a Boolean function can be decomposed by any 

variable. In this particular example, such decomposition can be done with respect to 

any xk. For example let us decompose the same structure in respect to unit 1. 

Corresponding structures are presented in Figure 5, 

 

 
Figure 5. Transformation initial bridge structure into series-parallel and parallel-series systems depending on 

state of unit 1.  

 

In this case the expression for the bridge structure connectivity has the form: 

)]1(1[]})1(1[)1(1{ 4352352341 ppqpqpqqqpP        (15) 

Of course, (14) and (15) are equivivament, though (14) is much more elegant! 

 

 In general, the decomposition method is not practically effective, even if one 

applies it using decomosition in respect to several Boolean variables.  In short, this 

idea of network decomposition in fact nearly always represents only a nice 

illustrative example, not an effective tool for engineers. 

 All of the difficulties connected with the numerical analysis of non-reducible 

structures lead to a need to find other methods. One effective analytical method is 

obtaining lower and upper bounds of the unknown value of the probability of 

cnnnectiveness. 
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9.3  Method of Paths and Cuts 

 
9.3.1  Esary-Proschan Bounds 

 

 Consider an arbitrary two-pole network. Assume that all network vertices (or 

nodes) are absolutely reliable.  As we stated above, for two-pole network 

connectivity at least one minimum path has to exist. Structural function ϕ(X) for 

arbitrary two-pole network can be written as: 

 = (
Nk

k
1

)( )() ХХ
                                                 (16) 

 Using de Morgan Rule, (16) can be rewritten in the form: 


Nk

k

Nk

k  = (



1

)(

1

)( )()() ХХХ
                               (17) 

where N is the number of all minimum paths of considering two-pole network.

 Factors in (17) are mutualy dependent, since different paths may have the 

same links. From the Probability Theory we know that if events X1 and X2 are 

dependent 

}Pr{}Pr{}Pr{ 2121 XXXX  .                                 (18) 

 In [Barlow, Proschan, 1965] assicisted random variables were introduced. Two 

r.v.’s X nad Y ae called associated if their covariance is positive: 

,0}}{{}}{{),(  YEYEXEXEYXCov                      (19) 

 They naturally generalized this concept on multivariate case that appeared 

very useful and productive for reliability analysis of multicomponent somplex 

systems. For associated r.v.’s,  

}Pr{Pr}...Pr{
11

21 












nk
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kn XXXXX                                (20) 

   Notice that paths of two-pole network are positively correlated, i.e. increase 

reliability of one of them cannot lead to decrease of reliability of another one. Indeed, 

if reliability of a common unit  for both of these two paths is improved, it improves 

relaibility both those paths simulatneoulsly.  (Same is observed with a common unit’s 

relaibility decrease: both paths decreease their reliabiity.) 
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 So, since  for parallel connection of paths, the probability of disconnection 

}0Pr{
1





nk

kX delivers the lower bound, the upper bound for the connectiveness of the 

two-pole network has the form: 

  



Nk

kP
1

)( 0)(Pr11 Х                         (21) 

So, (21) is the upper bound for probability of the two-pole network connectivity.

 To feel a real sense of all these abstract deduction, let us again demonstrate the 

method on a bridge structure, presented in Figure 3. All possible minimum paths of 

this structure are given in Figure  6. 

 
 Figure 6. Minimum paths of a bridge structure. 

 

 Expression (21) for this paricular case takes form 

2322 )1()1(1 ppP     .                                          (22) 

 

 We can formulate a similar natural condition of a connectedness violation by 

the following equivalent statement expressed via a network's minimum cuts. As we 

noticed above, for violation of the two-pole network connectivity links of at least one 

minimum cut have to be failed. Structural function ϕ(X) for arbitrary two-pole 

network can be expressed trough minimum cuts as follows: 

 = (
Мk

k
1

)( )() ХХ
                                                 (23) 

where M is the number of all minimum cuts of considering two-pole network.  

 Notice again that network's minimum cuts may be interdependent because 

they may contain the same units, and again we observe the positive correlation. 

Keeping this fact in mind, one can write: 

)24(.1
1
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Formula (24)   gives the lower bond of value P.             

Let us illustrate this method on the bridge structure. Mimimum cuts of the bridge 

structure are presented in Figure 7. 

 
Figure 7. Minimum cuts of a bridge structure. 

 

 

Below in Figure 8, numerical comparison of the exact values and the upper and lower 

bounds is given. 

 

 
Figure 8. Comparison of exact values of bridge structure connectivity and its Еsary-Proschan bounds. 

 

 

 
9.3.2  “Improvements” of Esary-Proschan bounds 

 

 These bounds are based on sets of non-intersecting simple paths and cuts. 

 We first point out that, for complex networks, the enumeration of all of the 

different simple paths and cuts is a very difficult problem demanding a huge 
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computer memory and an enormous computational time. For systems of any practical 

dimension, this enumeration problem is essentially impossible. 

 For this reason, one sometimes attempts to make the computations shorter. On 

a heuristic level, an explanation of the main idea of such an attempt follows. If we 

consider a very complex multi-unit network, we often can find that a lower bound 

includes some very "thick" cuts, i.e., cuts with a large number of links. It is clear that 

such a parallel connection is characterized by an extremely high reliability. There is a 

temptation to exclude such "thick" cuts from consideration: they are very reliable in 

comparison with the remaining cuts. In other words, the value 1-q1q2...qk is so close 

to 1 that it seems reasonable to replace it with 1. This leads to the increase of the 

reliability index.  Thus after this, the new lower bound should be even higher than the 

initial strong lower bound. However, the higher the lower bound the better!  

 Analogously, the strong upper bound includes some "very long" series 

connections which may be very unreliable. Again the question arises: why should 

one take into account such practically absolutely unreliable series connection of units 

for a computation a reliability index of a parallel connection? Indeed, for very large 

m, valuen of p1p2...pm→0. If one neglects such "very long" paths, the new upper 

bound becomes lower. This again produces a better upper bound than we have 

initially! 

 We must emphasize that such a "heuristic heuristic" leads to the very rough 

mistakes. Indeed, the higher the lower bound, the better, but only if the lower bound 

remains a lower bound! 

 We may obtain strange results using these "simplifications" and 

"improvements" of the bounds: the obtained "improved" bounds may not be even 

bound the unknown value at all!  In fact, an "improved" lower bound, obtained in 

such manner, may be even larger than an "improved" upper bound! Thus, we may 

obtain new "bounds" which lost all mathematical meaning at all! 

 Once more we would like to emphasize that a real heuristic is not an arbitrary 

guess on an "intuitive level".  In our opinion, a heuristic usually must be an 

"almost proven” simplification of an existing strong solution. Sometimes, instead of a 

proof one may deliver a set of numerical examples, covering the parametrical area of 

domain, as a confirmation of the heuristic's validity.  Such "experimental 

mathematics" occupies more and more room in computational methods and very 

often replaces exact proofs. 

 Let us illustrate some possible mistakes of using the above-mentioned 

"simplification" on an example of a bridge structure consisting of identical units. 

Represent approximations of an upper bound U = 1-(1-p
2
)
2
(1-p

3
)
2
  in the form: 

 U* ≈ 1-(1-p
2
)
2
     ,                                           (25) 
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where we keep only the “shortest” minimal paths, and of a lower bound  

L = (1-q
2
)
2
(1-q

3
)
2
 in the form: 

 L* ≈  (1-q
2
)
2
                                                 (26) 

where we keep only the “thinnest” minimal cuts. 

It is easy to check that L* ≥ U*. We prefer not to use straight dull transformations to 

prove this fact. We show this on numerical examples for p=0.9, p=0.1 and p=0.5: 

Table 2. Comparison of U* and L* for various value of p. 

p U* L* 

0.9 0.9639 0.9801 

0.5 0.4375 0.5625 

0.1 0.0199 0.0361 

 

 We see that “improved” lower bound became lrger that “improved” upper 

bound! 

 
9.3.3  Litvak-Ushakov Bounds 

  

 First of all, remind a very important property of reliability of systems – 

property of monotonicity. This property absolutely natural and means, in common 

terms, that if relaibility of any system unit is increased, it cannot lead to decreaes of 

thesystem reliability as a whole. Of course, imverse statement is also true: decraesing 

unit’s reliability cannot result in the system reliability increase. Construction of 

Litvak-Ushakov bounds is based on this property. The idea is to find a set of 

independent minimum paths, i.e. paths that that have no the same link in different 

paths. 

  For expanation of the procedure of constructing such set, let us begin with an 

example. In Figure 9, the first minimum path (links 1, 4, 8 and 11) is marked with 

black lines. Remember this path and exclude its entire links (the second figure). In 

remaining part of two-pole network find another minimum path (links 3, 5, 9 and 12). 

After deleting the second path from the initial network, we see that points A and B 

are disjoint.   
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 Figure 9.  Procedure of constructing non-intersected minimum paths. 

 

 This is the end of procedure of finding set of independent minimum paths: 

initial network is reduced to parallel connection of two minimum paths.  Now look at 

Figure 10: one gets the same two paths by excluding the links that are depicted in 

Figure 8 (3).  

 
Figure 10. Construction of set of independent minimum paths by exclusion links 2, 6, 7 and 10. 

 

Excluding any link is equivalent to decrease its reliability to zero. So, the probability 

of connectivity between nodes A and B for two parallel minimum paths is lower than 

the same probability for the initial network.  

 By the way, the number of independent minimum paths cannot be larger that 

the number of links in the “thinnest” minimum cut. Moreover, if, for instance, the 

path depicted in Figure 11 is chosen, there are no other independent paths in the same 

two-pole network. 

 

 
Figure 11. An example of a case with a single minimum path.  

 

 In general case, one can find several sets of minimum paths in the same two-

pole network. Each such set forms a parallel connection of different minumum paths 

with its own probability of connectivity that lower than analogous probability for the 

initial two-pole network.  It is clear that the maximum of lower bpunds is the best 

one. Denote by )(
kG  k-th subset of minimum paths, Nk ,1 , and by )(

kig subset of 
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links composing the i-th path of the k-th subset. Then the lower Litvak-Ushakov 

bound is: 

 7 Let us again give more detailed explanation on a bridge structure with 

identical links. All possible minimum paths are depicted in Figure 12. 
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Figure 12. All minimum paths of bridge structure. 

 

The lower bound of Litvak-Ushakov type for bridge structure is: 

223322 )1(1},],)1(1max{[ ppppP                                                    (28) 

  The upper bound can be obtained from series connection of independent cuts. 

For expanation of the procedure of constructing the upper bound, let us again refer to 

the two-pole network presented in Figure 9. In Figure 13 we demonstrate procedure 

of sewuential construction of a set of independent cuts (each cut here marked with 

grey strip). After choosing the first cut, we gather all right ends of corresponding 

links into a single node.  This procedure is equivalent to putting into the network 

absolutely reliable links that (by definition of structural monotomity) can only 

increase reliability atire network.   

 

  
Figure 13.  Procedure of constructing non-intersected minimum paths. 

 

 At the last step in this particular case, we can assume link 10 absolutely 

reliable that ompleted the construction of this set of independent cuts. The final result 

can be presented in Figure 14.  
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Figure 14. Initial network with marked minimum cuts. 

 

 Notice that the number of independent minimum cuts cannot be larger that the 

number of links in the “longest” minimum path. Moreover, if in Figure 15 one 

chooses cut formed by links 3. 7, 10 and 11, it will be the only cut. 

 

 

 
Figure 15. An example of a case with a single minimum path. 

 

 In general case, there are several sets of minimum cuts in the same two-pole 

network. Each such set forms a series connection of different minumum cuts with its 

own probability of connectivity that higher than analogous probability for the initial 

two-pole network.  It is clear that the maximum of lower bpunds is the best one. 

Denote by )(
kG  k-th subset of minimum cuts, Mk ,1 , and by )(

kig subset of links 

consisting the i-th cut of the k-th subset. Then the upper Litvak-Ushakov bound can 

be written as: 

 )29(.)1(1min
)( )(1 
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 Let us again give more detailed explanation on a bridge structure with identical 

links. All possible minimum cuts are depicted in Figure 12. 
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Figure 12. All minimum cuts of bridge structure. 

 

The upper bound of Litvak-Ushakov type for bridge structure is: 

.])1(1[})1(1,)1(1],)1(1[])1(1min{[ 223322 pppppP                       (27)                                              

  

 
9.3.4  Comparison of the Two Methods 

 

 Agaim we will not misuse mathematical deductions and refer to results of 

numerical calculations (see Figure 13). Here we use subscripts EP for Esary-

Proschan bounds and subscript LU for Litvak-Ushakov bounds. What we can see 

from the table?  

 

 
 Lower bound True 

value 

Upper bound 

 

p 
EPP  LUP  P 

EPP  LUP  

0 0 0 0 0 0 

0.1 0.0027 0.0199 0.0215 0.0219 0.0361 

0.2 0.0309 0.0784 0.0886 0.0931 0.1296 

0.3 0.1123 0.1719 0.1984 0.2160 0.2601 

0.4 0.2518 0.2944 0.3405 0.3818 0.4096 

0.5 0.4307 0.4375 0.5 0.5693 0.5625 

0.6 0.6182 0.5904 0.6595 0.7482 0.7056 

0.7 0.7840 0.7399 0.8016 0.8877 0.8281 

0.8 0.9069 0.8704 0.9114 0.9691 0.9216 

0.9 0.9781 0.9639 0.9785 0.9973 0.9801 

1 1 1 1 1 1 

 
Figure 13. Comparison of Esary-Proschan and Litvak-Ushakov bounds. 
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 For higher values of unit’s relaibility indеx, p, the best lower bound is 

delivered by EPP .  It is important to mention that this bound is one of the most 

important: for highlyreliable two-pole networks: we need to know the warranty level 

of relibility. (Let us repeat again that if the network is not reliable enough, one should 

thik about reliability improvement, not abot reliability exaluation.)  Around p = 0.5, 

Esary-Proschan and Litvak-Ushakov bounds cross each other. Then at the area of 

small values of p, Litvak-Ushakov method delivers the better lower bound.   One of 

the main advantages of the method of obtaining bounds by this method is simplicity 

of obtaining sets of disjoint paths and cuts. 
 

9.4 Brief historical overview and related sourcews 

 
Here we offer only papers and highly related books to the subject of this chapter. List of general monographs 

and textbooks, which can include this topic, is given in main bibliography at the end of the book. 

 One of the first work dedicated to the problem of two-pole networks connectedness [Moore and Shannon,1956] 

related to connectedness analysis of so-called "hammock-like" networks. Then series of works by Esary and Proschan 

(1962, 1963, 1970) were dedicated  to obtaining network bounds based on the enumerating of all simple paths and cuts. 

A decomposition method with the use of this same idea was proposed in [Bodin, 1970]. 

 The bounds based on disjoint simple paths and cuts were obtained in [Ushakov and Litvak, 1977]  and later 

were generalized in [Litvak and Ushakov, 1984] .  Multiterminal  (multipole) networks were investigated in [Lomonosov 

and Polessky,1971]. 

Bibliography below is given in chronological-alphabetical ordering for better ecposition of historical 

background of the subject. 
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10 . Performance Effectiveness 

 

  

 
10.1 Effectiveness Concepts 

 

 Modern large scale systems are characterized by structural complexity and 

sophisticated algorithms to facilitate the functioning and interacting of its 

subsystems. One of main properties of such systems is that they have a significan 

“safety factor”: even a set of failues may not lead to the system failure, though can 

somehow decreses effectiveness of it performance. Indeed, telecommunication 

networks have highly redundant structures, transportation systems have a number of 

bypasses, oil and gas supply systems can change their regime to adjust to new 

conditions of operation. It allows these systems perform their operations with lower 

though still acceptable level of effectiveness even with some failed units and 

subsystems. For such systems, “white-and-black” approach is not appropriate: it is 

practically impossible to give a definition of system failure, it is more reasonable to 

say about some degradation of system’s abilities; it is natural to speak about 

performance effectiveness of such systems. In each concrete case, the feature of an 

index (or indices) of performance effectiveness should be chosen with respect to the 

type of system under consideration, its destination, conditions of its operation, etc. 

The physical sense of the performance effectiveness index (PEI) is usually 

completely defined by the nature of the system's outcome and can be evaluated by 

the same measures.  In most practical cases, we can measure a system's effectiveness 

in relative units. In other words, we might take into account the nominal (specified) 

value of a system's outcome as the normalizing factor. In other words, a PEI is a 

measure of quality and/or volume of its performed functions or operations, i.e., it is a 

measure of the system's expediency. 

 Of course, a system's efficiency depends on the type of currently performed 

functions and operating environments. A system which is very efficient under some 

circumstances might be quite useless and ineffective under another set of 

circumstances and/or operations. 

 If a system's outcome has an upper bound, the PEI can be expressed in a 

normalized form, i.e., it may be considered as a having a positive value lying 

between 0 and 1. Then we have PEI = 0 if the system has completely failed and 

PEI=1 when it is completely operational. For intermediate states 0 < PEI < 1. 

 Consider a system consisting of  n  units, each of which can be in two states: 

operating and failure. Let xi be the indicator of the ith unit's state: xi=1 when the unit 
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is operable  and xi =0 when the unit has failed. The system has N = 2
n
  different states 

determined by the states of its units. Denote a system state by X=(x1, x2, ... , xn). 

 With time the system change its state due to changes of states of its units. 

Transformation of system states X(t) in time characterizes the system's behavior. For 

this state, the performance effectiveness coefficient equals WX, and the system's PEI 

can be determined as the expected values of  WX : 

PEI = E{WX} = ).(
1

XPW= X

Nk




                                          (1) 

 Nevertheless, there are systems, for which (1) is not valid. For these systems, 

effectiveness depends on an entire trajectory of the system’s transition from one state 

to another during some predetermined time interval.  In other words, for these 

systems the effectiveness is determined by a trajectory of states changing during the 

system's performance of task. 

 Examples of such systems are different technological processes, information 

and computer systems, aircrafts in flight, etc. 

 

 
10.2 General idea of effectiveness evaluation 

 

 Let )(th
kX  denote the probability that the system at the moment t is in the state 

Xk(t). We assume that the current any state can be evaluated. Let us denote 

effectiveness of the system being in state X is WX. It is naturally to determine the 

mathematical expectation of WX as: 

Wh = (t)W kk
t

Nk

syst XX

1

)(


                                                            (2) 

 It is clear that an absolutely accurate calculation of the system's effectiveness 

when n >> 1 is a difficult, if not unsolvable, computational problem. First of all, one 

needs to determine a huge number of coefficients Wk. Fortunately, it is sometimes not 

too difficult to split all of the system's states into a relatively small number of classes 

with close values  Wk. If so, we need only to group appropriate states and calculate 

the corresponding probabilities. 

 The Wsyst can then be calculated as 

)(X

X1

thW = (t)W k

jk G

j

Mj

syst 


                                                   (3) 

where M is the number of different levels of the values of WX and Gj is the set of system's  

states, for which  WX belongs to the jth level. 
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 Let us evaluate system's effectiveness for a general case. For simplicity of 

notation, we omit the time t in the expressions below. 

 Let h0 denote the probability that all units of the system are successfully 

operating at the moment t: 

0

1 i n

ih  =  p .
 


                                                        (4) 

           Let hi denote the probability that only the ith unit of the system is in a  

down state at the moment  t. Then 

i i
1 j n; j i

i

i

i

0 i 0h  =  q p
q

p
h  =  g h =  

  


                                             (5) 

where, for brevity, we introduce
i

i
i

p

q
g  ; and hij denotes the probability that only the 

ith and jth units of the system are in down states at the moment t: 

ij i j
1 j n; k (i, j

k

i j

i j

0 i j 0h  =  q q p
q q

p p
h  =  g g h =  

  


                                    (6) 

  

and so on. 

 We can write the general form of this probability as 

X

X X X

h  =  p q h g
i G

i

i G

i 0

i G

i =  
  

  
                                                  (7) 

 where GX is the set of subscripts of the units, which are considered operational 

 in state X; and XG  is the complimentary set. 

 Sometimes it is reasonable to write (7) for any X as: 

X

X

h  =  p q .
1 i n
x

i
x

i

(1-x )

i

i i

 



                   (8)  

It is clear that (7) and (8) are equivalent. Using (4)-(8), we can rewrite (3) as: 

 ]~~1[ ... + ggW + gWhW = W jiij

nj<i1

ii

ni1

00syst 


                                 (9) 
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where W0 is the system's effectiveness for state X0, and  W i
~ , W i j

~ , ... , are normalized 

effectiveness coefficients for states  Xi, Xij , ...  . In other words, 
0

~

W

W
 W

i
i   , 

0

~

W

W
 W

ij

i j
 , 

... .  

 For a system consisting of highly reliable units, i.e. when 
n

1
  q 

i
ni1




max  

  

expression (9) can be approximated as: 

)wq -W = 
ii

ni1
i

ni1

 W  W ii

ni1

o0syst qW + q - ~1(
~11 







 






 


                  (10) 

  

Here ii Ww
~

1~   has the meaning of a "unit's insignificance". 

 
Remark:  It is necessary to note that, strictly speaking, it is wrong to say about "unit's significance". The 

significance of a unit depends on the specific state of system. For example, in a simple redundant system 

of two units, the significance of any unit equals 0 if both units are successfully operating, but one unit is 

ha failed, then its significance of remaining one becomes equal to 1.  

 

 

 
10.2.1 Conditional case study: Airport traffic control system. 

 An airport traffic control system consists of two stationary radars each with an 

effective zone of 180
o
 (schematic plot of the system is presented in Figure 1). The 

availability coefficient for each radar is equal to K = 0.95.  

 
 Figure 1. Structure of airport radar system. 

 

 Assume that if only one radar is operating, the system effectiveness drops to 

50% of the nominal value. 

 It is easy to write the expression for PEI calculation: 
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.95.0)1(5.0)1(21 22  KKKKKKKPEI                     (11) 

There are two variants of the system effectiveness improvement (they are depicted in 

Figure 2). 

 

 
Figure 2. Two variants of airport radar system improvement. 
 

 First variant (a) is a usual redundancy.  

 

      
All radars 

operate 

One radar has 

failed (4 different 

variants) 

Two “opposite” 

radars have failed 

(4 various 

variants) 

Two neighbor 

radars have failed 

(2 different 

variants 

Three radars 

have failed (4 

different variants) 

All radars have 

failed. 

Figure 3. Possible locations of redundant radars failures. 

 

  In Figure 3 arrow shows the direction of radar radiation, and grey color denote 

the area covered by radiation of all currently operating radars. With the help of 

Figure 4, one easily can write the expression of PEI for this type of configuration: 

5.0])1(4)1(2[1])1(4)1(4[ 3222234)1(  KKKKKKKKKPEI         (12)               

Now consider the second variant where radars form a “ring”. 
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All radars operate One radar has 

failed (4 different 

variants) 

Two “back-to-

back” radars have 

failed (2 various 

variants) 

Two neighbor 

radars have failed 

(4 different variants 

Three radars have 

failed (4 different 

variants) 

All radars have 

failed. 

Figure 4. Possible locations of radars failures in case “ring structure”. 

 

 Basing on Figure 4, one can write the following expression: 

.5.0)1(475.0)1(41])1(2)1(4[ 3222234)2(  KKKKKKKKKPEI     (13) 

 These simple analysis shows that the second variant is better, though the 

difference is not too significant: 

22)1()2( )1( KKPEIPEI                                          (14) 

For ”numerical feeling”, in Figure 5 comparison of both variants is given.  

 
Figure 5. Comparison of two variants of radars location. 

 

 
10.3 Additive Type of System’s Units Outcome 

 

 Let system consist of  N  “executive” units, each of which is characterized by 

its own outcome: 
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otherwise. 0,

operable isunit  if,i

i

W
w                                                (15) 

 All other units of the system are considered as “administrative” that provide required 

functioning of executive units. So the system PEI can be represented as the sum of 

the units’ outcomes: 

}.{
11

i

Ni

i

Ni

wE wE= PEI 











                                                (16) 

 

Expression (11) is true even if system’s units are dependent. This follows from well 

known in mathematical statistics fact that the expected value of a sum of random 

variables equals the sum of its expected values, regardless of their dependence. 

 Let a system has the following structure (see Figure 1): Control center and a 

set of N executive units monitored from the center. Assume that for successful 

operating of an executive unit it is necessary both the center and the unit were 

operable. 

 
  
 Figure 1. Structure of a system with several executive units. 

 

 The ith executive unit characterized by its own outcome in operable state, 

Wi(X), and probability of successful operation, pi, 1< i < N. The control center is 

characterized by its PFFO equals p0. In this case, the average outcome of the ith 

executive unit is equal to: 

iii WppwE 0}{                                                        (17) 
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 In this case a unit's outcome depends on two factors: the operating state of the 

unit itself and the state of the system.  Finally, we can write: 

iNi

iWppPEI 



1

0                                                   (18) 

 
10.4 Case study: ICBM control system  

 A clear practical example of such a system can be represented by a so-called 

non-symmetrical branching system with a simple tree-like hierarchical structure. This 

system consists of N executive units controlled by "structural" units at higher 

hierarchy levels. This example is a reminiscent of the author’s participation in design 

the system for ICBM controlling. Of course, this example presents a schematic and 

very much conditional structure of the system (see Figure 2). 

 
 

 Figure 2.  Tree-like hierarchical structure of ICBM system. 

 

 On this figure, Headquarter (HQ) controls regional centers (1, 2, … , 6), and 

they, in turn, control underground silos with ICBMs.  Assume that all silos have 

PFFO equal 0.99, Hadquarter PFFO is 0.995 and regional centers have various PFFO 
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due to the communication systems, natural environments, etc. Let the corresponding 

probabilities for  regional centers are:  p1 = 0.995, p1 = 0.993, p1 = 0.992, p1 = 0.99, p1 

= 0.89, p1 = 0.87. The same system in more formalized form is presented in Figure 3. 

 
 
 Figure 3.  Formalized scheme of the system oriented in Figure 2. 

 

 For such type of a system, a natural measure of importance is the average 

number of available ISBMs. It is easy to calculate that for given parameters the 

average of available ICBMs equals ≈ 22.45.  

 The question could arise: what is the way to increase the system PEI? For 

instance what is more effective: to increase the Headquarter PFFO from 0.995 to 

0.999 or to improve silos and increase the PFFO level up to 0.995? 

 Simple calculations show that in the first case the system PEI will be ≈ 22.67, 

and in the second case will be ≈ 22.57. So, the difference in two variants is 

insignificant, however impring 24 silos, probably, leads to larger expenses. 

 

  
10.5 Systems with intersecting zones of action 

 

  Suppose that a system consists of n executive units. Unit i has its own zone   

Zi  of action. Each unit is characterized by its own effectiveness of action Wi in the 

zone  Zi.   These zones can be overlapping. Let us denote subzones, z, obtained in 

result of overlapping by z with subscripts corresponding to the number of zones that 

form these subzones (see Figure 4). Actually, in practice the number of different 

subzones is restricted enough because overlapping is observed only among 

neighboring zones. 

 Such mathematical models appear in the analysis of satellite intelligence 

systems, in radio communication networks, in power systems, and in anti-aircraft and 

anti-missile systems (overlapping zones of destruction). Effectiveness of 
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performance within a particular subzone depends on type of the systems and 

performed operations. 

 

   

 
Figure 4. Example of a system consisting of three overlapping zones. Z1, Z2 and Z3 are zones and z12, z13, z23 

and z123 are corresponding subzones. 

 

Consider several particular cases. 

1. Maximum “intensity index” within subzone. 

 Assume that each zone individually is characterized by its own “intensity 

index”, wk, per a unit of square.  It means that zone k with square Zk and with no 

overlapping with other zones, has input wk Zk in the total system’s PEI. If zones Zk 

and Zj overlap, then within the subzone zjk “intensity index” is equal to max{wj , wk}. 

Subzones with double overlapping are characterized by max{ wi ,wj , wk}, and so on. 

 This mathematical model can be used for describing a reconnaissance satellite 

(or spy satellite) system. In this case, if a territory is covered y several satellites, 

the best image is used for further processing.   

 Calculation algorithm in this case is 

simple enough, though enumeration remains 

enumeration. Let us demonstrate the 

methodology of calculation on a simple 

example of three zones. Let zone k is operable 

with probability pk. The system can be in 2
3
 = 

8 different states. 
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 First, order all systems in order of value of “intensity indices”. Let, for 

concreteness, w1 > w2 > w3.  

 All input data can be tabulated into the following table. 

 

Table 1. Input data for calculation of the system PEI. 

 

 z1 z2 z3 z12 z13 z23 z123 

1, 1, 1 w1 w2 w3 w1 w1 w2 w1 

0, 1, 1 0 w2 w3 w2 w3 w2 w2 

1, 0, 1 w1 0 w3 w1 w1 w3 w1 

1, 1, 0 w1 w2 0 w1 w1 w2 w1 

1, 0, 0 w1 0 0 w1 w1 0 w1 

0, 1, 0 0 w2 0 0 0 w2 w2 

0, 0, 1 0 0 w3 0 w3 w3 w3 

0, 0, 0 0 0 0 0 0 0 0 

 

The system’s performance effectiveness index is calculated by formula: 

)19()()(

)()]()([

)]()([)]()([

])()([

123231333321123231222321

1231312113212322123131211321

23331231312113211333123231222321

332322123131211321

zzzzwqppzzzzwqpq

zzzzwqqpzzwzzzzwqpp

zzwzzzzwpqpzzwzzzzwppq

zwzzwzzzzwpppPEI









  

 It is clear that even such a simplified example led to clumsy calculations. In 

practice, such systems have more or less homogeneous nature: subzones without 

overlapping have the same values of wi ,= w
(0)

 subzones with a single overlapping 

have also the same values wij = w
(1)

 and so on. In addition, zones are the same size 

and structure itself is “recurrent”, usually honeycomb type (see Figure 4). 
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Figure 5. Honeycomb type of zones overlapping. 

 In this case, it is enough to analyze a single zone  Z1  with all its subzones 

formed with by 6 neighboring zones. 

 
 

Figure 6. Zone Z1 with its neighboring zones. Here  z
(k)

 denotes three types of subzone configuration. 

 

 However, even in this artificially simplified case, calculation of performance 

effectiveness index is simple due to enumerating nature of the problem. Let us 

consider a highly reliable system when probability of occurring more than two 

failures is insignificant. In this case, there are two types of a single failure and four 

types of two failures (see Figure 5). 
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Figure 7. Possible locations of one and two failures. 

 

 Basing on Figure 6, one can write: 

)20(]}.4)25([6{

]}2)44()2([3{
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]}3)24()2([6{

)}66]3

)25()([6{)66(

)3()2()3()2()1(25

)3()3()3()2()2()2()1()1(25

)3()3()3()2()2()2()1()1(25

)3()3()3()2()2()3()2()1()1(25
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 Of course, (6) can be simplified by collecting terms but we omit primitive 

though rather boring transformations, keeping in mind that the main target in this 

case is explanation, not final result. 

2. Boolean type of “intensity index” within subzone. 

 Such mathematical model can describe an area with a set of ground base 

stations serve the cell phone customers: a customer is served or not depending on the 

zone where he or she is currently in. If a customer is in a zone of intersection of 

several base stations, one of them is chosen for operation. 
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 This case is similar to the previous one, if we put w
(1)

= w
(2)=

 w
(3)

 = w. Using 

(5), one can immediately write an approximate expression:  

)21(]}63

)26(6[)66({

)3()3(

)3()2()1(6)3()2()1(7

zz

zzzqpzzzpwPEI




                                                      

3. Redundancy type of “intensity index” within subzone. 

 Imagine that zones represent anti-aircraft or 

anti-missile areas of defense. In this case, a target 

in a subzone without overlapping can be shut 

down with probability p, within subzone with 

overlapping it happens with probability 1-q
2
, 

within subzone with double overlapping it happens 

with probability 1-q
3
, and so on.   

 To get approximate expression for PEI, one 

can use again (6), keeping in mind that in this case  

w
(1) 

= ρ, w
(2)

 = 1-(1-ρ)
2  

and w
(3)

 = 1-(1-ρ)
3
.   

  

 

 
10.6 Practical Recommendation  
 

 Analysis of the system performance effectiveness must be carried out by a 

researcher who deeply comprehends the system as a whole, knows its operation, and 

understands all demands on the system. It is a necessary condition of the successful 

analysis. Of course, the system analyst should also be acquainted with apply 

operations research methods. As any operations research problem, the task is 

concrete and its solution is more of an art than a science. 

 

 For the simplicity of discussion, we demonstrate the effectiveness analysis 

methodology referring to an instant system. The procedure of a system's effectiveness 

evaluation, roughly speaking, consists of the following tasks: 

 

- formulation of an understandable and clear goal of the system; 

- determination of all possible system's tasks (operations, functions); 

- choice of the most appropriate measure of system effectiveness; 

- division of a complex system into subsystems; 

- compilation of a structural-functional scheme of the system which reflects the 

interaction of the system's subsystems; 

- collection of reliability data; 
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- computation of the probabilities of the different states in the system and its 

subsystems; 

- estimation of the effectiveness coefficients of different states; 

- performance of the final computations of the system's effectiveness. 

 

 We need to remark that the most difficult part of an effectiveness analysis is 

the evaluation of the coefficients of effectiveness for different system states.  

 Only in rare cases it is possible to find these coefficients by the means of 

analytical approaches. The most common method is simulation of the system 

bahavor with the help of  computerized models or physical analogues of the system. 

In the latter case, the analyst introduces different failures at appropriate moments into 

the system and analyzes the consequences.  The last and the most reliable method 

is to perform experiments with the real system or, at least, with the prototype of the 

system. 

 Of course, one has to realize that usually all of these experiments set up to 

evaluate effectiveness coefficients are very difficult and they demand much time, 

money and other resources. Consequently, one has to consider how to perform only 

really necessary experiments. This means that a prior evaluation of different state 

probabilities is essential: there is no need to analyze extremely rare events. 

 One can see that an analysis of a system's effectiveness performance is not 

routine. To design a mathematical model of a complex system, in some sense, is a 

problem similar to the problem of the design of a system itself. Of course, there are 

no technological difficulties, no time or expense for engineering design and 

production.  

 
10.7 Brief historical overview and related sourcews 

 
Here we offer only papers and highly related books to the subject of this chapter. List of general monographs 

and textbooks, which can include this topic, is given in main bibliography at the end of the book. 

 Actually, the main idea of the system’s performance effectiveness contains (with theaccuracy of terminology) 

in [Kolmogorov, 1945]. The first application to Relaibility Theory is described in [Ushakov. 1960].  

Bibliography below is given in chronological-alphabetical ordering for better ecposition of historical 

background of the subject. 
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11 On system survivability 

 

With development extremely complex systems, especially worldwide terrestrial 

systems, a new problem arose – survivability of systems. Our life is full of 

unexpected extreme situations: various natural disasters like earthquakes, floods, 

forest fires, etc. Last decades are marked by evil terrorist actions performing by 

political terrorists or just mentally sick maniacs. 

 Dealing with natural disasters, we are protecting ourselves against the 

nature. Here we deal with unpredicted events, and as Albert Einstein
25

 told: “God 

is subtle but he is not malicious”
26

. Quite different situation with “Homo Sapiens”: 

he directs his evil will against the most vulnerable and painful points.  In a sense, 

such actions are “more predictable”, though it is almost impossible to guess the 

next step of a crazy maniac or evil suicider. 

 Taking a historical prospective, we should remember Russian academician 

Alexei Krylov
27

 who was one of the first who formulated the problem of 

survivability of sea vessels against enemy attack. He suggested a witty method of 

keeping a vessel aswim: in response on destruction of some vessel’s module he 

suggested to fill intentionally a symmetrical module with water and so keep the 

vessel in vertical position (see Figure below). This method of floodability is widely 

used since then and all military vessels now have module construction of their 

holds. 

 

                                                        
25 Albert Einstein (1879 –1955) was a German-born American theoretical physicist who developed the 

theory of general relativity, 
26 Inscription in Fine Hall of the  Princeton University. 
27 Alexei Nikolaevich Krylov (1863-1945) was Russian and Soviet academician, naval architect, 

mathematician and mechanician. 
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Figure 1. Explanation of Krylov’s idea to keep a vessel aswim after enemy torpedo attack. 

 

 The nature of the survivability problem hints that there is no place for pure 

reliability methods: the destructive events are not predictable in probabilistic sense 

and there is no such factor as calendar time. Methodology of survivability (or, in 

inverse terms, vulnerability) is not developed sufficiently by now. However, it is 

impossible to pass by this problem. Below we will give some simple ideas with no 

pretensions. 

 It seems that in this case the most appropriate is minimax approach. In 

reliability analysis of networks we already met with the concepts of “minimal cut”, 

i.e. with such minimum set of system units which failures lead to the failure of the 

entire network.  

 Actually, the only known method of survivability investigation is the so 

called “What –If Analysis”. It is a structured brainstorming method of determining 

what consequences can happen with the considered system if one or another 

situation will have occurred.  Usually, situations under consideration cannot be 

modeled physically, so the judgments are done by a group of experts on the basis 

of their intuition and previously known precedents.  

 One of natural measurement of survivability is the system effectiveness after 

a given set of impacts.  Of course this residual effect depends on the number of 

impacts, their nature, intensity and location of exposure.  

 Due to numerical indefinites of expert estimates, comparison of survivability 

of various systems under some certain impacts is more reasonable than absolute 

measurements.  Consider N various systems designated for performing the same 

actions (operations). Let each system consists of n units, each of them 

characterized it own “level of protection”, specified to each system. Denote πij the 

level of protection of unit i against impact of type j. Assume that there are n 

possible different impacts of different “destructive level” ω1, ω2,  … , ωn. Ascribe 
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to each system’s unit a loss in case of impact influence, uis , where ni ,1  

and Ns ,1 .  These losses can be expressed in absolute (of the same dimension) or 

relative values.  Let ),...,,(
21 miiis xxxU denote the system loss when set of its units 

miii xxx ,...,,
21

is destructed. In a sense, the problem is to make such impacts 

assignment that delivers the maximum possible loss for a system. (It will be worst 

scenario for “defending side”.) 

 Introduce additional indicator function of type; 



 


otherwise,0

,protectionthan largerleveledestructivi.e.,,1 ip

ip

if 
  

For each system, on the basis of input data presented above, one compiles 

the following table: 

 
Table 1.  Loss value if impact j is applied to unit i of system s. 

 Type of impact 

1 2 . . . n 

 
Type 

of 

unit 

1 
su111  su112  . . . snu11  

2 
su221  su222  . . . snu22  

. . . . . . . . . . . . . . . 
n 

nsn u1  nsn u2  . . . nsnnu  

 

Thus, in this table some of values are equal to 0, which means that some 

impacts are harmless for definite units. Assume that to any unit a single impact can 

be assigned, i.e.  



ni

ip

1

1     and 



np

ip

1

1  .     

Notice that there are three general types of systems in sense of their 

“response” on a set of impacts: 

 Systems with linear loss function, i.e. such functions that the total loss is 

equal of the sum of units’ losses: 



mr

siiiis rm
uxxxU

1

),...,,(
21

; 

 Systems with convex loss function, i.e. such function that  the total loss is 

less than the sum of units’ losses: 



mr

siiiis rm
uxxxU

1

),...,,(
21

; 

 Systems with concave loss function, i.e. such function that the total loss is 

larger than the sum of units’ losses: 



mr

siiiis rm
uxxxU

1

),...,,(
21

. 

Consideration of two last cases in general form has no sense since functions 

),...,,(
21 miiis xxxU should be defined for each specific case. Thus, let us focus on the 
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linear loss function.  In this case, the problem of system survivability estimation 

reduced to finding  
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After such calculations for each s, Ns ,1 , the final solution is found 

as s
Ns
U

1
min . 

To make the idea of survivability evaluation more transparent, let us 

consider a simple numerical example for two simple systems. 

Illustrative example. 

Consider two systems with the following parameters: u11, u21, u31 and u41 for the 

first system and  u12, u22, u32 and u42 for the second system. System have the same 

“total importance”, i.e.: u11+ u21+ u31 + u41 = u12+ u22+ u32 + u42 , and the “hostile 

impacts are of the same intensity. Compile the table for comparison of 

survivability of these systems subjected the same impacts. 

Table 1. Matrices of solution for hostile impacts on two differently protected systems. 

The first system . The second system 

   
Intensity of impacts 

 

  

0.5 0.65 0.8 0.95 

Level 0.3 5 5 5 5 

of  0.6 0 7 7 7 

protection 0.7 0 0 11 11 

 

0.9 0 0 0 15 
 

 
   

Intensity of impacts 

 

  

0.5 0.65 0.8 0.95 

Level 0.6 0 7 7 7 

of  0.6 0 8 8 8 

protection 0.7 0 0 11 11 

 

0.6 0 12 12 12 
 

 

In the table the cells with chosen units and corresponding impacts are highlighted 

with grey. On the basis of this table, one can make some qualitative conclusions. In 

spite of  “more reasonable “ location of protection resources in the first system (the 

more important unit, the better protection) , the total loss after a hostile attack is 38 

conditional units. At the same time, the second system with the same “total 

importance” and with even allocation of protection resources has the total los only 

31 conditional units. 

 Let us consider the second situation:  the same total hostile intensity of 

impacts is distributed more or less evenly. (It can occur, for instance, if terrorists 

do not know real importance of the system’s units or if they do not know the level 

of their protection.) This situation is reflected in Table 2. 
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Table 2. Matrices of solution for hostile impacts on two differently protected systems for even intensities. 

The first system . The second system 

 

 

Level 

of 

protection 

 Intensity of impacts   

 

Level 

of 

protection 

 Intensity of impacts 

0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

0.3 5 5 5 5 0.6 7 7 7 7 

0.6 7 7 7 7 0.6 8 8 8 8 

0.7 11 11 11 11 0.7 11 11 11 11 

0.9 0 0 0 0 0.6 12 12 12 12 

 

 

In this case, the first system is better protected against hostile strike. By the 

way, disinformation about importance of units and/or levels of protection can help 

for defending site. 

 

 

 
11.1 Brief historical overview and related sources  

One of the first work dedicated the problem of survivability was [Krylov, 1942]. Almost 40years later the 

problem of survivability arose in connection of volnurability of large scale energy systems [Rudenko and Ushakov, 

1979, 1989]. This problem broke out last years in connection with organized terrorist activity [Ushakov, 2005, 2006; 

Lefvitin, et al. 2007-2010]. 

Bibliography below is given in chronological-alphabetical ordering for better ecposition of historical 

background of the subject. 
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12 Multistate systems 

 

12.1 Preliminary notes 

Reliability analysis of multistate systems has a long enough history. First papers 

dedicated to this subject appeared as early as in 1978 [R. Barlow, et al., 1978; E. 

El-Neweihi, et al. 1978]. Later appers several papers with introduction of a new 

technique for multi-sustem analysis [I. Ushakov, 1986, 1988, 1998]. And finally it 

was a real burst of research papers on the subject [A. Lisnianski , et al., 2003; G. 

Levitin , et al., 2003; G. Levitin, 2004; G. Levitin, 2005]. 

We begin analysis of explanation of a new technique introduced in [I. Ushakov, 

1986]. 

 

 

 

12.2 Generating Function 

In spite of constant attempting to make presentation “transparent” and very 

much “physical”, this time we begin with rather abstract statement of fundamental 

principles, on which Universal Generating Function is based.  

Eveybody knows about the generating function (GF) that is also called the 

discrete Laplace transform, or z-transform. Generating function is widely used in 

probability theory, especially, for finding convolutions of discrete distributions.  

Generating Function, )(z , for positive random variable X is defined as 

polynomial  
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Power of z denotes the value of r.v., and coefficient at each term equals to 

the probability of realization random variable xk of the random variable X. For 

instance, for binomial distribution 
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As one knows, binomial distribution, corresponding to (2), characterizes, in 

particular, a number of failures during testing of n independent anf identical items. 

If one takes two samples of different sizes, say, n1 and n2, from the same general 

set of events, the GF for such composition will be obtained as product 
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Let us find the probability that in combined sample with n1 = 3 and n2 = 5 

there will have occurred exactly s =k + j = 3 failures. For this purpose, compile 

auxiliary table of possible outcomes.   

 

Table 1. Terms which multiplying leads to s = 3. 

k pk j pj s product 

0 3

0

3
p







 

3 23

3

5
pq








 

5 









0

3
· 53

3

5
pq








 

1 2

1

3
pq








 

2 32

2

5
pq








 

5 









1

3
· 53

2

5
pq








 

2 
pq 2

2

3








 

1 4

1

5
pq








 

5 









2

3
· 53

1

5
pq








 

3 3

3

3
q







 

0 5

0

5
p







 

5 









3

3
· 53

0

5
pq








 

Total probability 






















30

53

3

53

k kk
pq  

 

 

Table 1. Terms which multiplying leads to s = 3. 

k pk j pj s product 

0 3

0

3
p







 

3 23

3

5
pq








 

5 









0

3
· 53

3

5
pq








 

1 2

1

3
pq








 

2 32

2

5
pq








 

5 









1

3
· 53

2

5
pq








 

2 
pq 2

2

3








 

1 4

1

5
pq








 

5 









2

3
· 53

1

5
pq








 

3 3

3

3
q







 

0 5

0

5
p







 

5 









3

3
· 53

0

5
pq








 

Total probability 






















30

53

3

53

k kk
pq  

 

 

 Theory of various transforms over binomial coefficients is very well 

developed. In particular, there is known the so-called Vandermond
28

 convolution 

that in our case has the form: 
                                                        
28 

Alexandre-Théophile Vandermonde (1735 – 1796) was a French musician, mathematician and 
chemist. His name is now principally associated with determinant theory in mathematics. 

http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Musician
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Chemist
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Mathematics
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In a sense, this result was obvious from the beginning: performing of series of 

two binomial tests of volumes a and b is equivalent to a single test of volume a + 

b. 

Of course similar deductions can be done with other discrete distributions. 

However, not this is the final target of our discussion.  

Working with z-transforms “by hand” one uses polynomials because it is 

convenient to multiply coefficients (probabilities) and add powers at z. However, 

assume that we decided to write a program for computer. What we will do in this 

case? 

We present  the  first polynomial φ1(z) as a set of pairs {(p11, a11), (p12, a12), 

... , (p15, a15)} and the  second polynomial φ2(z) as a set of pairs {(p21, a21), (p22, 

a22), ... , (p25, a25)} where pjk’s are corresponding coefficients and  ajk’s are 

corresponding powers of polynomials in unfolded form.  Then we arrange 

Descartes product of these two sets: 

 

Table 2. Descartes product of two sets. 

 (p11, a11) (p12, a12) … (p15, a15) 

(p21, a21) (P11, A11) (P21, A21) … (P51, A51) 

(p22, a22) (P12, A12) (P22, A22) … (P25, A25) 

… … … … … 

(p27, a27) (P17, A17) (P27, A27) … (P27, A27) 

 

Thus, we have some kind of interaction. Herе Pjk  is found 

as kjjk ppP 21  and  Ajk  is found as kjjk aaA 21  .  

However, for a computer there is no difference what kind of operations to 

perform over the first and the second terms of the considered pairs. This idea has 
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been put in the basis of introducing the so-called Universal Generating Function 

(UGF).  

 

 

12.3 Universal Generating Function 

 

We will present UGF only for reliability problems, so we restricted ourselves 

by units characterized by two parameters: probability of unit’s particular state and by 

value of operational parameter associated with this state. Associated parameter can 

be a value of any system’s outcome: productivity rate, capacity, resistance, 

inductivity, etc.  

In this case we can keep (just for convinience of using habitual presentation) a 

polynomial form of specific type: powers of products of two terms, say, za and zb will 

be presented by some transforms over powers of individual terms, namely: 

 

paz
a 

f
 pbz

b
 = papb

),( bafz                                                          (6) 

 

where f is an arbitrary given function. 

 For further discussion, it will be more convenient to use the following form of 

presentation of (6): 

 

{ pa , a}
f
 {pb,b} = {papb, f( a, b} .                                            (7) 

 

Naturally, composition operator  
f
 possesses commutativity property, i.e. 

 

f
  ( a , b )= 

f
  (b , a )                                                    (8) 

 

and associativity property, i.e.  

 

f
  (a, b, c) = 

f
  (a 

f
  ( b , c) )= 

f
  ((a 

f
 b ), c ).                    (9)  

   

if the function f(a,b) possesses these properties. In the most applications this is the 

case, though numerous exceptions exist (see, for example, G. Levitin, 2005).   

 

To avoid terminological comfusion, let us call 
f
  (a, b, c) interaction of 

variables a, b and c.                     
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Let us now return back to multi-state systems. 

Assume that unit k is characterized by the following discrete distribution of its 

operational parameter Xk:  P{Xk = xkj} = pkj. Then we can characterize the distribution 

of the operational parameter of unit k with the following vector of pairs: 

 

Qk={(pk1, xk1), (pk2 , xk2), ..., (pks(k) , xks(k))} = {( pkj , xkj), 1 <  j < s(k)} 

 

where s(k) is the number of different values of r.v. Xk. 

 

Interaction of operational parameters of two units Xk and Xi can be written as 

 

Qk 
f
Qi ={( pkj , xkj), 1 <  j < s(k)} 

f
  {( pil , xil), 1 <  l < s(i)}=  

 

=   )(,1,)(,1,,; islksjxxfpp ilkjilkj   

 

Interaction of operational parameters of N units can be written as 

 


f

( Q1,…,Qk,…,QN) =
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N

i

imi xxfp                             (10) 

 

for all combinations of m(i), when 1< m(i) < s(i).     
 

In expression (10) there could be  pairs with the same values of operational 

parameters, for instance, (P1, A), (P2, A), .. , (Pn, A), then the resulting expression 

(10) has to be changed by collecting terms: 

 

(P1, A), (P2, A), .. , (Pn, A) = 










AP
nk

k ,
1

 

 

 

Let us consider several simple examples for demonstration of the use of UGF. 

 

 

 

12.4 Multistate series system 

For demonstrsation how UGF works, let us consider several simple numerical 

examples possessing  a transparent physical sense. 
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12.4.1 Series connection of piping runs 

Consider a simple oil pipe line (Figure 1) consisting of four runs of piping 

that we will call below as units (just for convenience). 

 

 
Figure 12.1. Conditional structure of oil pipe line with four series piping runs. 

 

Piping run troughput, v, changes randomly due to various external and 

internal causes. Let pipeline units are characterized by the following distributions 

of pipe troughputs: troughput 

First unit: 
8.0}100Pr{11  vp ; 15.0}90Pr{12  vp ; 05.0}80Pr{13  vp  

.0}Pr{14  failurecompletep  

Second unit: 
9.0}100Pr{21  vp ; 07.0}90Pr{22  vp ; 03.0}80Pr{23  vp  

.0}Pr{24  failurecompletep . 

 

Third unit’s has the same distrigution as the second one. 

Remark.  Pipe run throughout is taken in some conditional units. 

 

The entire pipe line is characterized by minimum current value of its units’ 

throughputs, i.e. we have to use the operator 
min
  because 

)(
SERIESf  (vk, vj) = min(vk, vj ), 

Let us consider the following recurrent procedure.  

 

Step 1. First, consider interaction of parameters of units 1 and 2. Take a 

Descartes product presenting it in the form of the following table. 

 

 
 Unit 1 

State 1 State 2 State 3 State 4 

(0.8; 100) (0.15; 90) (0.05; 80) (0;  0) 
 

 

Unit 2 

State 1 (0.9; 100) 0.8·0.9 = 0.72 

min(100,100)=100 

0.15·0.9=0.135 

min(90,100)=90 

0.05·0.9=0.045 

min(80,100)=80 

(0;  0) 

State 2 (0.07; 90) 0.8·0.070=0.056 

min(100,90)=90 

0.15·0.07≈0.011 

min(90,90)=90 

0.05·0.07≈0.004 

min(80,90)=80 

(0;  0) 

State 3 (0.03; 80) 0.8·0.03=0.024 

min(100,80)=80 

0.15·0.03≈0.005 

min(90,80)=80 

0.05·0.03≈0.002 

min(80,80)=80 

(0;  0) 

State 4 (0;  0) (0;  0) (0;  0) (0;  0) (0;  0) 
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In result, one obtains a new equivalent unit with the following distribution of the 

throughputs: 

 

P1=Pr{v=100} = 0.72;  

P2=Pr{v=90} = 0.056 + 0.135 + 0.011= 0.202;  

P3=Pr{v=80} =0.024 + 0.005+ 0.002 + 0.004 + 0.045 = 0.082;  

P4=Pr{v=0}=0. 

 

Remark: Here and below the sum of all probabilities is not equal exacrtly to 1 due 

to rounding of results of multiplications of corresponding probabilities. 

 

Step 2. This new equivalent unit has to be combined with the third unit (see the 

table below. 

 
 Equivalent unit  

State 1 State 2 State 3 State 4 

(0.72; 100) (0.202; 90) (0.082; 80) (0;  0) 
 

 

Unit 3 

State 1 (0.9; 100) 0.72·0.9 = 0.648 

min(100,100)=100 

0.202·0.9=0.182 

min(90,100)=90 

0.082·0.9=0.074 

min(80,100)=80 

(0;  0) 

State 2 (0.07; 90) 0.72·0.070=0.050 

min(100,90)=90 

0.202·0.07≈0.014 

min(90,90)=90 

0.082·0.07≈0.006 

min(80,90)=80 

(0;  0) 

State 3 (0.03; 80) 0.72·0.03=0.022 

min(100,80)=80 

0.202·0.03≈0.006 

min(90,80)=80 

0.082·0.03≈0.002 

min(80,90)=80 

(0;  0) 

State 4 (0;  0) (0;  0) (0;  0) (0;  0) (0;  0) 

 

 

 These results allow calculating the expected throughput of the pipe line, E{V}: 

E{V}=0.648·100 + (0.050+0.014+0.182)·90 + 

(0.022+0.006+0.074+0.006+0.002)·80 = 0.648·100 + 0.246·90 + 0.011·80 ≈ 87.8. 

One also can find the PFFO of this system by some chosen criterion of 

failure. For instance, if a failure criterion is V< 90, then PFFO is equal to: 
.894.0246.0648.0}90Pr{  VP  

 

 

12.4.2 Series connection of resistors  

 

Consider a simple chain of ohmic resistors with the structure analogous that 

presented in Figure 1. Resistance of each unit, ρ, can changes randomly due to 
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various environmental conditions or internal causes. Let resistors are characterized 

by the following distributions of resistance: 

First unit: 
8.0}10Pr{11  ohmsp  ; 15.0}9Pr{12  ohmsp  ; 05.0}8Pr{13  ohmsp   

.0}Pr{14  failurecompletep  

 

Second unit: 
9.0}10Pr{21  ohmsp  ; 07.0}9Pr{22  ohmsp  ; 3.0}8Pr{23  ohmsp   

.0}Pr{24  failurecompletep  

 

Third unit has the same distrigution as the second one. 

The entire series connection of resistors is characterized by sum of its units’ 

resistances, i.e. we have to use the operator 

  because in this case 

)(
SERIESf  (ρk, ρj) = ρk+ ρj. 

Let us consider the following recurrent procedure.  

 

Step 1. First, consider interaction of parameters of units 1 and 2. Take again a 

Descartes product presenting it in the form of the following table. 

 
 Unit 1 

State 1 State 2 State 3 

(0.8; 10 ohms) (0.15; 9 ohms) (0.05; 8 ohms) 
 

 

Unit 2 

State 1 (0.9; 10 ohms) 0.8·0.9 = 0.72 

10+10=20 

0.15·0.9=0.135 

9+10=19 

0.05·0.9=0.045 

8+10=18 
State 2 (0.07; 9 ohms) 0.8·0.070=0.056 

10+9=19 
0.15·0.07≈0.011 

9+9=18 
0.05·0.07≈0.004 

8+9=17 
State 3 (0.03; 8 ohms) 0.8·0.03=0.024 

10+8=18 

0.15·0.03≈0.005 

9+8=17 

0.05·0.03≈0.002 

8+8=16 

 

 

In result, one obtains a new equivalent unit with the following distribution of 

resistancy: 

 

P1=Pr{ρ=20 ohms} = 0.72;  

P2=Pr{ ρ =19 ohms} = 0.056 + 0.135 = 0.191;  

P3=Pr{ ρ =18 ohms} =0.024 + 0.011+ 0.045 = 0.09;  

P4=Pr{ ρ =17 ohms}= 0.005+0.004=0.009;  

P5= Pr{ ρ =16 ohms}= 0.002. 
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Step 2.  This new equivalent unit has to be “converged” with the third unit (see the 

table below). 

 
 Unit 3 

State 1 State 2 State 3 

(0.9; 10 ohms) (0.07; 9 ohmas) (0.03; 8 ohms) 
 

 

 

 

Equivalent  

unit  

State 1 (0.72; 20 ohms) 0.9·0.72 = 0.648 

10+20=30  

0.07·0.72≈0.005 

9+20=29  

0.03·0.72=0.022 

8+20=28  
State 2 (0.191; 19 ohms) 0.9·0.191 = 0.172 

10+19=29  

0.07·0.191=0.013 

9+19=28  

0.03·0.191=0.006 

8+19=27 
State 3 (0.09; 18 ohms) 0.9·0.09 = 0.081 

10+18=28  

0.07·0.090≈0.006 

9+18=27  

0.03·0.09=0.003 

8+18=26  
State 4 (0.009;  17 ohms) 0.9·0.009 ≈ 0.008 

10+17=27  

0.07·0.009≈0 

9+17=26  

0.03·0.009≈0 

8+17=25  
State 5 (0.002; 16 ohms) 0.9·0.002 ≈ 0.002 

10+16=26  

0.07·0.002≈0 

9+16=25  

0.03·0.002≈0 

8+16=24  

 

Remark. By the way, this case can be analyzed with a standard GF. We 

demonstrate it here just for some logical completeness. 

 

 These results allow calculating the expected resistance of the series 

connection of resistors: 

E{ρ} =0.648·30 + (0.172+0.005)·29+ (0.081+0.013+0.022)·28+ 

(0.008+0.006+0.006)·27+(0.002+0.003)·26 = 0.648·30 + 0.177·29+ 0.116·28 + 

0.02·27 + 0.005·26≈ 28.49 ohms. 

One also can find the PFFO of this system by some chosen criterion of 

failure. For instance, if a failure criterion is ρ< 27 ohms, then PFFO is equal to: 

 
.941.0116.0177.0648.0}ohms 28 <Pr{  P  

 

 

 

12.4.3 Series connections of capacitors 

Consider a simple chain of ohmic resistors with the structure analogous that 

presented in Figure 1. Resistance of each unit, c, can changes randomly due to 

various environmental conditions or internal causes. Let resistors are characterized 

by the following distributions of resistance: 

 

First unit: 
8.0}10Pr{11  Fcp  ; 

15.0}9Pr{12  Fcp  ; 

 05.0}8Pr{13  Fcp   
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.0}Pr{14  failurecompletep  

 

Second unit: 
9.0}10Pr{21  Fcp  ; 

 07.09Pr{22  Fcp  ; 

 3.0}8Pr{23  Fcp   

.0}Pr{24  failurecompletep . 

 

Third unit’s has the same distrigution as the second one. 

The entire series connection of capacitors is characterized by sum of inverse 

values of its units’ capacities, i.e. we have to use the operator 
f
  , where 

)(c

SERIESf  (ck , cj) =   .
11

1

111

jk

jk

jk

jk
cc

cc

cc
cc























  

Let us consider the following recurrent procedure.  

 

Step 1.  First, consider interaction of parameters of units 1 and 2. Take again a 

Descartes product presenting it in the form of the following table. 

 
 Unit 1 

State 1 State 2 State 3 

(0.8; 10 μF) (0.15; 9 μF) (0.05; 8 μF) 
 

 

Unit 2 

State 1 (0.9; 10 μF) 0.8·0.9 = 0.72 

(10-1+10-1)-1=5 

0.15·0.9=0.135 

(9-1+10-1)-1≈4.74 

0.05·0.9=0.045 

(8-1+10-1)-1≈4.44 
State 2 (0.07; 9 μF) 0.8·0.070=0.056 

(10-1+9-1)-1≈4.74 

0.15·0.07≈0.011 

(9-1+9-1)-1=4.5 

0.05·0.07≈0.004 

(8-1+9-1)-1≈4.24 
State 3 (0.03; 8 μF) 0.8·0.03=0.024 

(10-1+8-1)-1≈4.44 

0.15·0.03≈0.005 

(9-1+8-1)-1≈4.24 

0.05·0.03≈0.002 

(8-1+8-1)-1=4 

 

 

In result, one obtains a new equivalent unit with the following distribution of 

capacity: 

 

P1=Pr {c=5 μF} = 0.72;  

P2=Pr {c=4.74 μF } = 0.056 + 0.135 = 0.191;  

P3=Pr {c=4.5 μF} =0.011;  

P4=Pr {c=4.44 μF} =0.024+0.045=0.069;  

P5=Pr {c=4.24 μF} = 0.005+0.004 = 0.009;   

P6= Pr {c= 4 μF} = 0.002. 
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Step 2.  This new equivalent unit has to be “converged” with the third unit (see the 

table below). 

 
 Unit 3 

State 1 State 2 State 3 

(0.9; 10 μF) (0.07; 9 μF) (0.03; 8 μF) 
 

 

 

 

 

 

Equivalent  

unit  

State 1 (0.72; 5 μF) 0.9·0.72 = 0.648 

(10-1+5-1)-1≈3.33 

0.07·0.72≈0.005 

(9-1+5-1)-1≈3.21 

0.03·0.72≈0.022 

(8-1+5-1)-1≈3.08 
State 2 (0.191; 4.74 μF) 0.9·0.191 = 0.172 

(10-1+4.74-1)-1≈3.22 

0.07·0.191≈0.013 

(9-1+4.74-1)-1≈3.10 

0.03·0.191≈0.006 

(8-1+4.74-1)-1≈2.98 
State 3 (0.011; 4.5 μF) 0.9·0.011 ≈0.01 

(10-1+4.5-1)-1≈3.10 

0.07·0.011≈0.006 

(9-1+4.5-1)-1=3 

0.03·0.011≈0.003 

(8-1+4.5-1)-1≈2.88 
State 4 (0.069;  4.44 μF) 0.9·0.069 ≈ 0.062 

(10-1+4.44-1)-1≈3.07 

0.07·0.069≈0 

(9-1+4.44-1)-1≈2.97 

0.03·0.069≈0.002 

(8-1+4.44-1)-1≈2.86 
State 5 (0.009; 4.24 μF) 0.9·0.009 ≈ 0.008 

(10-1+4.24-1)-1≈2.98 

0.07·0.009≈0 

(9-1+4.24-1)-1≈2.88 

0.03·0.009≈0 

(8-1+4.24-1)-1≈2.77 
State 6 (0.002; 4 μF) 0.9·0.002≈0.002 

(10-1+4-1)-1≈2.86 

0.07·0.002≈0 

(9-1+4-1)-1≈2.77 

0.03·0.002≈0 

(8-1+4-1)-1≈2.67 

 

 These results allow calculating the expected capacity of the series 

connection of capacitors: 

E{c} ≈ 0.648·3.33 + 0.172·3.22+ 0.005·3.21+ (0.01+0.013) ·3.1 + 0.022·3.08 

+0.062·3.07 + 0.006·3 + (0.008+0.006)·2.98 + 0.003·2.88 + (0.002+0.002) ·2.86 ≈ 

3.14. 

One also can find the PFFO of this system by some chosen criterion of 

failure. For instance, if a failure criterion is c< 3 μF, then PFFO is equal to: 
.938.0006.0062.0022.0023.0005.0172.0648.0}F 3 <cPr{  P  

 

 

12.5 Multistate parallel system 

 

12.5.1 Parallel connection of piping runs 

 

Consider a section of oil pipeline with four parallel piping runs (Figure 

12.2). 

 



169 

 

 
Figure 12.2. Conditional structure of oil pipeline with three parallel piping runs. 

 

The entire pipe line is characterized by sum of current value of its units’ 

troughputs, v, i.e. we have to use the operator 

  because   

)( p

PARALLELf (v1, v2) = v1 + v2. 

It means that from methodological point of view calculations are coinciding 

with those in Section 12.4.2.  

 

 

12.5.2 Parallel connection of resistors  

 

Consider a parallel connection of ohmic resistors (see Figure 14.2). For 

parallel connections of two resistors, one should use the following function that 

determines the resistance of the pair of resistors: 

)(
PARALLELf  (ρ1, ρ2) = 

21

21








                                                        (13) 

and the corresponding operator 
f
 . 

Formally this mathematical model coincides with that described in Section 

12.4.3. One can use all numerical solutions from there with corresponding change 

of dimension. 

12.5.3 Parallel connections of capacitors 

 

Consider a parallel connection of electrical capacitors (see Figure 2). For 

parallel connections of two capacitors, one can write: 

)(c

PARALLELf (c1, c2) = c1+ c2.                                                        (14) 

and use the operator 

 . 
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Formally this type of maniple interaction corresponds to that in Section 

12.4.1, so one can use all numerical solutions from that section with corresponding 

change of dimension. 

 

  

12.6 Reducible systems 

 

Above there were considered only simple series and parallel structures. 

Naturally, UGF method can be with the same success applied to reducible systems 

in general. Since routine transforms in this case are very much similar to those 

described above, we will present only principal new ideas demonstrating them on a 

simple particular example. 

 Let a considered system has the structure presented in Figure 12.3. 

 
Figure 12.3. Example of reducible structure. 

 

 Compiling UGF for such structure is performed in accordance with the step-

by-step reducing the initial structure by aggregating pairs of its modules (elements) 

into single equivalent modules. In other words, the structure is reducing 

sequentially as it is presented in Figure 12.4. 
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.  
Figure12. 4. Step-by-step reduction of the structure depicted in Figure 1243. 

 

Notice that in this case one has to use two types of 
f
 operators with functions f 

corresponding to series and to parallel parallel connection of structural modules.. 

We will illustrate the methodology on two simple illustrative examples of a 

pipeline. 

 

 

Example 12.1. 

Consider a pipe line with a simple reducible structure presented in Figure 

12.5.  
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Figure 12.5. Structure of pipeline considered in Example 12.1. 

 

 

Let the system consists of identical units with pipe troughput distribution of 

each units equals to: 
8.0}100Pr{1  vpk ; 

 15.0}90Pr{2  vpk ;  

05.0}80Pr{3  vpk  

.0}Pr{4  failurecompletepk  

 

Remark.  Pipe run throughout is taken in some conditional units. 

 

Step 1.  Consider first the upper brunch of the pipeline consisting of series 

connection of units 1 and 2.  

 
Figure 12.6. Structure for Step 1. 

 

For this step we have to use the operator 
min
 , since 

 
)(

SERIESf  (vk, vj) = min(vk, vj ). 

 

Results of calculations are presented in the table below. 

 
 Unit 1  

State 1 State 2 State 3 State 4 

(0.8; 100) (0.15; 90) (0.05; 80) (0;  0) 
 

 

Unit 2 

State 1 (0.8; 100) 0.8·0.8 = 0.64 

min(100,100)=100 

0.15·0.8=0.12 

min(90,100)=90 

0.05·0.8=0.04 

min(80,100)=80 

(0;  0) 

State 2 (0.15; 90) 0.8·0.15 = 0.12 

min(100,90)=90 

0.15·0.15=0.0225 

min(90,90=90 

0.05·0.15=0.0075 

min(80,90)=80 

(0;  0) 

State 3 (0.05; 80) 0.8·0.05 = 0.04 

min(100,80)=80 

0.15·0.05=0.0075 

min(90,80)=80 

0.05·0.05=0.0025 

min(80,80)=80 

(0;  0) 

State 4 (0;  0) (0;  0) (0;  0) (0;  0) (0;  0) 
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In result, one obtains a new equivalent unit with the following distribution of 

troughputs: 

 

P1=Pr{v=100} = 0.64;  

P2=Pr{v=90} = 0.12 + 0.12 + 0.0225= 0.2625;  

P3=Pr{v=80} =0.04 + 0.0075+ 0.04 + 0.0075 + 0.0025 = 0.0975; 

P4=Pr{v=0} =0. 

 

Step 2.  This new equivalent unit has to be combined in parallel with the third unit. 

 
Figure 12.7. Structure for Step 2. 

 

In this case we have to use the operator 

 because   

)(v

PARALLELf  (vk, vj) = vk+ vj. 

 

Results of calculations are presented in the table below. 

 
 Equivalent unit  

State 1 State 2 State 3 State 4 

(0.64; 100) (0.2625; 90) (0.0975; 80) (0;  0) 
 

 

Unit 3 

State 1 (0.8; 100) 0.64·0.8 = 0.512 

100+100=200 

0.2625·0.8=0.21 

90+100=190 

0.0975·0.8=0.078 

80+100=180 

0  

100 
State 2 (0.15; 90) 0.64·0.15=0.096 

100+90=190 

0.2625·0.15≈0.039 

90+90=180 

0.0975·0.15≈0.015 

80+90=170 

0 

90 
State 3 (0.05; 80) 0.64·0.05=0.032 

100+80=180 

0.2625·0.05≈0.013 

90+80=170 

0.0975·0.05≈0.005 

80+80=160 

0 

80 
State 4 (0;  0) 0 

100 
0 
90 

0 
80 

0 
0 

 

Resultin pipeline troughput distribution is: 

P1=Pr{v=200} = 0.512;  

P2=Pr{v=190} = 0.096 + 0.21 = 0.306;  

P3=Pr{v=180} = 0.032 + 0.039+ 0.078 = 0.149; 

P4=Pr{v=170}= 0.013 + 0.015 = 0.028; 

P5=Pr{v=160}= 0.005 

 

 These results allow calculating the average power of the pipe line: 
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Vaverage=0.512·200 + 0.306·190 + 0.149·180 + 0.028·170 + 0.005·160   ≈ 

192.9. 

One also can find the PFFO of this system by some chosen criterion of 

failure. For instance, if a failure criterion is V< 190, then PFFO is equal to: 

 
.818.0306.0512.0}190Pr{  VP  

 

 

 

Example 14.2. 

 

 Consider a pipeline with a structure depicted in Figure12.8. 

 

 
Figure 12.8. System structure for Example 14.2. 

 

Let us use the following troughput distributions for the system units: 

 
8.0}100Pr{2111  vpp ;  

15.0}90Pr{2212  vpp ;  

05.0}80Pr{2313  vpp ; 

0}Pr{2414  failurecompletepp ; 

and  
8.0}200Pr{31  vp ;  

15.0}180Pr{32  vp ;  

05.0}160Pr{33  vp ; 

.0}Pr{34  failurecompletep  

 

Step 1.  At the begihnning consider two units 1 and 2 connected in parallel.   

 
Figure 12.9. Structure for Step 1. 
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In this case one has to use operator 

  since 

 
)(v

PARALLELf  (vk, vj) = vk+ vj. 

 

Calculation results are presebted in the table below. 

 

 
 Unit 1  

State 1 State 2 State 3 State 4 

(0.8; 100) (0.15; 90) (0.05; 80)  
 

 

Unit 2 

State 1 (0.8; 100) 0.8·0.8 = 0.64 

100+100=200 

0.15·0.8=0.12 

90+100=190 

0.05·0.8=0.04 

80+100=180 

0 

100 
State 2 (0.15; 90) 0.8·0.15 = 0.12 

100+90=190 

0.15·0.15=0.0225 

90+90=180 

0.05·0.15=0.0075 

80+90=170 

0 

90 

State 3 (0.05; 80) 0.8·0.05 = 0.04 

100+80=180 

0.15·0.05=0.0075 

90+80=170 

0.05·0.05=0.0025 

80+80=160 

9 

80 
State 4 (0;  0) 0 

100 

0 

90 

0 

80 

 

 

 

In result, one obtains a new equivalent unit with the following distribution of 

troughputs: 

 

P1=Pr{v=200} = 0.64;  

P2=Pr{v=190} = 0.12 + 0.12=0.24;  

P3=Pr{v=180} = 0.04 + 0.0225+ 0.04 = 0.1025;  

P4=Pr{v=170} = 0.0075 + 0.0075 = 0.015; 

P5=Pr{v=160} = 0.0025; 

P6=Pr{v=0}=0. 

 

Step 2. At this step the obtained above equivalent unit has to be combimed with the 

third unit  using the operator 
min
 . 

 

 
Figure 12.10. Structure at Step 2. 

 

Calculations for the entire system are presented in the table below. 
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 Unit 3 

State 1 State 2 State 3 State 4 

(0.8; 200) (0.15; 180) (0.05; 160) (0;  0) 
 

 

 

 

 

Equivalent 

unit 

State 1 (0.64; 200) 0.8·0.64 = 0.512 

min(200,200) 

0.15·0.64=0.096 

min(180,200)=180 

0.05·0.64=0.032 

min(160,200)=160 

0 

min(0,200)=0 
State 2 (0.24; 190) 0.8·0.24=0.192 

min(200,190)=190 

0.15·0.24=0.036 

min(180,190)=180 

0.05·0.24=0.012 

min(160,190)=160 

0 

min(0,190)=0 
State 3 (0.103; 180) 0.8·0.103≈0.082 

min(200,180)=180 

0.15·0.103≈0.015 

min(180,180)=180 

0.05·0.103≈0.005 

min(160,180)=160 

0 

min(0,180)=0 
State 4 (0.015; 170) 0.8·0.015=0.012 

min(200,170)=170 

0.15·0.015≈0.002 

min(180,170)=170 

0.05·0.015≈0 

min(160,170)=160 

0 

min(0,170)=0 
State 5 (0.003; 160) 0.8·0.003≈0.002 

min(200,160)=160 

0.15·0.003≈0 

min(180,160)=160 

0.05·0.003≈0 

min(160,160)=160 

min(0,160)=0 

State 6 (0;  0) 0 
min(200, 0)=0 

0 
min(180, 0)=0 

0 
min(160, 0)=0 

min(0,0)=0 

 

 

 These results allow calculating the expected throughput of the pipeline: 

E{V}=0.512·200 + 0.192·190 + (0.082+0.096+0.036+0.015)·180 + 

(0.012+0.002)·170 + (0.002+0.032+0.012+0.005)·160 = 

0.512·200+0.192·190+0.229·180+0.014·170+0.051·160 ≈ 190.6 

One also can find the PFFO of this system by some chosen criterion of 

failure. For instance, if a failure criterion is V< 180, then PFFO is equal to: 
.933.0229.0192.0512.0}180Pr{  VP  

 

* * * 

We restrict ourselves with these two numerical examples, since from 

methodological viewpoint considering additional structures or different physical 

objects brings nothing new. 

 

12.7 Conclusion 

 

We limit ourselves with few examples that demonstrate main ideas of using 

UGF in reliability analysis. Of course, the reader can find objects of different 

physical nature and compile for them corresponding composition operators. Notice 

that UGF methodology is not limited by reliability problems. It can be successfully 

used for other multidimentional “generalized convolutions”. 

 

12.8 Brief historical overview and related sources 

 

Here we offer only papers and highly related books to the subject of this 

chapter. List of general monographs and textbooks, which can include this topic, is 
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given in main bibliography at the end of the book. All references are ordered 

chronologically, since it gives to the reader additional information about the 

history of the considered subject. 

 First publications on multistate systems appeared in the end of 1970s and 

beginning of 1980s. The theroy of multistate systems reliability is now developed in 

a powerful branch of the modern Relisability Theory. Here we made an atteptto 

demonstrate the place and role of UGF, which first appeared in [Ushakov, 1986]. 

 Now this new direction is flourishing mostly due to intensive and quite 

productive research by G. Levitin and A, Lisniansky. 

Bibliography below is given in chronological-alphabetical order for better 

exposition of historical background of the subject. 
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13  
 

Appendicis 

 

A. Main distributions related to Reliability Theory 

 

 Since each of reliability indices represents one or another characteristic of 

probability distribution, we give brief information about main distributions related 

to the subject.   

 
A1.Discrete distributions. 

 
A.1.1.Degenerate distribution 

 In a sense, it is a distribution of “non-random random variable”: this is the 

distribution of a constant value. In Reliability Theory a constant is used, for 

instance, for description o switching time to redundant unit or to duration of 

monitoring tests.  

The degenerate distribution is localized at a point T on the real line.  The 

cumulative distribution function of the degenerate distribution concentrated in 

point T  is: 



 


.otherwise

Ttif
tF

,1

,,0
)(                                       (1) 

Its probability mass function and distribution function are depicted in Figure 1.  

 

 

Figure 1. Probability mass function and distribution function of degenerate distribution. 



181 

 

 

 
A1.2. Bernoulli distriburion 

 Let two mutually exclusive events are possible: success, which occurs with 

probability p, and failure, which occurs with probability q=1- p.  Prescribe 

conditionally value 1 to success and value 0 to failure and introduce a random 

variable Х that is called Bernoulli
29

 random variable: 






.

,

otherwise

occurredhassucccessif
X

,0

,1
 

  Distribution of the Bernoulli r.v. is called the Bernoulli distribution: 










,0,

,1,
}Pr{

Хifq

Хifp
Xx                                                  (2) 

or in more compact form: 

Pr{x=X} =p
X
q

X-1
.                                                    (3) 

  

Thus, the Bernoulli r.v. is a special case of degenerate r.v. when T=1. 

The mathematical expectation (the mean) of a Bernoulli random variable X is  

E{X} = 1p+0q = p ,                                             (4) 

and its variance is: 


2
{X} =  pq.                                                    (5) 

 
A.1.3.Binomial distribution 

If one observes a series of n Bernoulli r.v.’s, the number of successes (and, 

respectively, failures) is random. The distribution of this r.v. is named binomial 

distribution. Binomial r.v. is the sum of Bernoulli r.v.’s, i.e. 





n

k

kn XXXXХ
1

21 ... ,                              (6) 

where Хk is Bernoulli r.v. 

                                                        

29 Jacob Bernoulli (1654 –1705) was a Swiss mathematician, one of the many prominent mathematicians in the 

Bernoulli family. 
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 The probability of occurrence of exactly k successes is: 

P(n; k)= knk qp
k

n










.                                          (7) 

 Distribution function in this case is written as: 

 
















m

k

knk qp
k

n
mnF

0

);(  .                                          (8) 

 

An example of the binomial distribution is given in Figure 2. 

 
Figure 2. Mass function, P(n;k), and cumulative function, F(n;k), for binomial distribution with 
parameters p = 0.7 and n  = 10. 

 

 

Using (4) and applying the theorem about expectation of the sum of r.v.’s, 

one can immediately write: 

Е {X1  + X2  + ... + Xn} = nЕ {X1} =  np.                   (9) 

    Using (5) and the formula for the sum of variances, one gets: 

2  
= npq.                                             (10)  

Let us underline an important property of  binomial distribution: if one 

performs two series of Bernoulli tests of  n1 and n2 trials and probability of success 

in both cases are the same p, then it is equivalent to a single test with the total 

number of trials equals n=n1+n2. In other words, the convolution of two Binomial 

distribution functions produces the binomial distribution with а new parameter n.  
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A.1.4. Poisson distribution 

This distribution is often used in various mathematical reliability models. 

For instance, it describes distribution of events of Poisson process in a fixed time 

interval. The “physical” sense of this distribution can be demonstrated on the 

following example. Consider the binomial distribution for the case when the 

number of Bernoulli trials, n is extremely large and, at the same time, value of р is 

very close to 1. In this case, numerical calculation of probability (7) presents a 

definite complexity:  one needs to sum up a huge number of summands each of 

which is a product of large value of binomial coefficient by very small values of 

probabilities. In this case, it is reasonable to use a limit passage for n, q0, 

and nq = Const: 

kn

n

k
knk

n
qknnn

k

q
pq

k

n
















)1)](1(...)1([lim

!
lim .            (11) 

Since  n >> k, then k

n
nknnn 


)]1(...)1([lim and )exp()1(lim nqq kn

n
 


. In 

result one gets: 

)exp(
!

)(
lim nq

k

nq
pq

k

n k
knk

n








 


                                     (12) 

Formula (12) is the corollary of fundamental Poisson theorem. 

Formula (20) can be used as approximation even for relatively small n. In 

Figure 4 four particular cases for n = 20 are depicted: B-1 is binomial distribution 

with q = 0.1, P-1 is corresponding Poisson distribution with Λ = 0.1·20 = 0.2; B-2 

is binomial distribution with q = 0.25, P-2 is corresponding Poisson distribution 

with Λ = 0.25·20 = 5. 
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Figure 3. Comparison binomial and Poisson mass functions for two particular cases. 

 

Now consider that during time interval [0, t] random failures can occur with 

constant rate. Divide interval [0, t] by small subintervals.  Then in each interval 

may occur   + o() failures, where o() is a value of higher order of smallness. 

In other words, we consider 



t

n Bernoulli trials. So, we can value nq replace in 

this case for Λ = t. It means that (12) can be rewritten as: 


 -e

!
)(

k
p

k

k  .                    (13) 

Cumulative function in this case is: 











k

j

j

kj
j

P
0

- .e
!

)( .                    (14) 

Examples of mass function and cumulative function of the Poisson 

distribution are given in Figures 5 and 6, respectively. 
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Figure 4. Mass function and cumulative function of Poisson distributions for four meanings of 

parameter Λ equal to 2, 4, 6 and 8, respectively. 

 

 

The mathematical expectation for Poisson distribution is defined in usual 

way: 
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   .                     (15) 

The variance of this distribution equals its mean: 

2
=t.                                                       (16) 

A.1.5.Geometric distribution 

Consider a series of Bernoulli trials. Denote the number of consecutive 

successes until first failure occurrence by Х. Distribution of such r.v. is called 

geometric. Its mass function is expresses as: 

Pr{X=k} =  p
x
q .                                             (17) 

Cumulative function of geometric distribution has the form”  

1
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qp
pqppqpqxX .        (18) 

Notice that (18) can be obtained in different way on the basis of simple 

arguments. Probability P{X>х} = p
x+1 

is the probability that x+1sucessesoccur in 

row.  So, complementary probability is P{Xх} = 1 - p
x+1

. 

The mathematical expectation of r.v. Х is found as usual: 
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By the way, sum 


0x

xp  can be found in another way. Denote y = 1 + p + p
2 
+ 

… . For this infinite sum, the following equality is true: 1+p+p
2
+…=1+py. From 

here 
qp

y
1

1

1



  if geometric series converges. 

 
A.2.Continuous distributions 

  
A.2.1.Intensity function 

For continuous distribution there is an important additional characteristic that is 

often used in reliability theory. This is intensity function,  )(t , defined as 

conditional density function at moment t under condition that the considered r.v. is 

larger than t, i.e.:  

dt

tdF

tP
t

)(

)(

1
)(  .                                         (20) 

One can rewrite (20) as: 

).(ln
)(

)(

1
)( tP

dt

d

dt

tdP

tP
t                                            (21) 

For (21) follows that for any distribution, the probability of failure-free operation 

can be written in the form: 

.)(exp)(
0














 

t

dtttP                                        (22) 

Expression (22) leads beginners in reliability engineering to confusion: they 

call arbitrary d.f. presented in such a form “exponential distribution”. Indeed, for 

an exponential distribution always .)( constt   

 For the probability that residual time to failure larger than t under condition 

that an object has already worked time x, one can write:  

.)(exp)|(













 

xt

x

dttxtP                                          (23) 
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A.2.2.Continuous uniform distribution 

  Continuous uniform distribution (or rectangular distribution) is defined on 

restricted interval [х,  y] with density function: 

xy
tf




1
)( .                                                        (24) 

and distribution function: 
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ytxif
xy
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1

0

)( .                                                  (25) 

Functions (37) and (38) are depicted I Figure 5. 

 

 
Figure 5. Density and distribution function of uniform distribution. 

 

 The mean of this distribution equals to: 

2
}{

xy
XE


   ,                                          (26) 

and variance equals to: 

12

)( 2
2 xy 
 .                                         (27) 

 This distribution is widely used for Monte Carlo modeling.  
 

A.2.3.Exponential distribution 

 Consider geometric distribution with the probability of success that is very 

close to 1, or, what is the same, the probability of failure is extremely small:   
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q = 1-p << 1.  The probability that r.v. Х , that equal the number of consecutive 

successes in such series of Bernoulli trials is more than some fixed n is equal to: 

Pr{Xn} = p
n
  = (1-q)

n
.                                         (28) 

Let each Bernoulli trial lasts time .  Denote the failure probability as q=, 

where  is some constant. Assume that the number of trialс, n, is sufficiently large. 

Let the total time of trials is t=n. Then (28) can be rewritten as: 

P(t) = P{Xn} = (1- )
t/ 

 ,                                      (29) 

And after 0, one gets: 

P(t) = exp(-t).                                                (30) 

 Formula (30) gives a function complementary to the distribution function, 

so: 

F(t) = 1- exp(-t).                                               (31) 

This is exponential distribution function with parameter.  

 Thus, in a sense, exponential d.f. is a limit distribution for geometric one. 

Density function for this distribution is found as follows: 

f(t) = )]exp(1[ t
dt

d
  = exp(-t).                                  (32) 

The mathematical expectation is: 




1
)exp(}{

0

 


dtttXE .                                (33) 

and variance is: 

 .
1

2
                                                       (34) 

 

 It is clear that exponential distribution, as well as geometric one, possesses 

the Markovian property, that is:  

P(x, t+x|x > x) = P(0, t) = exp(-t).                       (35) 
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 In reliability terms it means that an object that is in operational state at some 

moment t is in operational state by its reliability properties is equivalent to an 

absolutely new one. Of course, this assumption should be always taken into 

account before using exponential models for practical purposes: not always such 

assumption is adequate to a real technical object. 

 Intensity function, (t), for exponential function is constant: 
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edt
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                                                 (36) 

 

 
A.2.5.Erlang distribution 

 Erlang distribution is a convolution of n identical exponential distributions, i.e. 

Erlang r.v. is a sum of n i.i.d. exponential r.v.’s. Erlang d.f. represents a particular 

case of Gamma-distributions with an integer shape parameter. 

Erlang density function is: 

 

.0),exp(
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                            (37) 

The mean and variance of this distrobution equal, correspondingly, to 


n
 and 

2

n
.  

 
 

A.2.6. Hyper-exponential distribution 

 This distribution appears in some reliability models. Hyper-exponential 

distribution is weighed sum of exponential d.f.’s and defined as: 





n

k

kk tptF
1

)exp(1)(  .                                        (38) 

where 



n

k

kp
1

1 and all pk > 0. 

An example of hyper-exponential distributions is presented in Figure 8. 
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Figure 6.  Exponential functions F1(t) = 

te
 and F1(t) = 

te 10
, and hyper-exponential functions  

F3(t) = 0.5F1(t ) + 0.5F2(t ). For comparison, function F4(t) = 
te 5.5
  with parameter )101(5.0  is 

also presented. 

 

Obviously that the mean of this distribution is equal to: 
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 This distribution has decreasing intensity function: 
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Indeed, function )(t is monotone and for t=0 is equal to: 










 
n

k

kkn

k

k

n

k

kk

p

p

p

1

1

1)0( 



 ,                                      (41) 

and for t , as one can see directly from (41), k
nkt

t 



1
min)(lim . It is clear 

that )0(min
1

 


k
nk

.  In this case, intensity function has the form depicted in Figure 7.  
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Figure 7. Function )(t for hyper-exponential distribution. 

 
A.2.7.Normal distribution 

A.2.8. Weibull-Gnedenko distribution 

    In conclusion, let us consider Weibull-Gnedenko distribution that is widely used 

in applied reliability analysis. Distribution function in this case has the form:  










0для0

0для))(exp(1
)(

t

tt
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,                            (42) 

and density function is: 












0для0
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ttt
tf

 
.                        (43) 

Parameters  and  are called scale and shape parameters, respectively. Examples 

of distribution and density functions depicted in figure 
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Figure 7. Distribution, F(t), and density, f(t), functions. All distributions with λ=1. Subscript “2” relates to 

the Weibull-Gnedenko distribution with parameter β=2 and subscript “3” relates to the distribution with 

parameter β=0.5. 

  

Weibull-Gnedenko distribution has intensity function  

(t)= t
-1

                                                                   (44) 

That is increasing for  > 1 and decreasing for  < 1.  Obviously, for  = 1 this 

distribution coincides with exponential one. For  =1intensity functions is linear. 

 

 
Figure 8. Examples of intensity functions for Weibull-Gnedenko distribution. All distributions with 

λ=1. Subscripts correspond: “1” to β=1 (exponential distribution), “2” to β=0.5, “3” to β=2 and “4” to 

β=3. 

 

       The mean of this distribution equals: 
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and variance:  
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where () is gamma-function.  
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B. Laplace transformation 

  

 Recall that the Laplace
30

 transform (LT), φ(s), of   function  y(t) is defined over 

the positive axis as: 

dt.ey(t) = (s) st-

0




                                           (1) 

For derivative of y(t), that is for )(ty , one can write, using integration by parts: 

)()0()()0()()()()( 0 ssydtetfsyedtfetytdye dte(t)y
st-

0

st-

0

stst-

0

st-

0

 






  (2) 

where y(0) is the initial condition of the process, i.e. y(t) at t = 0.  

For integral of function y(t), the expression for LT can be derived with using 

integration by parts: 
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(3) 

For system of differential equations, describing system’s transit from state to state, 

one usually considers the fooling type of the linear differential equations: 

)()()()()( tpАtptptp = tp
dt

d
iik

E(k)i

kkiik

E(k)i

ki

e(k)i

kk
 +  +  


                   (4) 

where ki is the passage intensity from state “k” to state “i”; )(ke  is subset of the total 

set of states where the process can move at one step from state “k”, and )(kE is subset 

of states from where the process can move at one step to state “k”;  ki

e(k)i

kА 


 .  If 

there is no absorbing states, one needs to use the initial conditions of the type )0(pk
, 

i.e. )(tpk
  at moment t = 0.  

Laplace transforms for system (4) has the form: 

,sas =ss p iik

E(k)i

ki

e(k)i

kkk
 + )()()()0(  


                     (5) 

                                                        
30

 Pierre-Simon, marquis de Laplace (1749–1827) was a French mathematician and astronomer whose 
work was pivotal to the development of mathematical astronomy and statistics. 
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That can be rewritten in open form as 

)0()(...)()()( 1122111 pssss nn     

)0()(...)()()( 2222112 pssss nn    

...............................                                                        (6) 
)0()()(...)()( 2211 nnnnn pssss    

 If considered Markov process has no absorbing states, equations in (6) are 

mutually dependent and in this case one has to replace any of them by the 

normalization equation: 

1)(..)()( 21  ssssss n .                                            (7) 

The same system of equations can be written in matrix form as: 
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where  
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                                          (8) 

is determinant of equation system (6). Solution of this system can be obtained with 

the Cramer Rule: 

)(

)(
)(

sD

sD
s k

k  .                                                        (9) 

where )(sDk  is determinant in which the k-th column is substituted by the right 

column of absolute terms. 

For inverse Laplace transforms, one uses the following procedure.  

(a). Open the numerator and denominator of fraction (9) and write )(sk  in the 

form: 
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110
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where Аk  and Bk are unknown coefficients to be found.                  

(b). Find roots of the polynomial in the denominator of fraction (10): 

0... 1

110  



n

n sBsBB .                                           (11) 

Let these roots are s1, s2 , … , sn. It means that: 
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(c). Write )(sk  as the sum of simple fractions: 
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where k ‘s are unknown coefficients.  

(d). After reduction of fraction to a common denominator, write )(sk  in the form: 
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(e). Open the numerator of the fraction and perform collecting terms: 
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   ,                                       (15) 

where k 's are presented through known j 's and sj's.  

(f).  Polynomials (10) and (15) are equal if and only if Ak  = k.  From these 

conditions, one finds unknown coefficients k. 

(f). After finding k, one applies inverse Laplace transforms to (13). 

For practical solutions, one can use existing tables of inverse Laplace 

transforms. A sample of the most important Laplace transforms, frequently used in 

reliability analysis, is given in the table below. 

 
Table 1. Most important Laplace transforms. 

Origin Transform  Origin Transform 
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Usage of this table is almost obvious. For instance, if your solution in Laplace 

transforms is .
s


  , it means that in the “space of normal functions” the solution is 

te  . 

Thus, the main idea of LT consists in replacing integro-differential equations 

by equivalent algebraic ones, which can be easier solved, and then make inverse 

transform for the obtained algebraic solution. 

Why one needs to use LT? Explanation is simple: it makes solution of integro-

differential equations simpler. The main idea of using LT exposed in Figure 2. 

 

 
Figure 2. Graphical explanations of the idea of  LT use. 
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C. Markov processes 
 

C.1. General Markov process 

 

 From the very beginning, we would like to emphasize that a Markov model is 

an idealization of real processes.  The main problem is not to solve the system of 

mathematical equations but rather to identify the real problem, to determine if the 

real problem and the mathematical model are an appropriate fit to each other. If, in 

fact, they fit, then a Markov model is very convenient. 

 Assume that we can construct the transition graph which sufficiently describes 

a system's operation. (We use below reliability terminology only for the readers 

convenience.) This graph must represent a set of mutually exclusive and totally 

exhaustive system states with all of their possible one-step transitions. Using some 

criterion of system failure, all of these states can be divided into two complimentary 

disjoint subsets, up states and down states. Necessary condition that transition from 

the subset of up states to the set of down states occurs is a failure of one of operating 

units. Of course, if a unit is redundant, the system’s failure does not occur.  An 

inverse transition may occur only if a failed unit is recovered by either a direct repair 

or by a replacement. Let us consider a system with n units. Any system state may be 

denoted by a binary vector )s,...,s( =s n1 , where si  is the state of the ith unit, and n is 

the numer units in the system.  We set si=1 if the unit is operational and si=0, 

otherwise. If each system unit has rwo states, say, operational and ailure, and the 

system consists of n units, the system, in principle, can have N = 2n different states.  

System state (s1 = 1, .. ., si = 1, ... ,sn  = 1) will play a special role in further deductions 

, so let us  assign to this state subscript “1”. 

The transition from (s1,..., si=1,...,sn) to (s1,..., si=0,...,sn) means that the i-th 

unit change its state from up to down.  The transition rate (or the transition 

intensity) for this case equals the i-th unit's failure rate. 

   A transition from system state (s1,..., si=0,...,sn) to  state (s1,..., si=1,...,sn) 

means that the ith unit being in a failed state has been recovered. The transition rate 

for this case equals the i-th unit's repair rate. These kinds of transitions are most 

common. For Markovian models, no more than a single failure can occur during 

infinitesimally small period of time. 

 For some reasons, sometimes one introduces absorbing states, i.e. such states 

that process once entering the state will never leave it. The sense of these states will 

be explained later. 

  We denote transitions from state to state on transition graphs with arrows. The 

rates (intensities) are denoted as weights on the arrows. After the transition graph has 
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been constructed, it can be used as a visual aid to determine different reliability 

indexes. 

 Consider a continuous Markov process with discrete states (Figure 1). 

 
 

Figure 1. Conditional presentation of state k and its immediate neighbors. 

 

On this graph, the process can move during infinitesimally small time 

interval from state k to one of states of subset   е(k), and at the same time the 

process can occur in state from some subset E(k).  Notice that a state can belong 

simultaneously to both subsets, i.e. the process can go from one state to another 

back and forth. 

 
C.1.2. Non-stationary availability coefficient 

  This reliability index can be compiled with the help of transition graph 

above. In this case, one should choose the initial state, i.e. state in which system is 

at moment  t = 0.  For arbitrary state k, one can write the following formula of total 

probability  




















 )()(

)(1)()(
kEj

jkj
kei

kjkk tptptp  .       (1) 

where ki is the transition intensity from state k to state i; )(ke  is subset of the total 

set of states where the process can move at one step from state k; and )(kE is subset of 

states from where the process can move at one step to state k. 

Indeed, the process occurs at moment  t+  in state k by two ways: 

(a) At moment t , it is in state  k and does not leave this state during 

infinitesimally small interval  ; 

(b) At moment t, it is in any state belonging to subset e(k) and moves namely 

to state k during infinitesimally small interval  . 
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Equation (1) can be transformed into the form: 






 )()(

)()(
)()(

kEj
jkj

kei
kik tptp
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Limiting passage for 0 leads to the differential equation for state k: 
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 , for  .,1 Nk                              (3) 

with the initial condition 1)0(1 p .  

 This system of differential equations in open form is: 
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On the basis of (4) and using Appendix B, one can write the following algebraic 

system of equations in terms of Laplace transforms: 
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 General form of solution of the considered equations system with the help of 

Laplace transforms is given in Appendix B. 

 

 
C.1.3. Probability of failure-free operation 

  
 

 For finding the probability of a failure-free operation, absorbing states are 

introduced into the transition graph. They are the system's failure states.   

 
Figure 2. Absorbing states v and w. 

 

We can change the domain of summation in the previous equations in a way which is 

equivalent to eliminating the zero transition rates.  Using the previous notation, we 

can immediately write for an operational state k formally the same equation as (3). 

 If the transition graph has М operational states (denote this set of states by Ω), 

we can construct M differential equations. (In this case, the equations are not linearly 

dependent. So, there is no need to use the normalization condition as one of 

equations.) Equations (5) and the initial conditions )0(kp , .,1 Nk   are used to find 

the probability of a failure-free operation of the system. 

 Actually, there are two special cases that are considered in reliability theory. 

(1) At moment t = 0 the system is in state s = (1, 1, ... , 1), i.e. in the 

state where alll units are operational, with probability 1.  

(2) In a stationary process the system in arbitrary  moment t can be in 

one of its M operable states with stationary probabilities pk ,  .,1 Mk    

Thus, systems of differential equations are the same: 
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 )2(

22112 )(...)()(
)(

2

ei
MMi

tptptp
dt

tdp
  

......................                                                 (6) 

   
 )(

2;21;1 )(...)()(
)(

Mei
MMM

Mi
tptptp

dt

t
M

dp
  

However, for the first case the initial condition is: 

p0(0)  = 1,    pk (0) = 0 ,  .,2 Mk                                       (7) 

and for the second case  

pk (0) = pk ,  .,1 Mk                                           (8) 

 Thus, based on Appendix B, one can write two systems of algebraic equations 

in terms of Laplace transforms for the first initial condition:  

 0)(...)()()(1 122111  


ssss MM
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ssss MM

j

j   

...............................                                                                  (9) 

0)()(...)()( ;2;21;1  
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MjMMM ssss  , 

For the second initial condition, the system of algebraic equations has the form 

*
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q
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1 . 

 Solution of both these system of equations can be found with the methods 

described in Appendix B.  

 



203 

 

C.1.4. Stationary availability coefficient 

This reliability index is found on the basis of a transition graph that has only 

transition states.  In general graph, for each state k let us mark out corresponding 

subsets E(k) and е(k).  

On the basis of Figure 1, one can easily write the following balance equation 

for each k: 

j
kEj

jk
kei

kik pp 
 )()(

 .                                      (11) 

This equation has a simple physical interpretation. Imagine that state k is 

some reservoir with volume of liquid pk (that is, it is proportional to the probability 

of time that the process staying in this state). Each liquid unit of volume flows out 

with total intensity 
 )(kei

ki into corresponding reservoirs that belongs to subset е(k). 

In other words, the total “flow of liquid” from reservoir k is equal to 
 )(kei

kikp  .  At 

the same time, liquid flows into reservoir k fro reservoirs belonging to subset E(k).  

The total liquid volume flows into reservoir k is equal to j
kEj

jk p
 )(

 .  Our intuition 

hints that after a while it will be a kind of dynamic balance: the volume of liquid 

flowing into each reservoir will be equal to the volume of liquid flowing out.  

Since the transition graph has no absorbing states, one has to take any n -1 

equations of type (11) and add to them the so-called “normalization condition”: 
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In canonical form the system of equations is: 
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...............................                                                (13) 

0...
1;1;1121;211;1 




  nnn
j

nnnnn pppp   

1..21  nppp . 

Solution of this system of algebraic equations is possible, for instance, with 

the help of Cramer Rule: 

D

D
p k

k  ,                                                  (14) 
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where D determinant  of the system (13) is, 
kD  is the same determinant in which 

the k-th column substituted for the column of the absolute terms. Availability 

coefficient, K, is: 


 k

k
k

k D
D

pК
1 ,                                    (15) 

where Ω is the subset of all operational states. 

 
 

  

 
C.1.5. Mean time to failure and mean time between failures 

  

Recall that the mean time is defined as: 

 .P(t)dt = T
0




                                    (16) 

Now notice that if (s) is Laplace transform for P(t), then T can be obtained as: 

0

00

)()(






 







  s

s

st sdtetPT             (17) 

To find MTTF, one has to take solution of equations system (6) with the initial 

condition (7). For MTBF, one has to take solution of the dame equations system with 

the initial condition (8). 

 

 
C.1.6. Mean recovery time 

 Finding this index is analogous to the finding of MTBF, however I this case 

the sets of transitive and absorbing states have to be redefined. In this case all 

operable states become absorbing and all failure states become transitive.  If the 

total number of system states equals n, and among them m “up” states, then for 

remaining k=n-m states (denote the set of these states by g) one has to compile 

system of k equations:  

*

1122111 )(...)()()( qssss kk

j

j  


   

*

2222112 )(...)()()( qssss kk

j

j  


  

...............................                                                                  (18) 
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*

;2;211 )()(...)()( m

j

kjkmm qssss  


 , 

where each *

kq  , kg, is defined as: 






gj

j

j

k
p

p
q* .                                                            (19) 

Solutin of system (18) can be found as 





gj

j )0( .                                                            (20) 

 
C.2. Birth-death process 

 

 

Birth-death process (BDP) is one of the most important special cases of 

continuous-time homogenous Markov process where the states represent the 

current size of a population. This process has many applications in demography, 

biology, queuing theory, reliability engineering, and other areas.  

Let us denote states by natural numbers 0, 1, 2, ... .  If the process at moment 

t is in state k, then during infinitesimally small time interval  it can with 

probability k+o() proceed to state (k+1), or with probability k+o() it can 

proceed to state (k-1), or with probability 1-(k+k) +o() will stay in state k.  

Notice that states “0” and “n” are so-called reflecting, i.e. 0 = 0 and n = 0 . 

Corresponding transition graph is presented in Figure 3.  

 

 
Figure 3. Transition graph for birth-death process. 

 

For state k, one can write the following equation of dynamic balance: 

)]()[()]()(1)[()]()[()( 111   otpotpotptp kkkkkkkk  . 

(21) 

From (21) follows: 
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111 tptptp
tptp

kkkkkkk
kk

 



 ,   (22) 

That gives after limiting passage for 0 the following differential equation: 

)())(()()( 111 tptptptp
dt

d
kkkkkkkk    .       (23) 

In analogous way, one can write equations for states “0” and “n”: 

)()()( 11000 tptptp
dt

d
  .               (24) 

and 

)()()( 11 tptptp
dt

d
nnnnn    .              (25) 

 In result, we have the following system of differential equations: 

)()()( 11000 tptptp
dt

d
   

)())(()()( 22111001 tptptptp
dt

d
   

............                                                                   (26) 

)())(()()( 111 tptptptp
dt

d
kkkkkkkk     

............ 

)()()( 11 tptptp
dt

d
nnnnn    . 

 The initial condition in most reliability application is taken in the form p0(0) 

= 1. 

 Usually, one is interested in stationary probabilities, when kk pp )( . It 

means that all 0)( tp
dt

d
k  with t . In this case the system (26) transforms into 

the system of algebraic equations: 

11000 pp    

2211100 )(0 ppp    

............                                                                           (27) 
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111 )(0   kkkkkkk ppp   

............ 

nnnn pp    110 . 

 

In addition, one has to use equation of total probability:  





n

k

kp
0

1.                                                        (28) 

Actually, the equations of balance for the birth-death process, written for 

“cuts” of transition graph, are more convenient. 

 

  
Figure 4. “Cuts” of transition graph for BDP. 

 

Indeed, balance means that flows back and forth through a cut are equal. In 

this case, the system of balance equations has a very convenient form:  

1100 pp    

2211 pp    

............                                      (29) 

kkkk pp   11  

............ 

nnnn pp   11 . 

Introducing
k

k
k




  , one gets the same system (29) in the form: 

011 pp   

021122 ppp    

........ 
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........ 
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jn pp
1

0  . 

Using (28), one can write the solution: 

1

1 1

0 1
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jp  .                                    (31) 

Thus, for any pk solution is: 
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